HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF $62^{\circ} \mathrm{N}$ (HAWG)

VOLUME 4 | ISSUE 16

ICES SCIENTIFIC REPORTS

RAPPORTS
SCIENTIFIQUES DU CIEM

[^0]
International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

ISSN number: 2618-1371

This document has been produced under the auspices of an ICES Expert Group or Committee. The contents therein do not necessarily represent the view of the Council.
© 2022 International Council for the Exploration of the Sea

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy.

ICES Scientific Reports

Volume 4 | Issue 16

HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF $62^{\circ} \mathrm{N}$ (HAWG)

Recommended format for purpose of citation:

ICES. 2022. Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG).
ICES Scientific Reports. 4:16. 745 pp. http://doi.org/10.17895/ices.pub. 10072

Editors

Afra Egan • Cecilie Kvamme

Authors

Johnathan Ball • Valerio Bartolino • Dorte Bekkevold • Florian Berg • Benoit Berges • Aaron Brazier • Neil Campbell • Mikael van Deurs • Afra Egan • Edward Farrell • Annegret Finke • Christopher Griffiths • Tomas Gröhsler • Kirsten Birch Håkansson • Ole Henriksen • Bastian Huwer • Espen Johnsen • Matthias Kloppmann • Cecilie Kvamme • Mathieu Lundy • Susan Mærsk Lusseau • Steve Mackinson • Paul Marchal • Eleanor McLeod • Henrik Mosegaard • Richard Nash • Cormac Nolan • Martin Pastoors • Campbell Pert • Thomas Regnier • Anna Rindorf • Norbert Rohlf • Claus Reedtz Sparrevohn • Vanessa Trijoulet

Contents

i Expert group information iv
1 Introduction 1
1.1 HAWG 2022 Terms of Reference 1
1.2 Generic ToRs for Regional and Species Working Groups 2
1.3 Reviews of groups or projects important for the WG 4
1.3.1 Meeting of the Chairs of Assessment Related Expert Groups (WGCHAIRS) 4
1.3.2 Working Group for International Pelagic Surveys (WGIPS). 5
1.3.3 WGQUALITY, WGBIOP and WGCATCH 7
1.3.4 WGSAM 8
1.3.5 MIK surveys 9
1.3.6 Stock separation of herring in surveys and catches 10
1.3.7 WKDLSSLS 15
1.3.8 WKNSCS - Benchmark workshop on North Sea and Celtic Sea stocks 15
1.3.9 Other activities relevant to HAWG 16
1.4 Commercial catch data collation, sampling, and terminology 17
1.4.1 Commercial catch and sampling: data collation and handling 17
1.4.2 Sampling 18
1.4.3 Terminology 19
1.5 Methods Used 19
1.5.1 SAM 19
1.5.2 ASAP 19
1.5.3 SMS 20
1.5.4 Short-term predictions. 20
1.5.5 Reference Points 20
1.5.6 Repository setup for HAWG 21
1.6 Ecosystem overview and considerations 21
1.7 Summary of relevant Mixed fisheries overview and considerations, species interaction effects and ecosystem drivers, Ecosystem effects of fisheries, and Effects of regulatory changes on the assessment or projections for all stocks 24
1.8 Stock overview 28
1.9 Mohn's rho and retrospective patterns in the assessments 37
1.10 Transparent Assessment Framework (TAF) 39
1.11 Benchmark process 40
2 Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners 41
2.1 Introduction 41
2.1.1 ICES advice and management applicable to 2021 and 2022 41
2.1.2 Catches in 2021 41
2.1.3 Regulations and their effects 42
2.1.4 Changes in fishing technology and fishing patterns 43
2.2 Biological composition of the catch 43
2.2.1 Catch in numbers-at-age 44
2.2.2 Other Spring-spawning herring in the North Sea 44
2.2.3 Data revisions 45
2.2.4 Quality of catch and biological data 45
2.3 Fishery independentinformation 45
2.3.1 Acoustic Surveys in the North Sea (HERAS), West of Scotland 6.a (N) and the Malin Shelf area (MSHAS) in June-July 2021 45
2.3.2 International Herring Larvae Surveys in the North Sea (IHLS) 46
2.3.3 International Bottom Trawl Survey (IBTS-Q1) 47
2.3.3.1 2.3.3.1 The 0-ringer abundance (IBTSO survey) 47
2.3.3.2 The 1-ringer herring abundances (IBTS-1) 48
2.4 Mean weights-at-age, maturity-at-age, and natural mortality 49
2.4.1 Mean weights-at-age 49
2.4.2 Maturity ogive. 49
2.4.3 Natural mortality 49
2.5 Recruitment 50
2.5.1 Relationship between 0-ringer and 1-ringer recruitment indices 50
2.6 Assessment of North Sea herring 51
2.6.1 Data exploration and preliminary results 51
2.6.2 NS herring assessment. 52
2.6.3 Exploratory Assessment for NS herring 52
2.6.4 State of the Stock 53
2.7 Short-term predictions 53
2.7.1 Comments on the short-term projections 54
2.7.2 Exploratory short-term projections 54
2.8 Medium term predictions and HCR simulations 55
2.9 Precautionary and Limit Reference Points and FMSY targets 55
2.10 Quality of the assessment 55
2.11 North Sea herring spawning components 55
2.11.1 International Herring Larval Survey 55
2.11.2 IBTSO Larval Index 56
2.11.3 Component considerations 56
2.12 Ecosystemconsiderations 56
2.13 Changes in the environment 56
3 Herring in Division 3.a and subdivisions 22-24, spring spawners [Update Assessment] 186
3.1 The Fishery 186
3.1.1 Advice and management applicable to 2021 and 2022 186
3.1.2 Landings in 2021 186
3.1.3 Fleets 186
3.1.4 Regulations and their effects 187
3.1.5 Changes in fishing technology and fishing patterns. 188
3.1.6 Winter rings vs. ages 188
3.2 Biological composition of the landings 188
3.2.1 Quality of Catch Data and Biological Sampling Data 189
3.3 Fishery-independentInformation 191
3.3.1 German Autumn Acoustic Survey (GERAS) in subdivisions 21-24. 191
3.3.2 Herring Summer Acoustic Survey (HERAS) in Division 3.a and the North Sea 192
3.3.3 Larvae Surveys (N2O) 192
3.3.4 IBTS/BITS Q1 and Q3-Q4 192
3.4 Mean weights-at-age and maturity-at-age 193
3.5 Recruitment 193
3.6 Assessment of Western Baltic spring spawners in Division 3.a and subdivisions 22-24 193
3.6.1 Input data 193
3.6.1.1 Landings data 193
3.6.1.2 Biological data 193
3.6.1.3 Surveys 194
3.6.2 Assessment method 194
3.6.3 Assessment configuration. 195
3.6.4 Final run 195
3.7 State of the stock 197
3.8 Comparison with previous years perceptions of the stock. 197
3.9 Short-termpredictions 198
3.9.1 Input data 198
3.9.2 Intermediate year 2022 198
3.9.3 Catch scenarios for 2023-2025 199
3.9.4 Exploring a range of total WBSS catches for 2023 (advice year) to 2025 200
3.10 Reference points 203
3.11 Quality of the Assessment 203
3.12 Considerations on the 2022 advice 203
3.13 ManagementConsiderations 204
3.13.1 Quotas in Division 3.a 204
3.13.2 ICES catch predictions vs. management TAC 204
3.13.3 Application of the management rule for the herring fishery for human consumption in Division 3.a 206
3.14 Ecosystemconsiderations 206
3.14.1 Migration 206
3.14.2 Predation 207
3.14.3 Eutrophication 207
3.15 Changes in the Environment 207
3.15.1 Climate drivers 207
Herring (Clupea harengus) in division 6.a (North), autumn spawners (West of Scotland) 332
4.1 The Fishery 332
4.1.1 Advice and management applicable to 2016-2021 332
4.1.2 Changes in the fishery 333
4.1.3 The monitoring fishery 333
4.1.4 Stock recovery plan 334
4.1.5 Regulations and their affects 334
4.1.6 Catches in 2021 334
4.1.7 Length Frequency information 334
4.2 Biological Composition of the Catch 334
4.3 Fishery-independentInformation. 335
4.3.1 Acoustic surveys (A9481) 335
4.3.1.1 Industry-Science Acoustic survey 335
4.4 Mean Weights-at-age, Maturity-at-age and natural mortality 336
4.4.1 Mean weight-at-age 336
4.4.2 Maturity ogive. 336
4.4.3 Natural mortality 336
4.5 Recruitment 337
4.6 Assessment of $6 . a \mathrm{~N}$ autumn spawning herring 337
4.6.1 Final Assessment for 6.aN autumn spawning herring. 338
4.6.2 State of the stock 338
4.7 Quality of the Assessment 339
4.8 ManagementConsiderations 339
4.9 EcosystemConsiderations 339
4.10 Changes in the Environment 340
5 Herring (Clupea harengus) in divisions 6.aS and 7.b-c. 359
5.1 The Fishery 359
5.1.1 Advice applicable to 2021-2022 359
5.1.2 Changes in the fishery 359
5.1.3 Regulations and their affects 360
5.1.4 Catches in 2021 360
5.2 Biological Composition of the Catch 360
5.2.1 Catches in numbers-at-age 360
5.2.2 Quality of the catch and biological data 360
5.3 Fishery-independentInformation 360
5.3.1 Acoustic surveys (A9526) 360
5.3.2 Industry-Science Acoustic survey 362
5.3.3 Bottom-trawl surveys 363
5.4 Mean Weights-at-age, Maturity-at-age and natural mortality 363
5.4.1 Mean weight-at-age 363
5.4.2 Maturity ogive 364
5.4.3 Natural mortality 364
5.5 Recruitment 364
5.6 Assessment of 6.aS and 7.b-c herring 365
5.6.1 Data Exploration 365
5.6.2 Final Assessment for 6.aS and 7.b-c herring 365
5.6.2.1 Calculation of k 366
5.6.2.2 Calculation of Constant Harvest Rate (chr) 366
5.6.2.3 Constant Harvest Rate Results 367
5.7 State of the Stock 368
5.8 Short-termProjections 368
5.8.1 Short-term projections 368
5.8.2 Yield-per-recruit 368
5.9 Precautionary and Yield Based Reference Points. 368
5.10 Quality of the Assessment 368
5.11 ManagementConsiderations 369
5.12 EcosystemConsiderations 369
5.13 Changes in the Environment 369
6 395
6.1 The Fishery 395
6.1.1 Advice and management applicable to 2021-2022 395
6.1.2 The fishery in 2021-2022 395
6.1.3 Changes in fishing patterns 396
6.1.4 Discarding 396
6.2 Biological composition of the catch 396
6.2.1 Catches in numbers-at-age 396
6.2.2 Quality of catch and biological data 397
6.3 Fishery-IndependentInformation 397
6.3.1 Acoustic Surveys 397
6.4 Mean weights-at-age and maturity-at-age and Natural Mortality 398
6.5 Recruitment 398
6.6 Assessment 398
6.6.1 Stock Assessment. 398
6.7 Short-term projections 400
6.7.1 Deterministic Short-Term Projections 400
6.7.2 Multiannual short-term forecasts 400
6.7.3 Yield-per-recruit 400
6.8 Long-termsimulations 400
6.9 Precautionary and yield-based reference points 401
6.10 Quality of the Assessment 401
6.11 ManagementConsiderations 402
6.12 Ecosystemconsiderations 402
6.13 Changes in the environment 402
7 Herring (Clupea harengus) in Division 7.a North of $52^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea) 441
7.1 The Fishery 441
7.1.1 Current advice. 441
7.1.2 The fishery in 2021 441
7.1.3 Regulations and their effects 441
7.1.4 Changes in fishing technology and fishing patterns 442
7.2 Biological Composition of the Catch 442
7.2.1 Catch in numbers 442
7.2.2 Quality of catch and biological data 442
7.3 Fishery Independent Information 443
7.3.1 Acoustic surveys AC(7.aN) 443
7.3.2 Spawning-stock biomass survey (7.aNSpawn) 443
7.4 Mean weight, maturity and natural mortality-at-age 444
7.5 Recruitment 444
7.6 Assessment 445
7.6.1 Data exploration and preliminary modelling 445
7.6.2 Final assessment 446
7.6.3 State of the stock 447
7.7 Short-term projections 447
7.7.1 Deterministic short-term projections 447
7.7.2 Yield per recruit 447
7.8 Medium term projections 447
7.9 Reference points 447
7.10 Quality of the assessment 448
7.11 Managementconsiderations 449
7.12 EcosystemConsiderations 449
8 469
8.1 Clyde herring 469
8.2 Division 7.e.f. 469
8.3 Subarea 8 (Bay of Biscay) 469
8.4 Division 6.aN, spring spawners 469
$9 \quad$ Sandeel in Division 3.a and Subarea 4 and Division 6.a 476
9.1 General. 476
9.1.1 Ecosystem aspects 476
9.1.2 Fisheries 476
9.1.3 ICES Advice. 477
9.1.4 Norwegian advice 477
9.1.5 Management 477
9.1.6 Catch 478
9.1.7 Sampling the catch 479
9.1.8 Survey indices 479
9.2 Sandeel in SA 1r 479
9.2.1 Catch data 479
9.2.2 Weight-at-age 479
9.2.3 Maturity 479
9.2.4 Natural mortality 480
9.2.5 Effort and research vessel data. 480
9.2.6 Data analysis 480
9.2.7 Final assessment 481
9.2.8 Historic Stock Trends 481
9.2.9 Short-term forecasts 481
9.2.10 Biological reference points 482
9.2.11 Quality of the assessment 482
9.2.11.1 Status of the stock 482
9.2.12 Management Considerations 483
9.3 Sandeel in SA $2 r$ 483
9.3.1 Catch data 483
9.3.2 Weight-at-age 483
9.3.3 Maturity 483
9.3.4 Natural mortality 484
9.3.5 Effort and research vessel data 484
9.3.6 Data analysis 484
9.3.7 Final assessment 485
9.3.8 Historic Stock Trends 485
9.3.9 Short-term forecasts 486
9.3.10 Quality of the assessment 486
9.3.11 Status of the Stock 486
9.3.12 Management considerations 486
9.4 Sandeel in SA 3r 487
9.4.1 Catch data 487
9.4.2 Weight-at-age 487
9.4.3 Maturity 487
9.4.4 Natural mortality 487
9.4.5 Effort and research vessel data 487
9.4.6 Data Analysis 488
9.4.7 Final assessment 489
9.4.8 Historic Stock Trends 489
9.4.9 Short-term forecasts 489
9.4.10 Biological reference points 490
9.4.11 Quality of the assessment 490
9.4.12 Status of the Stock 490
9.4.13 Management Considerations 490
9.5 Sandeel in SA 4 490
9.5.1 Catch data 490
9.5.2 Weight-at-age 491
9.5.3 Maturity 491
9.5.4 Natural mortality 491
9.5.5 Effort and research vessel data. 491
9.5.6 Data analysis 492
9.5.7 Final assessment 493
9.5.8 Historic Stock Trends 493
9.5.9 Short-term forecasts 494
9.5.10 Biological reference points 494
9.5.10.1 Quality of the assessment. 494
9.5.10.2 Status of the Stock 494
9.5.10.3 Management considerations 494
9.6 Sandeel in SA 5r 495
9.6.1 Catch data 495
9.7 Sandeel in SA 6 495
9.7.1 Catch data 495
9.8 Sandeel in SA 7 495
9.8.1 Catch data 495
9.9 Sandeel in ICES Division 6.a 495
9.9.1 Catch data 495
9.10 References 495
10 Sprat in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea) 595
10.1 The Fishery 595
10.1.1 ACOM advice applicable to 2020 and 2021 595
10.1.2 Catches in 2021 595
10.1.3 Regulations and their effects 595
10.1.4 Changes in fishing technology and fishing patterns 596
10.2 Biological composition of the catch 596
10.3 Fishery Independent Information 596
10.3.1 IBTS Q1 and Q3 596
10.3.2 Acoustic Survey (HERAS) 597
10.4 Mean weights-at-age and maturity-at-age 597
10.5 Recruitment 597
10.6 Stock Assessment 597
10.6.1 Input data 599
10.6.1.1 Catch data 599
10.6.1.2 Weight-at-age 599
10.6.1.3 Surveys 599
10.6.1.4 Natural mortality 599
10.6.1.5 Proportion mature 600
10.6.2 Stock assessment model 600
10.7 Reference points 600
10.8 State of the stock 600
10.9 Short-term projections 601
10.10 Quality of the assessment 601
10.11 ManagementConsiderations 601
10.11.1 Stock units 601
10.12 EcosystemConsiderations 602
10.13 Changes in the environment 602
10.14 References 656
11 Sprat in the English Channel (divisions 7. de) 657
11.1 The Fishery 657
11.1.1 ICES advice applicable for 2022 657
11.1.2 Landings 657
11.1.3 Fleets 657
11.1.4 Regulations and their effects 658
11.1.5 Changes in fishing technology and fishing patterns 658
11.2 Biological Composition of the Catch 658
11.2.1 Catches in number and weight-at-age 658
11.3 Fishery-independentinformation 658
11.4 Mean weight-at-age and maturity-at-age 659
11.5 Recruitment 659
11.6 StockAssessment 659
11.6.1 Data exploration 661
11.7 State of the Stock 661
11.8 Catch Advice 661
11.9 Short-term projections 662
11.10 Reference Points 662
11.11 Quality of the Assessment 662
11.12 ManagementConsiderations 662
11.13 EcosystemConsiderations 663
11.14 References 673
12 Sprat in the Celtic Seas (Subarea 6 and divisions 7.a-c and 7.f-k) 674
12.1 The Fishery 674
12.1.1 ICES advice applicable for 2022 and 2023 674
12.1.2 Landings 674
12.1.3 Division 6.a (West of Scotland and Northwest of Ireland) 674
12.1.4 Divisions 7.b-c (West of Ireland) 675
12.1.5 Divisions 7.g-k (Celtic Sea) 675
12.1.6 Fleets 676
12.1.7 Regulations and their effects 676
12.1.8 Changes in fishing technology and fishing patterns 676
12.2 Biological Composition of the Catch 676
12.2.1 Catches in number and weight-at-age 676
12.2.2 Biological sampling from the Scottish Fishery (6.a) 676
12.3 Fishery-independentinformation 677
12.3.1 Celtic Sea Acoustic Survey (A4057) 677
12.3.2 Scottish Acoustic Surveys (A9481) 677
12.3.3 Scottish IBTS surveys (G1179) 678
12.3.4 Northern Ireland Groundfish Survey (G7144) 678
12.3.5 AFBI Acoustic Survey (A4075) 678
12.4 Mean weight-at-age and maturity-at-age 678
12.5 Recruitment 678
12.6 Stock Assessment 678
12.7 State of the Stock 678
12.8 Short-term projections 679
12.9 Reference Points 679
12.10 Quality of the Assessment 679
12.11 ManagementConsiderations 679
12.12 EcosystemConsiderations 679
13 References 701
Annex 1: List of participants 710
Annex 2: Resolutions 712
Generic ToRs for Regional and Species Working Groups 712
HAWG - Herring Assessment Working Group for the Area South of 62ㅇN 714
Annex 3: List of stock annexes 715
Annex 4: List of Working Documents 717
Annex 5: Audit reports 718

i Executive summary

The ICES herring assessment working group (HAWG) met online for four days in May 2022 to assess the state of six herring stocks. Advice for two sprat stocks that have an advice schedule from $1^{\text {st }}$ July- $30^{\text {th }}$ June was prepared in April. HAWG also provided advice for eight sandeel stocks in February. The working group conducted update category 1 assessments for four of the herring stocks and category 3 assessments for 2 herring stocks. An analytical assessment was performed for the combined North Sea and Division 3.a sprat, and data limited assessment (ICES category 3) was conducted for English Channel sprat (spr.27.7de). Biennial advice is given for sprat in the Celtic Seas and West of Scotland with advice provided in 2021.

The North Sea autumn spawning herring (her.27.3a47d). SSB in 2021 was estimated at 1.35 mill tonnes while F2-6 in 2021 was estimated at 0.20, which is below FMSY. Recruitment in 2021 is the lowest since 2017 and within the low recruitment regime observed since 2015. Year classes since 2002 are estimated to be consistently weak with year classes 2014 and 2016 some of the weakest on record. ICES considers that the stock is still in a low productivity phase.

The Western Baltic spring-spawning herring (her.27.20-24) assessment was updated. The SSB and recruitment in 2021 are at low levels. SSB is estimated to be around 62800 tonnes which is below both $B_{p a}$ and $B_{\text {lim }}$. Recruitment has been low since 2006 and it has been further deteriorating with time. Fishing mortality decreased in 2018 and is now well below Fmsy (0.31) at 0.15 . The stock has decreased consistently during the second half of the 2000s and given the continued low recruitments, the stock is not able to recover above Blim unless a drastic reduction in fishing effort is applied for several years.

The Celtic Sea autumn and winter spawning stock (her.27.irls) is estimated to be at a very low level. SSB is currently estimated to be increasing from the lowest level in the time-series and has been below $B_{\lim }\left(34000 \mathrm{t}\right.$) since 2016. Mean $\mathrm{F}_{(2-5}$ rings $)$ was estimated at 0.069 in 2021, having decreased from the peak of 1.2 in 2018. Recruitment has been consistently below average since 2013.

Irish Sea autumn spawning herring (her.27.nirs) assessment shows an increase in SSB in 2021 to 30792 tonnes which is the highest in the current time series. The stock has experienced large incoming year classes in recent years. Fishing mortality (F_{4-6}) has been stable between 0.2 and 0.21 since 2009 and is below FMSY (0.266).

6aN autumn spawning herring (her.27.6aN) were part of a combined assessment with herring in 6.a South and 7.b-c since 2015. Following a benchmark meeting in 2022, these two stocks are now assessed separately. This was made possible by the development of a genetically split acoustic survey index. The Malin Shelf herring estimate of SSB for autumn spawning herring in $6 . \mathrm{aN}$ in 2021 is 43886 tonnes. Although estimates have increased from the minimum value in 2019, it should be noted that numbers of herring to the West of Scotland are low compared to historical estimates. Indicators show that fishing pressure on the stock is at or below Fmsy proxy (0.335) and the stock size index is above MSY $B_{\text {trigger proxy }}(14711 \mathrm{t}$).

Herring in 6.aS/7.b, c (her.27.6aS7bc) are now assessed separately from autumn spawning herring in 6 aN , following a benchmark in 2022. This was made possible by the development of a genetically split acoustic survey index. The survey index for herring in $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ has been increasing since the lowest point in 2016 ($36,707 \mathrm{t}$) and in 2021 was estimated to be 189,856 t , which is the second highest point in the current time series. Recent catches are among the lowest in the time series. Fishing pressure on the stock is at or below Fmsy proxy (0.034) and the stock size index is well above MSY Btrigger proxy (51 390 t).

North Sea and 3.a sprat (spr.27.3a4) were combined into a single assessment unit during the 2018 benchmark. Perception of the status of the stock is dominated by the dynamics in Subarea 4 where most of the catches occur. Fishing mortality in the last years has fluctuated at high levels between 0.6-2.2. Low recruitment the last two years have contributed to a decrease in SSB well below MSY Bescapement. The estimates for 2022 show an SSB of $100000 t$ which is below $B_{p a}$ (125 000 t).

Catch advice for sprat in the English Channel (7.d, e) (spr.27.7de) was based on criteria for ICES category 3 stocks using the acoustic survey. The stock went through an interbenchmark in 2021 and a new basis for advice was recommended. The catch advice is now based on the latest biomass index multiplied by a constant harvest rate of 8.57%. Since sprat is a short-lived species and given the timing of the survey in October, an advice period, valid from 1st July to 30st June in the following year, has been adopted for this stock starting in 2022.
Catch advice for sprat in the Celtic Seas and West of Scotland (spr.27.67a-cf-k) was given for 2022 and 2023 using the ICES category 5 based method where only landings data are available. The precautionary buffer was applied and a 20% decrease in catch is advised.

The HAWG reviewed the category 1 assessments performed on four sandeel stocks (SA 1r-3r, 4) and the category 3-6 assessments of four more sandeel stocks (SA 5r, 6, 7r, Div. 6a) and updated the related advice. Section 9 of this report contains the assessments of sandeel in Division 3.a and Subarea 4.

Standard issues such as benchmark planning, the quality and availability of data, availability of data through industry surveys and scientific advances particularly with respect to the use of genetics for stock discrimination were discussed.

All data and scripts used to perform the assessments and the forecast calculations are available at https://github.com/ICES-dk/wg HAWG and accessible to anyone.

ii Expert group information

Expert group name	Herring Assessment Working Group for the Area South of $\left.62^{\circ} \mathrm{N}(\mathrm{HAWG})\right)$
Expert group cycle	Annual
Year cycle started	2022
Reporting year in cycle	$1 / 1$
Afra Egan, Ireland	
Cecilie Kvamme, Norway	
25-27 January 2022, virtual meeting (13 participants)	
	March-May 2022, by correspondence (13 participants)

1 Introduction

1.1 HAWG 2022 Terms of Reference

2020/2/FRSG03 The Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG), chaired by Afra Egan, Ireland, and Cecilie Kvamme, Norway will meet: online $25^{\text {th }}-27^{\text {th }}$ January 2022 to:
a) Compile the catch data of sandeel in assessment areas $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4,5 \mathrm{r}, 6$, and 7 r and address generic ToRs for Regional and Species Working Groups that are specific to sandeel stocks in the North Sea ecoregion;
and online $9^{\text {th }}-12^{\text {th }}$ May 2022 and the $18^{\text {th }}$ of May 2022 to:
b) address generic ToRs for Regional and Species Working Groups for all stocks assessed by HAWG.

The assessments will be carried out based on the Stock Annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group on the dates specified in the 2022 ICES data call.

HAWG will report by $11^{\text {th }}$ February (sandeel), $30^{\text {th }}$ April (sprat) and $23^{\text {rd }}$ May (herring) 2022 for the attention of ACOM.

A summary of the HAWG stocks, assessment method and advice frequency is given in the table below.

Stock Name	Stock Coord.	Assesss. Coord.	Assessment Method
Sandeel in Divisions 4b-c, SA1r (central and southern North Sea, Dogger Bank)	Denmark	Denmark	SMS-effort
Sandeel in Divisions 4b-c and SD20, SA2r (central and southern North Sea)	Denmark	Denmark	SMS-effort
Sandeel in Divisions 4b-c and SD20, SA3r (northern and central North Sea, Skagerrak)	Denmark / Norway	Denmark	SMS-effort
Sandeel in Divisions 4a-b, SA4 (northern and central North Sea)	Denmark	Denmark	SMS-effort
Sandeel in Division 4a, SA5r (northern North Sea, Viking and Bergen banks)	Denmark / Norway		No assessment
Sandeel in SD20-22, SA6 (Skagerrak, Kattegat and Belt Sea)	Denmark	No assessment	
Sandeel in Division 4a, SA7r (northern North Sea, Shet- land)	Denmark / UK (Scotland)	No assessment	
Sandeel in Division 6a (West of Scotland)	ICES	No assessment	
Herring in Subdivisions 20-24 (Western Baltic Spring spawners)	Denmark	Senmark	
Herring in Subarea 4 and Division 3.a and 7.d (North Sea Autumn spawners)	Germany	The Netherlands	SAM

Stock Name	Stock Coord.	Assesss. Coord.	Assessment Method
Herring in Division 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$ and 7.g-h and 7.j-k (Celtic Sea and South of Ireland)	Ireland	Ireland	ASAP
Herring in Divisions 6.aN	UK (Scotland)	UK (Scotland)	Survey biomass in- dex and CHR rule for advice
Herring in Divisions 6.aS and 7.b and 7.c	Ireland	Ireland	Survey biomass index and CHR rule for advice
Herring in Division 7.a North of 52 ${ }^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)	UK (Northern Ire- land)	UK (Northern Ire- land)	SAM
Sprat in Division 3.a (Skagerrak - Kattegat) and Subarea 4 (North Sea) Denmark Denmark	SMS		
Sprat in the Western Channel	UK (E\&W)	UK(E\&W)	Survey biomass
Sprat in the Celtic Seas	UK(E\&W)		No assessment

1.2 Generic ToRs for Regional and Species Working Groups

2021/2/FRSG01 The following ToRs apply to: AFWG, HAWG, NWWG, NIPAG, WGWIDE, WGBAST, WGBFAS, WGNSSK, WGCSE, WGDEEP, WGBIE, WGEEL, WGEF, WGHANSA and WGNAS.

The working group should focus on:

a) Consider and comment on Ecosystem and Fisheries overviews where available;
b) For the aim of providing input for the Fisheries Overviews, consider and comment on the following for the fisheries relevant to the working group:
i) descriptions of ecosystem impacts on fisheries
ii) descriptions of developments and recent changes to the fisheries
iii) mixed fisheries considerations, and
iv) emerging issues of relevance for management of the fisheries;
c) Conduct an assessment on the stock(s) to be addressed in 2022 using the method (assessment, forecast or trends indicators) as described in the stock annex; - complete and document an audit of the calculations and results; and produce a brief report of the work carried out regarding the stock, providing summaries of the following where relevant:
i) Input data and examination of data quality; in the event of missing or inconsistent survey or catch information refer to the ACOM document for dealing with COVID19 pandemic disruption and the linked template that formulates how deviations from the stock annex are to be reported.
ii) Where misreporting of catches is significant, provide qualitative and where possible quantitative information and describe the methods used to obtain the information;
iii) For relevant stocks (i.e., all stocks with catches in the NEAFC Regulatory Area), estimate the percentage of the total catch that has been taken in the NEAFC Regulatory Area in 2021.
iv) For category 3 and 4 stocks requiring new advice in 2022, implement the methods recommended by WKLIFE X (e.g. SPiCT, rfb, chr, rb rules) to replace the former 2 over 3 advice rule (2 over 5 for elasmobranchs). MSY reference points or proxies for the category 3 and 4 stocks
v) Evaluate spawning stock biomass, total stock biomass, fishing mortality, catches (projected landings and discards) using the method described in the stock annex;

1) for category 1 and 2 stocks, in addition to the other relevant model diagnostics, the recommendations and decision tree formulated by WKFORBIAS (see Annex 2 of https://www.ices.dk/sites/pub/Publication\ Reports/Ex-pert\ Group\ Report/Fisheries\ Resources\ Steering\ Group/2020/WKFORBIAS 2019.pdf) should be considered as guidance to determine whether an assessment remains sufficiently robust for providing advice.
2) If the assessment is deemed no longer suitable as basis for advice, consider whether it is possible and feasible to resolve the issue through an inter-benchmark. If this is not possible, consider providing advice using an appropriate Category 2 to 5 approach.;
vi) The state of the stocks against relevant reference points;

Consistent with ACOM's 2020 decision, the basis for Fpa should be Fp. 05.

1) 2. Where Fp. 05 for the current set of reference points is reported in the relevant benchmark report, replace the value and basis of Fpa with the information relevant for Fp. 05
1) 2. Where Fp. 05 for the current set of reference points is not reported in the relevant benchmark report, compute the Fp. 05 that is consistent with the current set of reference points and use as Fpa. A review/audit of the computations will be organized.
1) 3. Where Fp. 05 for the current set of reference points is not reported and cannot be computed, retain the existing basis for Fpa.
vii) Catch scenarios for the year(s) beyond the terminal year of the data for the stocks for which ICES has been requested to provide advice on fishing opportunities;
viii)Historical and analytical performance of the assessment and catch options with a succinct description of associated quality issues. For the analytical performance of category 1 and 2 age-structured assessments, report the mean Mohn's rho (assessment retrospective bias analysis) values for time series of recruitment, spawning stock biomass, and fishing mortality rate. The WG report should include a plot of this retrospective analysis. The values should be calculated in accordance with the "Guidance for completing ToR viii) of the Generic ToRs for Regional and Species Working Groups - Retrospective bias in assessment" and reported using the ICES application for this purpose.
d) Produce a first draft of the advice on the stocks under considerations according to ACOM guidelines.
i. In the section 'Basis for the assessment' under input data match the survey names with the relevant "SurveyCode" listed ICES survey naming convention (restricted access) and add the "SurveyCode" to the advice sheet.
e) Review progress on benchmark issues and processes of relevance to the Expert Group.
i) update the benchmark issues lists for the individual stocks in SID;
ii) review progress on benchmark issues and identify potential benchmarks to be initiated in 2023 for conclusion in 2024;
iii) determine the prioritization score for benchmarks proposed for 2023-2024;
iv) as necessary, document generic issues to be addressed by the Benchmark Oversight Group (BOG)
f) Prepare the data calls for the next year's update assessment and for planned data evaluation workshops;
g) Identify research needs of relevance to the work of the Expert Group.
h) Review and update information regarding operational issues and research priorities on the Fisheries Resources Steering Group SharePoint site.
i) If not completed in 2020, complete the audit spread sheet 'Monitor and alert for changes in ecosystem/fisheries productivity' for the new assessments and data used for the stocks. Also note in the benchmark report how productivity, species interactions, habitat and distributional changes, including those related to climate-change, could be considered in the advice.

Information of the stocks to be considered by each Expert Group is available here.

1.3 Reviews of groups or projects important for the WG

HAWG was briefed throughout the meeting about other groups and projects that were of relevance to their work. Some of these briefings and/or groups are described below.

1.3.1 Meeting of the Chairs of Assessment Related Expert Groups (WGCHAIRS)

WGCHAIRS met online in January 2022 in preparation for the new year of advice and science working group activities. This was the second year WGCHAIRS was held remotely. The meeting was held over 4 days. The agenda on day 1 was tailored for new chairs. On day 2 the focus was for assessment groups chaired by ACOM leadership. A joint ACOM/SCICOM session was held on the third day and on the final day the focus was for SCICOM groups.

Under the ICES strategy, activities of advisory working groups such as HAWG are conducted under the umbrella of the Fisheries Resources Steering Group (FRSG) which became operational in 2019. Advisory expert groups maintain their prerogative of "closed groups" in the sense that members will be still nominated at a national level. An FRSG meeting was held on the $27^{\text {th }}$ of January to discuss TAF, the application of WKLIFE methods, stock assessment advances and initiatives as well as challenges groups may encounter related to the COVID disruption.

A number of presentations were given which were relevant to HAWG. The benchmark system and the role of the benchmark oversight group was explained. A benchmark is a peer review of data and methods that requires prior development, analysis, and documentation before it can proceed. Benchmark needs should be identified early, and a prioritization process followed. The
benchmark oversight group (BOG) provides support and have an overall coordination role. A benchmark planning checklist has been developed to help groups to prioritize issues and agree a timeline for each issue to be completed. If high priority issues are not completed, then the benchmark may be delayed to allow sufficient time to work on these tasks. The distinction between benchmarks and inter-benchmarks was also discussed.

Given that the use of the transparent assessment framework has slowed down, the benefits and value of TAF was explained and chairs shared their experiences on this. Work is ongoing towards providing ICES advice online. The new developments and the plan for future work was presented.
WGCHAIRS discussed gender equality, diversity, and inclusion in the ICES community. The gender diversity across several aspects of ICES work was presented, including the ASC participation, chairs of working groups, national representatives at ACOM and SCICOM, council delegates and executive committee members. It was highlighted that we should follow the ICES meeting etiquette and we are all accountable. We treat each other with respect, embrace diversity, include equally, communicate thoughtfully, avoid harassment, and promote wellbeing.

1.3.2 Working Group for International Pelagic Surveys (WGIPS)

The Working Group of International Pelagic Surveys (WGIPS) met online on Teams $24^{\text {th }}-28^{\text {th }}$ January 2022. Among the core objectives of the Expert Group are combining and reviewing results of annual pelagic ecosystem surveys to provide indices for the stocks of herring, sprat, mackerel, boarfish, and blue whiting in the Northeast Atlantic, Norwegian Sea, North Sea, and Western Baltic; and to coordinate timing, coverage, and methodologies for the upcoming 2022 surveys.

Results of the surveys covered by WGIPS and coordination plans for the 2022 pelagic acoustic surveys are available from the WGIPS report (ICES 2022, WGIPS). The following text refers only to the surveys of relevance to HAWG.

North Sea, West of Scotland and Malin Shelf summer herring acoustic surveys (HERAS) in 2021: Six surveys were carried out during late June and July covering most of the continental shelf in the North Sea, West of Scotland, Malin Shelf, West of Ireland and Celtic Sea.

The estimate of North Sea Autumn Spawning herring spawning stock biomass is lower than in the previous year at 1.5 million tonnes (2020: 1.7 million tonnes) with a further decrease in the number of mature fish (2020: 8915 million fish, 2021: 8170 million fish).

The 2021 estimate of Western Baltic Spring Spawning herring 3+ group is 82000 tonnes and 639 million. Compared to the 2020 estimates of 103000 tonnes and 667 million fish, this equals a decrease of 20% in biomass.

The West of Scotland herring estimate (6.a.N) of SSB in 2021 is 147000 tonnes and 871 million individuals, which is a $\sim 7 \%$ decrease in both biomass and abundance compared to the 158000 tonnes and 943 million herring estimate in 2020.

The 2021 SSB estimate for the Malin Shelf area (6.a and 7.b, c combined) is 278000 tonnes and 1827 million individuals. This is higher than the 2020 estimates (226000 tonnes and 1435 million herring). There were again low numbers of herring found in the northern strata (to the north of Scotland and east to the $4^{\circ} \mathrm{W}$ line) in 2021, which is similar to 2020 . There were significant numbers of herring distributed south of $56^{\circ} \mathrm{N}$ again in 2021, including large numbers of immature herring.

For consistency, the survey results continue to be presented separately for sprat in the North Sea and Skagerrak-Kattegat although these two stocks were combined in a benchmark in 2018 (ICES 2018 WKSPRAT).

The total abundance of North Sea sprat (Subarea 4) in 2021 was estimated at 56200 million individuals and the biomass at 420000 tonnes. This is a decrease from last year, and around the longterm average of the time series, in terms of both abundance and biomass. The estimate is dominated by 1 -year-old sprat (75% in biomass). The estimate includes 0 -group sprat (2% in numbers, and 1% in biomass), which only occasionally is observed in the HERAS survey.
For Div. 3.a, the sprat abundance in 2021 is estimated at 623 million individuals and the biomass at 6200 tonnes. This is the second lowest estimate of the time series in terms of biomass, and well below the long-term average both in terms of abundance (70% below) and biomass (76% below). The estimate is dominated by 1 - and 2 -year-old sprat.

Irish Sea Acoustic Survey: The herring abundance for the Irish Sea and North Channel (7.a.N) during 27th August-11th September 2021 was reported by Northern Ireland. The herring stock estimate in the Irish Sea/North Channel area was estimated to be $99,589 \mathrm{t}$. The major contribution of ages to the total estimates is from age 1 and age 2 fish by number and weight. The herring were fairly widely distributed within mixed schools at low abundance, with a few distinct high abundance areas. The bulk of $1+$ herring in 2020 were observed west of the Isle of Man and off the off the east coast of Northern Ireland, with a fairly scattered lower abundance observed throughout the Irish Sea. The estimate of herring SSB of $64,271 \mathrm{t}$ is within the observed range for the time series and the biomass estimate of $98,277 \mathrm{t}$ for $1+$ ringers for 2021 also remains within the observed range since 2011. Sprat and 0-group herring were distributed around the periphery of the Irish Sea, with the most abundance of 0-group herring in the eastern side and in areas along the northern Irish coast to the west.

Irish Sea spawning acoustic survey: A series of additional acoustic surveys has been conducted since 2007 by Northern Ireland, following the annual pelagic acoustic survey (conducted during the beginning of September). The survey uses a stratified design similar to the Irish Sea Acoustic survey $[\mathrm{AC}(7 . \mathrm{aN})]$. Survey methodology, data processing and subsequent analysis is the same as for $\mathrm{AC}(7 . \mathrm{aN})$ and follows standard protocols for surveys coordinated by WGIPS. The survey is included in the assessment as an SSB index. The major contribution of ages to the total estimates is from ages 0 fish by number and 2 by weight. The herring were distributed within a few distinct high abundance areas to the west and east of the Isle of Man. The estimate of herring SSB of 70,859 t for the 2021 acoustic survey is a large increase from 47,933 t in 2020. The survey estimates are influenced by the timing of the spawning migration.

Celtic Sea herring acoustic survey (CSHAS): Herring and sprat abundance for the Celtic Sea in October 2021 was reported by the Marine Institute, Ireland. Geographical coverage was comparable to 2020. The core distribution areas were comprehensively covered, and the stock was considered contained within the Celtic Sea survey area.
The 2021 total standing stock estimate is $9,877 \mathrm{t}$ and 310 million individuals (CV 0.44) is an increase on the 2020 estimate ($4,717 \mathrm{t}$ and a total abundance of $67,368,000$ individuals). The standing stock biomass however still remains in a low state. The stock is dominated by 3-wr fish representing 43% of the total biomass (TSB) and 11% of total abundance (TSN). Immature $0-\mathrm{wr}$ fish accounted for 33% of TSB and 81% of TSN.

The biomass of sprat (TSB) was 12,376 t and the TSN 3,018 mill individuals and an increase on the 2020 estimates ($4,717 \mathrm{t}$ and 67.3 mill ind.). The nearshore distribution of sprat likely led to the stock not being fully contained within the survey area.

Pelagic ecosystem survey in Western Channel and eastern Celtic Sea (PELTIC): This survey was conducted by Cefas, UK, in the Western Channel and eastern Celtic Sea in Oct-Nov 2021. For the fifth year, the survey was extended beyond UK waters to also include the French waters of western English Channel and for the second time Cardigan Bay in the southern Irish Sea. The pelagic fish objectives of the survey were successfully completed. In total 2181 nautical miles
of acoustic sampling units were collected and supplemented with 41 valid trawls. Sprat were mainly found in Lyme Bay, showing a more offshore distribution than in 2020. The biomass in Lyme Bay, which is the core area sampled since 2013 and is relevant to the stock assessment of sprat in 7de, was $107,355 \mathrm{t}$ which is more than three times higher than the 2020 estimate of 33,798 t and the highest of the time series. This was comprised of $0-\mathrm{gr}$ sprat.

Baltic International Acoustic Survey (BIAS): This survey is conducted throughout the Baltic Sea during the months of September-October with participation of the different Baltic countries. BIAS is coordinated by the Working Group on Baltic International Fish Survey (WGBIFS). Germany is responsible for the survey covering the western Baltic and the Kattegat (SDs 21-24). The results of the German Autumn Acoustic Survey (GERAS) are presented to WGIPS and WGBIFS, whereas mainly the herring data are of interest for WGIPS and the sprat data for WGBIFS, respectively. The GERAS-index, which refers only to Western Baltic Spring-spawning herring (WBSSH), is used within the assessment of the Herring stock in Division 3a and subdivisions 2224 (see Chapter 3). Mixing with the adjacent central Baltic herring stock generally occurs in SD 24 and in 2021 also in SD 21-23. The GERAS-index is routinely adjusted to account for the mixing of the two stocks. The adjustment is based on growth parameters.

The 2021 GERAS-index was estimated to be 0.87×10^{9} fish or about 31.1×10^{3} tonnes in subdivisions 21-24. The biomass index in 2021 represents the lowest in the time series.

1.3.3 WGQUALITY, WGBIOP and WGCATCH

Operationalising the outputs from the former PGDATA (final report), now falls within the remit of the ICES working group on the Governance of Quality Management of Data and Advice (WGQuality), which held its first meeting in January 2021. Supporting the objectives of the ICES Advisory Plan, WGQuality work focusses on developing and promoting quality assurance within ICES advisory processes - from data management, data integration, data analysis, and data use, to the process of translating that data into ICES advice. It is affiliated to the Data Science and Technology Steering Group (DSTSG), which is also the parent group for WGBIOP and WGCATCH. These three groups work together to ensure the quality of data going into stock assessments and development of methods for identifying improvements in data quality, or collections of new data, that have the greatest impacts on the quality of advice.

WGBIOP focusses on the quality of biological parameters collected and used in assessments and advice. This includes age and maturity, but also other biological parameters. WGBIOP coordinates the practical implementation of quality assured and statistically sound development of methods, standards, and guidelines for the provision of accurate biological parameters for stock assessment purposes. The overall aim for WGBIOP is to review the status of current issues, achievements and developments of biological parameters and identify future needs in line with ICES requirements and the wider European environmental monitoring and management.

As biological parameters are among the main input data for most stock assessment and mixed fishery modelling, these activities are considered to have a very high priority. The main link between assessment working groups and WGBIOP is through the benchmark process. WGBIOP works in close association with the BSG (ICES benchmark steering group), reviewing all available issue lists, providing information on listed issues, identifying missing issues in relation to specific stocks and guiding the process to get issues related to biological parameters resolved. WGBIOP tries to align its scheduling of age and maturity calibration exchanges and workshops with the newly proposed ICES benchmark prioritization system. WGBIOP has a close working relationship with WGSMART (The Working Group on SmartDots Governance) and in cooperation will further develop the SmartDots tool as a platform for supporting the provision of quality assured data to the end-users.

The last WGBIOP (October 2021) reviewed the following activities falling within its remit and of interest for HAWG:

- There are no workshop or exchange planned for herring (Clupea harengus) and sprat (Sprattus sprattus) stocks assessed by HAWG. Prior to the benchmark of Sandeel (Ammodytes) 2022 an age reading exchange was conducted.
- A workshop on the identification of clupeid larvae (WKIDCLUP2) was conducted on 30 August - 3 September 2021 in Bremerhaven, Germany, to identify problem areas in clupeid identification. SmartDots was expanded with a fish larvae module specific for this workshop. The module allowed sharing of images of various clupeid larvae of different spawning areas (from the Portuguese coast to the Baltic) and other species co-occurring with the clupeid larvae. Within SmartDots each participant could measure, count myotomes and identify the larvae to species. This first test of the module was promising and will be further developed and used for fish larvae calibration exercises in the future. The results of this short workshop were promising as the agreement in larvae identification was higher compared to the 2014 workshop.

Other clupeid stocks

- An otolith exchange was held for sprat in the Baltic Sea and NEA mackerel, resulting in an overall agreement between readers of 59.0% and 64.7%, respectively.

Planning of future workshops and exchanges

- WGBIOP is planning to organise a workshop in 2023 on the comparison between age reading methods of NSSH using scales and otoliths. WGIPS is requested to collect samples in 2022. The focus is on NSSH but could have implications for NSASH as well.

WGCATCH continues to document national fishery sampling schemes, establish best practice and guidelines on sampling and estimation procedures, and provide advice on other uses of fishery data. The group evaluates how new data collection regulations, or management measures (such as the landings obligation) will alter how data need to be collected and provide guidelines about biases and disruptions this may induce in time-series of commercial data. WGCATCH also develop and promote the use of a range of indicators of fishery data quality for different types of end-users. These include indicators to allow stock assessment and other ICES scientists to decide if data are of sufficient quality to be used, or how different datasets can be weighted in an assessment model according to their relative quality.

WGCATCH 2021 continued to focus on how to communicate relevant information about sampling design and estimation to ICES assessment working groups, how to get a better process around delivering quality catch data for benchmarks. In respect to estimation, the focus was and will be on how to incorporate none-responses in the estimation and estimation of rare event. The first will be explored intersessional and the latter will be explored in an ICES workshop in autumn 2022. In respect to the small-scale fisheries, WGCATCH 2021 updated and refined the risk assessment for transversal data quality methodology and continued to document the sampling effort on biology for this part of the fleet. Further, the group continued the close relation to WGBYC and the RDBES.

1.3.4 WGSAM

The Working Group on Multispecies Assessment Methods WGSAM provides estimates of natural mortality (M) for a number of fish stocks based on estimates from multispecies models. WGSAM provides M estimates for the following HAWG stocks: North Sea herring, North Sea sprat, sandeel SA1 and sandeel SA3. Predation mortality was updated in the 2021 assessment of these stocks based on the 2020 key run of the North Sea SMS model provided by WGSAM (ICES 2021). The 2020 key run is primarily an update of the 2017 key run by extension of the input data
and their update when the single species stock assessment input data were revised through benchmarks or inter-benchmarks.

In the SMS model, predators include both assessed species (i.e., cod, haddock, saithe, whiting, mackerel) and species with given input population size (North Sea horse mackerel, western horse mackerel, grey gurnard, starry ray, hake, fulmar, gannet, great black backed gull, guillemot, herring gull, kittiwake, puffin, razorbill, grey seal, and harbour porpoise). The assessed predators are parametrised using a combination of commercial and survey data (i.e., same input as for the single species assessments) except saithe and mackerel which are closely tuned to the ICES stock assessment by using number-at-age from the single species assessment models as input of SMS.

Main changes to input data since the 2017 key run include:

- Update of "single-species data" (catch-at-age numbers, mean weights, proportion mature, survey indices, etc.) with use of the most recent ICES assessment input data. The most important changes are:
- Whiting benchmark with mean weight at age in the sea derived from survey data, whereas mean weights from the catches were used previously. This gives lower mean weight at ages for the youngest ages and higher mean weights for the oldest ages compared to the 2017 key run
- Sprat benchmark with inclusion of subdivision 3a in the stock area and reestimation of historical catch data
- Mackerel benchmark with new stock size estimate
- Re-estimation of the hake stock within the North Sea
- Re-estimation of horse mackerel and their proportion of the stock within the North Sea

Comparison with previous values of predation mortalities suggest:

- Herring - the pattern in M is in general consistent between the two key runs but some differences are estimated in the first and last part of the time series. Differences in most recent years are due to lower stock size of the predators cod and saithe, and by increased predation by whiting and hake.
- Sprat - the pattern in M is in general consistent between the two key runs, but the new estimates downscale the absolute values of predations mortality for all ages except age0.
- Sandeel - estimates of predation mortality are highly consistent for both the northern and the southern sandeel modelled stocks (i.e., current SMS considers sandeel as two units within the model, approx. corresponding to SA1 and SA3) between the new and previous key runs. Some marginal differences are visible for the southern sandeel with an upscale of M in the last part of the time series for all ages and a downward revision in the first part of the time series for age3+.

Overall, the model structure and main assumptions are consistent with the previous key run. Based on an internal review process, WGSAM considered the new key run appropriate in relation to the purpose of providing predation mortality estimates.

1.3.5 MIK surveys

Down's herring recruitment information

In 2016, WKHERLARS evaluated the North Sea herring larvae surveys (ICES, 2016), and concluded that the current IBTS-MIK recruitment index does not contain information on the Downs spawning component. It was recommended to investigate the possibility to collect data to include information on Down's recruitment. In 2017, the effect of omitting one of the three IHLS
surveys, carried out on the Downs component, from the herring assessment was investigated. The omission resulted in a negligible effect, and it was, thus, decided to drop the Dutch IHLS participation in the second half of January. The vessel time and budget of this survey was instead used to conduct a Downs Recruitment Survey (DRS) in April.

The DRS was carried out in April 2018, 2019, 2021 and 2022. Due to COVID-19 measures it was not possible to carry out a DRS in April 2020. As herring larvae need to be caught at the same development stage as the IBTS-MIK, it was not possible to move the survey to a later date in 2020.

The DRS is carried out following the IBTS-MIK protocol, but sampling both day and night, instead of only at night. Comparative fishing trials to check for difference in catchability between day and night were done in 2021 and 2022.

HAWG has a positive view on the continuation of the Downs Recruitment Survey (DRS) but cannot include the survey in the advice based on only two years of a survey. HAWG foresees potential future use of the combined IBTS0-DRS-index for a complete NSAS recruitment index for the advice if the surveys are continued. Thus, HAWG supports the continuation of the exploratory surveys in April and have had a positive response from several laboratories. HAWG recommends that WGSINS investigate calculation of a Downs and combined North Sea herring recruitment index based on the combination of the IBTS-MIK and DRS data.

1.3.6 Stock separation of herring in surveys and catches

The mixing of herring stocks in surveys and catches is an issue in many of the stock assessments carried out in HAWG. Until 2022 only the mixing between North Sea herring and Western Baltic Spring-spawning herring (in the catches, in the HERAS and IBTS surveys) and between Western Baltic Spring-spawning herring and Central Baltic herring (limited to the GERAS survey) were routinely quantified and accounted for in the assessments. In 2022 the 6.a, 7.b-c stocks have been delineated based on the results of genetic stock identification for the first time, thus enabling separate assessments for the 6.a.S, 7.b.c stock and the 6.a.N autumn spawning stock. The development of operational methods to enable estimation of proportion contribution from different stock in catches and survey indices throughout the management areas for herring assessed by HAWG is a topic that HAWG continues to have high on the list of issues to solve to improve upon assessments. Several ICES workshops have been held to progress this topic, most recently WKMIXHER in 2018 and WKSIDAC in 2017. HAWG recommend another meeting of WKSIDAC in 2023. An update on progress of those projects dealing with stock identification and mixing of relevance to HAWG is provided below.

Update on Stock Identification of 6.a, 7.b-c Herring

Atlantic herring west of Scotland and northwest of Ireland comprise at least two reproductively isolated biological populations. The 6.a.N herring spawn off Cape Wrath in northwest Scotland in Autumn (September/October) and the 6.a.S, 7.b-c herring spawn off Donegal in northwest Ireland in winter and early spring (November to March). The stocks are believed to form mixed feeding aggregations west of the Hebrides in summer, where they are targeted by the Malin Shelf Herring Acoustic Survey (MSHAS), conducted annually by the Marine Institute and Marine Scotland. The MSHAS survey index is a primary input into the stock assessments of the two stocks. Up to now it has not been possible to separate the data from the MSHAS into population/stock of origin, therefore only a combined index is available and hence a combined assessment (ICES, 2015). Based on the combined assessment, ICES has provided combined advice for the two areas and stocks since 2015 and has recommended a zero TAC for the last seven years. Scientific samples are obtained during the scientific monitoring fisheries in 6.a.S, 7.b-c and industry surveys in 6.a.N.

In response to the WKWEST (ICES, 2015) report a programme of stock identification research was developed (see summary in ICES HAWG, 2021). The programme initially relied on industry and national institute funding (2016-2018) before the European Commission's Executive Agency for Small and Medium-sized Enterprises (EASME) funded a 36-month project (2018-2020) entitled 'Herring in Divisions 6.a, 7.b and 7.c: Scientific Assessment of the Identity of the Southern and Northern Stocks through Genetic and Morphometric Analysis'. This project comprised an extensive review of the history of the existing stock delineations, comprehensive sampling for both genetics and morphometrics, genetic marker development, genetic screening of samples, the establishment of a genetic protocol for large scale sample screening, morphometric analyses and comparative analyses of both methods (see Farrell et al., 2021). One of the main conclusions of the EASME project was that morphometrics was not suitable to discriminate between mixed herring along the Malin Shelf. Although the use of body and otolith shape showed potential in discriminating between 6.a.N and 6.a.S stocks initially, the method was not powerful enough to discriminate mixed herring samples due to the complex temporal-spatial mixing of these two stocks along the Malin Shelf. The genetic markers and assignment methods constitute a tool that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy ($>90 \%$).

The results of this project together with the previous industry and institute funded programme component were compiled into a final project report (Farrell et al., 2021), which was reviewed by the Stock Identification Methods Working Group (SIMWG). The SIMWG concluded that 'the study should serve as an example of good practice for optimal use of existing resources and result reproducibility', 'the methodology is rigorous throughout' and 'there is no doubt in SIMWG that the (genetic) approaches presented can be used to':

1. Distinguish the 6 aS late winter spawners from the $6 a N$ autumn spawners;
2. Distinguish, more subtly, the spring-spawning contingent in $6 a N$ from $6 a S$ (even though the relatedness between these two is high);
3. Confirm essentially the 'North Sea nature' of the 6 aN autumn spawners;
4. Assess the mixed MSHAS catches (which appear primarily composed of $6 a S$ fish, with the proportion of autumn-spawning fish increasing as one moves north-east towards Cape Wrath and the Orkneys).

Subsequent to the completion of the EASME funded component of the 6.a stock identification programme and prior to the WKNSCS benchmark it was possible to undertake additional genetic analyses in order to fill any potential data gaps identified during the EASME project. As detailed in the 2021 HAWG report (ICES, 2021) a short-term project extension was developed with the existing project partners. During this extension additional spawning baseline samples were added to the baselines and using the same approaches as specified in Farrell et al. (2021) the 2020 and 2021 MSHAS samples were genetically assigned to their stock of origin. A detailed summary of the genetic approaches underpinning the splitting of the MSHAS data is provided in O'Malley et al. (2021), the full stock identification project report in Farrell et al. (2021) and a draft manuscript of the genetic baseline based on the updated baseline in Farrell et al. (in review),

In short, the baseline genetic analyses indicated that herring in ICES Division 6.a comprise at least three distinct populations; 6.a.S herring, 6.a.N autumn spawning herring and 6.a.N spring spawning herring. The $6 . a$.S herring are primarily a winter spawning population though there is a later spawning component present in the area also. These components are currently inseparable and for the purposes of stock assessment should be combined as $6 . a . S$ herring. No baseline spawning samples could be collected in Divisions 7.b or 7c therefore the relationship between the herring that spawn in this area and those that spawn in 6.a.S is unknown. The 6.a.N spring spawning herring are distinct from the 6.a.N autumn herring and spawn in the Minch in

February and March. This population is not currently subject to stock assessment or specific management measures. There is no historical or contemporary evidence to support the differentiation of 6.a.N autumn spawning herring and North Sea autumn spawning herring. The Downs herring were confirmed to be distinct from the North Sea autumn spawning herring though it could not be reliably discriminated from the Celtic Sea and Irish Sea samples with the current panel of markers. The Celtic Sea herring and Irish Sea herring are distinct from each other and from the populations in ICES Divisions 6.a however the current genetic marker panel is not optimised for their inclusion in the baseline assignment dataset. For the purposes of developing an assignment model only the populations confirmed as being present in Division 6.a were included in the baseline assignment dataset; 6.a.S, 6.a.N autumn and 6.a.N spring.
Across the eight years of MSHAS samples that were genetically assigned (2014-2021), there was a consistent pattern of a higher proportion of $6 . a . S$ herring in the samples than 6.a.N autumn spawning herring. The 6.a.S assigned fish were distributed across the survey area both south and north of the current stock delineation line of $56^{\circ} \mathrm{N}$ latitude, confirming that this geographic delineator for the collation of survey data is not appropriate. The highest proportions of $6 . a . S$ fish were observed in the hauls closest to the Irish coast. The highest proportions of 6.a.N autumn spawning fish were observed in the most northerly hauls adjacent to the $4^{\circ} \mathrm{W}$ stock delineator. Potential 6.a.N spring spawning herring comprised a significant proportion of the MSHAS hauls west of the Hebrides.

The assignment of non-baseline putatively mixed samples from Divisions 6.a,7.b-c collected outside of the MSHAS period also provided useful information. Analysis of a subset of the hauls on the Q1 2019 Scottish West Coast International Bottom Trawl Survey (SWC-IBTS) indicated a high degree of mixing of the 6.a populations within the hauls. Analysis of Q3 samples from the 6.a.N. industry acoustic survey indicated that juveniles in the northern Minch area most likely belonged to the 6.a.S or 6.a.N spring populations and samples from the Cape Wrath area were composed of a mix of the 6.a populations.

Analysis of the Q4 samples from the 6.a.S monitoring fishery indicated the samples comprised primarily $6 . a . S$ herring. Samples of herring from Lough Foyle were shown to be genetically and biologically 6.a.S herring, though they are currently defined as $6 . a . \mathrm{N}$ autumn spawning herring according to the ICES stock delineation. Non-spawning herring caught in Division 7.b assigned genetically to the 6.a.S population.

Updates on tools to split herring populations

Atlantic herring has one of the, to date, best described genomes which has allowed for a genetic inventory of a broad representation of all major stock units in the Northeast Atlantic (Han et al. 2020; Bekkevold et al. unpublished). Based on recent work, robust genetic assays to split mixedstock aggregations have been developed and implemented (Bekkevold et al. unpublished; Farrell et al. in review). Work has e.g., demonstrated unprecedented accuracy in stock-splitting between North Sea autumn spawning herring, NSAS, her.27.3a47d, and Downs winter spawning herring, her.27.3a47d; between Western Baltic spring spawning herring, WBSSH, her.27.20-24, and NSAS; between WBSS and central Baltic Sea spring spawning herring, CBH (her.27.25-2932); between Faroese autumn spawning herring, FASH, and NSAS; and between Norwegian spring spawning herring, NSS, her.27.1-24a514a, and WBSS (Bekkevold et al. unpublished). The work has facilitated the development of a comprehensive genetic database of all main spawning components feeding in areas 4ab and 3a. Genetic splitting of NSAS and WBSS is now fully implemented in data from the Danish and Norwegian commercial catches and their parts of HERAS, and Danish IBTS. Currently, information about additionally occurring stocks in 4ab/3a, such as NSS, Baltic Sea Autumn Spawning herring and Baltic Sea spring spawning herring is not currently used, and these fish has been assigned as either NSAS or WBSS based on previously used methods. Genetic marker-based splitting has thus replaced the methods of vertebral count, otolith shape and
microstructure data. Splitting is limited to Danish, Swedish and Norwegian samples from commercial catches and scientific surveys in Skagerrak-Kattegat and the north-eastern North Sea. Applied splitting methods will become consistent between labs and countries as of 2022. The benefit of using genetic methods to identify stock components, in comparison with traditionally implemented phenotyping methods, has been demonstrated for different approaches (Berg et al. 2021; Farrell et al. in review, Bekkevold et al. unpublished).

Updates on the analyses of the WKMixHer sample

The 2018 workshop on mixing of western and central Baltic herring stocks (WKMixHer) recommended coordinated sampling of spring spawning herring with the objective to further evaluate mixing of herring stocks in the western-central Baltic and to implement operational methods for separation.

Samples were collected by Sweden, Germany, Poland, and Lithuania during the 2019 and 2020 spawning peak on 7 coastal spawning grounds in the Hanö Bay, Bay of Lübeck, Greifswald Bay, Pomeranian Bay, Kolozbreg, Vistula Lagoon and Klaipéda (Figure 1.2.7.2).

Herring were collected at spawning time from spawning aggregations, resulting in samples from late March till early May as the spawning peak showed a seasonal progression through the region from west to east. Sampling was restricted to ripe and running individuals corresponding to maturity stages 5 to 7.592 individuals were sampled, covering ages 2-13 winter rings, and stock separation by growth function was applied. Otolith shapes were extracted, and preliminary analyses conducted on 449 of these herring (ages 4-7).

A Canonical Analysis of Principal Coordinates performed on the standardized wavelet coefficients from the otolith shapes showed that herring from the sampled locations group into two well distinct clusters, with a clear geographical longitudinal separation (Figure 1.2.7.3). Samples from part of the Polish coast in SD25 (station "SWI-31" and "ROW") group with the western Baltic cluster.

Among the classifiers tested (both traditional techniques and machine learning algorithms), Random Forest (with k-fold cross validation) provided the best overall accuracy in the discrimination between the two clusters based on otolith shape analysis with overall assignment accuracy of $\sim 70 \%$. When using the growth analysis on the WKMixHer samples (growth is currently used for separating western and central Baltic herring in SD22-24 in the GERAS survey) assignment accuracy to one of the two clusters yield $\sim 97 \%$.

Further work in progress:

- Combine otolith shape and growth analysis when conducting assignments;
- Adding genetic analysis to evaluate the number of components present and validate results from the otolith shape;
- Collect samples of spawning herring from the central part of the Polish coast to evaluate the gradient of differentiation along the southern Baltic coast.

Further information on this is work is available from Valerio Bartolino (valerio.bartolino@slu.se).

Figure 1.2.7.2. Map with sampling locations of spawning herring during spring 2019-2020. Colours correspond to the two clusters identifies in the Canonical Analysis of Principal Coordinates (See Figure 1.2.7.3).

Figure 1.2.7.3. Plot of the first and second Principal Components from the analysis of standardized Wavelet coefficients. The black labels show the centroid for each spawning location. TRA: Bay of Lübeck (GER), GAG: Bay of Greifswald (GER), SWI23: Pomeranian Bay (POL), SWI31: Kolobrzeg (POL), ROW: Rowy (POL), GDA: Gulf of Gdansk (POL), OBL Vistula lagoon (POL), LIT: Klaipėda (LTU), BR9 - BV9: Hanö Bay (SWE).

1.3.7 WKDLSSLS

The Workshop on Data Limited Stocks of Short-Lived Species 3 (WKDLSSLS3) held in 2021 built on the work of the previous two workshops in 2019 (WKDLSSLS) and 2020 (WKDLSSLS2) to further develop methods for stock assessment and catch advice for category 3-4 short-lived species. Work was carried out to evaluate the appropriateness of the management procedures based on direct use of abundance indices (for category 3 stocks). For sprat in 7d,e The effect of seasonal advice schedule (July-June) was investigated. During the stock's inter-benchmark, an annual MSE was not able to investigate within-year processes. A novel intra-annual MSE (Mildenberger et al., 2021) was parameterised for the stock, accounting for seasonal growth and exploitation. The timing and lag between events within the year (e.g., survey observation, implementation of advice, recruitment) affect the performance of Harvest Control Rules (HCR). WKDLSSLS3 concluded that the inter-benchmark decision of 8.57% Constant Harvest Rate (CHR) seems to be appropriate. The group examined the effect of applying an 80% uncertainty cap (UC) to the CHRs. The conclusion from this was an UC resulted in minimal risk reduction for CHR's below the 5% risk threshold. It did reduce risk for CHR's that are too high but could not bring them below the ICES risk threshold. The only significant difference between CHR and CHR+UC was a decrease in interannual variability in the stock. The group found that unconstrained CHRs appear robust to past fishing history, initial stock status and advice schedule but are sensitive to survey catchability. No recommendations from the WKDLSSLS were made in regard to applying a UC to CHR's.

1.3.8 WKNSCS - Benchmark workshop on North Sea and Celtic Sea stocks

The benchmark workshop on North Sea and Celtic Sea stocks (WKNSCS 2022) took place in February 2022 with a data meeting in November 2021. Five stocks were included in this benchmark including herring in $6 \mathrm{a}, 7 \mathrm{~b}, \mathrm{c}$. The availability of the genetically split Malin Shelf Acoustic survey data allowed the two stocks to be assessed separately ($6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ and 6 aN).

For herring in $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ category 1 assessments were tried using SAM and ASAP. SAM had issues with survey catchability and model convergence as well as with the SSB and F trajectories. ASAP was very sensitive to the assumptions about fishery selectivity. Both models had poor retrospective performance with Mohns Rho values outside acceptable limits. While neither model reached the standard for a category 1 or 2 assessment, significant progress has been made with both approaches showing good promise for the future when more split data (survey and catch) is available. SPiCT was also configured for herring in $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ but had issues with convergence and poor model diagnostics and was deemed unsuitable to provide category 3 advice.

A SAM assessment was configured for 6 aN . The group raised concerns over the catch data and its influence on the assessment presented. Catch data are assumed to be from $6 . a \mathrm{~N}$ autumn spawning herring, but with a lack of genetic sampling this is not certain. Additionally there are underlying stock identity questions for $6 . a N$ herring relating to the relationship with populations in the North Sea that have not been resolved. The appropriateness of including the IBTS datasets in the SAM model was discussed. The inclusion or exclusion of these indices had an impact on the overall stock trajectory. SPiCT was also tested for 6 aN herring. With the short and variable nature of the biomass time series available, this SPiCT model was not considered to be suitable as a category 3 option.

Given that both stocks did not reach the required standard for a category 1 assessment at this benchmark, the new category 3 guidelines from ICES WKLIFEX (2021) were applied. Both stocks
applied method 2.2 constant harvest rate. This method uses that uses length, survey and catch data from 2014-2021.

Significant improvements have been made since the last benchmark that have increased the understanding of the stocks and should lay the groundwork for a higher category assessment in the future. Recommendations for future research and data requirements were made for both stocks.

1.3.9 Other activities relevant to HAWG

Ichthyophonus

Ichthyophonus hoferi is a parasite found in fish. It has a low host-specificity, has been observed in more than 80 fish species, mostly marine, and is common in herring, haddock, and plaice. Ichthyophonus belong to the Class Mesomycetozoea, a group of micro-organisms residing between the fungi and animals (McVivar and Jones, 2013). Epidemics associated with high mortality have been reported several times for Atlantic herring: in 1991-1994 for herring in the North Sea, Skagerrak, Kattegat, and the Baltic Sea (Mellergaard and Spanggaard, 1997), and in 2008-2010 for Icelandic summer-spawning herring (Óskarsson and Pálsson, 2011). A time-series of the Norwegian data on Ichthyophonus was presented at HAWG 2017. The occurrence is usually below 1\%, except for the beginning of the 1990s, but high occurrences (22%) were again observed again in the Norwegian IBTSQ1 2017 in the North Sea. Because of the high lethal level of this parasite and episodic outburst, HAWG 2017 decided to continue monitoring the level of Ichthyophonus infestation in the following years and Sweden extended the coverage of the sampling to the Skagerrak and Kattegat since IBTSQ3. In the 2018-2021 IBTSQ1 surveys, the occurrences of Ichthyophonus in the Norwegian part were again low: $4.4 \%,<1 \%, 1.2 \%, 0.6 \%$, and zero, respectively. In the Katte-gat-Skagerrak, the IBTS data suggests levels of incidence generally $<3 \%$ but occasionally ICES rectangles with $>20 \%$ infestation have been observed in some recent years 2017-2018. The level of infection is generally lower in IBTS Q3 compared to Q1, and it is found to be particularly low in 2021 in both the quarters and among all the ages. Swedish commercial samples from 2021 confirm low levels of infection ($\leq 1 \%$) in both the Kattegat and Skagerrak and throughout all the quarters sampled based on visual inspection. It is relevant that all countries continue to screen herring for Ichthyophonus during the IBTS surveys (both Q1 and Q3) and HERAS, as well as for the commercial sampling.

Figure 1.2.14.3 Occurrence of Ichthyophonus hoferi in the Kattegat-Skagerrak from Swedish samples collected during the IBTSQ3 2020-2021. Left map with distribution of the proportion of infested herring and number of samples in each rectangle; right distribution of infestation among ages.

Regional Database and Estimation System (RDBES)

The RDBES is still under development, but the part of the data model that stores population data, commercial effort, and landings statistics, are considered ready for production in 2022. The commercial sampling part of the data model is planned to be in production in 2023. In 2022, ICES will launch a data call including commercial effort statistic, landings statistics and sample data for all species.

In 2022, two workshops will be held in relation to the RDBES, WKRDB-INTRO and WKRDBESRAISE\&TAF (Workshop on Raising Data using the RDBES and TAF). The latter will be held in autumn and supports the migrating of present estimation routines to TAF. Furter, an ICES working grouping developing a R package from estimation with the RDBES format, main design-based, was formed in

Further information about the RDBES status and roadmap can be found in ICES (2020). The report from 2021 is still not published by ICES.

1.4 Commercial catch data collation, sampling, and terminology

1.4.1 Commercial catch and sampling: data collation and handling

Input spreadsheet and initial data processing

Since 1999, the Working Group members have used a spreadsheet to provide all necessary landing and sampling data. These data were then further processed with the SALLOC-application (Patterson, 1998). This program gives the required standard outputs on sampling status and biological parameters. It documents any decisions made by the species co-ordinators for filling in
missing data and raising the catch information of one nation/quarter/area with information from another dataset.

Since 2015, ICES requested relevant countries within a data call to submit the national catches into InterCatch or to accessions@ices (via the standard exchange files). National catch data submission was due by 7 th March 2022. Not all countries delivered their data in due time.
"InterCatch is a web-based system for handling fish stock assessment data. National fish stock catches are imported to InterCatch. Stock coordinators then allocate sampled catches to unsampled catches, aggregate to stock level and download the output. The InterCatch stock output can then be used as input for the assessment models". Stock coordinators used InterCatch for the first time at the 2007 Herring Assessment Working Group. However, InterCatch does not provide the output as needed for the assessment of NSAS and WBSS. Both data collation methods are, therefore, still used in parallel.

Excel was used to allocate samples to catches for 6 .a following the same procedure outlined in WD01 to HAWG 2017.

More information on data handling transparency, data archiving and the current methods for compiling fisheries assessment data are given in the Stock Annex for each stock. Figure 1.5.1 shows the separation of areas as applied to the data in the archive.

1.4.2 Sampling

Quality of sampling for the whole area

The level of catch sampling by area is given in the table below for all herring stocks covered by HAWG (in terms of fraction of catch sampled and number of age readings per 1000 tonnes catch). There is considerable variation between areas. Further details of the sampling quality and the level of samples can be found by stock in the respective sections in the report and the stock annexes.

Area	Working Group Catch	Sampled Catch	Age Readings	Age Readings per 1000t
4.a(E)	88253	88740	2338	26
4.a(W)	181445	143883	4618	25
4.b	58826	39199	1074	18
4.c	9188	5805	196	21
7.d	26902	17509	305	11
7.a(N)	7208	6329	1680	233
3.a	13318	11520	2551	192
SD22-24	1601	1360	2683	1675
7g, 7.j, 7aS	745	745	1094	1468
6.aN	1115	671	43	39
6.aS, 7.b and 7.c	1821	1821	2037	1119

Given the diversity of the fleets harvesting most stocks assessed by HAWG, an appropriate spread of sampling effort over the different métiers is more important to the quality of catch-atage data than a sufficient overall sampling level. The WG therefore recommends that all métiers with substantial catch should be sampled (including bycatches in the industrial fisheries), that catches landed abroad should be sampled, and information on these samples should be made available to the national laboratories and incorporated into the national InterCatch upload.

1.4.3 Terminology

The WG noted that for herring the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age-based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

1.5 Methods Used

1.5.1 SAM

The Spate-space stock Assessment Model SAM described in described in Nielsen and Berg (2014) is currently used to assess several of the HAWG stocks. This model has the standard exponential decay equations to carry forth the Ns (with appropriate treatment of the plus-group), and the Baranov catch equation to calculate catch-at-age based on the Fs. The additional components of SAM are the introduction of process error down the cohort (additional error term in the exponential decay equations), and the random walk on Fs. The steps (or deviations) in the random walk process are treated as random effects that are "integrated out", so are not viewed as estimable parameters. The sigma parameter controls how large the random walk deviations are, and this parameter is estimated. SAM provides the option of correlated errors across ages for the random walks on F , where the correlation is an additional parameter estimated to be estimated. The current implementation of SAM is an R-package based on Template Model Builder (TMB) (Kristensen et al., 2016) and is maintained and available at https://github.com/fishfollower/SAM. At WKPELA 2018 a multi-fleet version of SAM was presented (ICES, 2018) and it is currently used for the assessment and forecasts of Western Baltic Spring-spawning herring, and to provide fleet specific selection patterns for short and medium-term forecasts for the North Sea herring.

SAM is currently run by HAWG via both the web browser at www.stockassessment.org and within the FLR (Fisheries Library in R) system (www.flr-project.org) which is an attempt to implement a framework for modelling integrated fisheries systems including population dynamics, fleet behaviour, stock assessment and management objectives. The stock assessment tools in FLR can also be used on their own in the WG context. The combination of the statistical and graphical tools in R with the stock assessment aids the exploration of input data and results.

1.5.2 ASAP

The ASAP 3 (http://nft.nefsc.noaa.gov) model has been used for Celtic Sea herring. ASAP (A Stock Assessment Program) is an age-structured stock assessment modelling program (Legault and Restrepo, 1998). ASAP is a variant of a statistical catch-at-age model that can integrate
annual catches and associated age compositions (by fleet), abundance indices and associated age compositions, annual maturity, fecundity, weight, and natural mortality-at-age. It is a forward projecting model that assumes separability of fishing mortality into year and age components but allows specification of various selectivity time blocks. It is also possible to include a BevertonHolt stock-recruit relationship and flexible enough to handle data poor stocks without age data (dynamic pool models) or with only new and post-recruit age or size groups.

1.5.3 SMS

SMS is a stochastic multispecies assessment model, including seasonality, used for sandeel in Division 3.a and Subarea 4, for sprat in the North Sea and 3.a. The model is run in single species mode for these stock assessments. Major difference with the other stock assessment models used by HAWG is the ability to assess in seasonal time-steps, necessary to distinguish the fishing season and off-season for both the sandeel and sprat stocks. Furthermore, it integrates catches, effort timeseries, maturity, weight, and natural mortality-at-age. The model allows to set separate selectivity year blocks to account for changes in the fishing fleet.

1.5.4 Short-term predictions

Short-term predictions for the North Sea used a code developed in R. The method was developed in 2009 and intensively compared to the MFDP approach. Celtic Sea herring and Irish Sea herring forecast used the standard projection routines developed under FLR package FLCore (version 2.6.0.20170228). For sprat in the North Sea, a forecast using the FLR framework is in use. North Sea herring is assessed using a fleet-wise projection method using native R and FLR routines (some maintenance of the code has been done this year mainly to improve readability and documentation).

The Western Baltic Spring-spawning herring uses an R-based multifleet forecast routine available at www.stockassessment.org.

1.5.5 Reference Points

The eqsim software (https://github.com/ices-tools-prod/msy) was used in recent benchmarks to estimate MSY reference points for herring stocks of HAWG.

For sprat in the North Sea (Division 4) and sandeel in management area 1-4, the ICES guide for setting management reference points for category 1 stocks is used to find Blim. MSY Bescapement is equal to $B_{p a}$ and is calculated as $B_{\lim } \times e^{0 \times 1.645}$. An upper level on the fishing mortality is implemented ($\mathrm{F}_{\text {cap }}$) if the difference between Blim and MSY Bescapement is not compatible with the ICES Fmsy criteria (i.e., that the average probability in the long-term of getting below Blim should be no more than 5% per year). $\mathrm{F}_{\text {cap }}$ is calculated/optimized using a management strategy evaluation framework (MSE).

The 2018 benchmark (WKPELA 2018) of the North Sea herring, Western Baltic herring and Celtic Sea herring presented considerable challenges in the estimation of reference points and their calculation remains at times still controversial. An overview and critical discussion of those main challenges are provided in last year's report (ICES 2018, Section 1.2.6) and maintain their validity in the ongoing discussion on reference points.

New reference points were calculated for North Sea Herring during the 2021 inter-benchmark meeting (ICES, 2021). This resulted in a downward revision of the estimate of Blim and MSYB trigger and an upward revision of the estimate of $\mathrm{F}_{\text {msy. }}$. Sensitivity testing revealed that the derivation of
reference points for herring in the North Sea is very sensitive to the choice of time periods and stock-recruitment models used.
F_{pa} is defined as the exploitation rate reference point below which exploitation is considered to be sustainable, having accounted for assessment uncertainty. In 2020 a decision was made by ACOM to standardize the basis for F_{pa} whereby it is equal to the fishing mortality including the advice rule that, if applied as a target in the ICES MSY advice rule (AR) would lead to SSB $\geq \mathrm{B}_{\mathrm{lim}}$ with a 95% probability (also known as Fp 05). The derivation of F_{pa} should include the expected stochastic variability in biology and fishery, as well as advice error.

Proxy reference points were derived for the category 3 stocks - herring in $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ and 6 aN at the benchmark in 2022 (ICES, 2022). FproxyMsy for both stocks was calculated using data from 20142021. This will be updated annually as new data becomes available. MSY $B_{\text {trigger }}$ is derived from the split acoustic survey biomass index and is 1.4^{*} Ioss where Ioss is the lowest observed index value.

1.5.6 Repository setup for HAWG

To increase the efficiency and verifiability of the data and code used to perform the assessments as well as the short-term forecasts within HAWG a repository system was set up in 2009. Within this repository, all stocks own a subfolder where they store their data and code used to run the assessments presented in this report and used as base for the advice. At the same time, there is one common folder, used by all assessments, that ensures that the FLR libraries used are identical for all stocks, as well as the output generated to evaluate the performance of the assessment.

The repository was moved from google code to github in 2016 and is now available as a branch of the ICES github site. https://github.com/ICES-dk/wg HAWG. Contributing to the repository is not possible for outsiders as a password is required. Downloading data and code is possible to the public. The repository is maintained by members of the WG and the ICES Secretariat.

1.6 Ecosystem overview and considerations

General ecosystem overviews for the areas relevant to herring, sprat and sandeel stocks covered by the Herring Assessment Working Group for herring stocks south of $62^{\circ} \mathrm{N}$ (HAWG) are given for the Greater North Sea and Celtic Seas Ecoregions (ICES, 2020e, f).
A more detailed account specific to herring is documented in ICES HAWG (2015). A number of topics are covered in this section including the use of single species assessment and management, the use of ecosystem drivers, factors affecting early life-history stages, the effects of gravel extraction, variability of the biology and ecology of species and populations (including biological and environmental drivers), and disease.
It should be pointed out that while numerous studies have greatly improved our understanding on the effects of environmental forcing on the herring stock productivity and dynamics, further work is still required to move beyond simple correlative understanding and elucidate the underlying mechanisms. One specific case is the persistent decrease in mean weight-at-age for many of the herring stocks in the region (Figure 1.7.6). Furthermore, mechanisms to incorporate this understanding into the provision of management advice are limited. ICES could therefore benefit greatly from developments that unify these two aspects of its community.

ICES is reviewing the level of inclusion of ecosystem information into the single-species assessments that provide the base for the current advices to evaluate progresses toward ecosystembased fisheries management. The intent is to quantify whether and how the ICES assessments incorporated broader system-level considerations, from the inclusion of technical interactions
among fisheries (i.e., catch and bycatch of target and non-target species) to interactions with the physical environment (i.e., environmentally-driven recruitment, climate), and biological components (i.e. density-dependency, predation).

Following the ACOM request (March 2019), HAWG collected information and has updated this on where and how change in ecosystem productivity (either annually or over time-periods) is incorporated in its fish stock assessments, MSE operating models and management advice products for the following six categories (relevant variables in parentheses) below:

1. Stock assessments (weight-at-age [in stock or catch], length distribution, maturity, sex ratio)
2. Forecasts (recruitment over recent years - reflecting productivity changes, recent weight-at-age, maturity, natural mortality)
3. Natural mortality (predation, diseases, parasites) assessed and included as variable by year (including smoothed)
4. Stock distribution (changes caused by year class strength, predators, prey, habitat suitability/quality)
5. Mixed fisheries (catch and bycatch of target/non-target species)
6. Climate change (is this considered and how?)

Because the inclusion of system-level information may span from the use of qualitative background considerations to inclusion of quantitative information into analytical assessments, the following scoring system recently proposed by Marshall et al. (2019) has been applied:

- \quad Score 0 - information unavailable / not used.
- Score 1 (Background) - productivity is mentioned in the report and/or considered in the output as background information.
- \quad Score 2 (Qualitative) - applicable in two cases: i) when quantitative data/information on productivity change were included in the report, but not used in any analyses/models, or ii) explicit link between the productivity change and assessment parameters or output was established. For example, including numerical data from diet studies on the target species would receive a score of 2 , as would discussing a link between sea surface temperature and recruitment predictions.
- Score 3 (Quantitative) - productivity-related data were explicitly included in the assessment model through data inputs or estimated parameters.

Stock code	Stock assessment					Short-term forecast				
	variable w@a	length distribution	variable mat@a	estimated variable nat mort	estimated variable sex ratio	environ. driven recruitment	truncating recruitment time-series	recent or trend weight@a	recent or trend mat@a	recent or trend nat mort
her.27.20-24	3	2	3	3	0	1	3	3	3	3
her.27.3a47d	3	2	0	3	0	1	3	3	0	3
her.27.6aS7bc	2	3	2	2	0	0	0	0	0	0
her.27.6aN	2	3	2	2	0	0	0	0	0	0
her.27.irls	3	2	1	2	0	0	3	3	0	0
her.27.nirs	3	2	3	2	0	0	3	3	3	2
san.sa.1r	3	0	1	3	0	0	1	3	1	3
san.sa.2r	3	0	1	1	0	0	3	3	1	1
san.sa.3r	3	0	1	3	0	0	1	3	1	3
san.sa. 4	3	0	1	1	0	0	3	3	1	1
san.sa.5r	0	0	0	0	0	0	0	0	0	0
san.sa. 6	0	0	0	0	0	0	0	0	0	0
san.sa.7r	0	0	0	0	0	0	0	0	0	0
San.27.6a	0	0	0	0	0	0	0	0	0	0
spr.27.3a4	3	0	1	3	0	0	3	3	1	3
spr.27.67a-cf-k	3	0	0	0	0	0	0	0	0	0
spr.27.7de	3	0	0	0	0	0	0	0	0	0

1.7 Summary of relevant Mixed fisheries overview and considerations, species interaction effects and ecosystem drivers, Ecosystem effects of fisheries, and Effects of regulatory changes on the assessment or projections for all stocks.

Brief summaries are given here; more detailed information can be found in the relevant stock summaries.

North Sea Autumn spawning herring (her.27.3a47d):

The North Sea herring fishery is a multinational fishery that seasonally targets herring in the North Sea and English Channel. An industrial fishery, which catches juvenile herring as a bycatch operates in the Skagerrak, Kattegat and in the central North Sea. Most fleets that execute the fishery on adult herring target other fish at other times of the year, both within and beyond the North Sea (e.g., mackerel Scomber scombrus, horse mackerel Trachurus trachurus and blue whiting Micromestistius poutasou). In addition, Western Baltic Spring spawners are also caught in this fishery at a certain time of the year in the northern North Sea to the west of the Norwegian coast. The fishery for human consumption has mostly single species catches, although some mixed herring and mackerel catches occur in the northern North Sea. The bycatch of sea mammals and birds is also very low, i.e., undetectable using observer programmes. There is less information readily available to assess the impact of the industrial fisheries that bycatch juvenile herring. The pelagic fisheries on herring and mackerel claim to be some of the "cleanest" fisheries in terms of bycatch, disturbance of the seabed and discarding. Herring like other pelagic forage fish has a central ecological role in the North Sea ecosystem, directly interacting with zooplankton, demersal fish, and other predators (sea mammals, elasmobranchs, and seabirds). Thus, a fishery on pelagic fish may impact on these other components via second order interactions. There is a paucity of knowledge of these interactions, and the inherent complexity in the system makes quantifying the impact of fisheries very difficult.

Another potential impact of the North Sea herring fishery is the removal of fish that could provide other "ecosystem services". The North Sea ecosystem needs a biomass of herring to graze the plankton and act as prey for other organisms. If herring biomass is very low other species, such as sandeel, may replace its role or the system may shift in a more dramatic way. Likewise, large numbers of herring can have a predatory impact on species with pelagic egg and larval stages.

The populations of herring constitute some of the highest biomass of forage fish in the North Sea and are thus an integral and important part of the ecosystem, particularly the pelagic components. North Sea herring has a complex sub-stock structure with different spawning components, producing offspring with different morphometric and physiological characteristics, different growth patterns and differing migration routes. Productivity of the spawning components varies. The three northern components (Autumn spawners) show similar recruitment trends and differ from the Downs component (Winter spawners), which appears to be influenced by different environmental drivers. Having their spawning and nursery areas near the coasts, means herring are particularly sensitive and vulnerable to anthropogenic impacts. The most serious of these is the ever-increasing pressure for marine sand and gravel extraction and the development of wind farms. Climate models predict a future increase in air and water temperature and a change in wind, cloud cover and precipitation. Analysis of early life stages' habitats and trends over time suggests that the projected changes in temperature may not widely affect the potential habitats but
may influence the productivity of the stock. Relatively major changes in wind patterns may affect the distribution of larvae and early stage of herring.

Western Baltic Spring-spawning herring (her.27.20-24):

The Western Baltic herring fishery is a multinational fishery that seasonally targets herring in the eastern parts of the North Sea (Eastern 4.a and 4.b), the Skagerrak and Kattegat (Division 3.a) and Western Baltic (SD 22-24). The fishery for human consumption has mostly single-species catches, although in recent years some mackerel by-catch occurred in the trawl fishery for herring. In addition, North Sea herring are also caught within Division 3.a. The bycatch of sea mammals and birds is low enough to be below detection levels based on observer programmes. At present, there is a very limited and progressively decreasing industrial fishery in Division 3.a and hence a limited by-catch of juvenile herring. The pelagic fisheries on herring claim to be some of the "cleanest" fisheries in terms of by-catch, disturbance of the seabed and discarding. Pelagic fish interact with other components of the ecosystem, including demersal fish, zooplankton, and predators (sea mammals, elasmobranchs, and seabirds). Another potential impact of the Western Baltic herring fishery is the removal of fish that could provide other "ecosystem services." There is, however, no recent research on multispecies or ecosystem interactions in which the WBSS interact. Although a fishery on pelagic fish may affect these other components via second order interactions.

Dominant drivers of larval survival and year-class strength of recruitment are considered to be linked to oceanographic dispersal, sea temperatures and food availability in the critical phase when larvae start feeding actively. However, research on larval herring survival dynamics indicates that driving variables might not only vary at the population level and by region of spawning but also by larval developmental stage. Since WBSS herring relies on inshore, transitional waters for spawning and larval retention, the suit of environmental variables driving reproduction success potentially differs from other North Atlantic stocks recruiting from coastal shelf spawning areas.

Herring in the Celtic Sea and 7.j (her.27.irls):

There are few documented reports of bycatch in the Celtic Sea herring fishery. Small quantities of non-target whitefish species were caught in the nets. Of the non-target species caught whiting was most frequent followed by mackerel and haddock. The only marine mammals recorded were grey seals (Halichoerus grypus). The seals were observed on a number of occasions feeding on herring when the net was being hauled and during towing. They appear to be able to avoid becoming entangled in the nets. Occasional entanglement of cetaceans may occur, but overall incidental catches are thought to be minimal.

Temperatures in this area have been increasing over the last number of decades. There are indications that salinity is also increasing. Herring are found to be more abundant when the water is cooler while pilchards favour warmer water and tend to extend further east under these conditions. However, studies have been unable to demonstrate that changes in the environmental regime in the Celtic Sea have had any effect on productivity of this stock. Herring larval drift occurs between the Celtic Sea and the Irish Sea. The larvae remain in the Irish Sea for a period as juveniles before returning to the Celtic Sea. Catches of herring in the Irish Sea may therefore impact on recruitment into the Celtic Sea stock. The residence of Celtic Sea fish in the Irish Sea may have an influence on growth and maturity rates.

The spawning grounds for herring in the Celtic Sea are well known and are located inshore close to the coast. Spawning grounds tend to be vulnerable to anthropogenic influences such as dredging and sand and gravel extraction. Herring are an important component of the Celtic sea ecosystem. There is little information on the specific diet of this stock. Herring form part of the food source for larger gadoids such as hake. Recent research showed that fin whales Balaenoptera
physalus are an important component of the Celtic Sea ecosystem, with a high re-sighting rate indicating fidelity to the area. There is the suggestion that the peak in fin whale sightings in November may coincide with the inshore spawning migration of herring.

Herring in 6.a North (her.26.6aN):

Herring are an important prey species in the ecosystem and also one of the dominant planktivorous fish. Herring fisheries tend to be clean with little bycatch of other fish. Herring represent an important prey item for many predators including cod and other large gadoids, dogfish and sharks, marine mammals and seabirds. Because of the trophic importance of herring puts its stocks under immense pressure from constant exploitation.
The benthic spawning behaviour of herring makes this species vulnerable to anthropogenic activity such as offshore oil and gas industries, gravel extraction and the construction of wind farms. There are many hypotheses as to the cause of the irregular cycles shown in the productivity of herring stocks (weights-at-age and recruitment), but in most cases it is thought that the environment plays a key role (through prey, predation and transport). The 6 .aN herring stock has shown a marked decline in productivity during the late 1970s and has remained at a low level since then.

Herring in 6.a South and 7.b and 7.c (her.27.6aS7bc):

Sea surface temperatures from Malin head on the North coast of Ireland since 1958 indicate that since 1990 sea surface temperatures have displayed a sustained increasing trend, with winter temperatures $>6^{\circ} \mathrm{C}$ and higher summer temperatures. Environmental conditions can cause significant fluctuations in abundance in a variety of marine species including fish. Oceanographic variation associated with temperature and salinity fluctuations appears to affect herring in the first year of life, probably during winter larval drift.

Productivity in this region is reasonably high on the shelf but drops rapidly west of the shelf break. This area is important for many pelagic fish species. The shelf edge is a spawning area for mackerel Scomber scombrus and blue whiting Micromesistius potassou. Preliminary examination of productivity shows that overall productivity in this area is currently lower than it was in the 1980s.

The spawning grounds for herring along the northwest coast are located in inshore areas close to the coast and tend to be vulnerable to anthropogenic influences such as dredging and sand and gravel extraction.

Herring in the Irish Sea (her.27.nirs):

The targeted fishery for herring in the Irish Sea is considered to have limited bycatch of other species. Herring are preyed upon by many species but at present the extent of this is not quantified. The main fish predators on herring in the Irish Sea include spurdog (Squalus acanthias), whiting (Merlangius merlangus) (mainly 0-1 ring) and hake (Merluccius merluccius) (all age classes). Small clupeids are an important source of food for piscivorous seabirds and marine mammals which can occur seasonally in areas where herring aggregate. While small juvenile herring occur throughout the coastal waters of the western and eastern Irish Sea, their distribution overlaps extensively with sprat (Sprattus sprattus).

Stock discrimination techniques, tagging, and otolith microstructure and shape show that juveniles originating in the Celtic Sea are present in the Irish Sea. The majority of mixing between these populations occurs at winter rings 1-2. Over the period 2006 to 2010 interannual variation in the proportion of mixing was large, with between 15% and 60% observed in the wintering $1+$ biomass estimate during the study period. Further work on stock identity is ongoing. There are
irregular cycles in the productivity of herring stocks which are probably caused by changes in the environment (e.g., transport, prey, and predation).

North Sea and 3a sprat (spr.27.3a4):

Sprat is a short-lived forage fish that is predated by a wide range of marine organisms, from predatory gadoids, through birds to marine mammals. Therefore, the dynamics of sprat populations are affected by the dynamics of other species through annually varying natural mortality rates. Because sprat interacts with many other components of the ecosystem (fish, zooplankton, and predators) the fishery may impact on these other components via these food web interactions. It is uncertain how many sprat migrate into and out of adjacent management areas, i.e. the English Channel (7.d and 7.e) and the western Baltic and the Sound (SD22-24), or how this may vary annually. Uncertain is also the boundary with local populations occurring along the Scandinavian Skagerrak coasts. While genetic information has supported the exclusion of sprat along the Norwegian coasts from the current assessment unit, similar information was insufficient for the Swedish coasts despite the fact that local populations likely exist. Young herring as a bycatch is acknowledged for this fishery with bycatch regulations in force. The bycatch of marine mammals and birds is considered to be very low (undetectable using observer programs).

Sprat in the English Channel (7.d and 7.e) (spr.27.7de):

The fishery considered here is primarily in Lyme Bay with small trawlers targeting sprat with very little to no bycatch of other species. The relationship of the sprat in this area to the sprat stock or population in the adjacent areas is unknown: Sprat larvae most likely drift away from the main spawning area in Lyme Bay, but to which extent they expand westward into the Celtic Sea or eastern deep into the Eastern English Channel and the North Sea is unknown. The potential for mixed fisheries, if the fisheries are expanded to cover the whole of the English Channel, is unknown at present. It is acknowledged that sprat is prey for many species, and these will affect the natural mortality, however, this has not been quantified in this area. In addition, changes in the size of the sprat population through fishing will affect the available prey for a number of commercially exploited species.

Sprat in the Celtic Seas ecoregion (6 and 7 (excluding 7.d and 7.e)) (spr.27.67a-cf-k):

This ecoregion currently has fisheries in the Celtic Sea, northwest of Ireland and a variety of Scottish Sea lochs with the possibility of fisheries being revived in the Clyde. Generally, mixed fisheries are not an issue as sprat are targeted with very little to no other species caught as a bycatch. If a fishery was to be prosecuted in the Clyde and Irish Sea, then bycatch of young herring may become an issue due to the overlap in distribution between young herring and sprat. It is acknowledged that sprat are prey for many species and these will affect the natural mortality, however, this has not been quantified in this area. Since sprat preys on e.g., zooplankton and is preyed upon by many species fisheries for sprat can have effects on the ecosystem dynamics.

Sandeel in the North Sea ecoregion (san.sa.1r-7r)

A mosaic of sandeel fishing grounds occur throughout different areas of the North Sea ecoregion. The grounds present different degrees of larval connectivity which has supported the division of sandeel in the North Sea into a number of more or less reproductively isolated subpopulations. Whereas the fishing grounds are assumed to remain relatively constant over time, the actual distribution of the fishery varies greatly from year to year in response to both changes in the availability of sandeel and changes in management between areas.

Sandeel is targeted by a highly seasonal industrial fishery which has experienced a progressive change towards fewer larger vessels owing most of the quota since the introduction of ITQ in 2004. Time and area restrictions and bycatch limits represent the main management measures.

Although the fishery has little bycatch of protected species, competition with other predators is a central aspect of the sandeel management within an ecosystem approach.

Sandeel play in fact an important role in the North Sea food web as they are a high quality, lipidrich food resource for many predatory fish, seabirds, and marine mammals. Concerns of local depletion exist, especially for those sandeel aggregations occurring at less than 100 km from seabird colonies as some bird species (i.e., black-legged kittiwake and sandwich tern) may be particularly affected whereas more mobile marine mammals and fish are likely to be less vulnerable to local sandeel depletion.

1.8 Stock overview

The WG was able to perform analytical assessments for 9 of the 17 stocks investigated. Results of the assessments are presented in the subsequent sections of the report and are summarized below and in figures 1.7.2-1.7.5.

Figure 1.7.1 ICES areas as used for the assessment of herring stocks south of $62^{\circ} \mathrm{N}$. Area names in italics indicate the area separation applied to the commercial catch and sampling data kept in long term storage. "Transfer area" refers to the transfer of Western Baltic Spring Spawners caught in the North Sea to the Baltic Assessment.

North Sea autumn spawning herring (her.27.3a47d) is the largest stock assessed by HAWG. The spawning-stock biomass was low in the late 1970s and the fishery was closed for a number of years. This stock began to recover until the mid-1990s when it appeared to decrease again. A management scheme was adopted to halt this decline. Based on the WG assessment the stock was classified as being at full reproductive capacity and harvested sustainably at Fmsy and under the management plan target for several years. Since 2019, no management plan is in place for North Sea Herring.

Western Baltic Spring Spawners (her.27.20-24) are distributed in the eastern part of the North Sea, the Skagerrak, the Kattegat and the subdivisions 22, 23 and 24. In the eastern part of North Sea and Division 3.a, the stock is considered to mix with North Sea autumn spawners and mixing with Central Baltic herring stock has been taken into account in the GERAS survey indices. Recent genetic work shows high mixing in the whole management units with other herring populations that is not currently taken into account in the assessment. The stock has decreased consistently since the late 2000s. The 2019 SSB (54388 t) and 2020 recruitment (550822 thousand) are record low. The estimate of SSB in 2021 (62765 t) is considered low, below both B_{pa} and $\mathrm{B}_{\mathrm{lim}}$. Fishing mortality (F_{3-6}) was reduced from 0.58 in 2008 to 0.31 in 2011. It had then remained above $\mathrm{Fmsy}^{(0.31)}$ until 2015 (0.34-0.43) but showed an increase in 2016-2018 with an estimated F_{3-6} above 0.49 . F_{3-6} then decreased since 2019 below Fmsy from 0.30 to 0.15 in 2021, which is the lowest F_{3-6} on records. The 2023 advised catch of WBSS is $0 t$, which if applied by managers, will result in an increase in SSB from 71011 t in 2022 to 80978 t in 2023. The zero catch will not allow the stock to rebuild above $B_{\lim }(120000 \mathrm{t})$ by $2024(95882 \mathrm{t}$). A medium-term forecast to 2025 showed that SSB can increased to 111989 t if $\mathrm{F}=0$ in 2023-2024 but will still remain below Blim.

Herring in the Celtic Sea and 7.j (her.27.irls): The herring fisheries to the south of Ireland in the Celtic Sea and in Division 7.j have been considered to exploit the same stock. For the purpose of stock assessment and management, these areas have been combined since 1982. The stock has fluctuated over time. Low stock size was observed from the mid-70s to the early 80s. The SSB increased again before declining in the late 90s. From 2005 the stock increased when several strong cohorts (2004, 2008, 2009, 2010 and 2013) entered the fishery and as they gained weight, they maintained the stock at a high level. The SSB has decreased since its peak in 2011 and is estimated to be $11680 t$ in 2020, which is well below $B_{p a}\left(\right.$ at $54000 t$) and $B_{\lim }(34000 t)$. Recruitment has been below average since 2013. An increase in recruitment can be seen in 2021 however the assessment is highly uncertain, and recruitment has been consistently overestimated in recent years. Fishing mortality ($\mathrm{F}_{2}-5$) declined between 2003 and 2009 but started to rise again in 2010 due to increased catches. F decreased in 2020 in line with greatly reduced catches and is slightly higher in 2021. This year's assessment estimates a fishing mortality, $\mathrm{F}_{2-5}=0.069$ in 2021 which is well below all reference points (FMSY is 0.26 and $\mathrm{Flim}_{\text {is }} 0.45$). Short-term projections predict SSB to increase to 19349 t in 2022.

Herring in 6.aN (her.27.6aN): Off the west of Scotland, the herring stock is composed of two groups - one spawning during spring (February until April) in the Minch and the other during autumn (late August until October) off Cape Wrath. Fisheries have historically targeted both groups, and their relative contribution is believed to have varied over time. These stocks were assessed together with herring in 6.a.S, 7.b.c during 2015-2021. The development of a genetically split acoustic survey index for the Malin Shelf Herring Acoustic Survey (MSHAS) from 2014-2021 into the component stocks means that separate advice for $6 . a \mathrm{~N}$ autumn spawners and 6.a.S, 7.b.c is now possible. $6 . \mathrm{aN}$ spring spawners are not fully resolved by the present method and are not assessed. The Malin Shelf herring estimate of SSB for autumn spawning herring in 6.aN in 2021 is 43886 tonnes. Although estimates appear to be improving from the minimum value in 2019, it should be noted that numbers of herring to the West of Scotland are very low compared to historical estimates prior to the genetic split (ICES 2021a). Fishing pressure on the stock is at or below FmSY proxy $^{(0.335)}$) and the stock size index is above MSY Btrigger proxy (14 711 t).

There is little information on terminal year recruitment in the catch-at-age data and there are as yet no recruitment indices from the surveys.

Herring in 6aS, 7b,c (her.27.6aS7bc): Herring to the northwest and west of Ireland in ICES Divisions 6.a.S, 7.b,c are primarily a winter spawning (Nov-Jan) stock, though later spawning in spring (Feb-Apr) also occurs. This stock was assessed together with herring in 6 aN from 20152021. Following a benchmark which took place in 2022 these two stocks are now assessed separately. This was made possible by the development of a genetically split acoustic survey index. The ability to split the summer acoustic survey (MSHAS) from 2014-2021 into the component stocks means that separate advice is now possible. The survey index for herring in $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ has been increasing since the lowest point in 2016 ($36,707 \mathrm{t}$) and in 2021 was estimated to be 189,856 t , which is the second highest point in the current time series. Recent catches are among the lowest in the time series. Fishing pressure on the stock is at or below Fmsy proxy (0.034) and the stock size index is above MSY B trigger proxy (51390 t). There is little information on terminal year recruitment in the catch-at-age data and there are as yet no recruitment indices from the surveys. Recruitment of the 2018 year-class was good and this year class is now 3 winter ring and accounted for 58% of the catch numbers at age in 2021.

Herring in the Irish Sea (her.27.nirs): comprises two spawning groups (Manx and Mourne). This stock complex experienced a decline during the 1970s. In the mid-1980s the introduction of quotas resulted in a temporary increase, but the stock continued its decline from the late 1980s up to the early 2000s. During this time period the contribution of the Mourne spawning component declined. An increase in activity on the Mourne spawning area has been observed since 2006. In the past decade there have been problems in assessing the stock, partly as a consequence of the variability of spawning migrations and mixing with the Celtic Sea stock. A benchmark in 2017 resulted in a substantial revision of SSB perception leading to an increased SSB in the most recent period compared to pre-benchmark perceptions. In 2021, SSB and recruitment have been estimated at 30792 t and 196418 thousand respectively. F_{4-6} is estimated at 0.21 in 2021 with estimates of F stable since 2009. Under the MSY approach the stock is expected to show a decrease to 23076 t in 2023.

North Sea and 3a sprat (spr.27.3a4): The catches are dominated by age 1-2 fish. Due to the short life cycle and early maturation, most of the stock consists of mature fish. To undertake the assessment and fit with the natural life cycle of sprat the assessment model is shifted by six months so that an assessment year and advice runs from 1 July to 30 June each year, and thus provide in-year advice. Since the last benchmark (ICES 2018), sprat in Division 3.a and Subarea 4 are combined into a single assessment unit. The advice is based on the MSY escapement strategy with an additional precautionary $\mathrm{F}_{\text {cap. }}$. The $\mathrm{F}_{\text {cap }}$ of 0.69 is used to ensure that after the fishery has been conducted, escapement biomass is preserved above $\mathrm{Blim}_{\mathrm{lim}}$ with high probability. The estimates for 2022 show an SSB of $100000 t$ which is below $\mathrm{B}_{\mathrm{pa}}(125000 \mathrm{t})$. The ICES advise for the period 1 July 2022-30 June 2023 is that catches of sprat should not exceed $68690 t$ which represents a 36% decrease on the last year advice. The reduction is due to the decrease in stock size following the low recruitment observed in 2021.

Sprat in the English Channel (7.d and 7.e) (spr.27.7de): Consists of a small midwater trawl fleet targeting sprat primarily in the vicinity of Lyme Bay, western English Channel. The stock identity of sprat in the English Channel relative to sprat in the North Sea and Celtic Sea is unknown. This year, ICES has provided catch advice for sprat in divisions 7.d and 7.e (primarily in the vicinity of Lyme Bay) based on criteria for data limited stocks. Data available are catches, a time-series of LPUE (1988-2016) and one acoustic survey that has been carried out since 2013 in the area where the fishery occurs and further offshore, also including the waters north off the Cornish Peninsula and, from 2017, the French part of the Western English Channel. The 2021 survey also extended into Cardigan Bay. The advice provided is based on the application of a constant harvest rate of 8.57%
to the 2021 acoustic survey biomass estimate. The advised catch of 9200 t for 2023 is 217.6% higher compared to last year. Since sprat is a short-lived species and given the timing of the survey (October), an advice period, valid from 1 July to 30 June in the following year, has been adopted for this stock starting in 2022. This will mitigate the problem of the lag between the survey information and the advice year which occurred previously. This has also been extended to the TAC which will also run from 1 July to 30 June. The fishing season for sprat runs from August to February.

Sprat in the Celtic Seas (spr.27.67a-cf-k): The stock structure of sprat populations in this ecoregion (subareas 6 and 7 (excluding 7.d and 7.e)) is not clear, and further work for the identification of management units for sprat is required. Most sprat in the Celtic Seas ecoregion are caught by small pelagic vessels that also target herring, mainly Irish and Scottish vessels. The quality of information available for sprat is heterogeneous across this composite area. There is evidence from different survey sources of significant interannual variation in sprat abundance. Landed biomass, but not biological information on the catch, is available from 1970s in some areas (i.e., 6.a and 7.a), while Irish acoustic surveys started in 1991, with some gaps in the time-series provide sprat estimates but their validity to provide a reliable sprat index is questionable because they do not always cover the core of sprat distribution in the area. Acoustic estimates in the Irish Sea are more reliable. The state of the stock of sprat in the Celtic Seas ecoregion is uncertain. ICES advice a catch of no more than 2240 tonnes for 2022 and 2023 in this ecoregion based on the precautionary approach.

Sandeel in 4 (san-nsea): A decline in the sandeel population in recent years concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence. Since 2010 this has been accounted for by dividing the North Sea into 7 management areas. Denmark and Norway are responsible for most of the fishery of sandeel in the North Sea. The catches are largely represented by age 1 fish. Analytical assessments are performed in four of the management areas (A1r-4) where most of the fishery takes place and data are available. Note that a benchmark in 2016 revised most of the area definitions.

A1: SSB has been above $B_{p a}(145000 \mathrm{t})$ in 2016-2018 and dropped to 71000 t in 2019, 61000 t in 2020, and 127000 t in 2021. The forecasting indicates that SSB will increase to a level above $B_{\lim }\left(110000 \mathrm{t}\right.$), but below B_{pa}, in 2022. Recruitment in 2021 was below the geometric mean of the time-series, and lower than in 2020. Fishing mortality (F) has fluctuated, showing a declining trend since the mid-2000s followed by an increase in 2017 to approximately the long-term average where it remained relatively stable till 2020 for the last four years (~ 0.5) but dropped in 2021.

A2: SSB has been below Blim (56 000 t) since 2004, with few exceptions. SSB increased in 2018 above $B_{p a}$ as the result of the exceptionally high 2016-year class and decreased again in 2019. SSB in 2021 is estimated at 35000 t The 2021 year class is estimated to be high above the long-term average.

A3: The stock has increased from the record low SSB in 2004 when it was half of $\operatorname{Blim}(80000 \mathrm{t})$ to above $B_{p a}(129000 \mathrm{t})$. SSB had a peak of more than 440000 t in 2018 and is estimated to 375000 t in 2021. The recruitments in 2016 and 2019 were among the five highest on record. Forecast indicates an SSB in 2022 of 210000 t . Fishing mortality (F) declined in the early 2000s and has been low until 2018. F has been increasing in the last couple of years.

A4: Fishing mortality (F) has been low since 2005 but increased in 2018 before decreasing again in 2019-2020 before increasing to a close-to record high level in 2021. SSB has fluctuated above precautionary reference points ($\mathrm{B}_{\mathrm{lim}}$) since 2011 with the exception of 2015 and 2020. Recruitment was low in 2018, high in 2019 and around the long-term average in 2020. Recruitment in 2021 is expected to be slightly lower than in 2020.

Figure 1.7.2 WG estimates of catch/landings (yield) of the category 1 herring, sprat and sandeel stocks presented in HAWG 2022

Figure 1.7.3 Spawning-stock biomass estimates for the category 1 sprat, herring and sandeel stocks assessed at HAWG 2022.

Figure 1.7.4 Estimates of mean F for the category 1 sprat, herring and sandeel stocks assessed at HAWG 2022.

Figure 1.7.5 Estimates of recruitment for the category 1 sprat, herring and sandeel stocks assessed at HAWG 2022.

Given the marked decrease in the weight-at-age of several of the herring stocks assessed by HAWG, the time-series of the relative weight change are presented for comparative reasons (Figure 1.7.6).

Figure 1.7.6 Time-series of herring mean individual weight in the catch.

1.9 Mohn's rho and retrospective patterns in the assessments

The analysis of retrospective patterns is one of the core diagnostics of the analytical assessments performed by ICES working groups, including HAWG. Mohn's rho (Q) is the metric which is currently used to quantify retrospective patterns.

Mohn's rho (Q) is calculated as the relative difference between an estimate from an assessment with a truncated time-series and an estimate of the same quantity from an assessment using the exact same methodology over the full time-series. The average of the relative change over a series of years is calculated as ${ }^{1}$:

$$
\begin{aligned}
& \frac{1}{\mathrm{n} \mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d d=\mathrm{T}-\mathrm{i}}-\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d d=\mathrm{T}}} \\
& \rho_{\mathrm{n}}={ }_{\mathrm{n}} \sum_{\mathrm{i}=1} \mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, \mathrm{i}, \mathrm{~T}}
\end{aligned}
$$

where $X_{y, d}$ is the assessment quantity, e.g. SSB or Fbar, for year y from the assessment with terminal year $d, \mathrm{~T}$ is the terminal year of the most recent assessment (the year of the most recent catch-atage data), and n is the number of retrospective assessments used to calculate rho.

The two-year subscripts for quantity X refer to the year for the quantity and the terminal year of the assessment from which the quantity was derived. For example, for an assessment WG in 2018, using catch-at-age up to 2017, the relevant quantities for the first retrospective ($i=1$) calculation are: $\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, \mathrm{d}=\mathrm{T}}=\mathrm{X}_{\mathrm{y}=2016, d d=2017}$ which corresponds to the assessment quantity for 2016(T-i) derived from the assessment using the full time-series with terminal year 2017 (T); and $\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i},=\mathrm{T}-\mathrm{i}}=\mathrm{X}_{\mathrm{y}=2016, d d=2016}$ which is the estimate of the assessment quantity for the same year $\mathrm{T}-\mathrm{i}=$ 2016) estimated from an assessment where the data are truncated to have terminal year 2016 (T-i).

Mohn's rho values have been uploaded at https://community.ices.dk/ExpertGroups/Lists/Retrobias/overview.aspx and they are included in this report in Table 1.8.1.

[^1]Table 1.8.1 Mohn's rho value calculated by HAWG on category 1 and 2 stocks with age-based fish stock assessments.

Stock code	Terminal year of catch data	Number of retrospective assessments used (n)	Fbar rho value	SSB rho: was the inter- mediate year used as the terminal year?	SSB rho value	Recruitment rho: was the intermediate year used as the terminal year?	Recruitment rho value
her.27.20-24	2021	5	-0.140	No	0.208	No	0.111
her.27.3a47d*	2021	5	-9.498	No	7.305	No	-10.269
her.27.irls	2021	5	-0.41	No	1.34	No	3.02
her.27.nirs	2021	5	-0.159	No	0.093	No	-0.309
san.sa.1r	2021	5	-0.10	No	0.43	No	0.87
san.sa.2r	2021	5	-0.13	No	0.55	No	0.37
san.sa.3r	2021	5	0.20	No	-0.12	No	0.01
san.sa. 4	2021	5	-0.16	No	0.54	No	1.12
spr.27.3a4	2021	5	-0.05	Yes	0.25	No	0.27

1.10 Transparent Assessment Framework (TAF)

TAF (https://taf.ices.dk) is a framework to organize all ICES stock assessments. Using a standard sequence of R scripts, it makes the data, analysis, and results available online, and documents how the data were pre-processed. Among the key benefits of this structured and open approach are improved quality assurance and peer review of ICES stock assessments. Furthermore, a fully scripted TAF assessment is easy to update and rerun later, with a new year of data.

The following HAWG scripts are now available on TAF (https://taf.ices.dk/app/stock\#!/):
7. North Sea herring (her.27.3a47d) update single-fleet SAM assessment, multi-fleet model run required for the forecast, and the forecast analysis (Update in progress 2021)
8. Herring west of Scotland (her.27.6aN) WKLIFE method 2.2 chr (prepared at the benchmark in 2022)
9. Herring west of Scotland and Ireland (her.27.6aS7bc) WKLIFE method 2.2 chr (prepared at the benchmark in 2022)
10. Herring south of $52^{\circ} 30^{\prime} \mathrm{N}$ Irish Sea, Celtic Sea, and southwest of Ireland (her.27.irls) ASAP assessment (Update in progress 2022)
11. Sprat in 7d, e Category 3, biomass trends (Last updated 2018)
12. Sandeel in area 1r (san.sa.1r) SMS assessment (Last updated 2019)
13. Sandeel in area 5 r (san.sa.5r) category 5.4 analysis (Last updated 2019)
14. Sandeel in area 6 (san.sa.6) category 5.2 analysis (Last updated 2019)
15. Sandeel in area 7 r (san.sa.7r) category 5.3 analysis (Last updated 2019)

A draft TAF workflow is currently being tested by HAWG members. This involves checking the code and providing feedback. A score will be given which reflects the cleanliness, readability and if the code is easy to understand.

WKREPTAF

The TAF Reporting Workshop (WKREPTAF) met in January 2021 and explored the reporting process for ICES expert groups (with special focus on stock assessment groups) and how this could become simpler, less time consuming, and of better quality. The workshop focussed on how to expand TAF to facilitate the reporting process within working groups. The workshop concluded that 1 . Script-based reports (i.e. markdown) would allow stock assessment groups to automate the process of inserting and formatting tables and figures in the report. 2. The data to be held within TAF can be documented within the report sections of the current ICES report in a standardized manner. With more data becoming available in TAF, there is the opportunity to more easily link ecosystem considerations and mixed fisheries considerations within stock specific chapters. 3 . The transition from conventional reporting to script-based reports would benefit from agreeing on standardized stock assessment inputs for TAF. 4. The script-based reports open up the opportunity to directly incorporate information from the regional database (RDBES), DATRAS, Stock Information Database and Stock Assessment Graph database (SAG). 5. Training in TAF and markdown reporting are essential for the ICES community (ICES, 2021, WKREPTAF).

1.11 Benchmark process

HAWG has made some strategic decisions regarding the future benchmarking of its stocks listed in the table below.

Stock	Assessment category	Latest benchmark	Benchmark or Interbechmark in the next 12 months	Further planning	Comments
NSAS herring	1	2018 Interbenchmark 2021	No	Exploration of M scaling methodologies, model configuration, new M values	Issue list available
WBSS herring	1.2	2018	Perhaps	Revise fleet definition in the 3.a catches, make the assumption on Winter spawners consistent between Danish and Swedish catches, revise the mean weight at age in the transfer area	Issue list and roadmap for next benchmark available, likely need for a benchmark in 2024 or 2025
6 aN herring	3	2022	No	Continue genetic sampling on the acoustic survey. Start genetic sampling of the catches. Further investigate additional survey indices. Explore stock identity issues. Further work on model development.	Issue list in prep
6.aS, 7.bc herring	3	2022	No	Continue genetic sampling on the survey. Start genetic sampling the catch. Further investigate survey indices. Further work on model development.	Issue list in prep
Celtic Sea herring	1	2015 Interbenchmark 2018	No	Mixing with Irish Sea herring, recruitment signal	Issue list available
7.aN herring	1	2017	No	Explore stock mixing, recruitment signal and F in the assessment	Issue list available
Sprat NS.3a	1	2018	No	Consider stock component, local components in 3a, boundary with the Baltic	Issue list available
Sprat 7.de	3	2018 Interbenchmark 2021	No	Consider stock components, review advice guidance for short lived species	Issue list available
Sprat Celtic	5	2013	No	Research roadmap to review and plan sprat work in 2022	Issue list available
Sandeel areas $1 r-4$	1	2016	Yes	Update reference points for sandeel area 3 based on the new M estimates	Issue list available

2 Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners

2.1 Introduction

The WG noted that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout this section. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings", which is not the case for spring spawners. Further elaboration on the rationale behind this, specific to the North Sea autumn spawners, Western Baltic spring spawners and the mixed stock catches, can be found in the Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

2.1.1 ICES advice and management applicable to 2021 and 2022

There is currently no agreed EU-Norway management plan (Anon, 2019) although a Working Group has been set up by Norway, UK, and the European Union to recommend a way of optimally and sustainably utilizing the North Sea autumn spawning herring stock. Until new agreed management strategies will become available, the MSY approach is used as the basis of ICES advice.

The final TAC adopted by the management bodies for 2021 was 364107 tonnes for Area 4 and Division 7.d, where no more than 34793 t should be caught in Division 4.c and 7.d. For 2022, the total TAC is 453802 t (427628 t for the A-Fleet), including a TAC of 47039 t for Division 4.c and 7.d.

The bycatch TAC for the B-Fleet in the North Sea (and Division 2.a) was 750 t in 2021 and has increased by 6% to 8174 t in 2022. As North Sea autumn spawners are also caught in Division 3.a, regulations for the fleets operating in this area have to be considered for the management of the WBSS stock (see Section 3). Catches of spring-spawning herring in the Thames estuary are in general low and not included in the TAC. For a definition of the different fleets harvesting North Sea herring see the Stock Annex and Section 2.7.2.

2.1.2 Catches in 2021

Total landings and estimated catches are given in the Table 2.1.1 for the North Sea and for each Division in tables 2.1.2 to 2.1.5. Total Working Group (WG) catches per statistical rectangle and quarter are shown in figures 2.1.1 (a-d), the total for the year in Figure 2.1.1(e). Each nation provided most of their catch data by statistical rectangle. Some catch figures in tables 2.1.1-2.1.5 are provided by WG members and may or may not reflect national catch statistics. These figures can therefore not be used for legal purposes.
The total WG catch of all herring caught in the North Sea amounted to 364615 t in 2021. Official catches by the human consumption fishery were 355665 t , relatively close to the TAC for the human consumption fishery (356357 t). The effect of quota banking and borrowing is unknown by the WG.

As in previous years, the vast majority of catches are taken in the $3^{\text {rd }}$ quarter in Division 4.a (W).
In the southern North Sea and the eastern Channel, the total catch sums to 36091 t . The separate TAC for this area was 34793 t , so the TAC in Division 4.c and 7.d was fully taken (but due to catch regulations, 50% of the TAC could have been taken in Division 4.b).

Information on bycatches in the industrial fishery is provided by Denmark and Sweden. While the Norwegian bycatches are included in the A-fleet figure for Norway, catches taken in the small-meshed fishery by Denmark and Sweden are accounted to a separate EU quota (B-fleet).

Landings of herring taken as bycatch in the small-meshed fishery were 8788 tonnes in 2021. The bycatch ceiling for the B-Fleet was 7750 t . Since the introduction of yearly bycatch ceilings in 1996, these ceilings have fully been taken in 2014, 2016 and since 2020.

The total North Sea TAC and catch estimates for the years 2016 to 2021 are shown in the table below (adapted from Table 2.1.6).

Year	2016	2017	2018	2019	2020	2021
TAC HC (${ }^{\text {OOO }}$ t)	518	482	601	385	385	356
"Official" landings HC ('000 t) *	545	485	594	439	415	356
Working Group catch HC ('000 t)	545	485	594	440	417	356
Excess of landings over TAC HC ('000 t)	27	3	-7	55	32	0
Bycatch ceiling ('000 t) **	13	11	10	13	9	8
Reported bycatches ('000 t) ***	15	7	8	5	10	9
Working Group catch North Sea ('000 t)	560	492	602	446	427	365

HC = human consumption fishery

* Landings might be provided by WG members to HAWG; they may differ from the official catches and cannot be used for management purposes. Norwegian bycatches included in this figure.
** bycatch ceiling for EU industrial fleets only, Norwegian bycatches included in the HC figure.
*** prior to 2019 provided by Denmark only. Since 2019 by Denmark and Sweden.

2.1.3 Regulations and their effects

In 2022, half of the EU quota for Division 3a (HER/03A.) can be taken in UK waters of the North Sea (HER/*4-UK) and 21038 tonnes of the EU quota can be taken in 4 b (HER/*4b-EU). In total, the transfer of 3.a quota into the North Sea is getting close to 100%. Catches in Division 3a are limited to 1136 tonnes.

In the North Sea, Norway can take up to 2700 tonnes of its quota in UK and EU waters in divisions 4.a and $4 . b$ (HER/*4AB-C). 2700 tonnes of the EU quota can be taken within Norwegian waters south of $62^{\circ} \mathrm{N}$ (HER/* $\left.4 \mathrm{~N}-\mathrm{S} 62\right)$.

Half of the EU and UK quotas for divisions 4.c and 7.d can be taken in Division 4.b (HER/*04B.).
Also 50% of the EU bycatch quota in the small-meshed fishery in 3.a can be fished in EU waters in 4 (HER/*4-EU-BC).

In 2014, an agreed record between EU and Norway was applied, enabling an interannual quota flexibility of 10% of the TAC. Each party could transfer non-utilized quota of up to 10% of its quota into the next year, where it is added to the quota allocated to the party concerned in the
following year (or borrow 10% of the TAC, to be subtracted the following year). This interannual flexibility was changed in 2015 due to the Russian embargo on EU fishing products, so that 25% of the TAC could be transferred into the next year, while up to 10% could be borrowed. Subsequent year, the quota flexibility has been set to 10% again. Since 2021, this interannual quota flexibility is in place also for UK herring quotas.

At HAWG 2022, the effect of quota swaps and banking and borrowing could not be assessed by the WG.

Since 2015, a landing obligation is in place for the European pelagic fleets operating in the North Sea and the Baltic. All catches of (quota) regulated species have to be landed into port. Since 2020, the landing obligation also applies to all demersal fisheries although some exemptions have been agreed in the regional discard plans.

2.1.4 Changes in fishing technology and fishing patterns.

There have been no major changes to fishing technology of the fleets that target North Sea herring.

Having implemented the Brexit, access into UK waters was partly restricted in 2021. Norwegian vessels were not allowed to fish in UK waters and vice versa. This may have resulted in an increase in fishing effort in some rectangle in 4.a, along the Norwegian-UK maritime border. However, this effect is not clearly analysed yet. For 2022, there are mutual agreements put into place.

As in preceding years, the herring fishery concentrated in the north-western part of the North Sea, around the Fladen Ground area (figures 2.1.1 a-e). The majority of catches are taken in Subdivision $4 . \mathrm{aW}$, in the order of 50% of the total. Subdivision $4 . \mathrm{aE}$ provided 24% of the catches in 2021 and catches in Division 4.b contributed 16\%.

The bycatch ceiling for the small-meshed fishery (B-Fleet) has fully been taken in 2021. Catches were distributed in $4 . \mathrm{aW}(41 \%)$ and $4 . \mathrm{b}(58 \%)$. Only 1% were caught in 4.c. In former years, most of the catches in the B-Fleet were taken in Division 4.b (70% in 2019).

After a substantial decline in misreporting since 2009, misreporting is regarded as a minor problem in the herring fishery.

2.2 Biological composition of the catch

Biological information (numbers, weight, catch (SOP) at age and relative age composition) on the catch as obtained by sampling of commercial catches is given in tables 2.2.1-2.2.5. Data are given for the whole year and by quarter. Except in cases where the necessary data are missing, data are displayed separately by area for herring caught in the North Sea, for Western Baltic spring spawners (only in 4.aE), and for the total NSAS stock, including catches in Division 3.a.

Biological information on the NSAS caught in Division 3.a was obtained using splitting procedures described in Section 3.2 and in the Stock Annex.

The tables are laid out as follows:

- Table 2.2.6: Total catches of NSAS (SOP figures), mean weights- and numbers-at-age by fleet
- Table 2.2.7: Data on catch numbers-at-age and SOP catches for the period 2006-2021 (herring caught in the North Sea)
- Table 2.2.8: WBSS taken in the North Sea (see below)
- Table 2.2.9: NSAS caught in Division 3.a
- Table 2.2.10: Total numbers of NSAS
- Table 2.2.11: Mean weights-at-age, separately for the different Divisions where NSAS are caught, for the period 2011-2021.

Note that SOP catch estimates may deviate in some instances slightly from the WG catch used for the assessment.

2.2.1 Catch in numbers-at-age

The total number of herring taken in the North Sea is 2.6 billion fish and NSAS amounts to 2.65 billion fish in 2021. The proportion of 0-and 1-ringers of herring taken in the North Sea is 24% of the total catch in numbers (Table 2.2.5), compared to 49% in 2020. Most of these young herring are still taken in the B-Fleet in Division 4.b. Here, 0-ringers amount to 52% of the total catch in numbers in 4.b.

The proportion of $3+$ winter ring herring has re-increased to 62% of the total catch in numbers taken in the North Sea (compared to 39% in 2020).

In terms of biomass, the contribution of different age-groups is relatively homogeneous in 2021 (each 2-, 3-, 5- ,7- and 8-ringers contributed 13 to 19\%).

Western Baltic (WBSS) and local Division 3.a spring spawners are taken in the eastern North Sea during summer feeding migration (see Stock Annex and Section 3.2.2). These catches are included in Table 2.1.1 and listed as WBSS. Table 2.2.8 specifies the estimated catch numbers of WBSS caught in the North Sea, which are transferred from the North Sea assessment to the assessment of Division 3.a/Western Baltic in 2006-2021. After splitting the herring caught in the North Sea and 3.a between stocks, the total catch of North Sea Autumn spawners amounts to 365351 tonnes.

Area	Allocated	Unallocated	BMS/Discard	Total
4.a West	181381		64	181445
4.a East	88235		18	88253
4.b	58826			58826
4.c/7.d	35992		99	36091
Total catch in the North Sea				364615
Autumn spawners caught in Division 3.a (SOP)				4243
Baltic spring spawners caught in the North Sea (SOP)				-3 505
Total catch NSAS used for the assessment				365351

2.2.2 Other Spring-spawning herring in the North Sea

Norwegian spring spawners and local fjord-type spring-spawning herring are taken in Division 4.a (East) close to the Norwegian coast under a separate TAC. These catches are not included in the Norwegian North Sea catch figures given in tables 2.1.1-2.1.6 but are listed separately in the respective catch tables. Along with the reduction in biomass of these spring-spawning herring in recent years, the catches have decreased in recent years. In 2021, they have been zero.

Blackwater herring are caught in the Thames estuary under a separate quota and included in the catch figure for England and Wales. In recent years, these catches have been relatively small. The TAC 2021 was set at 10 tonnes and reported catches amount to 2 tonnes.

2.2.3 Data revisions

No data revisions were applied in this year's assessment.

2.2.4 Quality of catch and biological data

Annual misreporting and unallocation of catches are regarded as a minor issue in the North Sea herring fishery. In 2021, no unallocated catches were reported.

Since 2015, a landing obligation is in place for pelagic fleets operating in the North Sea and the Baltic. All catches have to be landed into port. Reported catches in the BMS category (below minimum landing size, including any fish lost or damaged during processing procedures) were 96 tonnes in 2021. Some countries stated these to be zero, and other countries have not reported any catches in this category. In accordance with the landing obligation, no discards were reported in the 2021 North Sea herring fishery. However, discards occurred in demersal fisheries not targeting on herring. These discards were 67 tonnes in 2021.

The sampling of commercial landings covers 81% of the total catch.
More important than a sufficient overall sampling level is an appropriate spread of sampling effort over the different métiers (here defined as each combination of fleet/nation/area and quarter). Of 108 different reported métiers, 31 were sampled in 2021. The sampling level of more than 1 sample per 1000 t catch has been met for only 17 métiers. With regards to age readings, 20 métiers appear to be sampled sufficiently (>25 fish aged per 1000 t catch).

However, some of the métiers yielded very little catch. In 69 métiers, the catch is below 1000 t . The total catch in these métiers sums to 11595 t , so the remaining 39 métiers represent 352956 t of the working group catch (97%). Of these 39 métiers, 16 were sampled. 8 métiers have more than 1 sample per 1000 t catch and also 11 métiers more than 25 age readings per 1000 t catch.

According to the DCF regulations, some catches were landed into and sampled by other nations.
The WG recommends that all métiers with substantial catch should be sampled (including bycatches in the industrial fisheries), and that catches landed abroad should be sampled and their biological data be made available to the national laboratories (see Section 1.5).

2.3 Fishery independent information

2.3.1 Acoustic Surveys in the North Sea (HERAS), West of Scotland 6.a (N) and the Malin Shelf area (MSHAS) in June-July 2021

Six national surveys were carried out during late June and July covering most of the continental shelf in the North Sea, West of Scotland, and the Malin Shelf. The survey methods and full results are given in the report of the Working Group for International Pelagic Surveys (WGIPS; ICES 2021). The vessels, areas and dates of cruises are given in Table 2.3.1.1 and in Figure 2.3.1.1.

The global survey results provide spatial distributions of herring, abundance by number and biomass-at-age by strata and distributions of mean weight- and proportion mature-at-age for the assessment (Table 2.3.1.2).

The time-series of abundance of North Sea autumn spawning herring is given in Table 2.3.1.3. The 2021 estimate of North Sea autumn spawning herring SSB (spawning-stock biomass) is lower than in the previous year at 1.5 million tonnes (2020: 1.7 million tonnes) with a further decrease in the number of mature fish (2020: 8915 million fish, 2021:8 170 million fish). The mean weight of mature fish is lower than last year at 183.7 g , contributing stronger than the concurrent decrease in numbers to the decrease in biomass. The spawning stock is dominated by fish of age 2, 3 and 7 wr . In the 2020 survey 2, 5 and 6 wr dominated.

Distribution of herring in the North Sea area (Figure 2.3.1.2) is similar to that seen since 2017 and does not extend as far south as was the norm in the years prior to 2017. Abundance of NSAS herring was slightly lower compared to recent surveys in the North Sea area.
The abundance of immature fish in the stock has increased by 57\% since last year from 14851 million in 2020 to million 23311 in 2021. While prior to 20202 winter ring fish contributed substantially to the abundance of immature fish, the maturity level in this age group was as in the previous year comparatively high (59% mature in $2019,75 \%$ mature in $2020,74 \%$ mature in 2021).
At 74%, the proportion mature at 2 winter rings in 2021 is again at the high end in the time series - compared to e.g., the all-time low of 37% in 2018. Maturities for ages 3 and above were again comparable to the long-term average with 99% of 3 winter ringers and 100% maturity for all ages 4 and above (Table 5.2). Since 2015, observed maturities are reported for all age groups. Previously maturity had been fixed at 100% for ages above 4 wr .

2.3.2 International Herring Larvae Surveys in the North Sea (IHLS)

Six survey areas were covered within the framework of the International Herring Larval Surveys in the North Sea during the sampling period 2021-2022. They monitored the abundance and distribution of newly hatched herring larvae in the Orkney/Shetlands area, in the Buchan area and the central North Sea (CNS) in September and in the southern North Sea (SNS) in December 2021 and January 2022 (Figures 2.3.2.1-2.3.2.3).
The survey around the Orkneys revealed higher quantities of newly hatched larvae, compared to relatively low numbers in the two preceding years. In the Buchan and the central North Sea, larvae hatched in lower quantities, and concentrated in two areas, while the remaining stations contributed only low numbers of larvae (Figure 2.3.2.1).

The two surveys in the southern North Sea showed comparable quantities. However, the survey in December was influenced by some hot spots, yielding high numbers of larvae. This pattern is not uncommon when compared to the survey history, thus all stations were included in further calculations.

As in former years, the abundance of young larvae is high when hatching started in December, but their spatial distribution is limited. With progressing spawning season, also the spatial distribution gets broader.

No survey was planned for the second half of January 2022. Instead, an additional MIK sampling is scheduled for March-April 2022 in the German Bight and Skagerrak/Kattegat area. This sampling should shade light on the foraging and recruitment of herring larvae originating in the Downs stock component. This survey is described in section 2.11.

During the most recent benchmark of the North Sea herring assessment (ICES, WKPELA 2018), it was decided to use the Larvae Abundance Index (LAI) as direct input into the assessment model and to resolve spatial stock dynamics inside the model.

2.3.3 International Bottom Trawl Survey (IBTS-Q1)

During the International Bottom Trawl Survey in the first quarter (Q1 IBTS), night-time catches are conducted with the MIK net, a fine meshed $(1600 \mu \mathrm{~m})$ 2-m-midwater ring net (ICES 2017) providing abundance estimates for large herring larvae (0-ringers) of the autumn spawning stock components. In addition, the Q1 IBTS also provides the time series for the 1-ringer herring abundance index in the North Sea from GOV catches carried out during daytime. For more details on the times series, the reader is referred to the previous reports of the working group.

2.3.3.1 2.3.3.1 The 0-ringer abundance (IBTSO survey)

The total abundance of 0-ringers in the survey area from the MIK sampling is used as a recruitment index for the stock. Since 2017, this 0-ringer index (also called MIK index) time series is calculated with a new algorithm, which excludes larvae of Downs origin more rigorously. This is done by excluding the smaller larvae - presumably of Downs origin - from the analyses in certain parts of the survey area. Index values are calculated as described in detail in the Stock Annex. (Note that this new time-series based on the new algorithm only dates back to 1992, and that all French data before 2008 are excluded because of data quality issues). The results of the calculation can be found in Table 2.3.3.1. The index from the 2022 survey (corresponding to the 2021 year-class) is 47.8 . This is one of the lowest values in the time-series, with only 4 other yearclasses being even lower (2003, 2007, $2014 \& 2016$).

The 2022 MIK-IBTS survey was faced with numerous challenges. Most importantly, very severe weather conditions prevailed throughout most of the survey period. In addition, several cases of Covid-19 on RV Walther Herwig III delayed the German survey for 15 days, and the

Scottish survey had to be cancelled after 5 days due to mechanical issues on RV Scotia. Furthermore, minor technical issues also occurred on the Dutch RV Tridens and the Danish RV Dana, resulting in the need to go back to harbor for some minor repairs. All these various issues had severe impacts on the MIK sampling, and only 433 depth-integrated hauls were completed with the MIK-net, which is 250 MIK hauls less than in 2021. For the 2022 MIK 0-ringer index (corresponding to the 2021 year-class), all hauls north of $51^{\circ} \mathrm{N}$ were used, in total 410 hauls, which is 253 less than in 2020.

As a total of 714 MIK hauls were planned according to the 2022 NSIBTS Q1 program (the target is 4 hauls per ICES rectangle), only approximately 60% of the planned MIK-stations were sampled. However, there has been an increase in the number of MIK hauls throughout the timeseries, and the 433 MIK hauls achieved in 2022 are still more hauls than were conducted in the early years of the time-series. Besides, thanks to intensive coordination between participants during the survey and more decent weather in the final part of the survey period, at least 1 MIK haul could be conducted in most ICES rectangles and the majority of rectangles was covered with 2 or more hauls. Nevertheless, 24 rectangles were not covered at all by the MIK sampling, but these were mainly located in the north-western parts of the survey area, which usually only yield low numbers of herring larvae. Thus, the majority of the main herring larvae distribution area could be covered.

In order to investigate whether the poor sampling coverage may have had an influence on the 0ringer index from the 2022 survey, two data tests were conducted. In the first test, the entire 0 ringer index time-series from 1992 to 2021 was re-calculated without the 24 rectangles which were not covered in 2022 and compared to the existing, normal 0-ringer time-series. For most years, the deviances between the two time-series were max. 5% or less, except for one year with a deviance of about 10%. Furthermore, when plotting the two time-series together in the same figure, it became evident that the overall time-series trends were not affected at all and the discrepancy between the two time-series was negligible. In the second test, the entire time-series
since 1992 was calculated with only 1 and 2 randomly chosen MIK hauls per rectangle, conducting 100 different runs per year. For the test with only 1 random MIK haul per rectangle a relatively high variability of the index values was observed, whereas the test with 2 random hauls per rectangle only resulted in a low variability of the index. The overall trends, however, were not seriously affected in both runs. Thus, as the majority of rectangles was covered by at least 2 or more MIK hauls, the impact of the poor MIK sampling coverage during the 2022 survey on the resulting 0 -ringer index seems negligible. In summary, despite the encountered issues and low overall number of MIK hauls, it can be assumed that the 2022 MIK survey provides a representative 0-ringer index.
Figure 2.3.3.1.1 shows the size distribution of MIK larvae in 2022. Herring larvae measured between 7 and 44 mm standard length (SL). Again, and as in most years, the smallest larvae <12 mm were the most numerous and the larvae between 7 to 11 mm made up almost 50% of the total number of larvae. Larger larvae $>18 \mathrm{~mm}$ SL were rarer, making up about 10% of all larvae, and were caught in lower densities than last year. An interesting feature in the 2022 length distribution is the peak at 15 mm SL. Figure 2.3.3.1.2 illustrates the spatial distribution of 0 -ringers in 2020, 2021 and 2022. The smallest larvae were chiefly caught in 7.d and in the Southern Bight. The large larvae appeared in moderate to high quantities in both the central, western and southern parts of the North Sea. In the southeastern and eastern part of the North Sea, the potential nurseries, abundance of large herring larvae was lower than last year.

2.3.3.2 The 1-ringer herring abundances (IBTS-1)

The 1-ringer recruitment estimate (IBTS-1 index) is based on GOV catches in the entire survey area. The time series for year classes 1991 to 2020 is shown in Table 2.3.3.2. The index from the 2022 survey (corresponding to the 2020 year-class) is 806 . This is less than half of the long-term average of the time series, and only 3 other year-classes were even lower (1997, $2014 \& 2016$).
Figure 2.3.3.2.1 illustrates the spatial distribution of 1-ringers as estimated by trawling in January/February 2020, 2021, and 2022. As in previous years, the majority of the 1-ringers of the 2020 year-class were found in the Kattegat/Skagerrak area, however at much lower abundance. In addition, 1-ringers were also found in the south-eastern parts of the North Sea as well as in the Moray Firth.
After a longer period where the trajectories of 1-ringer abundance and 0-ringer index seemed to be uncoupled (year-classes 2003-2012), the two trajectories again corresponded well for the yearclasses 2013 - 2018 but weakened for the 2019 year-class (Fig. 2.3.3.2.2). The 0-ringer and 1-ringer data for the 2020 year-class correspond better than for the 2019 year-class, but the 1-ringer value seems rather low compared to the 0 -ringer value.

This leads to the question if there may be an issue with the 1-ringer index for the 2020 year-class, which could e.g., be related to the various challenges during the 2022 survey described above (see section 2.3.3.1). Due to these challenges, a total number of 33 ICES rectangles were not covered by GOV hauls in 2022. However, the uncovered rectangles are mainly located in the northwestern North Sea, which is an area that usually did not yield relevant catches of 1-ringers in previous years. Besides, the ICES rectangles in the north-western areas that actually were covered did not yield relevant catches of 1-ringers during the 2022 survey, indicating that the unsampled rectangles would not have yielded any relevant catches either. Thus, the poor spatial coverage in these areas in 2022 does not seem to have an influence on the 1-ringer index, which is mainly driven by catches in Kattegat, Skagerrak and the German Bight, i.e. areas that were decently covered in 2022.

However, the adverse weather conditions during much of the 2022 survey may have had a more general influence on the catchability of 1-ringers, e.g., by reducing the schooling effect due to low visibility in the water. Besides, it should be kept in mind that the 1-ringer index is based on
hauls with a GOV Trawl, i.e., a bottom trawl which might not be ideal to catch pelagic species like herring. Furthermore, differences in vertical net opening between participating vessels in the Q1 IBTS may also have an influence on catchability. Germany did e.g., report a relatively high vertical net opening while Norway reports a relatively low vertical net opening, which may result in higher and lower catchability of pelagic species, respectively. As Germany only conducted 10 out of their 67 planned GOV hauls in 2022, this may have had an effect on the total numbers of 1-ringer herring, but it is not clear if such an effect did indeed occur, nor can its magnitude be estimated. However, it should be kept in mind that the 1-ringer abundance from the 2022 survey, corresponding to the 2020 year-class, may be underestimated.

2.4 Mean weights-at-age, maturity-at-age, and natural mortality

2.4.1 Mean weights-at-age

Table 2.4.1.1 shows the historic mean weights-at-age (winter ringers, wr) in the North Sea stock during the $3^{\text {rd }}$ quarter in divisions 4 and 3.a from the North Sea acoustic survey (HERAS) as well as the mean weights-at-age in the catch from 1996 to 2020 for comparison. The data for 2020 were sourced from tables 2.3.1.2. and 2.2.2. In the third quarter (timing of the HERAS survey) most fish are approaching their peak weights just prior to spawning.
The general trend towards smaller mean weight at age observed in recent years in the acoustic survey and, but less pronounced, in the catch in the $3^{\text {rd }}$ quarter (Figure 2.4.1.1), seems to be turned since 2020. This is especially the case for age 2 and 3 Almost all ages, in both the acoustic survey and the catch, had higher mean weight at age compared to 2019, with the only exception of 5-wr fish in the catch and 8-wr in the catch and the survey.

2.4.2 Maturity ogive

The percentages at age of North Sea autumn spawning herring that were considered mature in 2021 were estimated from the North Sea acoustic survey (Table 2.4.2.1). The method and justification for the use of values derived from a single year's data were described fully in ICES (1996/ACFM:10). While $5+$ group herring were considered fully mature in the period prior to 2015, WGIPS reported maturity stage for all groups up to 7+ separately in the most recent years.

Maturity of 2 winter ringers was at an all-time low in 2018 at 37%. In 2019, the proportion mature at 2 winter rings was at 59%, still low when compared to the long term. In 2020 and 2022, 2 winter ringers were to 75% and 74% mature respectively, much more in line with previous years. Maturities for winter ringers 3 (989) and 4 (100%) are also comparable to the long-term average. 100% maturity was achieved by age 4 .

2.4.3 Natural mortality

One of the improvements of the 2012 benchmark of the North Sea herring stock (ICES WKPELA, 2012) was the integration of fundamental links between the North Sea ecosystem and the NSAS stock dynamics.

From 2012 onwards, the assessment of NSAS includes variable estimates of natural mortality (M) at age derived directly from a multispecies stock assessment model, the SMS model, used in WGSAM (Lewy and Vinther, 2004; ICES 2011). The input data to the assessment are the smoothed values of the raw SMS model annual M values, which are variable both at-age and over the time. Natural mortality in years outside the time-period covered by the model are filled
and estimated for each age as a five-year running mean in the forward direction and in the reverse direction for years prior. The M estimates are variable along the time period covered by the assessment and are the result of predator-prey overlap and diet composition. The trends in total M of NSAS are a result of the contribution of each of the predators to the predation mortality of the NSAS stock. The time-series of M adopted at the benchmark in 2012 was from the 2011 key run of the SMS model covering the period 1963-2010 (ICES WGSAM, 2011). Since 2012, the M time-series were updated following the latest key runs of the SMS model (ICES WGSAM, 2014; 2016, 2021).

During the 2018 benchmark (ICES WKPELA, 2018), it was decided to use the new M time-series from the 2017 SMS model key run (ICES WGSAM, 2018). However, because of the substantial impact the absolute level of M has on the assessment, an age and year independent offset is applied. This offset is calculated using a likelihood profiling of the assessment model which allows one to find the M that best fits the input data to the assessment. However, for the profiling performed during WKPELA2018, a benchmark interim model specification was used. In practice, the assessment profiling should have been performed using the WKPELA2018 final model configuration to ensure consistency in the derivation of additive rescaling. This discrepancy was only discovered at HAWG2021 and has consequence in the scaling of the assessment. In order to correct this discrepancy but also update the natural mortality for the NSAS assessment with the latest SMS model key run (ICES WGSAM, 2021), a dedicated inter-benchmark was held (IBPNSherring2021, ICES, 2021).

The latest natural mortality vector from WGSAM (ICES WGSAM, 2021) spans the 1974-2019 period. Values outside this year range is computed using a three year moving average.

2.5 Recruitment

Information on the development in North Sea herring recruitment comes from the International Bottom Trawl Surveys, from which IBTS0 and IBTS-1 indices are derived. Further, the SAM assessment provides estimates of the recruitment of herring in which information from the catch and from all fishery independent indices is incorporated. Of importance is the fact that IBTS0 allows the assessment model to estimate recruitment levels in the assessment year. This is subsequently used in the short-term forecast for the intermediate year. The recruitment trends from the assessment are dealt with in Section 2.6.

2.5.1 Relationship between 0-ringer and 1-ringer recruitment indices

The estimation of 0-ringer abundance (IBTS0 index) predicts the year-class strength one year before the strength is estimated from abundance of 1-ringers (IBTS-1 index). The relationship between year-class estimates from the two indices is illustrated in Figure 2.5.1.1 and is described by the fitted linear regression.

The time series of 0- and 1-ringer abundance from the Q1 IBTS survey exists since the 1977 yearclass. For more than a decade until the mid-1990s, there has been very good agreement between the indices in their description of temporal trends in recruitment, with the 0 -ringer index explaining more than 70% of the variability of the respective 1-ringer abundance. It has to be borne in mind that the IBTS 0-ringer (or MIK) index only reflects recruitment in the autumn spawning components. Hence, once the contribution of the winter spawning Downs component to the total North Sea herring stock increased and of the autumn spawning components decreased, the relationship between the two indices started to erode. This was particularly true during the first decade of the 21st century (for the year-classes 2003-2012), but also already for the 1995 yearclass, when the predicted trends in recruitment deviated between the two indices.

Since 2017, the MIK index time series is calculated with a new algorithm, which only dates back to 1992 and excludes larvae of Downs origin more rigorously. The correlation between 0 - and 1ringer indices utilizing the newly calculated MIK index time series is much weaker, explaining only 26 \% recruitment variability (Figure 2.5.1.1). However, starting with the 2013 year-class, there was once again good agreement between the trends of the two indices. In the 2014 MIK survey, the 2013 year-class was recorded as the largest 0 -ringer abundance since 2002, and the strength of this year-class was confirmed in 2015 with one of the largest 1-ringer abundances. This was the first strong year-class observed since 2002. Since then, the IBTS 1-ringer index followed the ups and downs of the MIK 0-ringer index for the respective year-classes until the 2018 year-class (Figure 2.3.3.2.2). For the 2019 year-class, the relationship between the MIK 0-ringer and the IBTS 1-ringer index decreased again.

The most recent data that can be compared between 0-ringers and 1-ringers are for the 2020 yearclass, corresponding to the 0-ringers from the 2021 MIK survey and the 1-ringers from the 2022 GOV survey. Generally, the 0-ringer and 1-ringer data for the 2020 year-class correspond better than for the 2019 year-class, but in contrast to the vast majority of other years in the time-series, the 1 -ringer value is rather low in relation to the 0 -ringer value (Figure 2.3.3.2.2). This may reflect some severe mass mortality among the larger herring larvae or young juveniles, in particular if one bears in mind that there are increasing numbers of mackerel in the North Sea during summer in recent years, which may prey heavily on the 0 -group herring. However, this could also be a "sampling artefact" related to adverse weather conditions and several other challenges during the 2022 Q1 IBTS, which may have affected the catchability of 1-ringers of the 2020 year-class, but it is not clear if such an effect did indeed occur, nor can its magnitude be estimated (for further details see section 2.3.3). However, it should be kept in mind that the 1-ringer abundance from the 2022 survey, corresponding to the 2020 year-class, may be underestimated.

2.6 Assessment of North Sea herring

2.6.1 Data exploration and preliminary results

The tool for the assessment of North Sea herring is FLSAM, an implementation of the State-space assessment model (www.stockassessment.org, Nielsen and Berg 2014), embedded inside the FLR library (Kell et al., 2007).

Acoustic (HERAS ages 1-8+), bottom trawl (IBTS-Q1 age 1, IBTS-Q3 age 2-5), IBTS0 and larval index (LAI) indices are available for the assessment of North Sea autumn spawning herring. The surveys and the years for which they are available are given in Table 2.6.1.1. The input data and the performance of the assessment have been scrutinised to check for potential problems.

The proportion mature of 2,3 and $4-\mathrm{wr}$ individuals are $74 \%, 99 \%$, and 100% respectively. The historical proportion mature at age are given in Table 2.6.1.2 and plotted in Figure 2.6.1.1. The maturity for age 2 is substantially higher compared to the lowest point in 2018. This is following a consistent decrease of proportion mature at this age since 2015. Other biological inputs to the assessment are presented in Figures 2.6.1.2-2.6.1.4 and Tables 2.6.1.3-2.6.1.5. Catch at age are given in Table 2.6.1.6 and the proportions plotted in Figure 2.6.1.5.

The numbers-at-age over all ages in the HERAS acoustic survey are given in Table 2.6.1.7 and the proportions are plotted in Figure 2.6.1.6. Overall, the age composition of the stock sampled by the HERAS acoustic survey in 2021 is similar to previous years. For this survey, the internal consistency of the index remains high, as it has been for a long period (Figure 2.6.1.7). However, as explored at HAWG 2020 (ICES 2020), the index consistency has decreased in recent years. Other survey indices are presented in Tables 2.6.1.8-2.6.1.14. The internal consistency of the IBTSQ3 (the other multi-age index) is shown in Figure 2.6.1.8 and presents good cohort tracking.

2.6.2 NS herring assessment

In accordance with the settings described in the Stock Annex, the final assessment of North Sea herring was carried out by fitting the state space model (SAM, in the FLR environment). The input data are presented in Table 2.6.1.2-2.6.1.14 and model settings are given in Table 2.6.2.7. Estimated parameters and model outputs are given in Table 2.6.2.1-2.6.2.6.

A summary of assessment outputs is shown in Figure 2.6.2.1 (SSB, F averaged over age 2-6 and recruitment). The spawning stock at spawning time in 2021 is estimated at approximately 1.35 million tonnes and still decreasing of the stock observed since 2016. As for recruitment, the 2022 estimates are substantially lower than estimated during 2021. Recruitment of the 2020- and 2021year classes are estimated to be weak. Mean F2-6 in 2020 is estimated at approximately 0.20 .

The SAM model fits the catch and the surveys well and residuals are random and small for all ages (figures 2.6.2.2-2.6.2.5). Only a small block of positive residuals can be observed for age 7 catch data over the years 2000-2006, while at age 8 for catch data, a similar block of negative residuals can be observed (figures 2.6.1.13 and 2.6.1.14). This likely indicates a trade-off in model fit to either the age 7 or age $8+$ catch information. There is a methodological need however to link age 7 and age $8+$ together in the stock assessment model. The residuals are very small and are not considered an issue for the performance of the assessment. The fitting of the LAI index is poor due to the intrinsic noise to the larvae survey. However, this survey is the only one able to provide information on the strength of the different spawning components. Given the low impact of this survey on the overall assessment, this is not considered an issue.
The estimated observation variances and survey catchabilities are given in Tables 2.6.2.1-2.6.2.2 and plotted in Figures 2.6.2.6-2.6.2.8. Overall, the assessment is informed best by catch data and HERAS over the core ages of the stock (ages 2-6). With the updated assessment model from the latest inter-benchmark (ICES 2021), the catchability of the HERAS survey is close to 1, in line with the expectation for this survey that covers the stock in its entirety.
A feature of the assessment model is the estimation of an observation variance parameter for each dataset (Table 2.6.2.1, Figure 2.6.2.6). Overall, all data sources are associated with low observation variances. The catch-at-ages 1-5 stands out as the most precise data source while the LAI indices, IBTSQ3 age 0 and HERAS age 1 to be the noisiest data. The uncertainty associated with the parameter estimated is low for most data sources where only the CV of the catch-at-age 0 is some- what high (Figure 2.6.2.7). However, the CV quantities do not indicate a lack of convergence of the assessment model.

The analytical retrospective analysis (Table 2.6.2.5, Figure 2.6.2.9) has mean Mohn's rho values with a 5-year peel of: -9% (Fbar), -10% (rec), and 7% (SSB).

Figure 2.6.1.49 shows the model uncertainty plot, representing the parametric uncertainty of the fit of the assessment model in terminal F and SSB.

Further data screening of the input data on mature - immature biomass ratios, survey CPUEs, proportion of catch numbers- and weights-at-age and proportion of IBTS and acoustic survey ages have been executed, as well as correlation coefficient analyses for the acoustic and IBTS survey and assessment parameters (Figure 2.6.2.10-2.6.2.12).

2.6.3 Exploratory Assessment for NS herring

An exploratory assessment using fleet disaggregated data for (1) catches-at-age (2) weight in the catch-at-age was carried out (Figure 2.6.3.1). It is important to note that fleet B and D are combined because of their similarity. More details on the model configuration exploration are provided in the 2018 benchmark report (ICES WKPELA, 2018). Tables for the multifleet
assessment and results (including fleet wise fishing mortalities) are given in Table 2.6.3.1-2.6.3.7. Figure 2.6.3.2 shows a comparison between the single fleet and multi-fleet stock trajectory results and these are very consistent.

Of particular relevance when running the SAM model using a multifleet configuration is the fishing mortality-at-age that is outputted for each fleet. The subsequent catch residuals for each fleet are shown in Figure 2.6.2.3 to Figure 2.6.2.5. The observation variance is shown in Figure 2.6.2.6, with high levels for fleet B and D. Expectedly, the model is driven by catch data from the fleet A which represents most of the overall catches. The model uncertainty and the correlation coefficients between the estimated parameters are shown in Figure 2.6.2.7 and 2.6.2.8 respectively.

The analytical retrospective for the multi-fleet model is shown in in Figure 2.6.2.9 and is slightly higher than for the single fleet model. The fishing selectivity for the A fleet are shown in Figure 2.6.3.10 and present similar patterns to the single fleet model. This is expected as fleet A is the main fleet harvesting the stock. The development of selectivity patterns for the other fleets (C and B and D combined) are presented in Figure 2.6.3.11 and 2.6.3.12.

2.6.4 State of the Stock

Based on the most recent estimates of SSB and fishing mortality, ICES classifies the stock as is being harvested sustainably. Fishing mortality is below the estimated FMSY (0.31).

The SSB in autumn 2021 was estimated at 1.35 million tonnes, which is above $B_{p a}(0.96$ million $t)$ and MSY $B_{\text {trigger }}(1.23$ million $t)$.

Since the strong 2013-year class, recruitment of herring has been low. The 2020-year class is estimated at 84% and the 2021-year class at 76% of the 10 year geometric mean recruitment.

Contrary to recent years' assessments, fishing mortality on older ages is now estimated somewhat lower.

2.7 Short-term predictions

Short-term predictions for the years 2021, 2022, and 2023 were done with code developed in the R programming language. During HAWG 2019, a modification to the code was made because the 2015 EU-Norway management rule is no longer in force and because the ICES advice for WBSS herring resulted in a zero catch advice. During HAWG 2020 a further modification to the code was made to allow for a combined scaling of the A and B fleets (see below).

The various assumptions for the short-term predictions for both the stock and the four different fleets are given in tables 2.7.1 and 2.7.2 respectively. The reference points are presented in Table 2.7.3.

In the short-term predictions, recruitment is assumed constant at 23 billion for the years 2023 and 2024 following the same recruitment regime since 2002 (weighted mean of the past 10 year classes, weighted by the uncertainty in the estimate). The recruitment estimate of the 2021 year class, obtained from the assessment (informed by the 2022 IBTS0 survey) served as the estimate for 2022.

For the intermediate year (2022), no overshoot for the A fleet was assumed. Negotiations between the EU, Norway, and UK for 2022 resulted in the allowance of 100% of the C-fleet and D-fleet TACs in the Kattegat-Skagerrak area to be taken in the North Sea. The arrangement is very different to the previous year's arrangements. The expected catches of NSAS herring during 2022 were estimated as follows:

- A-fleet: fleet TAC (427628t) + what is transferred from the C-fleet in 3a to the North Sea $(23885 \mathrm{t})$ scaled by the 3-year average proportion of NSAS in A-fleet catch $(98.6 \%$, 20192021)
- B-fleet: fleet TAC (8 174 t$)+$ a 50% transfer from the D-fleet TAC (6 659 t) in 3a to the North Sea scaled with the fleet uptake in 2021 (78\%)
- C-fleet: catches corresponding to 1136 t catch in 3.a scaled by the 3-year average proportion of NSAS in the C-fleet catch (35.5%, 2019-2021)
- D-fleet: catches set at $0 t$ because considered negligible compared to the other fleets

The expected catches of Western Baltic Spring-spawning herring caught under the North Sea TAC are deducted from the expected A fleet catches in the intermediate year. In the projected year 2023, for most of the scenarios, the C and D fleet outtake was set to 0 in agreement with the 0 -catch advice for WBSS for 2023. The catch scenarios with a zero catch advice for WBSS are presented in Table 2.7.4.

For the catch options with a TAC status quo for the C and D fleets, the fraction of North Sea Autumn Spawning (NSAS) herring caught in 3.a by the C and D fleet was used to derive C and D fleet NSAS catches, based on projected TACs in 3.a for these fleets. The catch scenarios assuming a status quo in C-D fleet catches are presented in Table 2.7.5.

In the absence of an agreed management plan for NSAS herring, it has not been possible to derive fleet-based fishing mortalities for the prediction year. Therefore, the ICES MSY Advice Rule (MSY AR) has been used as the basis for the advice. With the reference points derived at IBPNSherring 2021 (ICES, 2021), the MSY AR stipulates a fishing mortality of $\mathrm{F}_{\mathrm{MSY}}=0.31$ when the stock is above MSY $B_{\text {trigger }}(1232828$ tonnes) and a linear decline in F when the stock is below MSY Btrigger. With the forecasted values in 2023, the SSB is calculated below MSY $\mathrm{B}_{\text {trigger }}$ which results in a target $\mathrm{F}_{(\mathrm{wr}) 2-6}=0.281$ (Figure 2.7.1.1).

There is no specific allowance in the ICES MSY AR for multiple fishing mortality targets, such as the fishing mortality for 0 and 1 WR herring, which were previously integral part of the management plans for NSAS herring. In the forecast, the combined selection pattern for the A and B fleets are scaled together to achieve the different targets of the forecast scenarios. Therefore, the fishing mortalities of the A and B fleets are both variable across the scenarios.

All predictions are for North Sea autumn spawning herring only.

2.7.1 Comments on the short-term projections

While the HAWG 2021 forecast (REF) suggested that the steep decline of the stock since 2016 has stalled, the new assessment and forecast in HAWG 2022 concludes that the stock is still declining. Expanding the (deterministic) short term forecast for a limited number of years, suggested that the decline in stock size may halt around 2024-2025. Choosing a lower target fishing mortality than Fmsy=0.31, is expected to lead to a quicker recovery of the stock to above MSY Btrigger.

2.7.2 Exploratory short-term projections

A direct comparison of the forecast results with the last two assessments (2021 and 2020) is given in Figure 2.7.2.2 for the catches at age and Figure 2.7.2.3 as proportions. Overall, it is predicted that the contribution of old ages will be lessened in 2023 relative to 2022.

To explore the sensitivity of the short-term projection to the particular situation for North Sea herring (stock mainly consisting of older fish that are highly selected for), HAWG 2021 again carried out and extended short-term projection using the MSY AR projection, using the same recruitment and the same fishing patterns by fleet for the years 2024-2028 (Figure 2.7.2.4). This
projection resulted catch of ~ 375000 tonnes by 2026. It should be noted that this does not constitute a real evaluation of the MSY AR rule because the fishing mortality was not adapted according to the rule, but simply kept constant during the years of the projection.

2.8 Medium term predictions and HCR simulations

No medium-term prediction or HCR simulations were carried out during the Working Group. A new management strategy evaluation was carried out in 2019 (ICES WKNSMSE, 2019), following an EU-Norway request (EU-Norway, 20182). However, to date there is no agreement of management plan between EU, Norway, and UK.

2.9 Precautionary and Limit Reference Points and FMSY targets

The precautionary reference points for this stock were originally adopted in 1998 and updated in 2012, 2016 and 2018.

New reference points were calculated during the 2021 interbenchmark meeting (ICES WKNSHERRING, 2021) which resulted in a downward estimate of Blim and MSYBtrigger and an upward estimate of Fmsy. Sensitivity testing revealed that the derivation of reference points for herring in the North Sea is very sensitive to the choice of time periods and stock-recruitment models used. Reference points out of the 2018 benchmark and the 2021 interbenchmark are presented in table 2.9.1. The derivation of reference points and the history of the reference points for North Sea herring are further described in the Stock Annex.

Overall, in light of the 2021 assessment, the fishing pressure remains below Fmsy while the SSB is above MSY BTrigger.

2.10 Quality of the assessment

The data used within the assessment, the assessment methods and settings were carefully scrutinized during the 2018 benchmark (ICES WKPELA, 2018) and 2021 inter-benchmark (ICES, 2021). These are described in the North Sea Herring Stock Annex (a list of links to the Stock Annexes can be found in Annex 4). The changes made during the 2021 inter-benchmark overall improved the assessment model. Sensitivity testing revealed that the derivation of reference points for herring in the North Sea is very sensitive to the choice of time periods and stock-recruitment models used.

2.11 North Sea herring spawning components

The North Sea autumn-spawning herring stock is generally understood as representing a complex of multiple spawning components (Cushing, 1955; Harden Jones, 1968; Iles and Sinclair, 1982; Heath et al., 1997). Monitoring and maintaining the diversity of local populations is widely viewed as critical to the successful management of marine fish stocks.

2.11.1 International Herring Larval Survey

The spawning component abundance index (SCAI: Payne, 2010) was developed to characterize the relative dynamics of the individual North Sea spawning components.

The dynamics of the components are documented in Table 2.3.2.1 and can be observed in Figure 2.11.1.

Prior to 2002 there were large differences in the contributions of each of the components to the total SSB with northern components (Orkney/Shetland and Buchan) being the major contributetors. Since 2002 there has been a more even contribution from each of the four components with some interannual variability. However, the Downs component may be underrepresented in some years due late spawning and Orkney-Shetland due to a lack of sampling due to vessel constraints in 2016-2019.

2.11.2 IBTSO Larval Index

The ring net hauls for 0-ringers during the IBTS in the North Sea and eastern English Channel also include Downs herring larvae. These larvae are, however, too small to have passed their critical period of high and highly variable mortality. Their abundance cannot be used for recruitment prediction. These small larvae (separated as $<19 \mathrm{~mm}$) have been excluded from the standard estimation of 0-ringer recruitment (IBTS0 index).

2.11.3 Component considerations

The Downs TAC was set up to conserve the spawning aggregation of Downs herring. Uncertainties concerning the status of, and recruitment to, this component of the North Sea herring stock are high, and HAWG is not aware of any evidence to suggest that this measure is inappropriate. HAWG therefore recommends that the 4.c-7.d TAC be maintained at 11% of the total North Sea TAC (as recommended by ICES). Any new management approach should provide an appropri-ate-ate balance of F across stock components and be similarly conservative until the uncertainty about contribution of the Downs and other components to the catch in all fisheries in the North Sea is reduced.

2.12 Ecosystem considerations

The status as of 2015 can be found in ICES HAWG (2015) and the stock annex.

2.13 Changes in the environment

For several herring stocks in the working group, the mean weight-at-age in the catch and in the stock has been decreasing since the early 1980s. This applies to the Celtic Sea herring, Irish Sea herring and North Sea Autumn Spawning herring. No real pattern is observed for Western Baltic

Spring-spawning herring and an increase in mean weight is seen in the combined Malin Shelf herring.

Decreases in mean weight in the catch could drive the recent increase in selectivity of the fisheries for older ages. The fisheries often target certain weight classes of herring which could be of an older age in the recent years.

The North Sea Autumn Spawning herring stock has, since 2002, produced a series of below average year classes, a situation which has not been observed previously (Payne et al., 2009): the most recent year class also appears to represent a continuation of this trend. This low recruitment has occurred despite a spawning-stock biomass that is well above the Blim of 800000 tonnes (where impaired recruitment is expected to set in) (Figure 2.13.1).

Stock productivity, as represented by the number of recruits-per-spawner from the assessment, has been low for the last decade (Figure 2.13.2). Although there have been changes during this low productivity regime, at no point has this metric approached the levels seen during the 1990s. The most recent recruits-per-spawner is amongst the lowest observed during the recent period.

Year-class strength in this stock is determined during the larvae phase (Dickey-Collas and Nash, 2005; Payne et al., 2009). Updating these analyses with the most recent datasets suggests that the trend of reduced larval survival between the early (as indicated by the SSB/LAI index) and the late (as indicated by the IBTS0 index) larval stages has continued in the most recent years (Figure 2.13.3). (It should be noted that the switch from the SCAI calculation to the LAI calculation inside the assessment model, has caused a higher variability of the larvae survival relationship between SSB/LAI and IBTS0 indices). The most recent observation continues the trend of relatively poor survival.

The IBTS0 index is regarded by the working group as not being representative of recruitment to the Downs spawning component, as observations of small larvae in this region are removed from the index calculation. A more appropriate metric is therefore to base the metric of larval survival on the abundance of larvae from the three northern components (i.e., excluding the Downs). However, this refined metric shows a very similar trend (Figure 2.13.4) with continued poor survival.

All indicators therefore suggest that the stock remains in the low productivity regime observed in previous years.

Table 2.1.1. Herring caught in the North Sea. Total catch (tonnes) by country, 2017-2021. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2017	2018	2019	2020	2021
Belgium	13	32	60	119	47
Denmark *	110318	132231	91680	95615	62943
Faroe Islands	442	497	614	804	0
France	28801	31505	25288	19768	25070
Germany	43707	51636	37699	29439	25741
Netherlands	84914	111302	79465	75036	66402
Norway	134132	162594	128614	115879	95061
Lithuania	0	0	0	0	466
Sweden *	18518	19408	13184	13149	18765
Ireland	868	515	3	235	414
UK (England)	16997	19591	12685	16241	13174
UK (Scotland)	49514	66005	50771	49692	51194
UK (N.Ireland)	3469	6916	3938	2681	5176
Unallocated landings	0	0	0	0	0
Total landings	491693	602232	444001	424800	364453
Discards/BMS	-	96	1630	2522	162
Total catch	491693	602328	445631	427321	364615

Estimates of the parts of the catches which have been allocated to spring-spawning stocks

WBSS	632	2164	8832	6802	3505
Thames estuary **	0	0	-	-	2
Norw. Spring Spawners ***	83	310	5	88	0

* Including any bycatches in the industrial fishery
** Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
*** These catches (including some local fjord-type Spring Spawners) are taken by Norway under a separate quota south of $62^{\circ} \mathrm{N}$ and are not included in the Norwegian North Sea catch figure for this area.

Table 2.1.2. Herring caught in the North Sea. Catch in tonnes in Division 4.a (West). These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2017	2018	2019	2020	2021
Denmark *	76277	90763	54820	56676	37970
Faroe Islands	405	496	611	794	0
France	11064	14745	13344	7688	13795
Germany	32736	35884	19851	16694	16590
Lithuania	-	-	-	2789	466
Netherlands	55832	56990	44071	50363	48510
Norway	57744	78647	53254	35674	7119
Sweden	12447	14132	8557	7718	11100
Ireland	868	515	3	235	414
UK (England)	12072	12313	5640	$\begin{aligned} & 1143 \\ & a \end{aligned}$	9487
UK (Scotland)	49012	64424	50771	42581	33416
UK (N. Ireland)	3469	5582	3938	2681	2514
Total Landings	311926	374491	254860	235330	181381
Discards/BMS	-	-	-	284	64
Total catch	311926	374491	254860	235613	181445

[^2]Table 2.1.3. Herring caught in the North Sea. Catch in tonnes in Division 4.a (East). These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

| Country | 2017 | 2018 | 2019 | 2020 | 2021 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark * | 3928 | 751 | 0 | 62 | 18 |
| Netherlands | 0 | 0 | 100 | 0 | 0 |
| Norway | 74216 | 73452 | 64592 | 58535 | 87756 |
| Sweden | 705 | 377 | 0 | 0 | 479 |
| Total landings | 78849 | 74580 | 64692 | 58597 | 88253 |
| Discards/BMS | - | - | - | - | - |
| Total catch | 78849 | 74580 | 64692 | 58597 | 88253 |
| Norw. Spring Spawners ** | 85 | 310 | 5 | 88 | 0 |

* Including any bycatches in the industrial fishery.
** These catches (including some fjord-type spring spawners) are taken by Norway under a separate quota south of $62^{\circ} \mathrm{N}$ and are not included in the Norwegian North Sea catch figure for this area.

Table 2.1.4. Herring caught in the North Sea. Catch in tonnes in Division 4.b. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2017	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	
Belgium	0	0	0	11	1	
Denmark*	30045	4067	36750	38842	24903	
Faroe Islands	37	1	3	10	0	
France	7423	6090	1359	5092	1569	
Germany	2048	4964	8568	4197	3869	
Netherlands	15739	34491	20700	8814	691	
UK (N. Ireland)	0	1334	0	0	0	2662
Norway	2172	10495	10768	21671	186	
Sweden*	5366	4899	4627	5431	7166	
UK (England)	2435	3262	2750	919	4	
UK (Scotland)	502	1581	$0-$	7082	17775	
Unallocated landings	0	0	0	0	0	
Total landings	65767	107794	85525	95422	58826	
Discards	-	1	800	-	-	
Total catch	65767	107795	86325	95422	58826	

* Including any bycatches in the industrial fishery.

Table 2.1.5. Herring caught in the North Sea. Catch in tonnes in Division 4.c and 7.d. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2017	2018	2019	2020	2021
Belgium	13	32	60	108	46
Denmark*	68	40	110	36	53
France	10314	10670	10585	6988	9705
Germany	8923	$\begin{aligned} & 1078 \\ & 8 \end{aligned}$	9280	8548	5282
Netherlands	13343	19821	14594	15859	17202
Sweden	0	0	0	0	21
UK (England)	2490	4016	4295	3883	3682
UK (Scotland)	-	-	-	30	2
Unallocated landings	0	0	0	0	0
Total landings	35151	45367	38924	35451	35992
Discards/BMS	-	95	830	2238	99
Total catch	35151	45462	39754	37689	36091
Coastal spring spawners included above**	-	10	-	-	2

* Including any bycatches in the industrial fishery
** Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
*** Negative unallocated catches due to misreporting into other areas.

Table 2.1.6 ("The Wonderful Table"): Herring caught in the North Sea. Catch in thousand tonnes in Subarea 4, Division 7.d and Division 3.a.

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Subarea 4 and Division 7.d: TAC (4 and 7.d)													
Agreed Divisions 4.a,b	149.0	173.5	360.4	427.7	418.3	396.3	461.2	428.7	534.5	342.7	342.7	321.6	380.6
Agreed Div. 4.c, 7.d	15.3	26.5	44.6	50.3	51.7	49.0	57.0	53.0	66.0	42.4	42.4	34.8	47.0
Bycatch ceiling in the small mesh fishery *	13.6	16.5	17.9	14.4	13.1	15.7	13.4	11.4	9.7	13.2	9.0	7.8	8.2
CATCH (4 and 7.d)													
National catch Divisions 4.a,b **	148.1	191.7	387.2	453.8	465.9	439	514.0	456.5	556.9	405.1	389.3	328.5	
Unallocated catch Divisions 4.a,b	0.0	0.0	-3.0	0.0	3.3	1.5	0.0	0.0	0.0	0.0	0.0	0.0	
Discard/slipping Divisions 4.a, ${ }^{* * *}$	0.0	-	-	-	0.0	-	0.1	-	0.0	0.8	0.3	0.1	
Total catch Divisions 4.a,b \#	148.1	191.7	384.2	453.9	469.2	440.5	514.1	456.5	556.9	405.9	389.6	328.5	
National catch Divisions 4.c, 7.d **	26.5	26.7	37.1	44.7	38.2	41.1	45.8	35.2	45.4	38.9	35.5	36.0	
Unallocated catch Divisions 4.c,7.d	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Discard/slipping Divisions 4.c, 7.d ${ }^{* * *}$	-	-	-	-	-	-	0.1	-	0.1	0.8	2.2	0.1	
Total catch Divisions 4.c, 7.d	26.5	26.7	40.4	44.7	38.2	41.1	45.8	35.2	45.5	39.8	37.7	36.1	
Total catch 4 and 7.d as used by ICES \#	174.6	218.4	424.6	498.5	507.5	481.6	559.9	491.7	602.3	445.6	427.3	364.6	
CATCH BY FLEET/STOCK (4 and 7.d) \#\#													
North Sea autumn spawners directed fisheries (Fleet A)	164.8	209.2	411.8	489.9	490.5	471.5	543.6	484.1	591.7	440.5	417.5	352.3	
North Sea autumn spawners industrial (Fleet B)	9.1	8.9	10.6	8.1	14.0	7.9	14.5	7.0	8.5	5.2	9.9	8.8	

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
North Sea autumn spawners in 4 and 7.d total	173.9	218.1	422.5	498.1	504.5	479.4	558.1	491.1	600.2	436.8	420.5	361.1	
Baltic-3.a-type spring spawners in 4	0.8	0.3	2.1	0.5	3.0	2.2	1.8	0.6	2.2	8.8	6.8	3.5	
Coastal-type spring spawners	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Norw. Spring Spawners caught under a separate quota in 4 \#\#\#	56.9	12.2	9.6	3.2	2.3	2.2	0.2	0.1	0.3	0.0	0.1	0.0	
Division 3.a: TAC (3.a)													
Agreed herring TAC	33.9	30.0	45.0	55.0	46.8	43.6	51.1	50.7	48.4	29.3	24.5	21.6	25.0
Bycatch ceiling in the small mesh fishery	7.5	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
CATCH (3.a)													
National catch	37.3	20.0	27.7	31.2	28.9	27.8	29.9	26.8	23.3	14.9	17.8	13.3	
Catch as used by ICES	37.3	20.0	27.7	31.2	28.9	27.8	29.9	26.8	23.3	14.9	17.8	13.3	
CATCH BY FLEET/STOCK (3.a) \#\#													
Autumn spawners human consumption (Fleet C)	12.0	6.6	7.8	11.8	9.5	10.2	4.1	7.4	3.2	5.8	6.0	4.1	
Autumn spawners mixed clupeoid (Fleet D)	1.8	1.8	4.4	1.6	3.3	4.4	1.4	0.2	0.2	0.3	0.4	0.1	
Autumn spawners in 3.a total	13.8	8.4	12.2	13.4	12.8	14.7	5.5	7.6	3.4	6.1	6.4	4.2	
Spring spawners human consumption (Fleet C)	23.0	10.8	14.5	16.6	15.4	11.3	23.3	19.0	19.7	8.8	10.9	9.0	
Spring spawners mixed clupeoid (Fleet D)	0.5	0.8	1.0	1.3	0.6	1.8	1.1	0.2	0.2	0.0	0.5	0.0	
Spring spawners in 3.a total	23.5	11.6	15.5	17.9	16.1	13.1	24.4	19.2	19.9	8.8	11.4	9.1	
North Sea autumn spawners Total as used by ICES	187.6	226.5	434.6	511.4	517.3	494.1	563.6	498.7	603.5	442.9	426.9	365.4	

Table 2.2.1. North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea and Division 3.a in 2021. Catch in numbers (millions) at age (CANUM), by quarter and division.

	$\begin{gathered} \text { 3.a } \\ \text { NSAS } \end{gathered}$	$\begin{gathered} \text { 4.aE } \\ \text { all } \end{gathered}$	$\begin{array}{r} \text { 4.aE } \\ \text { WBBS } \end{array}$	4.aE NSAS only	4.aW	4.b	$4 . \mathrm{C}$	7.d	$\begin{array}{r} \hline \text { 4.a \& } \\ \text { 4.b } \\ \text { NSAS } \end{array}$	$\begin{array}{r} \hline \text { 4.c \& } \\ \text { 7.d } \end{array}$	$\begin{gathered} \text { Total } \\ \text { NSAS } \end{gathered}$	Herring caught in the North Sea
WR												

Quarters: 1-4

| 0 | 6.9 | 0.0 | 0.0 | 0.0 | 124.7 | 390.6 | 11.8 | 0.0 | 515.3 | 11.8 | 534.1 | 527.2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.7 | 1.4 | 0.4 | 1.0 | 22.9 | 72.9 | 0.0 | 0.1 | 96.7 | 0.1 | 112.4 | 97.2 |
| 2 | 36.3 | 122.2 | 1.1 | 121. | 227.7 | 16.5 | 0.0 | 5.7 | 365.3 | 5.7 | 407. | 372.1 |
| 3 | 2.8 | 96.7 | 2.8 | 93.9 | 206.4 | 82.2 | 11.2 | 23.3 | 382.5 | 34.5 | 419.8 | 419.8 |
| 4 | 1.5 | 51.2 | 7.3 | 43.9 | 79.2 | 19.4 | 13.5 | 21.7 | 142.5 | 35.2 | 179.2 | 185.0 |
| 5 | 0.8 | 86.4 | 4.5 | 81.9 | 117.7 | 17.6 | 13.1 | 34.9 | 217.1 | 48.0 | 265.9 | 269.6 |
| 6 | 0.5 | 26.9 | 1.9 | 25.1 | 67.3 | 9.2 | 4.4 | 11.8 | 101.6 | 16.1 | 118.2 | 119.6 |
| 7 | 0.1 | 60.5 | 1.1 | 59.4 | 170.3 | 54.4 | 9.2 | 27. | 284.0 | 36. | 320.8 | 321.7 |
| 8 | 0.1 | 54.9 | 1.8 | 53.2 | 89.3 | 43.7 | 3.8 | 20. | 186.1 | 24. | 210. | 211.9 |
| $9+$ | 0.0 | 24.6 | 0.5 | 24.1 | 33.4 | 13.7 | 1.2 | 8.5 | 71.2 | 9.7 | 80.9 | 81.3 |
| Sum | 64.8 | 524.8 | 21.3 | 503.5 | 1138.7 | 720.0 | 68.2 | 153.7 | 2362.3 | 221.9 | 2648.9 | 2605.5 |

Quarter: 1

0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.2	0.2
1	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0
2	25.4	0.0	0.0	0.0	18.2	0.0	0.0	0.0	18.2	0.0	43.6	18.3
3	0.8	0.0	0.0	0.0	19.1	0.0	0.3	1.1	19.1	1.4	21.3	20.6
4	0.0	0.0	0.0	0.0	4.1	0.0	0.5	1.3	4.1	1.7	5.9	5.9
5	0.0	0.0	0.0	0.0	1.9	0.0	0.8	6.6	1.9	7.4	9.4	9.4
6	0.0	0.0	0.0	0.0	3.2	0.0	0.7	1.7	3.2	2.4	5.6	5.6
7	0.0	0.0	0.0	0.0	6.5	0.0	1.9	2.6	6.5	4.4	10.9	10.9
8	0.0	0.0	0.0	0.0	3.7	0.0	0.2	0.6	3.7	0.8	4.5	4.5
9+	0.0	0.0	0.0	0.0	2.2	0.0	0.1	0.0	2.2	0.1	2.2	2.2
Sum	28.8	0.1	0.0	0.0	58.9	0.2	4.5	13.8	59.1	18.3	106.2	77.5

Quarter: 2

0	0.0	0.0	0.0	0.0	2.1	36.0	0.0	0.0	0.2	0.1	$\mathbf{3 8 . 1}$	$\mathbf{3 8 . 1}$
1	1.1	1.2	0.4	0.9	0.7	6.1	0.0	0.0	7.6	0.0	$\mathbf{8 . 7}$	$\mathbf{8 . 0}$
2	2.6	117.7	1.0	116.	60.3	0.6	0.0	0.0	177.6	0.0	$\mathbf{1 8 0 .}$	$\mathbf{1 3 8 . 7}$
3	0.1	89.8	2.6	87.2	46.8	1.0	0.0	0.0	135.1	0.0	$\mathbf{1 3 5 . 2}$	$\mathbf{5 9 . 0}$
4	0.0	45.1	6.8	38.3	13.6	0.2	0.0	0.0	52.2	0.0	$\mathbf{5 2 . 2}$	$\mathbf{7 8 . 1}$
5	0.0	64.3	4.1	60.1	13.6	0.2	0.0	0.0	73.9	0.0	$\mathbf{7 4 . 0}$	$\mathbf{2 5 . 1}$
6	0.0	21.6	1.7	19.9	5.1	0.1	0.0	0.0	25.1	0.0	$\mathbf{2 6 . 8}$	
7	0.0	37.1	1.0	36.0	10.5	0.7	0.0	0.0	47.3	0.0	$\mathbf{4 7 . 3}$	$\mathbf{4 8 . 3}$
8	0.0	36.7	1.4	35.4	7.7	0.7	0.0	0.0	43.7	0.0	$\mathbf{4 3 . 8}$	$\mathbf{4 5 . 1}$
$9+$	0.0	14.7	0.4	14.3	1.7	0.2	0.0	0.0	16.2	0.0	$\mathbf{1 6 . 2}$	$\mathbf{1 6 . 6}$
Sum	$\mathbf{3 . 9}$	$\mathbf{4 2 8 . 3}$	$\mathbf{1 9 . 3}$	$\mathbf{4 0 9 . 0}$	$\mathbf{1 6 2 . 1}$	$\mathbf{4 5 . 8}$	$\mathbf{0 . 1}$	$\mathbf{0 . 1}$	$\mathbf{5 7 9 . 0}$	$\mathbf{0 . 3}$	$\mathbf{6 2 0 . 9}$	$\mathbf{6 3 6 . 3}$

Quarter: 3

0	0.0	0.0	0.0	0.0	9.2	280.5	1.3	0.0	289.6	1.3	$\mathbf{2 9 0 . 9}$	$\mathbf{2 9 0 . 9}$
1	10.3	0.1	0.0	0.0	3.6	53.9	0.0	0.0	57.5	0.0	$\mathbf{6 7 . 8}$	$\mathbf{5 7 . 6}$
2	7.6	3.0	0.1	3.0	130.5	15.1	0.0	0.0	148.5	0.0	$\mathbf{1 5 6 .}$	$\mathbf{1 4 8 . 6}$
3	1.7	4.8	0.2	4.6	122.5	76.6	0.0	0.0	203.7	0.0	$\mathbf{2 0 5 . 4}$	$\mathbf{2 0 3 . 9}$
4	1.1	4.8	0.6	4.2	48.9	17.8	0.0	0.0	70.9	0.0	$\mathbf{7 2 . 0}$	$\mathbf{7 1 . 5}$
5	0.4	16.9	0.3	16.6	93.1	14.7	0.0	0.0	124.3	0.0	$\mathbf{1 2 4 . 8}$	$\mathbf{1 2 4 . 7}$
6	0.3	4.1	0.1	3.9	54.7	7.9	0.0	0.0	66.5	0.0	$\mathbf{6 6 . 8}$	$\mathbf{6 6 . 6}$
7	0.1	19.3	0.1	19.2	129.8	45.4	0.0	0.0	194.4	0.0	$\mathbf{1 9 4 .}$	$\mathbf{1 9 4 . 5}$
8	0.0	15.4	0.1	15.3	71.5	40.0	0.0	0.0	126.8	0.0	$\mathbf{1 2 6 .}$	$\mathbf{1 2 6 . 9}$
$9+$	0.0	7.9	0.0	7.8	27.0	12.3	0.0	0.0	47.1	0.0	$\mathbf{4 7 . 1}$	
Sum	$\mathbf{2 1 . 4}$	$\mathbf{7 6 . 1}$	$\mathbf{1 . 6}$	$\mathbf{7 4 . 5}$	$\mathbf{6 9 0 . 8}$	$\mathbf{5 6 4 . 1}$	$\mathbf{1 . 3}$	$\mathbf{0 . 0}$	$\mathbf{1 3 2 9 . 4}$	$\mathbf{1 . 3}$	$\mathbf{1 3 5 2 . 1}$	$\mathbf{4 7 . 2}$

Quarter: 4

0	6.9	0.0	0.0	0.0	113.5	74.0	10.5	0.0	187.5	10.5	$\mathbf{2 0 4 . 9}$	$\mathbf{1 9 8 . 0}$
1	1.8	0.0	0.0	0.0	18.6	12.8	0.0	0.1	31.5	0.1	$\mathbf{3 3 . 3}$	$\mathbf{3 1 . 6}$
2	0.7	1.4	0.0	1.4	18.7	0.8	0.0	5.7	20.9	5.7	$\mathbf{2 7 . 4}$	$\mathbf{2 6 . 6}$
3	0.2	2.1	0.0	2.1	18.0	4.6	10.8	22.2	24.7	33.0	$\mathbf{5 7 . 9}$	$\mathbf{5 7 . 7}$
4	0.4	1.3	0.0	1.3	12.5	1.4	13.0	20.4	15.2	33.4	$\mathbf{4 9 . 1}$	$\mathbf{4 8 . 7}$
5	0.3	5.2	0.0	5.2	9.1	2.7	12.3	28.3	16.9	40.5	$\mathbf{5 7 . 8}$	$\mathbf{5 7 . 5}$
6	0.2	1.2	0.0	1.2	4.3	1.3	3.7	10.1	6.8	13.7	$\mathbf{2 0 . 7}$	$\mathbf{2 0 . 5}$
7	0.1	4.2	0.0	4.2	23.4	8.3	7.3	24.	35.9	32.	$\mathbf{6 8 . 1}$	$\mathbf{6 8 . 0}$
8	0.1	2.8	0.3	2.5	6.4	3.0	3.5	19.	11.9	23.	$\mathbf{3 5 . 2}$	$\mathbf{3 5 . 4}$
$9+$	0.0	2.0	0.1	2.0	2.5	1.1	1.2	8.5	5.6	9.6	$\mathbf{1 5 . 3}$	$\mathbf{1 5 . 3}$
Sum	$\mathbf{1 0 . 7}$	$\mathbf{2 0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{1 9 . 9}$	$\mathbf{2 2 7 . 0}$	$\mathbf{1 1 0 . 0}$	$\mathbf{6 2 . 3}$	$\mathbf{1 3 9 . 8}$	$\mathbf{3 5 6 . 8}$	$\mathbf{2 0 2 . 1}$	$\mathbf{5 6 9 . 6}$	$\mathbf{5 5 9 . 3}$

Table 2.2.2. North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea and Division 3.a in 2021. Mean weight-at-age (kg) in the catch (WECA), by quarter and division.

	3.a	4.aE	4.aE	4.aW	4.b	4.c	7.d	4.a \&	4.c \&	Total
	NSAS	all	WBSS					4.b	7.d	NSAS
WR								all		

Quarters: 1-4

0	0.011	0.000	0.000	0.004	0.008	0.008	0.007	0.008	0.008	0.004	0.004
1	0.047	0.120	0.119	0.079	0.040	0.037	0.000	0.041	0.000	0.071	0.082
2	0.071	0.136	0.138	0.138	0.133	0.143	0.100	0.134	0.101	0.130	0.136
3	0.116	0.149	0.149	0.160	0.157	0.168	0.125	0.155	0.139	0.155	0.155
4	0.159	0.162	0.160	0.174	0.173	0.189	0.141	0.169	0.159	0.171	0.170
5	0.174	0.178	0.168	0.195	0.199	0.210	0.173	0.191	0.183	0.189	0.189
6	0.192	0.180	0.174	0.216	0.214	0.225	0.189	0.205	0.199	0.214	0.213
7	0.206	0.200	0.181	0.218	0.225	0.231	0.192	0.220	0.202	0.219	0.219
8	0.186	0.203	0.194	0.239	0.226	0.241	0.188	0.219	0.196	0.238	0.237
$9+$	0.000	0.220	0.205	0.246	0.240	0.253	0.205	0.233	0.211	0.247	0.246

Quarter: 1

0	0.000	0.000	0.000	0.002	0.000	0.008	0.000	0.000	0.000	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
1	0.025	0.116	0.116	0.016	0.000	0.034	0.000	0.001	0.000	$\mathbf{0 . 0 2 5}$	$\mathbf{0 . 0 2 9}$
2	0.055	0.134	0.134	0.080	0.084	0.112	0.100	0.084	0.112	$\mathbf{0 . 0 5 5}$	$\mathbf{0 . 1 0 0}$
3	0.073	0.145	0.145	0.117	0.109	0.140	0.093	0.109	0.104	$\mathbf{0 . 1 2 3}$	$\mathbf{0 . 1 3 2}$
4	0.107	0.155	0.155	0.116	0.135	0.162	0.107	0.135	0.121	$\mathbf{0 . 1 3 3}$	$\mathbf{0 . 1 3 4}$
5	0.081	0.163	0.163	0.106	0.160	0.183	0.120	0.160	0.127	$\mathbf{0 . 1 3 0}$	$\mathbf{0 . 1 3 1}$
6	0.000	0.168	0.168	0.142	0.166	0.182	0.140	0.166	0.152	$\mathbf{0 . 1 6 2}$	$\mathbf{0 . 1 6 2}$
7	0.000	0.176	0.176	0.149	0.182	0.204	0.138	0.182	0.000	$\mathbf{0 . 1 6 2}$	$\mathbf{0 . 1 6 2}$
8	0.155	0.182	0.182	0.160	0.198	0.216	0.145	0.198	0.000	$\mathbf{0 . 1 8 9}$	$\mathbf{0 . 1 8 9}$
$9+$	0.000	0.193	0.193	0.180	0.190	0.223	0.173	0.190	0.222	$\mathbf{0 . 1 8 2}$	$\mathbf{0 . 1 8 2}$

Quarter: 2

0	0.000	0.000	0.000	0.002	0.008	0.008	0.000	0.008	0.000	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
1	0.030	0.116	0.116	0.044	0.074	0.034	0.000	0.081	0.000	$\mathbf{0 . 0 8 9}$	$\mathbf{0 . 0 9 3}$
2	0.058	0.134	0.134	0.140	0.126	0.128	0.100	0.131	0.128	$\mathbf{0 . 1 2 9}$	$\mathbf{0 . 1 3 0}$
3	0.073	0.145	0.145	0.151	0.142	0.162	0.093	0.144	0.111	$\mathbf{0 . 1 4 7}$	$\mathbf{0 . 1 4 6}$
4	0.096	0.155	0.155	0.167	0.162	0.171	0.107	0.157	0.126	$\mathbf{0 . 1 6 4}$	$\mathbf{0 . 1 6 3}$
5	0.000	0.163	0.163	0.176	0.163	0.184	0.119	0.163	0.136	$\mathbf{0 . 1 7 2}$	$\mathbf{0 . 1 7 2}$
6	0.000	0.168	0.168	0.191	0.184	0.190	0.146	0.171	0.168	$\mathbf{0 . 1 8 6}$	$\mathbf{0 . 1 8 5}$
7	0.000	0.176	0.176	0.206	0.189	0.223	0.138	0.179	0.197	$\mathbf{0 . 1 9 9}$	$\mathbf{0 . 1 9 8}$
8	0.000	0.182	0.182	0.215	0.207	0.238	0.142	0.187	0.197	$\mathbf{0 . 2 0 4}$	$\mathbf{0 . 2 0 3}$
$9+$	0.000	0.193	0.193	0.230	0.206	0.251	0.173	0.194	0.235	$\mathbf{0 . 2 1 8}$	$\mathbf{0 . 2 1 7}$

Quarter: 3

0	0.000	0.000	0.000	0.004	0.008	0.008	0.007	0.008	0.008	$\mathbf{0 . 0 0 4}$	$\mathbf{0 . 0 0 4}$
1	0.054	0.158	0.158	0.075	0.069	0.038	0.000	0.070	0.000	$\mathbf{0 . 0 7 1}$	$\mathbf{0 . 0 7 6}$
2	0.125	0.187	0.187	0.145	0.143	0.143	0.000	0.144	0.000	$\mathbf{0 . 1 4 5}$	
3	0.134	0.202	0.202	0.168	0.170	0.168	0.000	0.171	0.000	$\mathbf{0 . 1 4 6}$	
4	0.159	0.214	0.214	0.184	0.179	0.189	0.000	0.181	0.000	$\mathbf{0 . 1 6 9}$	$\mathbf{0 . 1 7 0}$
5	0.172	0.224	0.224	0.213	0.205	0.207	0.000	0.208	0.000	$\mathbf{0 . 2 1 2}$	$\mathbf{0 . 1 8 4}$
6	0.196	0.232	0.232	0.229	0.219	0.225	0.000	0.220	0.000	$\mathbf{0 . 2 1 2}$	
7	0.206	0.241	0.241	0.237	0.233	0.229	0.000	0.234	0.000	$\mathbf{0 . 2 3 1}$	$\mathbf{0 . 2 3 0}$
8	0.201	0.248	0.248	0.251	0.231	0.241	0.000	0.233	0.000	$\mathbf{0 . 2 5 2}$	$\mathbf{0 . 2 3 8}$
$9+$	0.000	0.263	0.263	0.275	0.248	0.252	0.000	0.250	0.000	$\mathbf{0 . 2 5 1}$	

Quarter: 4

0	0.011	0.000	0.000	0.004	0.008	0.008	0.007	0.008	0.008	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 4}$
1	0.049	0.154	0.154	0.080	0.033	0.035	0.000	0.033	0.000	$\mathbf{0 . 0 7 6}$	$\mathbf{0 . 0 7 9}$
2	0.105	0.176	0.176	0.123	0.130	0.146	0.153	0.134	0.153	$\mathbf{0 . 1 2 4}$	
3	0.145	0.190	0.190	0.154	0.153	0.168	0.126	0.156	0.139	$\mathbf{0 . 1 2 5}$	
4	0.167	0.201	0.201	0.163	0.172	0.187	0.142	0.174	0.160	$\mathbf{0 . 1 4 2}$	$\mathbf{0 . 1 6 2}$
5	0.177	0.210	0.210	0.167	0.200	0.231	0.176	0.203	0.193	$\mathbf{0 . 1 7 8}$	$\mathbf{0 . 1 6 2}$
6	0.186	0.216	0.216	0.182	0.217	0.224	0.199	0.216	0.205	$\mathbf{0 . 1 7 8}$	
7	0.205	0.226	0.226	0.188	0.209	0.237	0.206	0.211	0.213	$\mathbf{0 . 2 0 2}$	$\mathbf{0 . 1 9 3}$
8	0.185	0.232	0.232	0.203	0.203	0.239	0.191	0.210	0.198	$\mathbf{0 . 2 2 9}$	$\mathbf{0 . 2 0 2}$
$9+$	0.000	0.248	0.248	0.252	0.219	0.256	0.207	0.229	0.213	$\mathbf{0 . 2 3 7}$	$\mathbf{0 . 2 3 6}$

Table 2.2.3. North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea in 2021. Mean length-at-age ($\mathbf{c m}$) in the catch, by quarter and division.

	3.a	4.aE	4.aW	4.aW	4.b	$4 . c$	7.d	4.a \&	4.c \&	4.b
NSAS	all	WBSS					all		Herring caught in the North Sea	

Quarters: 1-4

0	n.d.	0.0	n.d.	7.7	9.9	9.9	9.8	9.9	9.9
1	n.d.	23.0	n.d.	20.5	16.6	16.4	0.0	16.7	0.0
2	n.d.	24.2	n.d.	24.8	24.8	25.1	24.3	24.6	24.3
3	n.d.	25.1	n.d.	25.5	26.1	26.8	24.6	25.9	25.3
4	n.d.	25.8	n.d.	26.2	26.9	27.9	25.5	26.5	26.4
5	n.d.	26.6	n.d.	27.6	27.9	28.7	27.1	27.4	27.6
6	n.d.	26.9	n.d.	28.4	28.8	29.4	27.9	28.3	28.3
7	n.d.	27.9	n.d.	28.4	29.1	29.4	28.2	28.8	28.5
8	n.d.	28.0	n.d.	29.5	29.1	29.8	28.3	28.8	28.6
$9+$	n.d.	28.9	n.d.	30.1	29.9	30.5	28.3	29.5	28.6

Quarter: 1

0	n.d.	0.0	n.d.	6.9	0.0	9.9	0.0	0.0	0.0	6.9
1	n.d.	22.8	n.d.	12.0	0.0	16.1	0.0	0.0	0.0	13.4
2	n.d.	24.1	n.d.	21.7	22.0	23.3	24.3	22.0	23.3	22.7
3	n.d.	24.9	n.d.	25.0	24.3	25.3	24.9	24.3	25.0	25.3
4	n.d.	25.5	n.d.	25.1	26.1	26.7	25.9	26.1	26.1	25.4
5	n.d.	26.0	n.d.	24.9	27.5	27.8	26.5	27.5	26.7	25.6
6	n.d.	26.4	n.d.	27.0	27.8	27.8	28.1	27.8	28.0	27.3
7	n.d.	26.9	n.d.	27.4	28.6	28.8	27.9	28.6	28.3	27.6
8	n.d.	27.2	n.d.	28.0	29.3	29.4	28.8	29.3	29.0	28.6
9+	n.d.	27.9	n.d.	29.2	29.3	29.8	30.0	29.3	29.8	29.2

Quarter: 2

0	n.d.	0.0	n.d.	6.9	9.9	9.9	0.0	9.9	0.0	$\mathbf{6 . 9}$
$\mathbf{1}$	n.d.	22.8	n.d.	14.8	19.6	16.1	0.0	20.1	0.0	$\mathbf{2 0 . 4}$
2	n.d.	24.1	n.d.	24.2	24.0	23.9	24.3	24.1	23.9	$\mathbf{2 3 . 5}$
3	n.d.	24.9	n.d.	24.8	25.1	25.8	24.9	25.0	25.1	$\mathbf{2 4 . 5}$
$\mathbf{4}$	n.d.	25.5	n.d.	25.6	26.1	26.4	25.9	25.6	26.0	$\mathbf{2 5 . 4}$
5	n.d.	26.0	n.d.	26.1	26.4	27.0	26.5	26.1	26.6	$\mathbf{2 5 . 9}$
6	n.d.	26.4	n.d.	26.9	27.3	27.2	28.3	26.6	27.8	$\mathbf{2 6 . 6}$
7	n.d.	26.9	n.d.	27.6	27.6	28.7	27.8	27.1	0.0	$\mathbf{2 7 . 2}$
8	n.d.	27.2	n.d.	28.0	28.2	29.3	28.6	27.4	0.0	$\mathbf{2 7 . 5}$
$9+$	n.d.	27.9	n.d.	28.8	28.2	30.0	30.0	27.9	30.0	$\mathbf{2 8 . 1}$

Quarter: 3

0	n.d.	0.0	n.d.	7.8	9.9	9.9	9.8	0.0	9.9	7.8
1	n.d.	24.7	n.d.	19.9	19.2	16.5	0.0	19.2	0.0	19.4
2	n.d.	26.4	n.d.	25.4	25.5	25.1	0.0	25.5	0.0	25.2
3	n.d.	27.2	n.d.	26.0	26.7	26.8	0.0	26.7	0.0	26.1
4	n.d.	27.8	n.d.	26.7	26.9	27.9	0.0	27.0	0.0	26.7
5	n.d.	28.3	n.d.	28.4	28.1	28.5	0.0	28.1	0.0	28.3
6	n.d.	28.7	n.d.	29.0	28.9	29.4	0.0	28.9	0.0	28.9
7	n.d.	29.2	n.d.	28.8	29.2	29.3	0.0	29.2	0.0	29.0
8	n.d.	29.5	n.d.	29.8	29.2	29.8	0.0	29.3	0.0	29.9
9+	n.d.	30.2	n.d.	30.7	30.0	30.4	0.0	30.1	0.0	30.5

Quarter: 4

0	n.d.	0.0	n.d.	7.8	9.9	9.9	9.8	9.9	9.9	$\mathbf{7 . 8}$
1	n.d.	25.9	n.d.	20.8	16.0	16.2	0.0	16.0	0.0	$\mathbf{2 0 . 6}$
2	n.d.	27.4	n.d.	24.3	25.3	25.4	26.2	25.5	26.2	$\mathbf{2 4 . 3}$
3	n.d.	28.1	n.d.	25.7	26.8	26.7	24.5	26.9	25.3	$\mathbf{2 5 . 2}$
4	n.d.	28.7	n.d.	26.1	27.7	28.1	25.5	27.8	26.5	$\mathbf{2 6 . 2}$
5	n.d.	29.3	n.d.	26.7	28.9	30.0	27.2	29.0	28.0	$\mathbf{2 7 . 0}$
6	n.d.	29.6	n.d.	27.7	29.8	30.0	27.9	29.7	28.4	$\mathbf{2 7 . 6}$
7	n.d.	30.1	n.d.	28.1	29.3	30.2	28.3	29.4	28.8	$\mathbf{2 8 . 1}$
8	n.d.	30.5	n.d.	29.7	29.0	29.6	28.3	29.3	28.5	$\mathbf{2 9 . 3}$
$9+$	n.d.	31.3	n.d.	29.1	29.7	30.7	28.2	30.3	28.5	$\mathbf{2 9 . 3}$

Table 2.2.4. North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea and Division 3.a in 2021. Catches (tonnes) at-age (SOP figures), by quarter and division.

	$\begin{array}{r} \text { 3.a } \\ \text { NSAS } \end{array}$	$\begin{array}{r} \text { 4.aE } \\ \text { all } \end{array}$	$\begin{array}{r} \text { 4.aE } \\ \text { WBSS } \end{array}$	$4 . \mathrm{aE}$ NSAS only	4.aW	4.b	$4 . \mathrm{c}$	7.d	4.a \& 4.b NSAS	$\begin{array}{r} 4 . c \& \\ 7 . d \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { NSAS } \end{aligned}$	Herring caught in the North Sea
WR												

Quarters: 1-4

0	0.1	0.0	0.0	0.0	0.5	3.1	0.1	0.0	3.6	0.1	3.8	3.7
1	0.7	0.2	0.0	0.1	1.8	2.9	0.0	0.0	4.8	0.0	5.6	4.9
2	2.6	16.6	0.2	16.4	31.4	2.2	0.0	0.6	50.1	0.6	53.2	50.8
3	0.3	14.4	0.4	14.0	32.9	12.9	1.9	2.9	59.8	4.8	64.9	65.0
4	0.2	8.3	1.2	7.1	13.8	3.4	2.5	3.0	24.2	5.6	30.1	31.0
5	0.1	15.4	0.7	14.6	23.0	3.5	2.8	6.0	41.1	8.8	50.0	50.6
6	0.1	4.8	0.3	4.5	14.5	2.0	1.0	2.2	21.0	3.2	24.3	24.5
7	0.0	12.1	0.2	11.9	37.1	12.2	2.1	5.3	61.3	7.4	68.7	68.9
8	0.0	11.1	0.3	10.8	21.3	9.8	0.9	3.8	42.0	4.7	46.7	47.0
$9+$	0.0	5.4	0.1	5.3	8.2	3.3	0.3	1.7	16.8	2.0	18.8	18.9
Sum	4.2	88.3	3.5	84.8	184.6	55.3	11.6	25.6	324.7	37.2	366.1	365.3

Quarter: 1

0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
2	1.4	0.0	0.0	0.0	1.5	0.0	0.0	0.0	1.5	0.0	0.0	1.5
3	0.1	0.0	0.0	0.0	2.2	0.0	0.0	0.1	2.2	0.1	2.4	2.4
4	0.0	0.0	0.0	0.0	0.5	0.0	0.1	0.1	0.5	0.2	0.7	0.7
5	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.8	0.2	0.9	1.1	1.1
6	0.0	0.0	0.0	0.0	0.5	0.0	0.1	0.2	0.5	0.4	0.8	0.8
7	0.0	0.0	0.0	0.0	1.0	0.0	0.4	0.4	1.0	0.7	1.7	1.7
8	0.0	0.0	0.0	0.0	0.6	0.0	0.1	0.1	0.6	0.1	0.7	0.7
9+	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.4	0.0	0.4	0.4
Sum	1.5	0.0	0.0	0.0	6.8	0.0	0.9	1.7	6.8	2.6	8.0	9.3

Quarter: 2

0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.0	$\mathbf{0 . 3}$	
1	0.0	0.1	0.0	0.1	0.0	0.5	0.0	0.0	0.6	0.0	$\mathbf{0 . 3}$	
$\mathbf{2}$	0.2	15.8	0.1	15.6	8.4	0.1	0.0	0.0	24.1	0.0	$\mathbf{0 . 6}$	
3	0.0	13.0	0.4	12.7	7.1	0.1	0.0	0.0	19.8	0.0	$\mathbf{2 4 . 3}$	$\mathbf{1 9 . 9}$
$\mathbf{4}$	0.0	7.0	1.0	5.9	2.3	0.0	0.0	0.0	8.3	0.0	$\mathbf{8 . 3}$	$\mathbf{2 0 . 2}$
5	0.0	10.5	0.7	9.8	2.4	0.0	0.0	0.0	12.2	0.0	$\mathbf{9 . 3}$	
6	0.0	3.6	0.3	3.3	1.0	0.0	0.0	0.0	4.3	0.0	$\mathbf{4 . 3}$	
$\mathbf{7}$	0.0	6.5	0.2	6.3	2.2	0.1	0.0	0.0	8.6	0.0	$\mathbf{1 2 . 9}$	
$\mathbf{8}$	0.0	6.7	0.2	6.4	1.7	0.1	0.0	0.0	8.2	0.0	$\mathbf{8 . 6}$	$\mathbf{8 . 2}$
$9+$	0.0	2.8	0.1	2.8	0.4	0.0	0.0	0.0	3.2	0.0	$\mathbf{8 . 8}$	
Sum	$\mathbf{0 . 2}$	$\mathbf{6 6 . 1}$	$\mathbf{3 . 1}$	$\mathbf{6 3 . 0}$	$\mathbf{2 5 . 4}$	$\mathbf{1 . 4}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$	$\mathbf{8 9 . 7}$	$\mathbf{0 . 0}$	$\mathbf{8 . 5}$	

Quarter: 3

0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	2.3	0.0	$\mathbf{2 . 3}$	$\mathbf{2 . 3}$
1	0.6	0.0	0.0	0.0	0.3	3.7	0.0	0.0	4.0	0.0	$\mathbf{4 . 6}$	$\mathbf{4 . 0}$
2	0.9	0.6	0.0	0.0	19.0	2.2	0.0	0.0	21.1	0.0	$\mathbf{2 2 . 6}$	$\mathbf{2 1 . 7}$
3	0.2	1.0	0.0	0.0	20.6	13.0	0.0	0.0	33.6	0.0	$\mathbf{3 4 . 7}$	$\mathbf{3 4 . 5}$
4	0.2	1.0	0.1	0.0	9.0	3.2	0.0	0.0	12.2	0.0	$\mathbf{1 3 . 3}$	$\mathbf{1 3 . 2}$
5	0.1	3.8	0.1	3.7	19.8	3.0	0.0	0.0	26.5	0.0	$\mathbf{2 6 . 6}$	$\mathbf{2 6 . 6}$
6	0.1	0.9	0.0	0.0	12.5	1.7	0.0	0.0	14.3	0.0	$\mathbf{1 5 . 2}$	$\mathbf{1 5 . 2}$
7	0.0	4.6	0.0	4.6	30.8	10.6	0.0	0.0	46.0	0.0	$\mathbf{4 6 . 0}$	$\mathbf{4 6 . 0}$
8	0.0	3.8	0.0	3.8	17.9	9.2	0.0	0.0	31.0	0.0	$\mathbf{3 1 . 0}$	$\mathbf{3 1 . 0}$
$9+$	0.0	2.1	0.0	2.1	7.4	3.1	0.0	0.0	12.5	0.0	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$
Sum	$\mathbf{2 . 1}$	$\mathbf{1 7 . 8}$	$\mathbf{0 . 4}$	$\mathbf{1 4 . 2}$	$\mathbf{1 3 7 . 3}$	$\mathbf{5 2 . 0}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$	$\mathbf{2 0 3 . 5}$	$\mathbf{0 . 0}$	$\mathbf{2 0 8 . 8}$	$\mathbf{2 0 7 . 1}$

Quarter: 4

0	0.1	0.0	0.0	0.0	0.5	0.6	0.1	0.0	1.0	0.1	1.2	1.1
1	0.1	0.0	0.0	0.0	1.5	0.4	0.0	0.0	1.9	0.0	2.0	1.9
2	0.1	0.3	0.0	0.0	2.3	0.1	0.0	0.9	2.4	0.9	3.6	3.5
3	0.0	0.4	0.0	0.0	2.8	0.7	1.8	2.8	3.5	4.6	8.5	8.5
4	0.1	0.3	0.0	0.3	2.0	0.2	2.4	2.9	2.5	5.3	7.9	7.9
5	0.1	1.1	0.0	1.1	1.5	0.5	2.8	5.0	3.1	7.8	11.0	10.9
6	0.0	0.3	0.0	0.3	0.8	0.3	0.8	2.0	1.3	2.8	4.2	4.1
7	0.0	0.9	0.0	0.9	4.4	1.7	1.7	5.1	7.1	6.9	13.9	13.9
8	0.0	0.6	0.1	0.6	1.3	0.6	0.8	3.8	2.5	4.6	7.1	7.2
9+	0.0	0.5	0.0	0.5	0.6	0.2	0.3	1.8	1.4	2.0	3.4	3.4
Sum	0.5	4.4	0.1	3.6	17.7	5.5	10.9	24.2	26.8	35.0	62.9	62.5

Table 2.2.5. North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea in 2020. Percentage age composition (based on numbers, 3+ group summarized), by quarter and division.

	$3 . a$	4.aE	4.aE	4.aE	4.aW	4.b	$4 . c$	7.d	4.9 \&	$4 . c$ \&	Total	Herring
	NSAS	all	WBSS	NSAS					4.b	7.d	NSAS	caught in the
WR				only					NSAS			North Sea

Quarters: 1-4

0	10.7\%	0.0\%	0.0\%	0.0\%	11.0\%	54.2\%	17.4\%	0.0\%	21.8\%	5.3\%	20.2\%	20.2\%
1	24.2\%	0.3\%	1.8\%	0.2\%	2.0\%	10.1\%	0.0\%	0.1\%	4.1\%	0.0\%	4.2\%	3.7\%
2	56.1\%	23.3\%	5.1\%	24.1\%	20.0\%	2.3\%	0.0\%	3.7\%	15.5\%	2.6\%	15.4	14.3
3	4.3\%	18.4\%	13.1\%	18.6\%	18.1\%	11.4\%	16.4\%	15.2\%	16.2\%	15.5\%	15.8\%	16.1\%
4	2.3\%	9.8\%	34.4\%	8.7\%	7.0\%	2.7\%	19.8\%	14.1\%	6.0\%	15.9\%	6.8\%	7.1\%
5	1.2\%	16.5\%	21.0\%	16.3\%	10.3\%	2.4\%	19.2\%	22.7\%	9.2\%	21.6\%	10.0\%	10.3\%
6	0.7\%	5.1\%	8.8\%	5.0\%	5.9\%	1.3\%	6.4\%	7.7\%	4.3\%	7.3\%	4.5\%	4.6\%
7	0.2\%	11.5\%	5.2\%	11.8\%	15.0\%	7.5\%	13.4\%	17.9	12.0\%	16.5	12.1	12.3
8	0.2\%	10.5\%	8.3\%	10.6\%	7.8\%	6.1\%	5.5\%	13.2	7.9\%	10.8	7.9\%	8.1\%
9+	0.0\%	4.7\%	2.3\%	4.8\%	2.9\%	1.9\%	1.8\%	5.5\%	3.0\%	4.4\%	3.1\%	3.1\%
Sum 3+	9.0\%	76.5\%	93.0\%	75.8\%	67.0\%	33.3\%	82.6\%	96.2\%	58.6\%	92.0\%	60.2\%	61.8\%

Quarter: 1

0	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	70.3\%	0.0\%	0.0\%	0.3\%	0.0\%	0.1\%	0.2\%
1	8.9\%	0.3\%	0.0\%	100.0	0.0\%	12.0\%	0.0\%	0.0\%	0.0\%	0.0\%	2.4\%	0.0\%
2	88.2\%	27.5\%	13.5\%	0.0\%	30.9\%	3.8\%	0.7\%	0.0\%	30.8\%	0.2\%	41.1\%	23.6
3	2.7\%	21.0\%	18.1\%	0.0\%	32.4\%	5.5\%	7.5\%	7.9\%	32.3\%	7.8\%	20.1\%	26.5\%
4	0.2\%	10.5\%	9.8\%	0.0\%	7.0\%	1.1\%	10.0\%	9.3\%	7.0\%	9.5\%	5.6\%	7.6\%
5	0.0\%	15.0\%	34.6\%	0.0\%	3.3\%	0.7\%	18.5\%	47.9\%	3.2\%	40.6\%	8.8\%	12.1\%
6	0.0\%	5.1\%	6.3\%	0.0\%	5.5\%	0.7\%	15.2\%	12.3	5.5\%	13.0	5.3\%	7.3\%
7	0.0\%	8.6\%	0.0\%	0.0\%	11.0\%	2.8\%	41.1\%	18.7	10.9\%	24.2	10.3	14.1
8	0.0\%	8.6\%	17.7\%	0.0\%	6.2\%	2.2\%	5.5\%	4.0\%	6.2\%	4.4\%	4.2\%	5.8\%
9+	0.0\%	3.4\%	0.0\%	0.0\%	3.7\%	0.9\%	1.4\%	0.0\%	3.7\%	0.3\%	2.1\%	2.9\%
Sum 3+	2.9\%	72.2\%	86.5\%	0.0\%	69.1\%	14.0\%	99.3\%	100.0\%	68.9\%	99.8\%	56.3\%	76.2\%

Quarter: 2

0	0.0\%	0.0\%	0.0\%	0.0\%	1.3\%	78.6\%	0.0\%	0.0\%	0.0\%	52.1\%	6.1\%	6.0\%
1	29.0\%	0.3\%	1.9\%	0.2\%	0.4\%	13.3\%	0.0\%	0.0\%	1.3\%	0.0\%	1.4\%	1.3\%
2	68.2\%	27.5\%	5.2\%	28.5\%	37.2\%	1.3\%	0.4\%	0.0\%	30.7\%	0.1\%	29.0	28.1
3	2.5\%	21.0\%	13.3\%	21.3\%	28.9\%	2.3\%	3.9\%	9.4\%	23.3\%	3.3\%	21.8\%	21.6\%
4	0.3\%	10.5\%	35.0\%	9.4\%	8.4\%	0.5\%	5.2\%	10.6\%	9.0\%	3.9\%	8.4\%	9.3\%
5	0.0\%	15.0\%	21.3\%	14.7\%	8.4\%	0.5\%	19.6\%	45.5\%	12.8\%	16.1\%	11.9\%	12.3\%
6	0.0\%	5.0\%	8.8\%	4.9\%	3.2\%	0.1\%	13.9\%	11.6	4.3\%	6.1\%	4.0\%	4.2\%
7	0.0\%	8.7\%	5.3\%	8.8\%	6.5\%	1.5\%	49.3\%	18.5	8.2\%	15.6	7.6\%	7.6\%
8	0.0\%	8.6\%	7.1\%	8.6\%	4.8\%	1.5\%	6.9\%	4.3\%	7.6\%	2.6\%	7.0\%	7.1\%
9+	0.0\%	3.4\%	2.0\%	3.5\%	1.0\%	0.4\%	0.7\%	0.2\%	2.8\%	0.2\%	2.6\%	2.6\%
Sum 3+	2.8\%	72.2\%	92.9\%	71.2\%	61.1\%	6.8\%	99.6\%	100.0\%	68.0\%	47.8\%	63.4\%	64.7\%

Quarter: 3

0	0.0\%	0.0\%	0.0\%	0.0\%	1.3\%	49.7\%	100.0\%	0.0\%	21.8\%	100.0\%	21.5\%	21.8\%
1	47.8\%	0.1\%	1.9\%	0.0\%	0.5\%	9.6\%	0.0\%	0.0\%	4.3\%	0.0\%	5.0\%	4.3\%
2	35.4\%	4.0\%	5.2\%	0.0\%	18.9\%	2.7\%	0.0\%	0.0\%	11.2	0.0\%	11.5	11.2
3	8.0\%	6.3\%	13.2\%	0.0\%	17.7\%	13.6	0.0\%	0.0\%	15.3\%	0.0\%	15.2	15.3
4	5.0\%	6.2\%	35.0\%	0.0\%	7.1\%	3.2\%	0.0\%	0.0\%	5.3\%	0.0\%	5.3\%	5.4\%
5	2.1\%	22.2\%	21.4\%	0.0\%	13.5\%	2.6\%	0.0\%	0.0\%	9.4\%	0.0\%	9.2\%	9.4\%
6	1.3\%	5.4\%	8.8\%	0.0\%	7.9\%	1.4\%	0.0\%	0.0\%	5.0\%	0.0\%	4.9\%	5.0\%
7	0.3\%	25.3\%	5.3\%	0.0\%	18.8\%	8.0\%	0.0\%	0.0\%	14.6	0.0\%	14.4	14.6
8	0.1\%	20.2\%	7.2\%	0.0\%	10.4\%	7.1\%	0.0\%	0.0\%	9.5\%	0.0\%	9.4\%	9.5\%
9+	0.0\%	10.3\%	2.0\%	0.0\%	3.9\%	2.2\%	0.0\%	0.0\%	3.5\%	0.0\%	3.5\%	3.5\%
Sum 3+	16.8\%	95.9\%	92.9\%	0.0\%	79.3\%	38.0\%	0.0\%	0.0\%	62.7\%	0.0\%	61.9\%	62.7\%

Quarter: 4

0	64.7\%	0.0\%	0.0\%	0.0\%	50.0\%	67.3\%	16.9\%	0.0\%	52.5\%	5.2\%	36.0\%	35.4\%
1	16.4\%	0.2\%	0.0\%	0.2\%	8.2\%	11.7\%	0.0\%	0.1\%	8.8\%	0.0\%	5.9\%	5.6\%
2	6.9\%	7.0\%	0.0\%	7.1\%	8.2\%	0.7\%	0.0\%	4.1\%	5.9\%	2.8\%	4.8\%	4.8\%
3	1.8\%	10.2\%	0.0\%	10.4\%	7.9\%	4.2\%	17.4\%	15.9\%	6.9\%	16.3\%	10.2\%	10.3\%
4	3.6\%	6.6\%	2.8\%	6.7\%	5.5\%	1.3\%	20.9\%	14.6\%	4.3\%	16.5\%	8.6\%	8.7\%
5	3.2\%	25.7\%	0.0\%	26.2\%	4.0\%	2.4\%	19.7\%	20.2\%	4.7\%	20.1\%	10.1\%	10.3\%
6	1.6\%	6.1\%	10.2\%	6.0\%	1.9\%	1.2\%	5.9\%	7.2\%	1.9\%	6.8\%	3.6\%	3.7\%
7	0.7\%	20.5\%	0.0\%	20.9\%	10.3\%	7.5\%	11.7\%	17.8	10.1\%	15.9	12.0	12.2
8	0.9\%	13.8\%	70.6\%	12.7\%	2.8\%	2.7\%	5.7\%	14.1	3.3\%	11.5	6.2\%	6.3\%
9+	0.0\%	10.0\%	16.4\%	9.9\%	1.1\%	1.0\%	1.9\%	6.1\%	1.6\%	4.8\%	2.7\%	2.7\%
Sum 3+	12.0\%	92.8\%	100.0\%	92.6\%	33.6\%	20.3\%	83.1\%	95.9\%	32.8\%	91.9\%	53.4\%	54.2\%

Table 2.2.6. Total catch of herring caught in the North Sea and Division 3.a: North Sea autumn spawners (NSAS). Catch in numbers (millions) at mean weight-at-age ($\mathbf{k g}$) by fleet, and SOP catches (' $\mathbf{0 0 0} \mathrm{t}$). SOP catch might deviate from reported catch as used for the assessment. A fleet figure includes unsampled bycatch in the industrial fishery.

2020	Fleet A		Fleet B		Fleet C		Fleet D	TOTAL		
Winter rings	Numbers	Mean weight	Numbers	Mean weight Mean	Numbers	Mean weight Mean	Numbers	Mean weight	Numbers	Mean weight Mean
0	0.0	0.004	527.2	0.008	6.9	0.011	0.0	0.000	534.1	0.008
1	10.1	0.074	86.6	0.033	13.9	0.048	1.8	0.045	112.4	0.039
2	367.4	0.136	3.6	0.116	36.0	0.071	0.3	0.067	407.4	0.130
3	414.8	0.156	2.2	0.135	2.8	0.116	0.0	0.000	419.8	0.155
4	176.1	0.171	1.6	0.163	1.5	0.159	0.0	0.000	179.2	0.171
5	264.4	0.189	0.7	0.174	0.8	0.173	0.0	0.000	265.9	0.189
6	117.6	0.214	0.2	0.162	0.5	0.193	0.0	0.000	118.2	0.213
7	318.2	0.219	2.4	0.181	0.1	0.206	0.0	0.000	320.8	0.219
8	209.3	0.238	0.8	0.189	0.1	0.186	0.0	0.000	210.2	0.238
9+	80.6	0.247	0.3	0.193	0.0	0.000	0.0	0.000	80.9	0.247
TOTAL	1'958.5		625.6		62.6		2.1		2'648.9	
SOP catch		359.8		8,7		4,1		0.1		372.7

Table 2.2.7. Catch-at-age (numbers in millions) of North Sea herring, 2006-2021.

Year/rings	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}+$	Total
2006	844	72	354	309	475	1017	257	252	65	44	3689
2007	553	46	142	413	284	307	628	147	133	23	2677
2008	713	148	260	183	199	137	118	215	74	43	2090
2009	533	98	253	108	96	88	40	58	112	34	1421
2010	526	84	243	234	124	84	63	34	59	56	1508
2011	575	124	306	271	218	130	63	52	60	66	1865
2012	627	110	412	671	403	306	151	104	89	109	2982
2013	461	327	239	482	571	422	327	145	153	160	3287
2014	1104	309	303	380	616	487	284	192	92	123	3890
2015	508	225	454	241	282	456	431	270	167	170	3204
2016	1450	86	578	813	293	280	368	307	186	173	4534
2017	462	133	74	1075	836	222	146	176	107	115	3345
	54	178	200	1179	852	225	146	144	189	4491	

Year/rings	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$	Total
2019	513	35	34	292	197	740	542	140	85	138	2717
2020	2048	86	505	210	290	146	515	349	69	108	4324
2021	527	97	372	420	185	270	120	322	212	81	2606

Table 2.2.8. Catch-at-age (numbers in millions) of WBSS Herring taken in the North Sea, and transferred to the assessment of the spring-spawning stock in 3.a, 2006-2021.

Year/rings	0	1	2	3	4	5	6	7	8	9+	Total
2006	0.0	0.1	3.5	8.8	14.0	22.4	5.1	5.3	2.1	1.0	62.2
2007	0.0	0.0	0.1	2.6	1.3	0.6	0.8	0.4	0.5	0.2	6.3
2008	0.0	0.0	0.1	0.1	0.2	0.1	0.1	0.2	0.0	0.0	0.7
2009	0.0	0.0	1.0	2.1	3.4	1.4	1.7	4.5	1.8	1.4	17.2
2010	0.0	0.0	0.0	0.5	1.0	0.4	0.5	0.3	0.3	0.7	3.8
2011	0.0	0.0	0.1	0.4	0.4	0.2	0.1	0.1	0.1	0.2	1.6
2012	0.0	0.0	0.0	0.2	0.4	0.0	1.4	0.0	1.1	6.3	9.4
2013	0.0	0.0	0.1	0.4	0.2	0.5	0.3	0.1	0.2	0.5	2.2
2014	0.0	0.0	2.5	3.4	5.4	0.8	2.1	1.0	0.5	1.1	16.8
2015	0.0	0.0	0.1	0.9	1.4	3.9	1.8	1.4	0.9	1.2	11.7
2016	0.0	0.0	1.2	4.1	1.0	1.1	1.2	0.7	0.4	0.8	10.6
2017	0.0	0.0	0.0	2.4	1.0	0.2	0.1	0.1	0.0	0.1	4.0
2018	0.0	0.0	0.3	0.9	2.3	4.3	1.7	0.9	0.3	0.4	11.0
2019	5.3	30.6	53.0	16.2	5.5	2.5	1.4	0.3	0.1	0.0	114.9
2020	0.0	1.8	3.2	5.8	7.5	1.2	10.7	5.3	1.8	2.8	40.2
2021	0.0	0.4	1.1	2.8	7.3	4.5	1.9	1.1	1.8	0.5	21.3

Table 2.2.9. Catch-at-age (numbers in millions) of NSAS taken in 3.a, and transferred to the assessment of NSAS, 20062021.

Year/rings	0	1	2	3	4	5	6	7	8+	Total
2006	35.1	150.1	50.2	10.2	3.3	3.3	0.6	0.4	0.2	253.3
2007	67.7	189.3	76.9	2.1	0.4	1.4	0.3	0.6	0.0	338.7
2008	85.7	86.6	72.0	1.9	0.3	0.1	0.1	0.3	0.1	247.0
2009	116.8	77.5	7.0	0.4	0.2	0.0	0.0	0.0	0.1	202.0
2010	48.6	197.0	43.3	0.3	0.1	0.1	0.0	0.1	0.0	289.6
2011	203.8	35.4	61.5	3.2	0.3	0.2	0.1	0.1	0.0	304.6
2012	145.8	174.9	43.7	1.9	1.2	0.2	0.2	0.1	0.0	368.0
2013	0.9	86.2	85.8	2.4	0.4	0.3	0.0	0.0	0.0	175.9
2014	284.7	61.1	80.2	5.9	0.5	0.5	0.2	0.0	0.1	433.3
2015	30.7	169.6	97.6	7.0	1.3	4.9	1.1	1.2	0.4	313.6
2016	133.3	23.3	47.6	6.0	0.5	0.3	0.2	0.0	0.1	211.3
2017	0.1	76.0	34.4	6.9	3.0	1.2	0.1	0.0	0.0	121.8
2018	14.5	19.2	28.5	1.1	1.8	1.0	0.2	0.1	0.1	66.5
2019	23.7	101.3	19.8	4.6	0.1	0.1	0.1	0.0	0.0	149.8
2020	79.4	26.6	44.2	5.3	2.2	0.3	0.6	0.8	0.0	159.3
2021	6.9	15.7	36.3	2.8	1.5	0.8	0.5	0.1	0.1	64.8

Table 2.2.10. Catch-at-age (numbers in millions) of the total NSAS stock 2006-2021.

Year/rings	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$	Total
2006	879	222	401	311	465	999	253	249	63	44	3885
2007	621	236	219	412	283	308	628	147	132	23	3009
2008	798	235	332	185	199	137	118	215	74	43	2336
2009	650	176	259	107	93	86	38	53	110	33	1606
2010	575	281	287	233	123	83	63	34	59	55	1794
2011	779	160	368	274	218	130	63	52	60	65	2168
2013	773	285	455	673	404	306	150	104	88	102	3341
2014	462	413	325	484	571	422	327	145	152	160	3461
	1389	371	383	386	617	488	285	192	92	123	4323

Year/rings	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$	Total
2015	538	395	552	248	283	461	432	271	168	170	3517
2016	1584	109	625	819	293	280	368	307	186	173	4745
2017	462	209	109	1080	838	223	146	176	107	115	3463
2018	1337	73	206	201	1179	849	224	145	144	188	4546
2019	537	137	54	296	197	740	542	140	85	138	2866
2020	2127	112	549	215	292	146	515	349	69	108	4483
2021	534	112	407	420	179	266	118	321	210	81	2649

Table 2.2.11. Comparison of mean weight (kg) at age (rings) in the catch of adult North Sea herring (by Division) and NSAS caught in Division 3.a in 2010-2020

Division	Year	Age (Rings)							
		2	3	4	5	6	7	8	9+
3.a	2011	0.084	0.114	0.134	0.191	0.193	0.234	0.248	-
	2012	0.067	0.124	0.169	0.175	0.200	0.221	0.216	-
	2013	0.075	0.134	0.160	0.201	0.000	0.000	0.000	-
	2014	0.074	0.109	0.162	0.191	0.209	0.221	0.228	-
	2015	0.068	0.133	0.157	0.180	0.196	0.197	0.215	-
	2016	0.059	0.123	0.149	0.157	0.208	0.211	0.235	-
	2017	0.068	0.103	0.139	0.173	0.171	0.185	0.162	-
	2018	0.058	0.103	0.156	0.179	0.190	0.187	0.203	-
	2019	0.062	0.085	0.116	0.118	0.164	0.202	0.159	-
	2020	0.066	0.139	0.168	0.175	0.199	0.216	0.000	-
	2021	0.071	0.116	0.159	0.174	0.192	0.206	0.186	-
4.a(E)	2011	0.142	0.162	0.180	0.204	0.215	0.209	0.216	0.222
	2012	0.146	0.185	0.195	0.203	0.216	0.225	0.225	0.232
	2013	0.129	0.147	0.184	0.191	0.205	0.215	0.215	0.228
	2014	0.146	0.161	0.167	0.195	0.200	0.216	0.227	0.224
	2015	0.127	0.148	0.163	0.178	0.191	0.203	0.212	0.227
	2016	0.129	0.153	0.167	0.183	0.195	0.205	0.216	0.229
	2017	0.132	0.154	0.170	0.182	0.193	0.198	0.203	0.209

Division		Age (Rings)							
	Year	2	3	4	5	6	7	8	9+
	2018	0.125	0.152	0.173	0.188	0.201	0.212	0.219	0.230
	2019	0.134	0.155	0.173	0.212	0.204	0.209	0.220	0.250
	2020	0.126	0.144	0.158	0.169	0.180	0.191	0.197	0.210
	2021	0.126	0.149	0.162	0.178	0.180	0.200	0.203	0.220
4.a(W)	2011	0.141	0.161	0.185	0.195	0.216	0.223	0.220	0.243
	2012	0.132	0.184	0.186	0.206	0.226	0.240	0.242	0.254
	2013	0.139	0.158	0.201	0.197	0.218	0.234	0.234	0.251
	2014	0.143	0.172	0.184	0.215	0.212	0.227	0.246	0.242
	2015	0.124	0.158	0.198	0.211	0.233	0.228	0.239	0.252
	2016	0.138	0.161	0.189	0.215	0.227	0.242	0.233	0.250
	2017	0.120	0.160	0.177	0.192	0.218	0.226	0.236	0.236
	2018	0.114	0.156	0.188	0.193	0.220	0.241	0.250	0.258
	2019	0.134	0.154	0.174	0.205	0.206	0.220	0.246	0.248
	2020	0.138	0.160	0.174	0.195	0.216	0.218	0.239	0.246
	2021	0.138	0.160	0.174	0.195	0.216	0.218	0.239	0.246
4.b	2011	0.145	0.162	0.187	0.206	0.235	0.234	0.240	0.268
	2012	0.131	0.141	0.178	0.209	0.214	0.245	0.250	0.258
	2013	0.125	0.162	0.205	0.206	0.228	0.251	0.261	0.246
	2014	0.133	0.187	0.208	0.233	0.240	0.249	0.256	0.277
	2015	0.140	0.162	0.189	0.203	0.208	0.216	0.227	0.250
	2016	0.126	0.161	0.192	0.211	0.218	0.236	0.236	0.253
	2017	0.095	0.157	0.184	0.194	0.230	0.240	0.249	0.263
	2018	0.117	0.138	0.192	0.211	0.237	0.248	0.246	0.258
	2019	0.148	0.163	0.163	0.210	0.229	0.251	0.244	0.253
	2020	0.150	0.174	0.186	0.212	0.234	0.241	0.252	0.265
	2021	0.133	0.157	0.173	0.199	0.214	0.225	0.226	0.240

Table 2.2.11 continued: Comparison of mean weight (kg) at age (rings) in the catch of adult North Sea herring (by Division) and NSAS caught in Division 3.a in 2011-2021.

Division	Year	Age (Rings)							
		2	3	4	5	6	7	8	9+
4.a \& 4.b	2011	0.142	0.161	0.184	0.198	0.220	0.224	0.224	0.243
	2012	0.132	0.171	0.185	0.207	0.222	0.239	0.243	0.248
	2013	0.132	0.158	0.198	0.198	0.217	0.234	0.235	0.244
	2014	0.138	0.174	0.187	0.216	0.213	0.227	0.246	0.243
	2015	0.129	0.157	0.190	0.203	0.223	0.219	0.228	0.245
	2016	0.134	0.159	0.185	0.210	0.218	0.235	0.226	0.242
	2017	0.116	0.159	0.176	0.190	0.217	0.223	0.231	0.230
	2018	0.117	0.152	0.187	0.195	0.220	0.238	0.245	0.254
	2019	0.136	0.153	0.173	0.208	0.210	0.220	0.239	0.251
	2020	0.136	0.159	0.173	0.192	0.215	0.221	0.238	0.249
	2021	0.134	0.155	0.169	0.191	0.205	0.220	0.219	0.233
4.c \& 7.d	2011	0.122	0.154	0.179	0.189	0.195	0.205	0.209	0.217
	2012	0.119	0.165	0.186	0.202	0.212	0.234	0.209	0.226
	2013	0.126	0.144	0.180	0.196	0.206	0.216	0.218	0.226
	2014	0.119	0.148	0.166	0.183	0.208	0.222	0.227	0.233
	2015	0.114	0.127	0.154	0.157	0.183	0.197	0.204	0.210
	2016	0.114	0.127	0.137	0.166	0.177	0.199	0.193	0.216
	2017	0.100	0.122	0.146	0.165	0.186	0.193	0.220	0.241
	2018	0.113	0.116	0.144	0.156	0.164	0.189	0.196	0.209
	2019	0.118	0.126	0.153	0.165	0.185	0.196	0.203	0.223
	2020	0.116	0.127	0.153	0.177	0.188	0.199	0.229	0.216
	2021	0.100	0.125	0.141	0.173	0.189	0.192	0.188	0.205
Total	2011	0.141	0.160	0.183	0.197	0.217	0.221	0.223	0.240
North Sea	2012	0.130	0.171	0.185	0.206	0.222	0.239	0.239	0.247
Catch	2013	0.131	0.156	0.198	0.198	0.215	0.233	0.234	0.241
	2014	0.137	0.173	0.186	0.215	0.212	0.226	0.244	0.241
	2015	0.123	0.154	0.188	0.200	0.221	0.217	0.226	0.243
	2016	0.132	0.155	0.180	0.206	0.215	0.231	0.221	0.239

Table 2.2.12. Sampling of commercial landings of North Sea herring (Division 4 and 7.d) in 2021 by quarter. Sampled catch means the proportion of the reported catch to which sampling was applied. Métiers are each reported combination of nation/fleet/area/quarter.

Country (fleet)	Q	Métiers (n)	Métiers sampled	Sam. Catch (\%)	Official Catch	Samples	Fish aged	Fish measured	>1 sample per 1 kt catch
Belgium	1	3	0	0\%	14	0	0	0	n
	2	2	0	0\%	0	0	0	0	n
	4	3	0	0\%	32	0	0	0	n
total		8	0	0\%	47	0	0	0	n
Denmark (A)	1	2	1	100\%	6387	5	134	646	n
	2	2	0	0\%	3264	0	0	0	n
	3	2	2	100\%	37390	30	777	3244	n
	4	2	1	75\%	7500	3	80	390	n
total		8	4	91\%	54541	38	991	4280	n
Denmark (B)	1	3	0	0\%	345	0	0	0	n
	2	2	0	0\%	490	0	0	0	n
	3	3	2	94\%	3767	33	367	761	y
	4	4	0	0\%	3800	0	0	0	n
total		12	2	42\%	8403	33	367	761	y
France	1	2	1	15\%	1884	3	73	601	y
	2	4	1	100\%	3363	12	299	2502	y
	3	3	0	0\%	11815	0	0	0	n
	4	4	0	0\%	8075	0	0	0	n

Country (fleet)		Métiers (n)	Métiers sampled	Sam. Catch (\%)	Official Catch	Samples	Fish aged	Fish measured	>1 sample per 1 kt catch
total		13	2	14\%	25136	15	372	3103	n
Germany	2	2	0	0\%	4893	0	0	0	n
	3	2	1	86\%	11155	29	247	11355	y
	4	3	2	77\%	9748	11	337	1295	y
total		7	3	66\%	25797	40	584	12650	y
Ireland	1	1	0	0\%	3	0	0	0	n
	4	1	0	0\%	411	0	0	0	n
total		2	0	0\%	414	0	0	0	n
Netherlands	1	2	1	56\%	1241	3	75	419	y
	2	1	1	100\%	483	2	49	278	y
	3	2	1	100\%	44047	35	870	5213	n
	4	4	3	97\%	20630	11	273	1585	n
total		9	6	98\%	66402	51	1267	7495	n
Norway	1	1	0	0\%	16	0	0	0	n
	2	3	2	100\%	70882	42	1999	2707	n
	3	2	2	100\%	18574	10	406	515	n
	4	3	2	99\%	5590	4	159	721	n
total		9	6	100\%	95061	56	2564	3943	n
UK (Scot)	1	1	0	0\%	31	0	0	0	n
	2	1	1	100\%	2553	3	99	421	y
	3	2	2	100\%	47905	29	1213	4462	n
	4	3	0	0\%	705	0	0	0	n
total		7	3	99\%	51194	32	1312	4883	n
Sweden	2	3	0	0\%	3605	0	0	0	n
	3	3	0	0\%	14224	0	0	0	n
	4	3	0	0\%	551	0	0	0	n
total		9	0	0\%	18380	0	0	0	n
Sweden (B)	2	1	0	0\%	33	0	0	0	n

Country (fleet)	Q	Métiers (n)	Métiers sampled	Sam. Catch (\%)	Official Catch	Samples	Fish aged	Fish measured	>1 sample per 1 kt catch
	3	1	0	0\%	142	0	0	0	n
	4	2	0	0\%	210	0	0	0	n
total		4	0	0\%	385	0	0	0	n
UK (NI)	1	1	0	0\%	4	0	0	0	n
	3	2	0	0\%	4975	0	0	0	n
	4	1	0	0\%	198	0	0	0	n
total		4	0	0\%	5176	0	0	0	n
Lithuania	4	1	0	0\%	466	0	0	0	n
total		1	0	0\%	466	0	0	0	n
UK (E+W)	1	3	1	99\%	294	1	24	100	y
	2	4	1	99\%	923	1	125	896	y
	3	4	1	100\%	8099	5	875	3753	n
	4	4	2	19\%	3898	2	50	208	n
total		15	5	76\%	13214	9	1074	4957	n
Period total	1	19	4	75\%	10219	12	306	1766	y
Period total	2	25	6	86\%	90490	60	2571	6804	n
Period total	3	26	11	84\%	202091	171	4755	29303	n
Period total	4	38	10	64\%	61815	31	899	4199	n
Total 2021		108	31	81\%	364615	274	8531	42072	n
Human Cons Only		92	29	82\%	355827	241	8164	41311	n
Total 2019		104	29	83\%	445633	376	7781	57198	n
Total 2020		117	28	82\%	427321	347	8226	66700	n
HC 2020		101	26	83\%	417457	320	7909	65583	n

2.3.1.1. North Sea herring. Acoustic Surveys in the North Sea (HERAS) in June-July 2021. Vessels, areas and cruise dates.

Vessel	Period	Contributing to Stocks	Strata
Celtic Explorer (IRL)	30 June - 20 July	MSHAS, WoS	$2,3,4,5,6$
EIGB			
Scotia (SCO)	7-26 July	MSHAS,WoS, NSAS, Sprat NS	1,91 (north of $58^{\circ} 30^{\prime} \mathrm{N}$), 111, 121
MXHR6			
Johan Hjort (NOR)	25 June - 12 July	NSAS, WBSS, Sprat NS	11, 141
LDGJ			
Tridens (NED)	26 June - 12 July	NSAS, Sprat NS	81,91 (south of $58^{\circ} 30^{\prime} \mathrm{N}$), 101
PBVO			
Solea (GER)	30 June - 20 July	NSAS, Sprat NS	51, 61, 71, 131
DBFH			
Dana (DEN)	21 June - 06 July	NSAS, WBSS, Sprat NS, Sprat 3.a	21, 31, 41, 42, 151, 152
OXBH			

Table 2.3.1.2. North Sea herring. Acoustic Surveys in the North Sea (HERAS) in June-July 2021. Total numbers (millions of fish) and biomass (thousands of tonnes) of North Sea autumn spawning herring in the area surveyed in the pelagic acoustic surveys, with mean weight and mean length by age ring.

Age (ring)	Numbers	Biomass	Maturity	Weight (g)	Length (cm)
0	17500	78	0.00	4.4	8.5
1	5196	248	0.02	47.7	17.9
2	2803	340	0.74	121.3	23.9
3	1800	299	0.99	165.8	26.4
4	773	148	1.00	191.0	27.4
5	877	178	1.00	203.4	27.9
6	915	202	1.00	220.8	28.7
7	1021	238	1.00	233.1	29.0
8	388	93	1.00	240.0	29.2
9+	208	57	1.00	272.1	30.4
Immature	23311	379		16.2	10.9
Mature	8170	1501		183.7	27.0
Total	31481	1880	0.26	59.7	15.1

Table 2.3.1.3. Estimates of North Sea autumn spawners (millions) at age from acoustic surveys, 1986-2021. For 1986 the estimates are the sum of those from the Division 4.a summer survey, the Division 4.b autumn survey, and the divisions 4.c, 7.d winter survey. The 1987 to 2019 estimates are from summer surveys in divisions 4.a, b, c, and 3.a excluding estimates of Western Baltic spring spawners. For 1999 and 2000 the Kattegat was excluded from the results because it was not surveyed. Total numbers include 0-ringers from 2008 onwards.

Years / Age (rings)	1	2	3	4	5	6	7	8	9+	Total	SSB ('000t)
1986	1639	3206	1637	833	135	36	24	6	8	7542	942
1987	13736	4303	955	657	368	77	38	11	20	20165	817
1988	6431	4202	1732	528	349	174	43	23	14	13496	897
1989	6333	3726	3751	1612	488	281	120	44	22	16377	1637
1990	6249	2971	3530	3370	1349	395	211	134	43	18262	2174
1991	3182	2834	1501	2102	1984	748	262	112	56	12781	1874
1992	6351	4179	1633	1397	1510	1311	474	155	163	17173	1545
1993	10399	3710	1855	909	795	788	546	178	116	19326	1216
1994	3646	3280	957	429	363	321	238	220	132	13003	1035
1995	4202	3799	2056	656	272	175	135	110	84	11220	1082
1996	6198	4557	2824	1087	311	99	83	133	206	18786	1446
1997	9416	6363	3287	1696	692	259	79	78	158	22028	1780
1998	4449	5747	2520	1625	982	445	170	45	121	16104	1792
1999	5087	3078	4725	1116	506	314	139	54	87	15107	1534
2000	24735	2922	2156	3139	1006	483	266	120	97	34928	1833
2001	6837	12290	3083	1462	1676	450	170	98	59	26124	2622
2002	23055	4875	8220	1390	795	1031	244	121	150	39881	2948
2003	9829	18949	3081	4189	675	495	568	146	178	38110	2999
2004	5183	3415	9191	2167	2590	317	328	342	186	23722	2584
2005	3113	1890	3436	5609	1211	1172	140	127	107	16805	1868
2006	6823	3772	1997	2098	4175	618	562	84	70	20199	2130
2007	6261	2750	1848	898	806	1323	243	152	65	14346	1203
2008	3714	2853	1709	1485	809	712	1749	185	270	20355	1784
2009	4655	5632	2553	1023	1077	674	638	1142	578	31526	2591
2010	14577	4237	4216	2453	1246	1332	688	1110	1619	43705	3027
2011	10119	4166	2534	2173	1016	651	688	440	1207	25524	2431

Years /	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$	Total	SSB ('000t)												
Age (rings)												\quad	2012	7437	4718	4067	1738	1209	593	247	218	478	23641
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---													
2013	6388	2683	3031	2895	1546	849	464	250	592	36484													
2014	11634	4918	2827	2939	1791	1236	669	211	250	61339													
2015	6714	9495	2831	1591	1549	926	520	275	221	24508													
2016	9034	12011	5832	1273	822	909	395	220	146	51686													
2017	3054	1761	6095	3142	787	365	298	153	140	30055													
2018	9938	4254	1692	5150	2440	719	529	293	111	32606													
2019	10146	1303	2345	1212	3506	1657	395	252	172	25560													
2020	7130	2736	1156	1371	1674	1666	504	164	188	23766													
2021	5196	2803	1800	773	877	915	1021	388	208	31481													
15017																							

Table 2.3.2.1. North Sea herring - LAI time-series of herring larval abundance <10 mm long (<11 mm for the SNS), by standard sampling area and time periods. The numbers of larvae are expressed as mean number per ICES rectangle * 10^{9}.

	Orkney/Shetland		Buchan		Central North Sea			Southern North Sea		
Period/ Year	$1-15$ Sep.	$16-30$ Sep.	$1-15$ Sep.	16-30 Sep.	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$16-30$ Sep.	$1-15$ Oct.	$\begin{gathered} \text { 16-31 } \\ \text { Dec. } \end{gathered}$	$\begin{gathered} \text { 1-15 } \\ \text { Jan. } \end{gathered}$	$\begin{gathered} \text { 16-31 } \\ \text { Jan. } \end{gathered}$
1972	1133	4583	30		165	88	134	2	46	
1973	2029	822	3	4	492	830	1213			1
1974	758	421	101	284	81		1184		10	
1975	371	50	312			90	77	1	2	
1976	545	81		1	64	108			3	
1977	1133	221	124	32	520	262	89	1		
1978	3047	50		162	1406	81	269	33	3	
1979	2882	2362	197	10	662	131	507		111	89
1980	3534	720	21	1	317	188	9	247	129	40
1981	3667	277	3	12	903	235	119	1456		70
1982	2353	1116	340	257	86	64	1077	710	275	54
1983	2579	812	3647	768	1459	281	63	71	243	58
1984	1795	1912	2327	1853	688	2404	824	523	185	39

Period/ Year	Orkney/Shetland		Buchan		Central North Sea			Southern North Sea		
	$1-15$ Sep.	16-30 Sep.	$1-15$ Sep.	$16-30$ Sep.	$1-15$ Sep.	16-30 Sep.	$1-15$ Oct.	16-31 Dec.	$\begin{aligned} & \text { 1-15 } \\ & \text { Jan. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Jan. } \end{gathered}$
1985	5632	3432	2521	1812	130	13039	1794	1851	407	38
1986	3529	1842	3278	341	1611	6112	188	780	123	18
1987	7409	1848	2551	670	799	4927	1992	934	297	146
1988	7538	8832	6812	5248	5533	3808	1960	1679	162	112
1989	11477	5725	5879	692	1442	5010	2364	1514	2120	512
1990		10144	4590	2045	19955	1239	975	2552	1204	
1991	1021	2397		2032	4823	2110	1249	4400	873	
1992	189	4917		822	10	165	163	176	1616	
1993		66		174		685	85	1358	1103	
1994	26	1179				1464	44	537	595	
1995		8688					43	74	230	164
1996		809		184		564		337	675	691
1997		3611		23				9374	918	355
1998		8528		1490	205	66		1522	953	170
1999		4064		185		134	181	804	1260	344
2000		3352	28	83		376		7346	338	106
2001		11918		164		1604		971	5531	909
2002		6669		1038			3291	2008	260	925
2003		3199		2263		12018	3277	12048	3109	1116
2004		7055		3884		5545		7055	2052	4175
2005		3380		1364		5614		498	3999	4822
2006	6311	2312		280		2259		10858	2700	2106
2007		1753		1304		291		4443	2439	3854
2008	4978	6875		533		11201		8426	2317	4008
2009		7543		4629		4219		15295	14712	1689
2010		2362		1493		2317		7493	13230	8073
2011		3831		2839		17766		5461	6160	1215

	Orkney/Shetland		Buchan		Central North Sea			Southern North Sea		
Period/ Year	$\begin{aligned} & \text { 1-15 } \\ & \text { Sep. } \end{aligned}$	16-30 Sep.	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$16-30$ Sep.	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} \text { 16-30 } \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & \text { 1-15 } \\ & \text { Oct. } \end{aligned}$	16-31 Dec.	$\begin{gathered} \text { 1-15 } \\ \text { Jan. } \end{gathered}$	$\begin{gathered} \text { 16-31 } \\ \text { Jan. } \end{gathered}$
2012		19552		5856		517		22768	11103	3285
2013		21282		8618		7354		5	9314	2957
2014		6604		5033		1149				1851
2015		9631		3496		3424		2011	1200	645
2016				3872		3288		20710	1442	1545
2017				5833		3965		10553	5880	
2018		102		1740		1509		1140		
2019	2488		5654	3794		10605		14082	5258	
2020		3208		3418		7663		4077	9704	
2021		6651		1413		3282		8899	8764	

Table 2.3.3.2. North Sea herring - International herring larvae surveys summary 2021/2022.
International Herring Larvae Surveys (IHLS)

Nation:	Vessel:	Dates
Germany	Dana \#09-21	20 September - 01 October 2021
Netherlands	Tridens 2	20 September - 29 September 2021
Netherlands	Tridens 2	20 December - 23 December 2021
Germany	WH \#452	05 January - 13 January 2022

Cruise	North Sea IHLS monitor the abundance and distribution of newly hatched herring larvae at the main spawning grounds of autumn spawning herring along the Scottish and English coast in September and on the Downs spawning ground in the English Channel in December and January.
Gear details:	Gulf-type high speed plankton sampler catches are taken during day and night time. Mesh size of the net is 280 microns. The sampler is equipped with a CTD for measurements of actual sampler depth, salinity and temperature profiles as well as internal and external flowmeters determining the filtered water volume. Samples are taken in a V-shape manner, e.g. from the sea surface down to near the seabed (5 m above the bottom) and back to the surface.
Notes from survey (e.g. problems, additional work etc.):	All six survey areas could be sampled as scheduled. The survey around the Orkneys revealed higher quantities of newly hatched larvae, compared to relatively low numbers in the two preceding years. In the Buchan and the central North Sea, newly hatched larvae concentrated in two areas. There are some issues with larvae patchiness in the Downs area. One station yielded $>90 \%$ of the total catch in December. However, such a pattern has been seen also in the history of the survey time-series. Thus, all stations were included in further calculations.

	The estimated larvae abundance indices could be used in the assessment of North Sea autumn spawning herring.
Number of fish species recorded and notes on any rare species or un-	In total, 413 plankton samples were taken during the IHLS surveys between September 2020. They contained 118,968 herring larvae.
usual catches:	

Stations fished

ICES Divi- sions	Strat.	Gear	Tows planned	Valid	Add.	Inv.	\% stations fished	comments
4a,b	N/A	Gulf	274	274	0	0	100%	Extra hauls taken when abundance was dense.
7d	N/A	Gulf	141	139	0	0	100%	Extra hauls taken when abundance was dense.
total	N/A	Gulf	415	413	0	0	100%	

Table 2.3.3.1. North Sea herring. Density and abundance estimates of 0-ringers caught in February during the IBTS. Values given for the 1991 to 2021 year classes by areas are density estimates in numbers per square metre according to the new index calculation algorithm. Total abundance is found by multiplying density by area and summing up. Data for the period 1976 to 1990, calculated with the old algorithm, are stored in the stock annex.

Area	Northwest	Northeast	Central west	Central east	Southwest	Southeast	Division 3.a	South'Bight	IBTS-0 index
Area $\mathrm{m}^{\mathbf{2}} \times 10^{9}$	83	34	86	102	37	93	31	31	
Year class									no. in 10^{9}
1991	0.227	0.074	0.364	0.444	0.466	0.329	0.330	0.259	164.0
1992	0.191	0.037	0.576	0.387	0.638	0.300	0.359	0.871	195.8
1993	0.574	0.231	0.545	0.178	0.117	0.140	0.223	0.322	155.1
1994	0.131	0.023	0.438	0.359	0.360	0.174	0.503	1.277	170.5
1995	0.222	0.053	0.644	0.069	0.246	0.015	0.015	0.424	107.0
1996	0.026	0.003	0.878	0.099	0.443	0.298	0.040	0.034	134.5
1997	0.039	0.021	0.295	0.059	0.181	0.035	0.021	0.186	51.7
1998	0.095	0.054	1.074	0.543	0.994	0.296	0.242	0.839	255.5
1999	0.042	0.011	0.725	0.149	0.316	0.141	0.105	0.043	111.1
2000	0.237	0.005	0.764	0.161	0.813	0.790	0.065	4.354	342.0
2001	0.076	0.018	0.528	0.456	0.487	0.301	0.261	NA	152.9
2002	0.117	0.031	0.241	0.030	0.127	0.058	0.003	0.841	70.9
2003	0.044	0.004	0.248	0.068	0.119	0.019	0.036	0.145	43.9
2004	0.016	0.008	0.205	0.097	0.511	0.228	0.053	0.399	83.3
2005	0.013	0.018	0.315	0.079	0.291	0.154	0.011	0.068	64.5
2006	0.004	0.001	0.213	0.038	0.133	0.020	0.065	0.698	52.9
2007	0.013	0.009	0.185	0.031	0.084	0.058	0.019	0.320	39.5
2008	0.145	0.138	0.281	0.253	0.158	0.139	0.160	0.279	99.2
2009	0.073	0.074	0.194	0.052	0.390	0.291	0.000	0.042	73.5

Area	Northwest	Northeast	Central west	Central east	Southwest	Southeast	$\begin{aligned} & \text { Division } \\ & \text { 3.a } \end{aligned}$	South'Bight	IBTS-0 index
Area $\mathrm{m}^{\mathbf{2}} \times 10^{9}$	83	34	86	102	37	93	31	31	
Year class									no. in 10^{9}
2010	0.025	0.004	0.595	0.063	0.188	0.082	NA	0.096	77.6
2011	0.008	0.001	0.312	0.132	0.214	0.129	0.076	0.059	65.1
2012	0.022	0.003	0.193	0.072	0.144	0.257	0.005	0.195	61.2
2013	0.132	0.151	0.240	0.253	0.389	0.313	0.037	0.213	113.8
2014	0.009	0.006	0.150	0.047	0.038	0.002	0.009	0.038	21.7
2015	0.015	0.015	0.136	0.059	0.083	0.324	0.002	0.927	81.2
2016	0.005	0.001	0.143	0.020	0.082	0.035	0.020	0.196	27.8
2017	0.111	0.001	0.395	0.181	0.397	0.260	0.031	0.019	102.1
2018	0.017	0.023	0.290	0.103	0.112	0.029	0.083	0.144	51.6
2019	0.017	0.002	0.159	0.141	0.166	0.244	0.065	0.066	62.4
2020	0.015	0.005	0.449	0.079	0.328	0.256	0.055	0.304	95.2
2021	0.010	0.002	0.109	0.050	0.251	0.102	0.031	0.412	47.8

Table 2.3.3.2. North Sea herring. Indices of 1-ringers from the IBTS $1^{\text {st }}$ Quarter for the 1995 to 2020 year classes (the data for the 1977 to 1994 year classes can be found in the stock annex). Estimation of the small sized component (possibly Downs herring) in different areas. " North Sea" = total area of sampling minus 3.a.

Year class	Year of sampling	All 1-ringers in total area (IBTS-1 index) (no/hour)	Small<13cm 1ringers in total area (no/hour)	Proportion of small in total area vs. all sizes	Small<13cm 1ringers in North Sea (no/hour)	Proportion of small in North Sea vs. all sizes	Proportion of small in 3.a vs.small in total area
1995	1997	4403	1356	0.31	1089	0.25	0.25
1996	1998	2276	1322	0.58	1399	0.61	0.02
1997	1999	753	152	0.2	149	0.20	0.09
1998	2000	3304	1068	0.32	939	0.28	0.18
1999	2001	2499	328	0.13	307	0.12	0.13
2000	2002	3881	1520	0.39	1436	0.37	0.12
2001	2003	2837	664	0.23	180	0.06	0.75
2002	2004	979	665	0.68	710	0.73	0.01
2003	2005	1015	341	0.34	357	0.35	0.02
2004	2006	900	115	0.13	121	0.13	0.02
2005	2007	1322	303	0.23	304	0.23	0.07
2006	2008	1792	417	0.23	444	0.25	0.01
2007	2009	2339	734	0.31	623	0.27	0.21

Year class	Year of sampling	All 1-ringers in total area (IBTS-1 index) (no/hour)	Small<13cm 1ringers in total area (no/hour)	Proportion of small in total area vs. all sizes	Small<13cm 1ringers in North Sea (no/hour)	Proportion of small in North Sea vs. all sizes	Proportion of small in 3.a vs.small in total area
2008	2010	1206	279	0.23	286	0.24	0.05
2009	2011	2939	1331	0.45	1407	0.48	0.02
2010	2012	1353	279	0.21	288	0.21	0.04
2011	2013	1665	747	0.45	796	0.48	0.01
2012	2014	2615	1297	0.5	1245	0.48	0.11
2013	2015	3918	1808	0.46	1105	0.28	0.43
2014	2016	783	368	0.47	364	0.47	0.08
2015	2017	2396	1306	0.54	1008	0.42	0.28
2016	2018	778	406	0.52	424	0.55	0.03
2017	2019	1543	432	0.28	397	0.26	0.15
2018	2020	1021	168	0.16	150	0.15	0.17
2019	2021	3128	487	0.16	256	0.08	0.51
2020	2022	806	401	0.50	396	0.49	0.08

Table 2.4.1.1. North Sea herring. Mean stock weight-at-age (wr) in the third quarter, in divisions 4.a, 4.b and 3.a. Mean catch weight-at-age for the same quarter and area is included for comparison. AS = acoustic survey, 3Q = catch.

age	0		1		2		3		4		5		6		7		8	
Year	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	HE- RAS	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	HE- RAS	catch	HE- RAS
1996	0.015	0.006	0.018	0.054	0.112	0.130	0.156	0.199	0.188	0.227	0.204	0.234	0.212	0.274	0.261	0.301	0.281	0.327
1997	0.015	0.005	0.044	0.049	0.108	0.123	0.148	0.183	0.195	0.230	0.227	0.237	0.226	0.257	0.235	0.280	0.255	0.310
1998	0.021	0.006	0.051	0.047	0.114	0.116	0.145	0.187	0.183	0.241	0.219	0.264	0.238	0.284	0.247	0.287	0.288	0.308
1999	0.009	0.006	0.045	0.051	0.115	0.116	0.151	0.179	0.171	0.226	0.207	0.256	0.233	0.273	0.245	0.276	0.268	0.278
2000	0.015	0.006	0.033	0.051	0.113	0.116	0.157	0.184	0.179	0.221	0.201	0.248	0.216	0.279	0.246	0.286	0.273	0.284
2001	0.012	0.006	0.048	0.051	0.118	0.122	0.149	0.172	0.177	0.210	0.198	0.233	0.213	0.255	0.238	0.275	0.270	0.274
2002	0.012	0.006	0.037	0.047	0.118	0.128	0.153	0.172	0.170	0.205	0.199	0.228	0.214	0.248	0.228	0.270	0.250	0.287
2003	0.014	0.007	0.037	0.047	0.104	0.123	0.158	0.173	0.174	0.202	0.184	0.222	0.205	0.242	0.222	0.266	0.237	0.285
2004	0.014	0.007	0.036	0.042	0.100	0.119	0.138	0.165	0.183	0.203	0.201	0.223	0.216	0.248	0.228	0.268	0.255	0.280
2005	0.011	0.006	0.044	0.041	0.099	0.118	0.153	0.164	0.166	0.198	0.208	0.225	0.223	0.248	0.240	0.265	0.265	0.285
2006	0.010	0.007	0.049	0.041	0.117	0.126	0.144	0.155	0.172	0.191	0.181	0.216	0.220	0.242	0.237	0.252	0.246	0.270
2007	0.012	0.006	0.064	0.051	0.121	0.128	0.151	0.161	0.163	0.180	0.193	0.207	0.190	0.224	0.223	0.238	0.237	0.256
2008	0.008	0.008	0.054	0.058	0.129	0.130	0.180	0.164	0.181	0.181	0.183	0.195	0.216	0.218	0.216	0.226	0.262	0.256
2009	0.009	0.007	0.051	0.061	0.144	0.137	0.181	0.181	0.216	0.197	0.216	0.210	0.239	0.223	0.243	0.234	0.253	0.256
2010	0.008	0.007	0.057	0.052	0.129	0.142	0.167	0.190	0.191	0.216	0.220	0.224	0.219	0.234	0.216	0.240	0.238	0.261
2011	0.008	0.007	0.041	0.043	0.132	0.146	0.159	0.187	0.183	0.225	0.197	0.240	0.217	0.244	0.221	0.251	0.232	0.257
2012	0.011	0.006	0.046	0.040	0.124	0.138	0.171	0.182	0.185	0.211	0.206	0.233	0.222	0.241	0.239	0.243	0.243	0.253
2013	0.008	0.006	0.047	0.040	0.116	0.136	0.156	0.175	0.198	0.209	0.198	0.221	0.215	0.242	0.233	0.249	0.238	0.252

age	0		1		2		3		4		5		6		7		8	
Year	catch	$\begin{aligned} & \text { HE- } \\ & \text { RAS } \end{aligned}$	catch	HE- RAS														
2014	0.008	0.006	0.052	0.043	0.124	0.129	0.172	0.177	0.186	0.204	0.215	0.216	0.212	0.229	0.226	0.241	0.243	0.247
2015	0.009	0.005	0.026	0.044	0.114	0.127	0.154	0.161	0.188	0.200	0.200	0.212	0.221	0.225	0.217	0.229	0.235	0.239
2016	0.007	0.005	0.027	0.043	0.127	0.121	0.155	0.160	0.180	0.189	0.206	0.216	0.215	0.224	0.231	0.224	0.230	0.234
2017	0.009	0.004	0.038	0.043	0.099	0.111	0.156	0.153	0.173	0.183	0.188	0.207	0.215	0.227	0.220	0.227	0.231	0.229
2018	0.005	0.005	0.039	0.040	0.109	0.101	0.145	0.153	0.184	0.186	0.191	0.215	0.215	0.229	0.234	0.239	0.246	0.247
2019	0.006	0.004	0.040	0.040	0.121	0.099	0.147	0.148	0.169	0.177	0.204	0.209	0.208	0.226	0.220	0.238	0.243	0.254
2020	0.004	0.004	0.071	0.041	0.130	0.107	0.155	0.150	0.171	0.182	0.189	0.217	0.214	0.229	0.219	0.242	0.243	0.264
2021	0.008	0.004	0.040	0.043	0.128	0.117	0.155	0.156	0.166	0.181	0.189	0.210	0.203	0.227	0.219	0.240	0.224	0.255

Table 2.4.2.1. North Sea herring. Percentage maturity at 2, 3, 4, 5, 6 and 7+ ring for autumn spawning herring in the North Sea. The values are derived from the acoustic survey for 1988 to 2021. In the period 1988-2014, maturity of age 5+ were set to 100%.

Year \ Ring	2	3	4	5	6	7+
1988	65.6	87.7	100	100	100	100
1989	78.7	93.9	100	100	100	100
1990	72.6	97.0	100	100	100	100
1991	63.8	98.0	100	100	100	100
1992	51.3	100	100	100	100	100
1993	47.1	62.9	100	100	100	100
1994	72.1	85.8	100	100	100	100
1995	72.6	95.4	100	100	100	100
1996	60.5	97.5	100	100	100	100
1997	64.0	94.2	100	100	100	100
1998	64.0	89.0	100	100	100	100
1999	81.0	91.0	100	100	100	100
2000	66.0	96.0	100	100	100	100
2001	77.0	92.0	100	100	100	100
2002	86.0	97.0	100	100	100	100
2003	43.0	93.0	100	100	100	100
2004	69.8	64.9	100	100	100	100
2005	76.0	97.0	96.0	100	100	100
2006	66.0	88.0	98.0	100	100	100
2007	71.0	92.0	93.0	100	100	100
2008	86.0	98.0	99.0	100	100	100
2009	89.0	100	100	100	100	100
2010	45.0	90.0	100	100	100	100
2011	87.0	84.0	99.0	100	100	100
2012	91.0	99.0	100	100	100	100
2013	83.0	96.0	98.0	100	100	100
2014	85.0	100	100	100	100	100

| Year \Ring | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7 +}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2015 | 70.0 | 90.0 | 96.0 | 98.0 | 99.0 | 100 |
| 2016 | 71.0 | 89.0 | 95.0 | 97.0 | 98.0 | 100 |
| 2017 | 55.0 | 96.0 | 97.0 | 98.0 | 98.0 | 100 |
| 2018 | 37.0 | 91.0 | 98.0 | 100 | 100 | 100 |
| 2020 | 75.0 | 97.0 | 99.0 | 100 | 100 | 100 |
| 2021 | 75.0 | 99.0 | 100 | 100 | 100 | 100 |

Table 2.6.1.1. North Sea herring. Years of duration of survey and years used in the assessment.

Survey	Age range	Years survey has been running	Years used in assessment
LAI (Larvae survey)	SSB	$1972-2021$	$1973-2021$
IBTS 1st Quarter (Trawl survey)	1 wr	$1971-2022$	$1984-2022$
IBTS 3 ${ }^{\text {rd }}$ Quarter (Trawl survey)	$0-5 \mathrm{wr}$	$1991-2021$	$1998-2021$
Acoustic (+trawl)	1 wr	$1995-2021$	
$1984-2021$	$1999-2021$		
IBTSO	0 wr	$1977-2022$	$1992-2022$

Table 2.6.1.2 North Sea herring input data. Maturity at age.

Year	0	1	2	3	4	5	6	7	8
$------------------~$	----	---	--	--	--				
1947	0	0	1	1	1	1	1	1	1
1948	0	0	1	1	1	1	1	1	1
1949	0	0	1	1	1	1	1	1	1
1950	0	0	1	1	1	1	1	1	1
1951	0	0	1	1	1	1	1	1	1
1952	0	0	1	1	1	1	1	1	1
1953	0	0	1	1	1	1	1	1	1
1954	0	0	1	1	1	1	1	1	1
1955	0	0	1	1	1	1	1	1	1
1956	0	0	1	1	1	1	1	1	1
1957	0	0	1	1	1	1	1	1	1
1958	0	0	1	1	1	1	1	1	1
1959	0	0	1	1	1	1	1	1	1
1960	0	0	1	1	1	1	1	1	1
1961	0	0	1	1	1	1	1	1	1
1962	0	0	1	1	1	1	1	1	1
1963	0	0	1	1	1	1	1	1	1
1964	0	0	1	1	1	1	1	1	1
1965	0	0	1	1	1	1	1	1	1
1966	0	0	1	1	1	1	1	1	1
1967	0	0	1	1	1	1	1	1	1
1968	0	0	1	1	1	1	1	1	1
1969	0	0	1	1	1	1	1	1	1
1970	0	0	1	1	1	1	1	1	1
1971	0	0	1	1	1	1	1	1	1
1972	0	0	0.82	1	1	1	1	1	1

1973	0	0	0.82	1	1	1	1	1	1	
1974	0	0	0.82	1	1	1	1	1	1	
1975	0	0	0.82	1	1	1	1	1	1	
1976	0	0	0.82	1	1	1	1	1	1	
1977	0	0	0.82	1	1	1	1	1	1	
1978	0	0	0.82	1	1	1	1	1	1	
1979	0	0	0.82	1	1	1	1	1	1	
1980	0	0	0.82	1	1	1	1	1	1	
1981	0	0	0.82	1	1	1	1	1	1	
1982	0	0	0.82	1	1	1	1	1	1	
1983	0	0	0.82	1	1	1	1	1	1	
1984	0	0	0.82	1	1	1	1	1	1	
1985	0	0	0.7	1	1	1	1	1	1	
1986	0	0	0.75	1	1	1	1	1	1	
1987	0	0	0.8	1	1	1	1	1	1	
1988	0	0	0.85	0.93	1	1	1	1	1	
1989	0	0	0.82	0.94	1	1	1	1	1	
1990	0	0	0.91	0.97	1	1	1	1	1	
1991	0	0	0.86	0.99	1	1	1	1	1	
1992	0	0	0.5	0.99	1	1	1	1	1	
1993	0	0	0.47	0.61	1	1	1	1	1	
1994	0	0	0.73	0.93	1	1	1	1	1	
1995	0	0	0.67	0.95	1	1	1	1	1	
1996	0	0	0.61	0.98	1	1	1	1	1	
1997	0	0	0.64	0.94	1	1	1	1	1	
1998	0	0	0.64	0.89	1	1	1	1	1	
1999	0	0	0.69	0.91	1	1	1	1	1	
2000	0	0	0.67	0.96	1	1	1	1	1	
2001	0	0	0.77	0.92	1	1	1	1	1	
2002	0	0	0.87	0.97	1	1	1	1	1	
2003	0	0	0.43	0.93	1	1	1	1	1	
2004	0	0	0.7	0.65	1	1	1	1	1	
2005	0	0	0.76	0.96	0.96	1	1	1	1	
2006	0	0	0.66	0.88	0.98	1	1	1	1	
2007	0	0	0.71	0.92	0.93	1	1	1	1	
2008	0	0	0.86	0.98	0.99	1	1	1	1	
2009	0	0	0.89	1	1	1	1	1	1	
2010	0	0	0.45	0.9	1	1	1	1	1	
2011	0	0	0.87	0.84	1	1	1	1	1	
2012	0	0	0.91	0.99	1	1	1	1	1	
2013	0	0	0.83	0.96	0.98	1	1	1	1	
2014	0	0	0.85	1	1	1	1	1	1	
2015	0	0	0.7	0.9	0.96	1	1	1	1	
2016	0	0	0.71	0.89	0.95	1	1	1	1	
2017	0	0	0.55	0.96	0.97	1	1	1	1	
2018	0	0	0.37	0.91	0.98	1	1	1	1	
2019	0	0	0.59	0.97	0.99	1	1	1	1	
2020	0	0	0.75	0.98	1	1	1	1	1	
2021	0	0	0.74	0.99	1	1	1	1	1	

Table 2.6.1.3 North Sea herring input data. Natural mortality at age.

Year	0	1	2	3	4	5	6	7	8		
$---~$											
1947	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1948	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1949	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1950	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1951	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1952	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1953	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1954	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1955	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1956	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1957	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1958	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1959	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		
1960	0.712	0.497	0.303	0.273	0.252	0.232	0.222	0.216	0.216		

```
1961}00.712 0.497 0.303 0.273 0.252 0.232 0.222 0.216 0.216
1962}00.712 0.497 0.303 0.273 0.252 0.232 0.222 0.216 0.216
1963}00.712 0.498 0.303 0.273 0.252 0.232 0.222 0.216 0.216
1964}00.712 0.497 0.303 0.273 0.252 0.232 0.222 0.216 0.216 
1965}00.712 0.497 0.303 0.273 0.252 0.232 0.222 0.216 0.216 
1966}0.7120.497 0.303 0.273 0.252 0.232 0.222 0.216 0.216 
1967}00.712 0.498 0.303 0.273 0.252 0.232 0.222 0.216 0.216 
1968}00.713 0.5 0.303 0.273 0.252 0.232 0.221 0.215 0.215 
1969}00.712 0.495 0.302 0.272 0.252 0.232 0.222 0.216 0.216
```



```
1971}00.712 0.498 0.303 0.273 0.252 0.232 0.222 0.216 0.216
```



```
1973}00.715 0.509 0.305 0.274 0.25 0.231 0.219 0.213 0.212
1974
1975}00.71 0.493 0.302 0.273 0.253 0.233 0.223 0.217 0.218
1976}00.712 0.512 0.306 0.275 0.251 0.231 0.219 0.213 0.212 
1977}00.718 0.527 0.31 0.276 0.248 0.228 0.216 0.208 0.207 
1978}00.725 0.541 0.312 0.276 0.245 0.225 0.212 0.203 0.202
```



```
1980}00.74
1981}00.758 0.565 0.313 0.272 0.234 0.215 0.201 0.191 0.187
```



```
1983}0.791 0.569 0.309 0.264 0.225 0.207 0.193 0.184 0.178
1984}00.818 0.566 0.306 0.258 0.22 0.202 0.189 0.18 0.173 
1985}00.839 0.562 0.301 0.252 0.215 0.198 0.185 0.176 0.169
1986}00.849 0.553 0.294 0.244 0.208 0.191 0.18 0.172 0.164
1987}00.856 0.541 0.284 0.233 0.201 0.184 0.174 0.168 0.159 
1988}00.858 0.53 0.277 0.225 0.196 0.179 0.169 0.164 0.155
1989}00.853 0.522 0.274 0.222 0.195 0.178 0.167 0.162 0.152
1990}00.842 0.513 0.272 0.22 0.196 0.178 0.165 0.159 0.151
1991}00.832 0.506 0.271 0.219 0.197 0.178 0.163 0.158 0.15
1992
1993}0.803 0.493 0.277 0.225 0.198 0.18 0.162 0.156 0.15
1994}00.791 0.488 0.28 0.228 0.199 0.181 0.162 0.155 0.15
1995
1996}00.7720.479 0.285 0.229 0.196 0.179 0.16 0.153 0.149
1997}0.7
1998}0.7790.495 0.293 0.235 0.197 0.178 0.161 0.154 0.15
1999}0.787 0.506 0.299 0.239 0.2 0.179 0.163 0.155 0.152
2000
llllllllllll
2002}00.833 0.575 0.326 0.263 0.224 0.196 0.18 0.169 0.164
llllllllll
2004}00.862 0.594 0.338 0.279 0.245 0.216 0.199 0.186 0.178
2005}00.8750.598 0.342 0.284 0.253 0.224 0.207 0.194 0.184
llllllllllll
2007}00.
```



```
2009}00.9
2010}00.9
2011}00.905 0.531 0.315 0.265 0.241 0.227 0.215 0.209 0.2
2012}00.895 0.522 0.31 0.262 0.24 0.226 0.215 0.21 0.202
2013}00.881 0.512 0.306 0.26 0.238 0.225 0.214 0.211 0.203
2014}00.863 0.503 0.302 0.258 0.236 0.225 0.214 0.211 0.203 
2015}00.8
llllllllllll
2017}00.781 0.481 0.291 0.256 0.233 0.223 0.212 0.21 0.204
2018}00.74
2019}00.704 0.469 0.286 0.258 0.235 0.224 0.211 0.209 0.205
2020}00.7700.481 0.292 0.256 0.234 0.224 0.212 0.21 0.204
llllllllllll
```

Table 2.6.1.4 North Sea herring input data. Stock weight at age.


```
2014 0.005667 0.04333 0.1287 0.1767 0.2037 0.2157 0.2287 0.2413 0.2466
2015
2016}00.005 0.04333 0.121 0.1603 0.1887 0.216 0.2243 0.2243 0.2337
2017}0.004167 0.04287 0.1109 0.1532 0.183 0.2071 0.2265 0.2271 0.2292
1018}00.004567 0.03997 0.1013 0.153 0.1858 0.215 0.2292 0.2388 0.2468
2019}00.004 0.04023 0.099 0.1485 0.1774 0.209 0.2261 0.2379 0.2541
2020}00.0041 0.04073 0.1072 0.1495 0.1816 0.2168 0.2291 0.2424 0.2642
llllllllll
```

Table 2.6.1.5 North Sea herring input data. Catch weight at age.

Year	0	2	3	4	5	- 7	8		
1947	0.015	0.05	0.122	0.14	0.156	0.171	0.18	0.19	0.242
1948	0.015	0.05	0.122	0.14	0.156	0.171	0.185	0.197	0.242
1949	0.015	0.05	0.128	0.145	0.161	0.176	0.189	0.201	0.2435
1950	0.015	0.05	0.128	0.151	0.166	0.18	0.193	0.204	0.245
1951	0.015	0.05	0.134	0.157	0.176	0.189	0.201	0.211	0.2475
1952	0.015	0.05	0.137	0.165	0.183	0.199	0.21	0.219	0.251
1953	0.015	0.05	0.137	0.167	0.19	0.205	0.218	0.226	0.254
1954	0.015	0.05	0.139	0.169	0.193	0.211	0.223	0.233	0.2565
1955	0.015	0.05	0.14	0.17	0.195	0.214	0.228	0.238	0.2595
1956	0.015	0.05	0.14	0.172	0.197	0.216	0.231	0.242	0.261
1957	0.015	0.05	0.141	0.173	0.198	0.218	0.233	0.244	0.2625
1958	0.015	0.05	0.141	0.174	0.199	0.219	0.234	0.245	0.2635
1959	0.015	0.05	0.143	0.176	0.201	0.221	0.236	0.247	0.2645
1960	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1961	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1962	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1963	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1964	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1965	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1966	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1967	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1968	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1969	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1970	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1971	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1972	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1973	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1974	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1975	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1976	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1977	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1978	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1979	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1980	0.015	0.05	0.126	0.176	0.211	0.243	0.251	0.267	0.271
1981	0.007	0.049	0.118	0.142	0.189	0.211	0.222	0.267	0.271
1982	0.01	0.059	0.118	0.149	0.179	0.217	0.238	0.265	0.2742
1983	0.01	0.059	0.118	0.149	0.179	0.217	0.238	0.265	0.2745
1984	0.01	0.059	0.118	0.149	0.179	0.217	0.238	0.265	0.2746
1985	0.009	0.036	0.128	0.164	0.194	0.211	0.22	0.258	0.2821
1986	0.006	0.067	0.121	0.153	0.182	0.208	0.221	0.238	0.2572
1987	0.011	0.035	0.099	0.15	0.18	0.211	0.234	0.258	0.2881
1988	0.011	0.055	0.111	0.145	0.174	0.197	0.216	0.237	0.2566
1989	0.017	0.043	0.115	0.153	0.173	0.208	0.231	0.247	0.2631
1990	0.019	0.055	0.114	0.149	0.177	0.193	0.229	0.236	0.2608
1991	0.017	0.058	0.13	0.166	0.184	0.203	0.217	0.235	0.263
1992	0.01	0.053	0.102	0.175	0.189	0.207	0.223	0.237	0.2632
1993	0.01	0.033	0.115	0.145	0.189	0.204	0.228	0.244	0.2735
1994	0.006	0.056	0.13	0.159	0.181	0.214	0.24	0.255	0.2762
1995	0.009	0.042	0.13	0.169	0.198	0.207	0.243	0.247	0.2809
1996	0.015	0.018	0.112	0.156	0.188	0.204	0.212	0.261	0.2815
1997	0.015	0.044	0.108	0.148	0.195	0.227	0.226	0.235	0.2549
1998	0.021	0.051	0.114	0.145	0.183	0.219	0.238	0.247	0.2879
1999	0.009	0.045	0.115	0.151	0.171	0.207	0.233	0.245	0.2677
2000	0.015	0.033	0.113	0.157	0.179	0.201	0.216	0.246	0.2731
2001	0.012	0.048	0.118	0.149	0.177	0.198	0.213	0.238	0.2697

```
2002}00.012 0.037 0.118 0.153 0.17 0.199 0.214 0.228 0.2504
2003}00.014 0.037 0.104 0.158 0.174 0.184 0.205 0.222 0.2366 
2004}00.014 0.036 0.1 0.138 0.183 0.201 0.216 0.228 0.2545
2005}00.011 0.044 0.099 0.153 0.166 0.208 0.223 0.24 0.2654
2006}00.01 0.049 0.117 0.144 0.172 0.181 0.22 0.237 0.246
2007}00.0124 0.0638 0.1214 0.1513 0.1634 0.1933 0.19 0.2232 0.2375
2008}00.0079 0.0535 0.1288 0.1796 0.1812 0.1832 0.2157 0.2161 0.2621
2009}00.0094 0.0514 0.144 0.1811 0.2158 0.2162 0.239 0.2428 0.2533
2010}00.007
2011}00.008 0.0413 0.1317 0.1593 0.1831 0.197 0.2167 0.2211 0.2319 
2012 0.0106 0.0463 0.1243 0.1706 0.1854 0.2058 0.2215 0.2387 0.2427
2013}00.0077 0.0468 0.1162 0.1563 0.1977 0.198 0.2154 0.2334 0.2378
2014}00.007
2015}00.008
12016}00.0071 0.0265 0.1267 0.1549 0.1803 0.2059 0.2151 0.2313 0.2299
2017}00.009 0.038 0.099 0.156 0.173 0.188 0.215 0.22 0.2305
2018}00.0054 0.0394 0.1085 0.1451 0.1838 0.1914 0.2151 0.2342 0.2456
2019}00.0064 0.0395 0.121 0.1465 0.1688 0.2036 0.2081 0.2195 0.2435
2020}00.004 0.0706 0.1303 0.1553 0.1707 0.1888 0.2135 0.219 0.2435
2021
```

Table 2.6.1.6 North Sea herring input data. Catch at age.

1990	1302800	3020000	899300	779100	861000	387500	80200	54400	40700
1991	2386600	2138900	1132800	556700	548900	501200	205300	39300	38600
1992	10331300	2303100	1284900	442700	361500	360500	375600	152400	62500
1993	10265400	3826800	1176300	609000	305500	215600	226000	188000	129000
1994	4498900	1785200	1783200	489100	347600	109000	91800	76400	116600
1995	7438469	1664874	1444061	816703	231794	118536	55128	41409	98200
1996	2311226	1606393	642084	525601	172099	57586	22534	9264	21143
1997	431175	479702	687920	446909	284920	109178	31389	11832	24467
1998	259526	977680	1220105	537932	276333	175817	88927	15232	20550
1999	1566349	303520	616354	1058716	294066	135648	69299	27998	12228
2000	1105085	1171677	622853	463170	646814	213466	82481	35706	17087
2001	1832691	614469	842635	485628	278884	321743	90918	38252	20602
2002	730279	837557	579592	970577	292205	140701	174570	48908	43322
2003	369074	617021	1221992	529386	835552	244780	107751	123291	46715
2004	715597	206648	447918	1366155	543376	753231	169324	104945	97142
2005	1015554	715547	355453	485746	1318647	479961	576154	115212	146808
2006	878637	222111	401087	310602	464620	997782	252150	247042	106412
2007	621005	235553	219115	417452	285746	309454	629187	147830	156750
2008	798284	235022	331772	184771	199069	137529	118349	215542	117258
2009	650043	175923	259434	106738	93321	86137	37951	53130	143131
2010	574895	280728	293887	236804	126241	83893	61542	33305	113675
2011	778927	159504	367820	275016	218711	130127	62938	52081	125734
2012	773241	284906	455259	673465	404265	306234	152577	104461	205427
2013	461571	413000	324920	485185	571269	422765	327213	145330	313638
2014	1388685	370590	382990	386131	616563	487582	284562	191729	214513
2015	538228	394878	551802	247555	282813	461041	432034	271280	337811
2016	1583568	109135	625483	818585	293372	280451	367844	307347	359076
2017	462148	209356	108706	1079854	837770	222790	145511	175533	221296
2018	1337404	73260	206232	200527	1178604	848961	223637	144999	332482
2019	649197	172202	105505	307520	198443	730016	528327	133409	217686
2020	2127371	112088	549256	215250	291883	145821	515402	349435	176646
2021	534073	112447	407388	419770	179190	265946	118167	320792	291104

Table 2.6.1.7 North Sea herring input data. HERAS survey index at age.

$\begin{array}{lllllllll}2020 & 7130000 & 2736000 & 1156000 & 1371000 & 1674000 & 1666000 & 504000 & 352000 \\ 2021 & 5196000 & 2803000 & 1800000 & 773000 & 877000 & 915000 & 1021000 & 596000\end{array}$

Table 2.6.1.8 North Sea herring input data. IBTSO survey index at age.
Year Value
1992163
1993195.8
1994155.7
1995171.2
1996105.6
1997133.5
199851.72
1999255.2
2000110.6
2001341.5
2002150.7
200372.44
200443.11
200568.73
200667.28
200750.76
200839.49

2009 92.36
201056.53
201177.62
201265.1
201361.55
2014113.7
201521.76
201681.71
201727.83
2018102.2
201951.63
202062.39
202195.24
202247.8

Table 2.6.1.9 North Sea herring input data. IBTSQ1 survey index at age. This index is normalized Using the data from DATRAS following the method described in the stock annex

Year Value
19841052162
19851438636
19861654723
19873131778
19881487032
19891590320
1990748258
19911072699
19921115786
19931818610
19942693135
19952102680
19961232257
1997810884
19981446955
1999704653
20002045844
20011567634
20021728823
20031327143
2004762760
2005905552
2006725340
2007859629
2008713383
2009705677
2010856535
20111493897
2012780486
2013488298
20141620037
20151898773
2016547781
20171340025
2018667212
2019958262
20201128416
20211210091
2022630186

Table 2.6.1.10 North Sea herring input data. IBTSQ3 survey index at age. This index is normalized Using the data from DATRAS following the method described in the stock annex

Year	01	12	34	5		
199	727669	463847	311107	92832	24483	11615
1999	4630197	296398	208814	124016	51023	18470
2000	1766609	771168	264562	119618	70400	18078
2001	1866630	321968	221010	95618	42999	26435
2002	2218582	1964691	441635	348862	82343	329
2003	894458	478345	562350	150629	113711	19506
004	2134639	393302	288331	424585	97809	5175
005	1081092	387909	113423	83421	99818	31971
2006	1018646	292225	191814	78830	46527	539
2007	2221506	137614	94241	101137	50850	31366
2008	567239	155700	114972	60800	36224	19573
2009	2799984	204902	95646	64972	27949	12674
2010	1333303	512783	176419	83611	37534	15920
2011	824623	324510	176616	100918	51010	22176
2012	769386	212991	91167	68462	39084	22588
2013	1803294	268269	142736	125246	86498	4066
2014	7408163	446599	195329	90049	81147	46104
2015	517000	734980	353384	128905	68406	46758
2016	1700293	176710	368183	214059	69038	43720
2017	855004	280153	76755	198683	129606	41777
2018	1918412	326201	113774	48347	86827	39799
2019	1441818	136877	65129	41782	23046	36679
2020	1013689	316659	263582	74298	65070	26556
2021	771966	279941	106525	71502	24587	17024

Table 2.6.1.11 North Sea herring input data. LAI index from the IHLS larvae survey for the Southern North Sea component (Downs). The columns correspond to survey time windows: $0=16-31 \mathrm{Dec}, 1=01-15 \mathrm{Jan}, 2=16-31 \mathrm{Jan}$.

Year	0	1	2

1972	2	46	0
1973	-1	-1	1
1974	-1	10	-1
1975	1	2	0
1976	-1	3	-1
1977	1	0	-1
1978	33	3	-1
1979	-1	111	89
1980	247	129	40
1981	1456	-1	70
1982	710	275	54
1983	71	243	58
1984	523	185	39
1985	1851	407	38
1986	780	123	18
1987	934	297	146
1988	1679	162	112
1989	1514	2120	512
1990	2552	1204	-1
1991	4400	873	-1
1992	176	1616	-1
1993	1358	1103	-1
1994	537	595	-1
1995	74	230	164
1996	337	675	691
1			

1997	9374	918	355
1998	1522	953	170
1999	804	1260	344
2000	7346	338	106
2001	971	5531	909
2002	2008	260	925
2003	12048	3109	1116
2004	6528	2052	4175
2005	498	3999	4822
2006	10858	2700	2106
2007	4443	2439	3854
2008	8426	2317	4008
2009	15295	14712	1689
2010	7493	13230	8073
2011	5461	6160	1215
2012	22768	11103	3285
2013	5	9314	2957
2014	-1	-1	1851
2015	2011	1200	645
2016	20710	1442	1545
2017	10553	5880	-1
2018	1140	-1	-1
2019	14082	5258	-1
2020	4077	9704	-1
2021	8899	8764	-1

Table 2.6.1.12 North Sea herring input data. LAI index from the IHLS larvae survey for the Central North Sea component (Banks). The columns correspond to survey time windows in: 0=01-15Sep, 1=16-30Sep, 2=01-15Oct, 3=16-31Oct.

Year	0		23	
1972	165	88	1342	22
1973	492	830	1213	152
1974	81	-1 11	$1184-1$	-1
1975	-1	90	77	6
1976	64	108	010	10
1977	520	262	89	3
1978	1406	81	269	2
1979	662	131	507	7
1980	317	188	913	
1981	903	235	119	0
1982	86	641	107723	23
1983	1459	281	63-1	-1
1984	688	2404	824	433
1985	130	13039	1794	215
1986	1611	6112	2188	86
1987	799	4927	1992	2113
1988	5533	3808	81960	60206
1989	1442	5010	02364	64
1990	19965	1239	39975	$75-1$
1991	4823	2110	101249	-1
1992	10	165	$163-1$	-1
1993	-1	685	$85-1$	-1
1994	-1	1464	$44-1$	-1
1995	-1	-1 4	$43-1$	
1996	-1	564	-1 -1	
1997	-1	-1 -1	-1 -1	
1998	205	66	-1 -1	-1
1999	-1	134	$181-1$	-1
2000	-1	376	$\begin{array}{lll}-1 & -1\end{array}$	

2001	-1	1604	-1	-1
2002	-1	-1	3291	-1
2003	-1	12018	3277	-1
2004	-1	5545	-1	-1
2005	-1	5614	-1	-1
2006	-1	2259	-1	-1
2007	-1	291	-1	-1
2008	-1	11201	-1	-1
2009	-1	4219	-1	-1
2010	-1	2317	-1	-1
2011	-1	17766	-1	-1
2012	-1	517	-1	-1
2013	-1	7354	-1	-1
2014	-1	1149	-1	-1
2015	-1	3424	-1	-1
2016	-1	3288	-1	-1
2017	-1	3965	-1	-1
2018	-1	1509	-1	-1
2019	-1	10605	-1	-1
2020	-1	7663	-1	-1
2021	-1	3282	-1	-1

Table 2.6.1.13 North Sea herring input data. LAI index from the IHLS larvae survey for the Bunchan component. The columns corresponds to survey time windows in: $0=01-15 \mathrm{Sep}, 1=16-30 \mathrm{Sep}$.

Year	0	1
-------------1		
1972	30	0
1973	3	4
1974	101	284
1975	312	-1
1976	0	1
1977	124	32
1978	-1	162
1979	197	10
1980	21	1
1981	3	12
1982	340	257
1983	3647	768
1984	2327	1853
1985	2521	1812
1986	3278	341
1987	2551	670
1988	6812	5248
1989	5879	692
1990	4590	2045
1991	-1	2032
1992	-1	822
1993	-1	174
1994	-1	-1
1995	-1	-1
1996	-1	184
1997	-1	23
1998	-1	1490
1999	-1	185
2000	28	155
2001	-1	164
2002	-1	1038
2003	-1	2263
2004	-1	3884
2005	-1	1364
2006	-1	280
2007	-1	1304
2008	-1	533
2009	-1	4629
2010	-1	1493
2011	-1	2839
2012	-1	5856

2013	-1	8618
2014	-1	5033
2015	-1	3496
2016	-1	3872
2017	-1	5833
2018	-1	1740
2019	5654	3794
2020	-1	3418
2021	-1	1413

Table 2.6.1.14 North Sea herring input data. LAI index from the IHLS larvae survey for the Orkney/Shetland component. The columns correspond to survey time windows in: $\mathbf{0 = 0 1 - 1 5 S e p , 1 = 1 6 - 3 0 S e p . ~}$

Year	0	1

1972	1133	4583
1973	2029	822
1974	758	421
1975	371	50
1976	545	81
1977	1133	221
1978	3047	50
1979	2882	2362
1980	3534	720
1981	3667	277
1982	2353	1116
1983	2579	812
1984	1795	1912
1985	5632	3432
1986	3529	1842
1987	7409	1848
1988	7538	8832
1989	11477	5725
1990	-1	10144
1991	1021	2397
1992	189	4917
1993	-1	66
1994	26	1179
1995	-1	8688
1996	-1	809
1997	-1	3611
1998	-1	8528
1999	-1	4064
2000	-1	3972
2001	-1	11918
2002	-1	6669
2003	-1	3199
2004	-1	7055
2005	-1	3380
2006	6311	2312
2007	-1	1753
2008	4978	6875
2010	-1	7543
-1	2362	
1	3831	

2012	-1	19552
2013	-1	21282
2014	-1	6604
2015	-1	9631
2016	-1	-1
2017	-1	-1
2018	-1	102
2019	2488	-1
2020	-1	3208
2021	-1	6651

Table 2.6.2.1 North Sea herring single fleet assessment. observation variance per data source and at age.
fleet age value CV lbnd ubnd

catch unique	0	0.426	0.1286	0.3311	0.5482
catch unique	1	0.426	0.1286	0.3311	0.5482
catch unique	2	0.1285	0.1601	0.09391	0.1759
catch unique	3	0.1285	0.1601	0.09391	0.1759
catch unique	4	0.1285	0.1601	0.09391	0.1759
catch unique	5	0.1285	0.1601	0.09391	0.1759
catch unique	6	0.1285	0.1601	0.09391	0.1759
catch unique	7	0.1911	0.1889	0.132	0.2768
catch unique	8	0.1911	0.1889	0.132	0.2768
HERAS	1	0.468	0.1516	0.3477	0.6299
HERAS	2	0.2597	0.1486	0.1941	0.3475
HERAS	3	0.1579	0.1908	0.1086	0.2294
HERAS	4	0.2202	0.1021	0.1803	0.269
HERAS	5	0.2202	0.1021	0.1803	0.269
HERAS	6	0.2202	0.1021	0.1803	0.269
HERAS	7	0.2925	0.126	0.2285	0.3745
HERAS	8	0.2925	0.126	0.2285	0.3745
IBTS-Q1	1	0.282	0.1482	0.2109	0.3771
IBTSO	0	0.348	0.163	0.2529	0.479
IBTS-Q3	0	0.477	0.1333	0.3673	0.6194
IBTS-Q3	1	0.477	0.1333	0.3673	0.6194
IBTS-Q3	2	0.3176	0.09655	0.2628	0.3837
IBTS-Q3	3	0.3176	0.09655	0.2628	0.3837
IBTS-Q3	4	0.3176	0.09655	0.2628	0.3837
IBTS-Q3	5	0.3176	0.09655	0.2628	0.3837
LAI-ORSH	0	1.183	0.04349	1.087	1.289
LAI-BUN	0	1.183	0.04349	1.087	1.289
LAI-CNS	0	1.183	0.04349	1.087	1.289
LAI-SNS	0	1.183	0.04349	1.087	1.289

Table 2.6.2.2 North Sea herring single fleet assessment. Catchabilities at age.

fleet ag		value	CV lb	lbnd ubnd	
HERAS	1	0.968	0.0667	0.8494	1.103
HERAS	2	0.968	0.0667	0.8494	1.103
HERAS	3	1.090	0.05781	0.973	1.221
HERAS	4	1.090	0.05781	0.973	1.221
HERAS	5	1.090	0.05781	0.973	1.221
HERAS	6	1.090	0.05781	0.973	1.221
HERAS	7	1.090	0.05781	0.973	1.221
HERAS	8	1.090	0.05781	0.973	1.221
IBTS-Q1	1	0.1052	0.06811	0.09205	0.1202
IBTSO	03	3.346e-06	0.08816	2.815e-06	3.978e-06
IBTS-Q3	0	0.09625	0.1183	0.07633	0.1214
IBTS-Q3	1	0.04721	0.1143	0.03773	0.05907
IBTS-Q3	2	0.0414	0.08635	0.03496	0.04904
IBTS-Q3	3	0.03787	0.08574	0.03201	0.0448
IBTS-Q3	4	0.03189	0.08713	0.02688	0.03782
IBTS-Q3	5	0.02489	0.08829	0.02094	0.02959
LAI-ORSH	0	0.01649	90.1076	0.01335	0.02036
LAI-BUN	0	0.01649	0.1076	0.01335	0.02036
LAI-CNS	0	0.01649	0.1076	0.01335	0.02036
LAI-SNS	0	0.01649	0.1076	0.01335	0.02036

Table 2.6.2.3 North Sea herring single fleet assessment. Numbers at age.

	57	26274204	8706425		1547580	778002			
	37	18959787	10050459	4592095	1338574	807741	390630		
1989	2	12888931	6934775	5554904	2664252		404046	194334	90504
1990	27		44		3642063	15	376025		163601
199	29	105	4149228			2162410	885567		
1992	$5.2 \mathrm{e}+07$	028	450	1795	133	134	1302252	525554	246915
	5468	16674	3745112	01	945253		744835	42	408663
	289								
	18							131883	
1999	56283		5546	5401	16	7600	4392	228270	152
	395	224	54	2934597	3177196	104	76998	272387	
	680		1125	354253	1718236	178252	557881	281973	
200	356	29	7893	8118569			08	325320	
	20	13					574388		
	204			3854986	6490639	1774794	61	271667	408701
	20				3997	4119341	865663	725118	284594
	24			2900	1556	1374907	231	447827	466839
	21	868		2108	,		8720241	1481509	
	354	85	5	2615	1422456	1132023	679065	634139	1623528
	27								
	2440		6649073		246	12	720823		
	2266				2625737		041		192615
	30	84	45	408	343	19	119		
	486	136			32				
	130	19	95						
	235	5086	1169	68	18	12	68489	6948	715163
	1415	86		8319615	81	1230894	38039	5	592739
2018	2412		4172	1916534	932	00924	808623	27	91
2019	21552	9393	2451	2687129	430	3721252	2062891	4361	575063
2020	233	88	56	1583206	181	104	2261921	10647	
2021	18346	9669912	4556242	2793510	1035442	1208272	711464	1233519	851830
2022	1661967	7202844	5519567	2894602	168	618927	712826	430366	1067022

Table 2.6.2.4 North Sea herring single fleet assessment. Harvest at age.

Year	0	1	2	3	4	5	6	7	8

1947	0.0001206	0.001042	0.03891	0.09561	0.1111	0.1482	0.2434	0.2704	0.2704
1948	$9.736 \mathrm{e}-05$	0.0008166	0.03313	0.08715	0.1057	0.1398	0.2099	0.2397	0.2397
1949	0.0002424	0.002305	0.04996	0.1097	0.1258	0.1592	0.2562	0.3052	0.3052
1950	0.0005909	0.006347	0.07413	0.1365	0.1486	0.1642	0.2185	0.2374	0.2374
1951	0.001797	0.02248	0.1299	0.2017	0.2129	0.2094	0.2351	0.2272	0.2272
1952	0.003093	0.04168	0.1607	0.211	0.2196	0.2257	0.2829	0.3073	0.3073
1953	0.004633	0.06601	0.1906	0.2331	0.2279	0.2338	0.2827	0.2987	0.2987
1954	0.006567	0.1009	0.2341	0.2751	0.2575	0.272	0.3645	0.3791	0.3791
1955	0.007049	0.1204	0.2509	0.2664	0.2351	0.24	0.2699	0.2344	0.2344
1956	0.007242	0.1352	0.2753	0.2687	0.2291	0.2312	0.2458	0.2389	0.2389
1957	0.008021	0.1485	0.286	0.2765	0.2419	0.2609	0.2859	0.2725	0.2725
1958	0.008706	0.1502	0.2943	0.2765	0.2306	0.2369	0.204	0.173	0.173
1959	0.01471	0.2124	0.3497	0.3145	0.27	0.2705	0.291	0.2882	0.2882
1960	0.01674	0.191	0.3089	0.2577	0.215	0.2119	0.2385	0.2688	0.2688
1961	0.01917	0.1963	0.3272	0.294	0.2545	0.2406	0.2528	0.2375	0.2375
1962	0.01236	0.131	0.2748	0.3155	0.3005	0.306	0.3768	0.3493	0.3493
1963	0.01233	0.1166	0.2353	0.2256	0.1804	0.1694	0.131	0.144	0.144
1964	0.01852	0.1941	0.3409	0.3404	0.288	0.2733	0.2255	0.2171	0.2171
1965	0.02425	0.2885	0.5223	0.5824	0.5233	0.5198	0.5044	0.5123	0.5123
1966	0.0245	0.2534	0.4919	0.5609	0.4967	0.5119	0.4133	0.5122	0.5122
1967	0.02927	0.2897	0.5693	0.7359	0.6712	0.7091	0.7666	0.9543	0.9543
1968	0.04943	0.535	0.9886	1.287	1.002	0.9658	1.153	1.216	1.216
1969	0.02798	0.2983	0.6933	0.8832	0.8042	0.8527	1.191	1.068	1.068
1970	0.04683	0.4224	0.8143	1.019	0.9319	0.8556	1.178	0.9108	0.9108
1971	0.06892	0.5655	0.8859	1.088	1.073	1.133	2.916	1.722	1.722
1972	0.0689	0.4572	0.6979	0.7291	0.6012	0.5316	0.5386	0.318	0.318

Table 2.6.2.5 North Sea herring single fleet assessment. Analytical retrospective (Mohn's Rho).

year	ssb	fbar	rec
$------------------------------~$			
2011	12.91	-14.32	14.82
2012	22.71	-29.56	26.8
2013	20.77	-27.18	18.02
2014	13.21	-16.09	5.518
2015	11.72	-12.95	3.548
2016	10.13	-10.44	-20.31
2017	18.29	-25.61	-4.868
2018	11.12	-13.43	-13.14
2019	4.783	-7.027	-12.93
2020	-0.4952	-0.4827	-10.37
2021	0	0	0
av_5y	7.305	-9.498	-10.27

Table 2.6.2.6 North Sea herring single fleet assessment. Assessment summary.

Year Rec Rec_lo Rec_hi TSB TSB_lo TSB_hi SSB SSB_lo SSB_hi Catch Catch_lo Catch_hi Fbar Fbar_lo Fbar_hi Landings SOP
$\begin{array}{lllllllllllllllllll}1947 & 34933554 & 19714707 & 61900650 & 8576788 & 6512605 & 11295219 & 5285579 & 3810441 & 7331788 & 851394 & 730285 & 992587 & 0.1275 & 0.08932 & 0.1819 & 581760 & 1.461\end{array}$ $\begin{array}{lllllllllllllllllllll}1948 & 33243309 & 19786422 & 55852320 & 7388921 & 5652180 & 9659309 & 4498149 & 3272582 & 6182684 & 660189 & 575156 & 757795 & 0.1151 & 0.08188 & 0.1619 & 502100 & 1.333\end{array}$ $\begin{array}{lllllllllllllllllllll}1949 & 27876772 & 16764967 & 46353471 & 6810234 & 5282618 & 8779603 & 4068639 & 2993728 & 5529503 & 724543 & 631895 & 830775 & 0.1402 & 0.1008 & 0.1949 & 508500 & 1.45\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}1950 & 39549436 & 24255781 & 64485983 & 6431334 & 5067687 & 8161919 & 3813584 & 2861275 & 5082848 & 648230 & 576651 & 728695 & 0.1484 & 0.1095 & 0.2012 & 491700 & 1.307\end{array}$ $\begin{array}{lllllllllllllllllllllll}1951 & 38332357 & 23699211 & 6.2 e+07 & 6287798 & 5037726 & 7848067 & 3376462 & 2565481 & 4443804 & 775407 & 694440 & 865815 & 0.1978 & 0.1497 & 0.2613 & 600400 & 1.324\end{array}$ $\begin{array}{llllllllllllllllllllllll}1952 & 38183068 & 23776916 & 61317735 & 6040922 & 4875702 & 7484612 & 3193191 & 2444769 & 4170729 & 835136 & 750997 & 928701 & 0.22 & 0.1673 & 0.2893 & 664400 & 1.272\end{array}$ $\begin{array}{lllllllllllllllllllllllllll} \\ 1953 & 43326920 & 27815630 & 67488027 & 5816252 & 4715276 & 7174296 & 2960946 & 2271310 & 3859977 & 836261 & 751752 & 930269 & 0.2336 & 0.1785 & 0.3059 & 698500 & 1.198\end{array}$ $\begin{array}{llllllllllllllllllllll}1954 & 40294149 & 25958593 & 62546474 & 5670449 & 4611746 & 6972194 & 2705410 & 2062689 & 3548400 & 948972 & 847912 & 1062077 & 0.2806 & 0.213 & 0.3697 & 762900 & 1.251\end{array}$ $\begin{array}{llllllllllllllllllllllll}1955 & 34319467 & 22244721 & 52948552 & 5414280 & 4398895 & 6664042 & 2715493 & 2080562 & 3544188 & 844032 & 747356 & 953214 & 0.2525 & 0.1922 & 0.3316 & 806400 & 1.06\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}1956 & 25365753 & 16429985 & 39161412 & 5052878 & 4117322 & 6201015 & 2622714 & 2013775 & 3415790 & 832719 & 737944 & 939667 & 0.25 & 0.1914 & 0.3266 & 675200 & 1.271\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1957 & 57941798 & 37216611 & 90208427 & 4947768 & 4044996 & 6052021 & 2376734 & 1824592 & 3095960 & 785195 & 700322 & 880352 & 0.2702 & 0.2065 & 0.3536 & 682900 & 1.158\end{array}$ $\begin{array}{llllllllllllllllllllllll}1958 & 24823836 & 16214946 & 3.8 e+07 & 4951743 & 4030397 & 6083707 & 2017862 & 1550502 & 2626096 & 733374 & 623420 & 862722 & 0.2485 & 0.1916 & 0.3223 & 670500 & 1.167\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}1959 & 28315691 & 18005602 & 44529385 & 5522135 & 4541749 & 6714148 & 2920802 & 2258668 & 3777042 & 1166274 & 1002624 & 1356635 & 0.2991 & 0.2311 & 0.3872 & 784500 & 1.519\end{array}$

 $\begin{array}{lllllllllllllllllll}1962 & 28426460 & 18682408 & 43252649 & 4467036 & 3710703 & 5377529 & 1768353 & 1374072 & 2275770 & 727198 & 629814 & 839640 & 0.3147 & 0.2482 & 0.3991 & 627800 & 1.171\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1963 & 34277972 & 22650190 & 51875033 & 5164800 & 4320178 & 6174551 & 2784064 & 2229825 & 3476064 & 595439 & 509533 & 695828 & 0.1884 & 0.1521 & 0.2333 & 716000 & 0.8602\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}1964 & 34446126 & 22907288 & 51797295 & 5109984 & 4419237 & 5908697 & 2515254 & 2081115 & 3039959 & 902315 & 783335 & 1039368 & 0.2936 & 0.2443 & 0.3529 & 871200 & 1.066\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}1965 & 17177153 & 11414094 & 25850024 & 4607510 & 4067501 & 5219213 & 1989648 & 1675745 & 2362351 & 1299992 & 1140647 & 1481596 & 0.5304 & 0.4485 & 0.6274 & 1168800 & 1.15\end{array}$ $\begin{array}{lllllllllllllllllllllll}1966 & 18451668 & 12338825 & 27592908 & 3457613 & 3065711 & 3899615 & 1592304 & 1351658 & 1875794 & 933131 & 828545 & 1050920 & 0.4949 & 0.4219 & 0.5806 & 895500 & 1.071\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1967 & 25572686 & 17013798 & 38437171 & 2678503 & 2387164 & 3005398 & 957998 & 822337 & 1116038 & 836664 & 742667 & 942559 & 0.6904 & 0.5973 & 0.7981 & 695500 & 1.176\end{array}$ $\begin{array}{llllllllllllllllllllll}1968 & 21982231 & 14748061 & 32764882 & 2266832 & 1989204 & 2583208 & 523533 & 448185 & 611548 & 906941 & 774428 & 1062128 & 1.079 & 0.9505 & 1.225 & 717800 & 1.255\end{array}$ $\begin{array}{llllllllllllllllllll}1969 & 12706227 & 8408837 & 19199824 & 1688584 & 1457715 & 1956018 & 478525 & 392552 & 583327 & 503434 & 427093 & 593421 & 0.8848 & 0.7722 & 1.014 & 546700 & 0.9674\end{array}$ $\begin{array}{llllllllllllllllllll}1970 & 21921266 & 14512163 & 33113043 & 1660625 & 1440182 & 1914810 & 455974 & 373764 & 556266 & 548051 & 468827 & 640661 & 0.9598 & 0.8427 & 1.093 & 563100 & 0.9657\end{array}$ $\begin{array}{lllllllllllllllllllllll}1971 & 17176447 & 11500502 & 25653692 & 1468756 & 1248833 & 1727408 & 286537 & 236666 & 346916 & 525590 & 424540 & 650693 & 1.419 & 1.256 & 1.604 & 520100 & 1.075\end{array}$ $\begin{array}{llllllllllllllllllll}1972 & 12632049 & 8396307 & 1.9 e+07 & 1321327 & 1133850 & 1539802 & 328789 & 271220 & 398579 & 392358 & 317543 & 484799 & 0.6197 & 0.5359 & 0.7166 & 497500 & 0.9197\end{array}$ $\begin{array}{lllllllllllllllllllll}1973 & 6847350 & 4564992 & 10270819 & 1105924 & 966310 & 1265710 & 279135 & 232988 & 334422 & 444151 & 371972 & 530336 & 0.9461 & 0.8306 & 1.078 & 484000 & 0.9575\end{array}$ $\begin{array}{lllllllllllllllllll}1974 & 10823529 & 7100393 & 16498915 & 776456 & 674870 & 893334 & 191486 & 160775 & 228064 & 271535 & 232284 & 317417 & 0.9044 & 0.7914 & 1.034 & 275100 & 0.968\end{array}$ $\begin{array}{llllllllllllllllllllllll}1975 & 2561527 & 1667370 & 3935192 & 611797 & 511176 & 732223 & 105622 & 87307 & 127779 & 269111 & 213655 & 338960 & 1.189 & 1.025 & 1.379 & 312800 & 0.9343\end{array}$ $\begin{array}{llllllllllllllllllll}1976 & 3325786 & 2097481 & 5273397 & 450493 & 375936 & 539836 & 143885 & 109186 & 189611 & 158173 & 133100 & 187968 & 0.8738 & 0.6841 & 1.116 & 174800 & 0.953\end{array}$ $\begin{array}{lllllllllllllllllll}1977 & 4383451 & 2700203 & 7116001 & 317785 & 250486 & 403165 & 109516 & 79724 & 150441 & 51938 & 43857 & 61509 & 0.3322 & 0.2424 & 0.4553 & 46000 & 1.198\end{array}$ $\begin{array}{lllllllllllllllllllll}1978 & 4276395 & 2606804 & 7015316 & 377528 & 289078 & 493041 & 136468 & 100197 & 185870 & 45596 & 26303 & 79039 & 0.2279 & 0.143 & 0.3632 & 11000\end{array}$ $\begin{array}{lllllllllllllllllllllll}1979 & 7834683 & 4951098 & 12397706 & 496249 & 394135 & 624820 & 186007 & 142742 & 242387 & 59108 & 33509 & 104261 & 0.1877 & 0.1165 & 0.3023 & 25100\end{array}$ $\begin{array}{llllllllllllllllllllll}1980 & 12618730 & 8456379 & 18829852 & 667953 & 548659 & 813183 & 209548 & 167415 & 262285 & 80070 & 62695 & 102261 & 0.1661 & 0.1317 & 0.2096 & 70764 & 1.094\end{array}$ $\begin{array}{llllllllllllllllllllll}1981 & 27336674 & 18395329 & 40624103 & 1090375 & 891211 & 1334047 & 269982 & 216354 & 336903 & 147151 & 113020 & 191589 & 0.2524 & 0.2014 & 0.3161 & 174879 & 1.008\end{array}$ $\begin{array}{llllllllllllllllll}1982 & 46487835 & 31348781 & 68937891 & 1706265 & 1384933 & 2102151 & 383091 & 310940 & 471984 & 238674 & 173599 & 328141 & 0.192 & 0.1558 & 0.2366 & 275079 & 0.9786\end{array}$ $\begin{array}{llllllllllllllllllll}1983 & 46119251 & 31793569 & 66899860 & 2347934 & 1949408 & 2827931 & 547774 & 447921 & 669888 & 383898 & 285267 & 516632 & 0.271 & 0.2234 & 0.3287 & 387202 & 1.077\end{array}$ $\begin{array}{lllllllllllllllllllll}1984 & 46255876 & 31962845 & 66940414 & 3114638 & 2648438 & 3662903 & 901656 & 736690 & 1103562 & 477340 & 386744 & 589158 & 0.3542 & 0.2949 & 0.4253 & 428631 & 1.054\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1985 & 55006798 & 37917617 & 79797942 & 3548570 & 3047802 & 4131616 & 989672 & 817413 & 1198233 & 636843 & 541921 & 748392 & 0.4517 & 0.3769 & 0.5412 & 613780 & 1.042\end{array}$ $\begin{array}{llllllllllllllllllllllll}1986 & 66844177 & 45922405 & 97297692 & 3955160 & 3376781 & 4632604 & 1029021 & 855136 & 1238263 & 716702 & 577083 & 890100 & 0.4171 & 0.3477 & 0.5003 & 671488 & 1.137\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}1987 & 57661607 & 39673313 & 83805981 & 3942296 & 3392562 & 4581111 & 1207748 & 1004741 & 1451771 & 764493 & 627288 & 931709 & 0.3962 & 0.3319 & 0.4728 & 792058 & 1.017\end{array}$
$\begin{array}{llllllllllllllllllllll}1988 & 37652038 & 25974716 & 54579076 & 3826700 & 3332815 & 4393772 & 1541445 & 1287040 & 1846136 & 879558 & 723253 & 1069643 & 0.3824 & 0.3223 & 0.4539 & 887686 & 1.164\end{array}$ $\begin{array}{llllllllllllllllllllllll}1989 & 29611643 & 20436111 & 42906861 & 3469840 & 3077328 & 3912418 & 1598124 & 1370868 & 1863053 & 808260 & 697083 & 937170 & 0.3706 & 0.3157 & 0.435 & 787899 & 1.034\end{array}$ $\begin{array}{lllllllllllllllllllll}1990 & 27465205 & 18894393 & 39923881 & 3469308 & 3075697 & 3913292 & 1748337 & 1503453 & 2033109 & 632743 & 550472 & 727310 & 0.2895 & 0.2454 & 0.3414 & 645229 & 1.052\end{array}$ $\begin{array}{lllllllllllllllllllllll}1991 & 29856193 & 20572305 & 43329721 & 3332392 & 2958663 & 3753331 & 1551746 & 1339736 & 1797306 & 683584 & 587303 & 795650 & 0.3129 & 0.2658 & 0.3683 & 658008 & 1.02\end{array}$ $\begin{array}{lllllllllllllllllllllll}1992 & 5.2 e+07 & 37359725 & 72383331 & 3303140 & 2925184 & 3729931 & 1180619 & 1016213 & 1371624 & 707534 & 603801 & 829089 & 0.3728 & 0.3164 & 0.4393 & 716799 & 0.995\end{array}$ $\begin{array}{lllllllllllllllllllllll}1993 & 54689598 & 39114535 & 76466515 & 3070263 & 2684876 & 3510969 & 839871 & 715566 & 985770 & 708460 & 596273 & 841754 & 0.4367 & 0.3692 & 0.5164 & 671397 & 1.023\end{array}$ $\begin{array}{llllllllllllllllllllll}1994 & 42327104 & 30161861 & 59398980 & 2962976 & 2559298 & 3430326 & 892915 & 759487 & 1049783 & 713172 & 574512 & 885298 & 0.4335 & 0.3663 & 0.513 & 568234 & 1.05\end{array}$ $\begin{array}{lllllllllllllllllllllll}1995 & 43745924 & 31080084 & 61573383 & 2787853 & 2413852 & 3219801 & 924912 & 780587 & 1095922 & 612227 & 518744 & 722558 & 0.4027 & 0.3372 & 0.4811 & 579371 & 1.008\end{array}$ $\begin{array}{lllllllllllllllllllllll}1996 & 35378362 & 25205039 & 49657868 & 2742054 & 2357713 & 3189049 & 1085584 & 917372 & 1284639 & 267798 & 233000 & 307791 & 0.1983 & 0.1646 & 0.2388 & 275098 & 0.9987\end{array}$ $\begin{array}{lllllllllllllllllllll}1997 & 28927930 & 20553933 & 40713625 & 2831966 & 2452377 & 3270310 & 1252705 & 1063560 & 1475489 & 275865 & 243199 & 312919 & 0.1869 & 0.1555 & 0.2245 & 264313 & 1.001\end{array}$ $\begin{array}{lllllllllllllllllllll}1998 & 18436245 & 13370771 & 25420760 & 3112829 & 2716010 & 3567625 & 1432476 & 1227208 & 1672079 & 377052 & 333100 & 426804 & 0.2259 & 0.1886 & 0.2707 & 391628 & 1.002\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}1999 & 56283952 & 40815555 & 77614606 & 3164390 & 2774768 & 3608721 & 1530535 & 1311863 & 1785656 & 353352 & 312772 & 399197 & 0.2059 & 0.1728 & 0.2454 & 363163 & 1\end{array}$ 2000395465822886052954189309377156832831554332639155247313318801809602381332 2001680686604906531094432143424271636939844872962194713616717442267896372273 $20023567358925885695491624785065178439727458345312406200 \quad 20651512803571395188$ $200320127944146662992762347453397944653374 \begin{array}{lllllllllllllllll} & 6127469 & 2368340 & 2045541 & 2742078 & 484773\end{array}$ 200423308892169446973206339046752904120377 5304936 2334587 $\begin{array}{llllllllllllllllll}2005 & 20454449 & 14975215 & 27938463 & 3873255 & 3432543 & 4370551 & 2108713 & 1814999 & 2449957 & 663286\end{array}$ 20062076342815148108284603163255288288323713675348172208214845141997668511608 2007245913281779853333976587271690523985483077517136988711770151594364398270 20082149876515520784297792232757036241201931514061461007125723716978031257392 $20093547526325650484490631803220317 \quad 2802121 \quad 370092618086261553415 \quad 2105767165536$ 201027173952197350173741692638545173357642 4424921 $19206661645128 \quad 2242352 \quad 186468$ $\begin{array}{lllllllllllllllllll}2011 & 24406725 & 17795559 & 33473982 & 3853478 & 3382970 & 4389425 & 2257511 & 1958276 & 2602471 & 228763\end{array}$ $\begin{array}{lllllllllllllllll}2012 & 22665108 & 16510193 & 31114543 & 3778821 & 3339167 & 4276361 & 2303866 & 2 e+06 & 2654129 & 431402\end{array}$
 2014486164273486744067786939392059434700734429607208331118091652398999507606 $\begin{array}{llllllllllllllllllllll}2015 & 13098673 & 9423319 & 18207517 & 4102674 & 3596183 & 4680501 & 1936797 & 1678528 & 2234804 & 486387\end{array}$ $\begin{array}{llllllllllllllllll}2016 & 23503414 & 17105641 & 32294052 & 4060267 & 3554844 & 4637551 & 2232275 & 1923541 & 2590560 & 550065\end{array}$ $\begin{array}{llllllllllllll}2017 & 14150971 & 10235594 & 19564080 & 3525551 & 3093115 & 4018444 & 2064512 & 1770303 & 2407617 & 466630\end{array}$ $20182412400817514666332274533347823 \quad 2947549380245318526871584320 \quad 2166513550382$ $\begin{array}{llllllllllll}2019 & 21552500 & 15552764 & 29866735 & 2853541 & 2514411 & 3238412 & 1589952 & 1361873 & 1856230 & 427794\end{array}$ $202023368085166362123282402127642242419085 \quad 3158605149991212800281757567415594$ $202118346146125421762683594025735072205925 \quad 3002340135280911290111620970360261$ 202216619677909516930369274244479519438953074767133403410099131762178330994
$\begin{array}{llllllll}337657 & 430657 & 0.214 & 0.1793 & 0.2553 & 388157 & 1\end{array}$
$\begin{array}{llllllll}330833 & 418902 & 0.1806 & 0.1512 & 0.2158 & 374065 & 0.990\end{array}$
$\begin{array}{llllllll}350972 & 444973 & 0.1689 & 0.1415 & 0.2016 & 394709 & 0.9974\end{array}$ $\begin{array}{lllllll}434072 & 541395 & 0.1944 & 0.1634 & 0.2312 & 482281 & 1.015\end{array}$ $\begin{array}{llllllll}528307 & 655574 & 0.2424 & 0.2034 & 0.2889 & 587698 & 0.9985\end{array}$ $\begin{array}{lllllll}595140 & 739236 & 0.2905 & 0.2444 & 0.3452 & 663813 & 1.003\end{array}$ $\begin{array}{llllllll}459065 & 570166 & 0.2493 & 0.2095 & 0.2968 & 514597 & 0.995\end{array}$ $\begin{array}{llllllll}357308 & 443928 & 0.2266 & 0.1897 & 0.2708 & 406482 & 1.006\end{array}$ $\begin{array}{llllllll}230133 & 287880 & 0.1366 & 0.1144 & 0.1631 & 257870 & 1.004\end{array}$ $\begin{array}{lllllll}147955 & 185207 & 0.0717 & 0.05979 & 0.08597 & 168443 & 1.002\end{array}$ $\begin{array}{llllllll}166989 & 208219 & 0.07783 & 0.06506 & 0.09311 & 187611 & 1.003\end{array}$ $\begin{array}{llllllll}165830 & 254252 & 0.1007 & 0.08471 & 0.1197 & 226478 & 0.9938\end{array}$ $\begin{array}{lllllll}388561 & 478966 & 0.182 & 0.1534 & 0.216 & 434710 & 1.011\end{array}$ $\begin{array}{lllllll}449764 & 552815 & 0.2147 & 0.1811 & 0.2547 & 511416 & 1.001\end{array}$ $\begin{array}{llllllll}457758 & 562884 & 0.2073 & 0.1747 & 0.2459 & 517356 & 1.003\end{array}$ $\begin{array}{llllllll}437680 & 540513 & 0.214 & 0.1794 & 0.2553 & 494099 & 1.002\end{array}$ $\begin{array}{llllllll}495669 & 610431 & 0.2327 & 0.1949 & 0.2777 & 563610 & 1\end{array}$ $\begin{array}{llllllll}416208 & 523162 & 0.1934 & 0.1624 & 0.2303 & 498437 & 1.001\end{array}$ $488579620001 \quad 0.2203 \quad 0.1849$ $\begin{array}{llllllll}381970 & 479115 & 0.1886 & 0.1575 & 0.2258 & 442138 & 1.002\end{array}$ $\begin{array}{llllllll}371484 & 464941 & 0.1964 & 0.1636 & 0.2357 & 426900 & 1.003\end{array}$ $3197304059310.19790 .1608 \quad 0.2436 \quad 3653561$ $\begin{array}{lllll}181739 & 602826 & 0.198 & 0.1027 & 0.3817\end{array}$

Table 2.6.2.7 North Sea herring single fleet assessment. SAM model control object.

```
An object of class "FLSAM.control"
Slot "name":
[1] "North Sea Herring"
Slot "desc":
[1] "Imported from a VPA file. ( ./bootstrap/data/index.txt ). Mon May 02 09:53:59 2022"
Slot "range":
    min maxplusgroup minyear maxyear minfbar maxfbar
    0
Slot "fleets":
catch unique HERAS IBTS-Q1 IBTSO IBTS-Q3 LAI-ORSH
    0
    LAI-BUN LAI-CNS LAI-SNS
        6 6 6
Slot "plus.group":
plusgroup
    TRUE
Slot "states":
        age
fleet 012345678
    catch unique 0 1 2 3 45677
    HERAS -1-1-1-1-1-1-1-1-1
    IBTS-Q1 -1-1-1-1-1-1-1-1-1
    IBTSO -1-1-1-1-1-1-1-1-1
    IBTS-Q3 -1-1-1-1-1-1-1-1-1
    LAI-ORSH -1-1-1-1-1-1-1-1-1
    LAI-BUN -1-1-1-1-1-1-1-1-1
    LAI-CNS -1-1-1-1-1-1-1-1-1
    LAI-SNS -1-1-1-1-1-1-1-1-1
Slot "logN.vars":
012345678
0111111111
Slot "logP.vars":
[1]012
Slot "catchabilities":
        age
fleet 012345678
    catch unique -1-1-1-1-1-1-1 -1-1
    HERAS -1 11222 2 2 2
    IBTS-Q1 -1 3-1-1-1-1-1-1-1
    IBTSO 0-1-1-1-1-1-1-1-1
    IBTS-Q3 4 5 6 7 8 9-1-1-1
    LAI-ORSH 10-1-1-1-1-1-1-1-1
    LAI-BUN 10-1-1-1-1-1-1-1-1
```

```
LAI-CNS 10-1-1-1-1-1-1-1-1
LAI-SNS 10-1-1-1-1-1-1-1-1
```

Slot "power.law.exps":
age
fleet $\quad 012345678$
catch unique -1-1-1-1-1-1-1-1-1
HERAS -1-1-1-1-1-1-1-1-1
IBTS-Q1 -1-1-1-1-1-1-1-1-1
IBTSO -1-1-1-1-1-1-1-1-1
IBTS-Q3 -1-1-1-1-1-1-1-1-1
LAI-ORSH -1-1-1-1-1-1-1-1-1
LAI-BUN -1-1-1-1-1-1-1-1-1
LAI-CNS -1-1-1-1-1-1-1-1-1
LAI-SNS -1-1-1-1-1-1-1-1-1
Slot "f.vars":
age
fleet $\quad 012345678$
catch unique 001111222
HERAS -1-1-1-1-1-1-1-1-1
IBTS-Q1 -1-1-1-1-1-1-1-1-1
IBTSO -1-1-1-1-1-1-1-1-1
IBTS-Q3 -1-1-1-1-1-1-1-1-1
LAI-ORSH -1-1-1-1-1-1-1-1-1
LAI-BUN -1-1-1-1-1-1-1-1-1
LAI-CNS -1-1-1-1-1-1-1-1-1
LAI-SNS -1-1-1-1-1-1-1-1-1
Slot "obs.vars":
age
fleet 012345678
catch unique 001111122
HERAS -134566677
IBTS-Q1 -1 8-1-1-1-1-1-1-1
IBTSO 9-1-1-1-1-1-1-1-1
IBTS-Q3 1010111111 11-1-1-1
LAI-ORSH 12-1-1-1-1-1-1-1-1
LAI-BUN $\quad 12-1-1-1-1-1-1-1-1$
LAI-CNS $12-1-1-1-1-1-1-1-1$
LAI-SNS $12-1-1-1-1-1-1-1-1$
Slot "srr":
[1] 0
Slot "scaleNoYears":
[1] 0
Slot "scaleYears":
[1] NA
Slot "scalePars":
age
years 012345678
Slot "cor.F":
[1] 2
Slot "cor.obs":
age
fleet $\quad 0-1$ 1-2 2-3 3-4 4-5 5-6 6-7 7-8

catch unique NA NA NA NA NA NA NA NA

HERAS -1 NA NA NA NA NA NA NA
IBTS-Q1 $\quad-1$-1 -1 -1 -1 -1 -1 -1

IBTS-Q3 $0 \quad 0 \quad 0 \quad 0 \quad 0-1-1-1$
LAI-ORSH $\quad-1$-1
LAI-BUN $\quad-1$-1 -1 -1 -1 -1 -1 - 1

LAI-SNS $\quad-1 \quad-1 \begin{array}{llllll}1 & -1 & -1 & -1 & -1 & -1\end{array}$

Slot "cor.obs.Flag":
[1] ID ID ID ID AR ID ID ID ID
Levels: ID AR US

Slot "biomassTreat":
[1] -1-1-1-1-1-1 -1-1-1
Slot "timeout":
[1] 3600

Slot "likFlag":
[1] LN LN LN LN LN LN LN LN LN
Levels: LN ALN

Slot "fixVarToWeight":
[1] FALSE
Slot "simulate":
[1] FALSE
Slot "residuals":
[1] TRUE
Slot "sumFleets":
logical(0)

Table 2.6.3.1 North Sea herring multi fleet assessment. observation variance per data source and at age.

at age value		CV Ibnd ubnd		
catch A	11.223	0.	0.864	1.73
	20.1679	0.1157	38	0.2106
	167	0.1157	0.1338	0.2106
	0.1679	0.1157	0.1	
catch A	0.1679	0.1157	0.1338	0.2106
A	0.1679	0.1157	0.1338	0.2106
	0.176	0.2219		
catch A	80.176	0.2219	0.1	
tch BD	00.4282	837	. 298	
ca	0.3473	0.2	0.2022	2
catch BD	. 428	0.09082	1.195	06
	. 428	0.09082	1.195	. 706
catch BD	428	0.09082	1.195	706
catch BD	51.428	0.09082	1.195	06
	0.762	0.1897	0.52	1.105
	0.5315	0.1606	0.38	
	30.6717	0.09392	0.5588	0.807
	0.6717	0.09392	588	
catch C	50.6717	0.09	8	
catch C	60.6717	0.09392	0.5588	
	9	0.151	0.3502	
	0.2	0.1518	0.186	0.3
	0.1541	0.1976	0.1046	0.227
	40.2267	102	. 185	
	50.2267	2	. 18	
	6	0.102	0.1856	
	70.3102	0.1215	0.2445	
HERAS	80.3102	0.1215	0.2445	0.3935
IBTS-Q1	0.2893	0.1443	0.2181	0.3838
IBTSO	00.3499	0.1616	0.2549	0.4803
BTS-Q3	00.4802	0.1318	0.3709	-

IBTS-Q3	1	0.4802	0.1318	0.3709	0.6217
IBTS-Q3	2	0.3123	0.09664	0.2584	0.3774
IBTS-Q3	3	0.3123	0.09664	0.2584	0.3774
IBTS-Q3	4	0.3123	0.09664	0.2584	0.3774
IBTS-Q3	5	0.3123	0.09664	0.2584	0.3774
LAI-ORSH	0	1.185	0.04353	1.088	1.291
LAI-BUN	0	1.185	0.04353	1.088	1.291
LAI-CNS	0	1.185	0.04353	1.088	1.291
LAI-SNS	0	1.185	0.04353	1.088	1.291

Table 2.6.3.2 North Sea herring multi fleet assessment. Catchabilities at age.

fleet age	value	CV	lbnd	ubnd	
$---~$					
HERAS	1	0.974	0.06472	0.858	1.106
HERAS	2	0.974	0.06472	0.858	1.106
HERAS	3	1.096	0.05653	0.981	1.224
HERAS	4	1.096	0.05653	0.981	1.224
HERAS	5	1.096	0.05653	0.981	1.224
HERAS	6	1.096	0.05653	0.981	1.224
HERAS	7	1.096	0.05653	0.981	1.224
HERAS	8	1.096	0.05653	0.981	1.224
IBTS-Q1	1	0.1061	0.06743	0.093	0.1211
IBTSO	0	$3.4 \mathrm{e}-06$	0.08689	$2.867 \mathrm{e}-06$	$4.031 \mathrm{e}-06$
IBTS-Q3	0	0.09727	0.1175	0.07725	0.1225
IBTS-Q3	1	0.04763	0.1139	0.0381	0.05955
IBTS-Q3	2	0.04176	0.08427	0.0354	0.04926
IBTS-Q3	3	0.03804	0.0838	0.03228	0.04483
IBTS-Q3	4	0.03183	0.08528	0.02693	0.03762
IBTS-Q3	5	0.02509	0.08652	0.02118	0.02973
LAI-ORSH	0	0.01648	0.1074	0.01335	0.02034
LAI-BUN	0	0.01648	0.1074	0.01335	0.02034
LAI-CNS	0	0.01648	0.1074	0.01335	0.02034
LAI-SNS	0	0.01648	0.1074	0.01335	0.02034

Table 2.6.3.3 North Sea herring multi fleet assessment. Numbers at age.

Year	0	1	2	3	4	5	6	7	8

[^3]| 1974 | 10626801 | 2775191 | 1545086 | 752559 | 267336 | 97046 | 40158113 | 1135753 | 5336 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 2595192 | 5059081 | 903094 | 438887 | 2298087 | 7960428 | 28455118 | 1867593 | 33 |
| 1976 | 3292902 | 880028 | 1766813 | 211617 | 4360 | 60425 | 692 | 27 | |
| 1977 | 4042815 | 1371839 | 340732 | 59 | 5362025 | 2543018 | 18687490 | 9062283 | |
| 1978 | 4535163 | 1714301 | 67 | 246346 | 252203 | 32794 | 1975102 | 0263356 | 56 |
| 1979 | 8428613 | 1724 | 834 | 393659 | 1839591 | 1283762 | 2215273 | 7379783 | 331 |
| 1980 | 1313 | 3299201 | 774788 | 468326 | 226857 | 151110 | 6869518 | 1807086 | 8698 |
| 1981 | 27450227 | 4886313 | 1682681 | 356634 | 229257 | 138319 | 114842 | 57962 | 146 |
| 82 | 46179507 | 8006515 | 2018527 | 1032261 | 207138 | 128644 | 78383 | 70529 | 50 |
| 1983 | 45190849 | 14309825 | 3299279 | 1128107 | 718755 | 129835 | 002 | 46 | |
| 19 | 45580424 | 1282 | 6010621 | 1820908 | 877128 | 274300 | 81431 | , | 82659 |
| 1985 | 567 | 14511193 | 55 | 34 | 395011 | 357650 | 127032 | 4 | 75823 |
| 86 | 693 | 20573763 | 5333129 | 288 | 1544397 | 435509 | 168613 | 55044 | 1 |
| 87 | 60793072 | 26940860 | 8769729 | 2599526 | 1519937 | 7773014 | 4222983 | 76567 | 50915 |
| 988 | 38026105 | 20370553 | 10222666 | 4633033 | 13434343 | 79739214 | 391989 | 112821 | 67306 |
| 1989 | 30342238 | 12957247 | 6934689 | 5561702 | 2640442 | 2698753 | 3403776 | 195454 | 0599 |
| 1990 | 27295514 | 10224493 | 4464887 | 3938244 | 3588363 | 1534310 | 374933 | 3217499 | 162029 |
| 1991 | 2915 | 10377183 | 4003870 | 23 | 2308353 | 2136860 | 873027 | 212489 | 9 |
| 19 | 501 | 10021545 | 44 | 180 | 1324970 | 01323148 | 1271884 | 522898 | 244181 |
| 1993 | 52043143 | 15915540 | 3742534 | 2016902 | 2941601 | 721785 | 726571 | 628101 | 405593 |
| 199 | 41472045 | 15825546 | 5851877 | 1447285 | 838583 | 411246 | 341241 | 328396 | 463493 |
| 1995 | 42144693 | 13734935 | 6273150 | 2603126 | 6720603 | 364235 | 201727 | 168233 | 36 |
| 1996 | 33388610 | 13561510 | 5549514 | 3060 | 1115802 | 2342822 | 2156343 | 98241 | 07 |
| 199 | 280 | 12799161 | 6004862 | 308 | 1601461 | 1655322 | 2206763 | 96514 | |
| 19 | 1854 | 11718955 | 8411975 | 3151426 | 1505249 | 9862461 | 1433443 | 133136 | 76 |
| 1999 | 57325166 | 815 | 5509842 | 5184407 | 1686532 | 777231 | 433239 | 235239 | 155952 |
| 2000 | 37429320 | 23385625 | 5369332 | 2976281 | 13029250 | 0980879 | 9480432 | 265422 | 219525 |
| 2001 | 69204784 | 14296436 | 11616089 | 3553038 | 1709986 | 1655709 | 09505698 | 273267 | 285010 |
| 2002 | 35081327 | 29902550 | 7611166 | 803 | 1933771 | 1949655 | 51017145 | 5305267 | 312130 |
| 003 | 1912 | 1365 | 17372256 | 44 | 5011228 | 1073689 | 89587083 | 83631754 | 328812 |
| 200 | 23203 | 7174352 | 6041317 | 10769701 | 13001723 | 3023204 | 569924 | 371540 | 485166 |
| 2005 | 20310298 | 9834 | 3661965 | 3919014 | 6449787 | 1779337 | 1643769 | 284944 | 414800 |
| 2006 | 20874443 | 717 | 4976327 | 2462757 | 2436192 | 4062207 | 876600 | 738159 | 296709 |
| 20 | 2517 | 75 | 3235 | 2813 | 1535664 | 1391711 | 12218910 | 0449686 | 479237 |
| 008 | 21984090 | 898 | 437 | 2123298 | 1670102 | 972559 | 851972 | 1408050 | 572281 |
| 2009 | 34450991 | 8771121 | 5268406 | 2667886 | 1412544 | 1095018 | 8661329 | 622572 | 1542317 |
| 2010 | 27158438 | 12676152 | 5536618 | 3810141 | 11938466 | 61055592 | 908716 | 6501809 | 1666071 |
| 2011 | 24342085 | 11082069 | 6666382 | 3568876 | 62450547 | 1245040 | 723495 | 5611245 | 1424802 |
| 2012 | 23086179 | 9132739 | 5909094 | 4887641 | 2660066 | 1704182 | 210710 | 479497 | 1158651 |
| 2013 | 31571200 | 8546778 | 4487891 | 4092999 | 3412174 | 1952820 | 1171666 | 6505382 | 1021916 |
| 201 | 4830 | 1372 | 5361500 | 31551 | 2357603 | 2293909 | 1236784 | 84689425 | 759765 |
| 2015 | 12656662 | 18828828 | 9498180 | 3067648 | 81974414 | 2066491 | 131373933 | 718136 | 818192 |
| 2016 | 22792622 | 4882009 | 11635360 | 6892883 | 1922687 | 1228474 | 1168492 | 704490 | 732921 |
| 2017 | 13604031 | 8501195 | 2496961 | 7980134 | 4833325 | 1288961 | 1628341 | 557159 | 612391 |
| 2018 | 23215739 | 5512549 | 4203423 | 1921539 | 5737006 | 3323673 | 3819068 | 413273 | 708399 |
| 2019 | 19791826 | 9130981 | 2375612 | 2708081 | 1448638 | 3538641 | 12001803 | 439935 | 578116 |
| 2020 | 23548414 | 8042883 | 5398558 | 1597030 | 1850789 | 1072051 | 12137581 | 11059337 | 510839 |
| 2021 | 18229682 | 9877931 | 4298044 | 2719718 | 1053321 | 1172985 | 712748 | 1176763 | 845096 |
| 2022 | 16404915 | 7196801 | 5653978 | 2714118 | 1626468 | 629993 | 691110 | 424975 | 1025744 |

Table 2.6.3.4 North Sea herring multi fleet assessment. Harvest at age fleet A.

Year	0	1	2	3	4	5	6	7	8		
---1216											
1947	0	0.002569	0.04853	0.1061	0.1216	0.1566	0.247	0.2767	0.2767		
1948	0	0.002492	0.0461	0.1036	0.1205	0.1526	0.222	0.2507	0.2507		
1949	0	0.002841	0.05685	0.1204	0.1404	0.1755	0.2779	0.3255	0.3255		
1950	0	0.003362	0.07389	0.1399	0.1569	0.1779	0.2389	0.2586	0.2586		
1951	0	0.004443	0.1135	0.1894	0.2045	0.2122	0.2509	0.2476	0.2476		
1952	0	0.005123	0.1412	0.205	0.2161	0.231	0.3026	0.3308	0.3308		
1953	0	0.005725	0.1672	0.2222	0.2197	0.2322	0.2922	0.3154	0.3154		
1954	0	0.006715	0.2137	0.2662	0.2518	0.2689	0.371	0.3959	0.3959		
1955	0	0.006943	0.2245	0.2524	0.224	0.2295	0.2587	0.2362	0.2362		
1956	0	0.007618	0.2588	0.2661	0.2266	0.2281	0.2458	0.2421	0.2421		
1957	0	0.007962	0.2766	0.2796	0.2415	0.2527	0.28	0.2703	0.2703		
1958	0	0.00809	0.2832	0.2744	0.226	0.2254	0.1989	0.1709	0.1709		
1959	0	0.008829	0.3241	0.3107	0.2644	0.2654	0.2922	0.2868	0.2868		
1960	0	0.007879	0.2714	0.2524	0.2142	0.2162	0.2389	0.2647	0.2647		

```
1961}0000.008322 0.2955 0.284 0.2433 0.2361 0.2417 0.2321 0.2321
1962}0000.008239 0.2906 0.3226 0.2936 0.2994 0.3565 0.341 0.341
1963 0 0.006642
1964}0
1965}0
1966}0000.01142 0.4796 0.5567 0.4882 0.4891 0.4262 0.5062 0.5062
1967 0}00.01291 0.5796 0.7334 0.6653 0.6865 0.7911 0.9434 0.9434
1968}0
1969 0
1970}00000.01589 0.7992 0.992 0.8901 0.8532 1.194 0.9142 0.9142
1971 0
1972}0000.01321 0.5989 0.68 0.571 0.5324 0.52 0.314 0.314 
1973 0 0.01675
1974}0
1975}0000.01858 1.019 1.272 1.114 1.215 1.323 1.603 1.603
```



```
1977 0 0.007451 0.2469 0.3678}00.3266 0.3818 0.2597 0.4116 0.4116
1978}0000.006319 0.1912 0.2636 0.2288 0.2508 0.1317 0.2202 0.2202
1979 0 0.005988
1980}0000.006018 0.1775 0.2156 0.167 0.1517 0.0516 0.08511 0.08511
1981}0000.006784 0.2138 0.2751 0.2516 0.2638 0.206 0.355 0.355
1982}0000.005911 0.1726 0.2204 0.1916 0.1747 0.1027 0.1476 0.1476 
1983 0 0.006661 0.2079
1984}0000.007494 0.2497 0.3407 0.3729 0.375 0.3795 0.4874 0.4874
1985}0000.008715 0.3158 0.4291 0.4773 0.4671 0.5182 0.5876 0.5876
1986}0000.00844 0.3007 0.3861 0.4383 0.4441 0.5175 0.5819 0.5819 
1987}0000.008108 0.2828 0.3447 0.4014 0.4116 0.4415 0.4536 0.4536
1988}0000.007817 0.2674 0.3162 0.3825 0.4052 0.4455 0.4676 0.4676
1989}0000.007921 0.2734 0.3097 0.3708 0.3848 0.4074 0.4227 0.4227
1990}0000.007351 0.2438 0.2604 0.2991 0.305 0.2865 0.3063 0.3063
1991 0 0.008273 0.2935}00.2984 0.3158 0.3009 0.2748 0.258 0.258
1992 0 0.008992 0.3347 0.3523 0.3745
1993 0}00.009888 0.3887 0.4384 0.4597 0.4051 0.4381 0.4162 0.4162
1994 0}00.009624 0.3737 0.465 0.4847 0.3983 0.3875 0.3365 0.3365
1995}0000.008131 0.2881 0.4032 0.4299 0.3869 0.3946 0.3285 0.3285
1996 0 0.004871 0.1302 0.1941 0.2063 0.1965
1997}0000.004309 0.1079 0.173 0.1873 0.1817 0.1412 0.109 0.109 
1998}0000.004968 0.1341 0.222 0.238 0.2356 0.2134 0.1385 0.1385
1999}000.004626 0.119 0.2125 0.2272 0.223 0.1844 0.114 0.114 
2000}0000.004374 0.1082 0.203 0.2312 0.2323 0.1911 0.1234 0.1234
2001}0000.003642 0.08092 0.1614 0.1998 0.2193 0.1942 0.1644 0.1644
2002 0 0.003279}0.06828 0.1388 0.1823 0.2089 0.1901 0.1693 0.1693
2003
2004 0 0.003116 0.06262 0.1434 0.2211 0.2965 0.3622 0.3206 0.3206
2005}0000.003458 0.07254 0.1625 0.2583 0.3524 0.5146 0.5452 0.5452
2006}000.003652 0.07814 0.1643 0.2484 0.3225 0.4386 0.5055 0.5055
2007}0000.003563 0.07423 0.1523 0.222 0.281 0.3633 0.4352 0.4352
2008}0000.003307 0.06533 0.1099 0.1464 0.1768 0.172 0.2165 0.2165
```



```
2010 0 0.002709 0.04774 0.07154 0.08484 0.09952 0.07032 0.08362 0.08362
2011
2012 0 0.003786 0.08042 0.1482}00.1869 0.2216 0.2378 0.2549 0.2549 
2013}0000.003498 0.07121 0.1465 0.2065 0.2642 0.34 0.3929 0.3929
2014}0000.003317 0.06679 0.1425 0.2064 0.2625 0.32 0.3877 0.3877
2015}0000.002876 0.05502 0.1242 0.1929 0.2727 0.3985 0.5475 0.5475 
2016}0000.002864 0.05596 0.14 0.2134 0.2944 0.4489 0.6665 0.6665
2017}0000.002517 0.04631 0.1278 0.1929 0.2468 0.3127 0.4641 0.4641
2018}0000.002702 0.05216 0.1412 0.218 0.2842 0.3806 0.5539 0.5539
2019}0000.002572 0.04865 0.1256 0.1804 0.2406 0.3196 0.4864 0.4864
2020}0000.003617 0.08261 0.1731 0.205 0.2361 0.2884 0.4635 0.4635
2021}0000.00398 0.09663 0.1948 0.219 0.2442 0.2448 0.4109 0.4109 
2022}0000.00398 0.09663 0.1948 0.219 0.2442 0.2448 0.4109 0.4109 
```

Table 2.6.3.5 North Sea herring multi fleet assessment. Harvest at age combined fleet B-D.

2014	0.04587	0.01996	0.003135	0.000277	0.000277	0.000277	0	0	0
2015	0.06133	0.02184	0.002402	0.0001595	0.0001595	0.0001595	0	0	0
2016	0.07802	0.02451	0.002315	0.0001579	0.0001579	0.0001579	0	0	0
2017	0.0671	0.01677	0.00139	$8.47 \mathrm{e}-05$	$8.47 \mathrm{e}-05$	$8.47 \mathrm{e}-05$	0	0	0
2018	0.06789	0.01135	0.001016	$9.063 \mathrm{e}-05$	$9.063 \mathrm{e}-05$	$9.063 \mathrm{e}-05$	0	0	0
2019	0.05849	0.007761	0.0009039	0.0001416	0.0001416	0.0001416	0	0	0
2020	0.06512	0.005598	0.00106	0.0002877	0.0002877	0.0002877	0	0	0
2021	0.06306	0.009093	0.001533	0.0004647	0.0004647	0.0004647	0	0	0
2022	0.0631	0.0091	0.001533	0.0004648	0.0004648	0.0004648	0	0	0

Table 2.6.3.6 North Sea herring multi fleet assessment. Harvest at age fleet C.

2001	0	0.01532	0.01554	0.002516	0.001052	0.001052	0.001052	0	0	
2002	0	0.009766	0.01106	0.0008565	0.0003715	0.0003715	0.0003715	0	0	
2003	0	0.01693	0.0173	0.003825	0.001835	0.001835	0.001835	0	0	
2004	0	0.01685	0.01748	0.00392	0.001888	0.001888	0.001888	0	0	
2005	0	0.0171	0.01759	0.003803	0.001555	0.001555	0.001555	0	0	
2006	0	0.01432	0.01528	0.002428	0.0008904	0.0008904	0.0008904	0	0	
2007	0	0.01054	0.01203	0.001109	0.0003766	0.0003766	0.0003766	0	0	
2008	0	0.007676	0.0095	0.000553	0.0001817	0.0001817	0.0001817	0	0	
2009	0	0.00525	0.007154	0.0002441	$8.59 \mathrm{e}-05$	$8.59 \mathrm{e}-05$	$8.59 \mathrm{e}-05$	0	0	
2010	0	0.004677	0.006669	0.0001998	$6.709 \mathrm{e}-05$	$6.709 \mathrm{e}-05$	$6.709 \mathrm{e}-05$	0	0	
2011	0	0.00634	0.008766	0.0005363	0.0001714	0.0001714	0.0001714	0	0	
2012	0	0.006805	0.009463	0.0007347	0.0002318	0.0002318	0.0002318	0	0	
2013	0	0.006421	0.009278	0.0007343	0.0002139	0.0002139	0.0002139	0	0	
2014	0	0.006815	0.01004	0.001079	0.0003103	0.0003103	0.0003103	0	0	
2015	0	0.008908	0.01274	0.002698	0.0008476	0.0008476	0.0008476	0	0	
2016	0	0.00579	0.009205	0.001004	0.0003068	0.0003068	0.0003068	0	0	
2017	0	0.006693	0.01039	0.001505	0.0004417	0.0004417	0.0004417	0	0	
2018	0	0.005684	0.009259	0.001076	0.0002932	0.0002932	0.0002932	0	0	
2019	0	0.004511	0.007794	0.0006261	0.0001467	0.0001467	0.0001467	0	0	
2020	0	0.006705	0.01092	0.002064	0.0005449	0.0005449	0.0005449	0	0	
2021	0	0.006896	0.01135	0.002483	0.000754	0.000754	0.000754	0	0	
2022	0	0.006897	0.01135	0.002484	0.0007542	0.0007542	0.0007542	0	0	

Table 2.6.3.7 North Sea herring multi fleet assessment. Assessment summary.

Year Rec Rec_lo Rec_hi TSB TSB_lo TSB_hi SSB SSB_lo SSB_hi Catch Catch_lo Catch_hi Fbar Fbar_lo Fbar_hi Landings
 $\begin{array}{llllllllllllllllllllll}1948 & 33922411 & 20543216 & 56015083 & 6761523 & 5333341 & 8572150 & 3961873 & 2975042 & 5276038 & 666626 & 579015 & 767493 & 0.1297 & 0.09565 & 0.1758 & 502100\end{array}$ $\begin{array}{llllllllllllllllllllllll}1949 & 29597819 & 18081727 & 48448407 & 6409820 & 5111458 & 8037979 & 3712925 & 2822158 & 4884849 & 730549 & 634505 & 841131 & 0.1551 & 0.1153 & 0.2088 & 508500\end{array}$ $\begin{array}{llllllllllllllllllllll}1950 & 40627635 & 25311507 & 65211634 & 6214591 & 5012141 & 7705519 & 3587598 & 2771509 & 4643989 & 648487 & 570728 & 736839 & 0.1587 & 0.12 & 0.21 & 491700\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}1951 & 39440118 & 24747664 & 62855343 & 6211033 & 5069713 & 7609292 & 3301723 & 2578337 & 4228065 & 751339 & 660716 & 854391 & 0.1958 & 0.1501 & 0.2553 & 600400\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1952 & 39202102 & 24781685 & 62013731 & 6090145 & 4985950 & 7438877 & 3199364 & 2502030 & 4091049 & 837855 & 742819 & 945049 & 0.2212 & 0.17 & 0.2877 & 664400\end{array}$
 $\begin{array}{lllllllllllllllllllllllll}1954 & 4 \mathrm{e}+07 & 26126913 & 61254368 & 5755651 & 4724400 & 7012004 & 2765201 & 2135657 & 3580321 & 953183 & 842371 & 1078571 & 0.2769 & 0.2109 & 0.3636 & 762900\end{array}$ $\begin{array}{lllllllllllllllllllllll}1955 & 34619911 & 22763194 & 52652463 & 5501984 & 4503231 & 6722246 & 2798729 & 2163949 & 3619717 & 841968 & 733879 & 965976 & 0.2408 & 0.1834 & 0.3161 & 806400\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}1956 & 25968979 & 17059605 & 39531269 & 5085817 & 4176056 & 6193772 & 2641803 & 2044607 & 3413431 & 837557 & 731539 & 958939 & 0.2481 & 0.1897 & 0.3243 & 675200\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}1957 & 62093137 & 40422899 & 95380532 & 5042123 & 4154980 & 6118682 & 2392825 & 1851678 & 3092120 & 800448 & 702187 & 912459 & 0.2693 & 0.2059 & 0.3521 & 682900\end{array}$ $\begin{array}{lllllllllllllllllllllll}1958 & 26115891 & 17252338 & 39533178 & 5036873 & 4129668 & 6143372 & 2017832 & 1563482 & 2604218 & 745782 & 628547 & 884884 & 0.2447 & 0.1881 & 0.3182 & 670500\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1959 & 28657528 & 18538553 & 44299784 & 5621867 & 4616942 & 6845526 & 2984292 & 2310032 & 3855356 & 1148571 & 963972 & 1368520 & 0.2946 & 0.2275 & 0.3815 & 784500\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1960 & 12186191 & 7886906 & 18829087 & 4736854 & 3906133 & 5744247 & 2601400 & 2026196 & 3339894 & 820539 & 702398 & 958551 & 0.2419 & 0.1875 & 0.3121 & 696200\end{array}$ $\begin{array}{llllllllllllllllllll}1961 & 55563221 & 36047405 & 85644764 & 4826076 & 4021122 & 5792166 & 2552188 & 2017234 & 3229007 & 733169 & 633660 & 848305 & 0.2631 & 0.2074 & 0.3338 & 696700\end{array}$ $\begin{array}{llllllllllllllllllllll}1962 & 28262748 & 18770736 & 42554695 & 4525951 & 3780100 & 5418967 & 1773922 & 1390483 & 2263098 & 713231 & 616139 & 825622 & 0.3153 & 0.2487 & 0.3997 & 627800\end{array}$

 $\begin{array}{llllllllllllllllllllllll}1966 & 17969166 & 12186880 & 26494963 & 3463416 & 3059421 & 3920758 & 1600123 & 1353461 & 1891738 & 931170 & 812184 & 1067588 & 0.4918 & 0.4155 & 0.5822 & 895500\end{array}$ $\begin{array}{llllllllllllllllllllllll}1967 & 23777353 & 16145329 & 35017094 & 2667372 & 2376179 & 2994251 & 964368 & 824310 & 1128223 & 860297 & 751767 & 984494 & 0.6954 & 0.5962 & 0.8109 & 695500\end{array}$ $\begin{array}{llllllllllllllllllll}1967 & 23777353 & 16145329 & 35017094 & 2667372 & 2376179 & 2994251 & 964368 & 824310 & 1128223 & 860297 & 751767 & 984494 & 0.6954 & 0.5962 & 0.8109 & 695500 \\ 1968 & 23298271 & 15784272 & 34389261 & 2202290 & 1935132 & 2506330 & 511241 & 436339 & 599001 & 819977 & 707699 & 950069 & 1.078 & 0.9426 & 1.233 & 717800\end{array}$ $\begin{array}{lllllllllllllllllll}1969 & 12696599 & 8509512 & 18943933 & 1722488 & 1480694 & 2003766 & 467714 & 379942 & 575762 & 538552 & 450039 & 644474 & 0.9113 & 0.7905 & 1.051 & 546700\end{array}$ $\begin{array}{lllllllllllllllllllll}1970 & 23081631 & 15495273 & 34382206 & 1672354 & 1440617 & 1941369 & 457474 & 370264 & 565224 & 534022 & 449851 & 633942 & 0.9502 & 0.8271 & 1.092 & 563100\end{array}$ $\begin{array}{lllllllllllllllllllll}1971 & 18967092 & 12805037 & 28094460 & 1533986 & 1303646 & 1805024 & 287656 & 235431 & 351466 & 549383 & 442878 & 681502 & 1.435 & 1.267 & 1.624 & 520100\end{array}$ $\begin{array}{lllllllllllllllllllllll}1972 & 12824572 & 8651831 & 19009807 & 1374682 & 1170496 & 1614487 & 345782 & 281208 & 425183 & 425157 & 335495 & 538781 & 0.5861 & 0.4998 & 0.6873 & 497500\end{array}$ $\begin{array}{llllllllllllllllll}1973 & 6901059 & 4669081 & 10199997 & 1112375 & 965289 & 1281873 & 282030 & 233238 & 341028 & 447492 & 371216 & 539439 & 0.9359 & 0.8138 & 1.076 & 484000\end{array}$ $\begin{array}{llllllllllllllllllll}1974 & 10626801 & 7074419 & 15962994 & 777312 & 674640 & 895609 & 192645 & 160441 & 231313 & 275134 & 233389 & 324346 & 0.8967 & 0.7775 & 1.034 & 275100\end{array}$ $\begin{array}{lllllllllllllllllllll}1975 & 2595192 & 1718950 & 3918101 & 597433 & 501848 & 711225 & 103686 & 85384 & 125911 & 248600 & 199937 & 309107 & 1.194 & 1.027 & 1.389 & 312800\end{array}$ $\begin{array}{lllllllllllllllllllll}1976 & 3292902 & 2111802 & 5134575 & 448129 & 369375 & 543675 & 141736 & 106349 & 188897 & 152782 & 125376 & 186179 & 0.8639 & 0.676 & 1.104 & 174800\end{array}$ $\begin{array}{llllllllllllllllll}1977 & 4042815 & 2535823 & 6445384 & 317952 & 254294 & 397546 & 113902 & 82658 & 156957 & 54202 & 45074 & 65178 & 0.3209 & 0.2334 & 0.4411 & 46000\end{array}$ $\begin{array}{llllllllllllllllllllll}1978 & 4535163 & 2788080 & 7377014 & 375401 & 294295 & 478860 & 138961 & 103508 & 186557 & 48860 & 31926 & 74776 & 0.2177 & 0.1336 & 0.3548 & 11000\end{array}$ $\begin{array}{lllllllllllllllllllll}1979 & 8428613 & 5402990 & 13148557 & 498125 & 400762 & 619143 & 183352 & 142155 & 236487 & 60571 & 39662 & 92503 & 0.176 & 0.1078 & 0.2873 & 25100\end{array}$ $\begin{array}{llllllllllllllllllllll}1980 & 13137089 & 8936495 & 19312170 & 683425 & 564546 & 827337 & 213538 & 171016 & 266632 & 79982 & 62708 & 102015 & 0.1579 & 0.1236 & 0.2016 & 70764\end{array}$ $\begin{array}{lllllllllllllllllllll}1981 & 27450227 & 18640594 & 40423334 & 1123375 & 924057 & 1365684 & 284251 & 228112 & 354205 & 147857 & 114971 & 190150 & 0.2482 & 0.1975 & 0.312 & 174879\end{array}$ $\begin{array}{lllllllllllllllllll} \\ 1982 & 46179507 & 31548502 & 67595822 & 1731447 & 1419892 & 2111364 & 408065 & 331007 & 503061 & 247305 & 180797 & 338277 & 0.1792 & 0.1444 & 0.2225 & 275079\end{array}$ $\begin{array}{lllllllllllllllllllll}1983 & 45190849 & 31391200 & 65056859 & 2333065 & 1954868 & 2784429 & 571394 & 467064 & 699029 & 379442 & 289046 & 498107 & 0.2614 & 0.2142 & 0.3191 & 387202\end{array}$ $\begin{array}{lllllllllllllllllll}1984 & 45580424 & 31914549 & 65098053 & 3061456 & 2614637 & 3584633 & 893442 & 729572 & 1094120 & 469514 & 388575 & 567313 & 0.3522 & 0.292 & 0.4249 & 428631\end{array}$

 $\begin{array}{lllllllllllllllllllllllllll}1987 & 60793072 & 42314279 & 87341618 & 4003144 & 3453628 & 4640095 & 1211476 & 1007591 & 1456618 & 768372 & 636025 & 928259 & 0.39 & 0.3248 & 0.4684 & 792058\end{array}$
$\begin{array}{lllllllllllllllllll}1988 & 38026105 & 26617608 & 54324366 & 3925626 & 3419273 & 4506963 & 1561678 & 1305377 & 1868301 & 958261 & 777056 & 1181723 & 0.3785 & 0.317 & 0.452 & 887686\end{array}$ $\begin{array}{lllllllllllllllllllllll}1989 & 30342238 & 21222837 & 43380223 & 3475715 & 3088307 & 3911720 & 1600704 & 1377271 & 1860384 & 811312 & 699123 & 941504 & 0.3655 & 0.3086 & 0.4328 & 787899\end{array}$ $\begin{array}{lllllllllllllllllllllll}1990 & 27295514 & 19059205 & 39091090 & 3462435 & 3078666 & 3894043 & 1724868 & 1487289 & 2 e+06 & 675060 & 580688 & 784770 & 0.2959 & 0.2486 & 0.3522 & 645229\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}1991 & 29157687 & 20417792 & 41638720 & 3276983 & 2916766 & 3681687 & 1525114 & 1319749 & 1762435 & 670407 & 581244 & 773247 & 0.3156 & 0.2652 & 0.3756 & 658008\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}1993 & 52043143 & 37443145 & 72336039 & 2995019 & 2628535 & 3412599 & 824909 & 702943 & 968037 & 671620 & 576809 & 782015 & 0.4483 & 0.375 & 0.5358 & 671397\end{array}$ $\begin{array}{llllllllllllllllllll}1994 & 41472045 & 29776970 & 57760428 & 2886604 & 2498625 & 3334826 & 880451 & 749793 & 1033877 & 626099 & 532560 & 736068 & 0.4443 & 0.3717 & 0.5311 & 568234\end{array}$ $\begin{array}{lllllllllllllllllllll}1995 & 42144693 & 30152157 & 58907069 & 2793145 & 2415751 & 3229497 & 931536 & 786521 & 1103288 & 573780 & 494810 & 665353 & 0.404 & 0.3345 & 0.4879 & 579371\end{array}$ $\begin{array}{lllllllllllllllllllllll}1996 & 33388610 & 24072349 & 46310364 & 2753448 & 2376702 & 3189914 & 1104248 & 934102 & 1305386 & 284224 & 244091 & 330956 & 0.1969 & 0.1613 & 0.2402 & 275098\end{array}$ $\begin{array}{llllllllllllllllllll}1997 & 28057040 & 20097033 & 39169836 & 2739853 & 2383987 & 3148842 & 1227831 & 1044893 & 1442797 & 264169 & 230710 & 302480 & 0.1778 & 0.1462 & 0.2162 & 248023\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1998 & 18544104 & 13548403 & 25381869 & 3032252 & 2654084 & 3464303 & 1395001 & 1198220 & 1624098 & 363151 & 318196 & 414457 & 0.2251 & 0.1862 & 0.2721 & 385577\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}1999 & 57325166 & 41809047 & 78599607 & 3133522 & 2755437 & 3563486 & 1502576 & 1291213 & 1748537 & 351407 & 306974 & 402270 & 0.2083 & 0.1731 & 0.2505 & 370877\end{array}$ 2000374293202745352851030017376649132819014322632153004413159581778958 $\begin{array}{lllllllllllllllllllllllllllll}2001 & 69204784 & 50171172 & 95459243 & 4189548 & 3658685 & 4797437 & 1952112 & 1678835 & 2269873 & 349723 & 307959 & 397151 & 0.1774 & 0.1468 & 0.2143 & 358657\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}2002 & 35081327 & 25677026 & 47929986 & 5029686 & 4380141 & 5775554 & 2367734 & 2038580 & 2750034 & 374505 & 328987 & 426321 & 0.1628 & 0.1349 & 0.1965 & 371955\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}2003 & 19127720 & 14039542 & 26059944 & 5334304 & 4658571 & 6108054 & 2375503 & 2057385 & 2742808 & 477853 & 421173 & 542162 & 0.1892 & 0.1576 & 0.2271 & 480107\end{array}$ $\begin{array}{lllllllllllllllllllllllll}2004 & 23203294 & 1.7 \mathrm{e}+07 & 31676550 & 4616741 & 4076342 & 5228779 & 2338856 & 2031217 & 2693089 & 562971 & 496012 & 638968 & 0.2251 & 0.1869 & 0.2711 & 570865\end{array}$ $\begin{array}{llllllllllllllllllllll}2005 & 20310298 & 14962250 & 27569931 & 3875858 & 3439402 & 4367700 & 2124185 & 1835073 & 2458847 & 647947 & 570412 & 736020 & 0.2796 & 0.2329 & 0.3356 & 666404\end{array}$ $\begin{array}{lllllllllllllllllllllll}2006 & 20874443 & 15323186 & 28436800 & 3262684 & 2894901 & 3677193 & 1720898 & 1487726 & 1990615 & 515942 & 455186 & 584807 & 0.256 & 0.2131 & 0.3075 & 524366\end{array}$ $\begin{array}{llllllllllllllllllllllllll}2007 & 25178929 & 18329712 & 34587476 & 2696293 & 2386090 & 3046823 & 1354354 & 1168274 & 1570071 & 381440 & 336365 & 432556 & 0.2222 & 0.1843 & 0.2679 & 408528\end{array}$ $\begin{array}{llllllllllllllllllllllll}2008 & 21984090 & 15952790 & 30295654 & 2754883 & 2416814 & 3140243 & 1443327 & 1245725 & 1672273 & 246991 & 219533 & 277883 & 0.1368 & 0.1134 & 0.165 & 259031\end{array}$
 $\begin{array}{lllllllllllllllllllllll}2010 & 27158438 & 19871035 & 37118386 & 3794013 & 3315856 & 4341122 & 1877237 & 1611156 & 2187262 & 177592 & 157888 & 199755 & 0.0769 & 0.06355 & 0.09305 & 187508\end{array}$
 $\begin{array}{lllllllllllllllllllll}2012 & 23086179 & 16918487 & 31502325 & 3775423 & 3346466 & 4259364 & 2301383 & 2005261 & 2641232 & 416621 & 369392 & 469890 & 0.1781 & 0.1485 & 0.2135 & 437236\end{array}$
 $20144830572034924132668146183910370347100744053472079890 \begin{array}{lllllllllllllllllllllll}1812586 & 2386614 & 489338 & 435072 & 550373 & 0.2028 & 0.1693 & 0.2431 & 517593\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}2015 & 12656662 & 9192676 & 17425948 & 4095304 & 3603970 & 4653623 & 1946063 & 1692792 & 2237228 & 489486 & 435179 & 550570 & 0.2128 & 0.177 & 0.2559 & 494072\end{array}$
 $\begin{array}{lllllllllllllllllllllll}2017 & 13604031 & 9911096 & 18672976 & 3480735 & 3061887 & 3956878 & 2052594 & 1767702 & 2383402 & 447546 & 392381 & 510467 & 0.1883 & 0.1566 & 0.2264 & 499145\end{array}$ $\begin{array}{llllllllllllllllllllll}2018 & 23215739 & 16959447 & 31779961 & 3287728 & 2897787 & 3730141 & 1825019 & 1565915 & 2126996 & 533923 & 465103 & 612925 & 0.2177 & 0.181 & 0.2619 & 604449\end{array}$ $\begin{array}{llllllllllllllllllll} & 1979 & 19791826 & 14334239 & 27327323 & 2784406 & 2457601 & 3154669 & 1557280 & 1338373 & 1811991 & 421732 & 369244 & 481681 & 0.185 & 0.1529 & 0.2238 & 451542\end{array}$ $\begin{array}{llllllllllllllllllll}2020 & 23548414 & 16746655 & 33112750 & 2691893 & 2361023 & 3069131 & 1471011 & 1257982 & 1720114 & 406600 & 358551 & 461089 & 0.2003 & 0.165 & 0.2433 & 434000\end{array}$
 $\begin{array}{llllllllllllllllllll}2022 & 16404915 & 8957164 & 30045363 & 2406412 & 1925598 & 3007285 & 1300630 & 987661 & 1712774 & 340192 & 183379 & 631098 & 0.2037 & 0.1018 & 0.4075\end{array}$

Table 2.6.3.8 North Sea herring multi fleet assessment. SAM model control object.

```
An object of class "FLSAM.control"
Slot "name":
[1] "North Sea herring multifleet"
Slot "desc":
[1] "Imported from a VPA file. ( ./bootstrap/data/index.txt ). Mon May 02 09:53:59 2022"
Slot "range":
    min maxplusgroup minyear maxyear minfbar maxfbar
    0
Slot "fleets":
catch A catch BD catch C HERAS IBTS-Q1 IBTSO IBTS-Q3 LAI-ORSH
    0
LAI-BUN LAI-CNS LAI-SNS sumFleet
    6 6 6 7
```

Slot "plus.group":
plusgroup
true
Slot "states":
age
fleet 012345678
catch A -1 01234566
catch BD 7891010 10-1-1-1
catch C - 11112131414 14-1-1
HERAS -1-1-1-1-1-1-1-1-1
IBTS-Q1 -1-1-1-1-1-1-1-1-1
IBTSO -1-1-1-1-1-1-1-1-1
IBTS-Q3 -1-1-1-1-1-1-1-1-1
LAI-ORSH -1-1-1-1-1-1-1-1-1
LAI-BUN -1-1-1-1-1-1-1-1-1
LAI-CNS -1-1-1-1-1-1-1-1-1
LAI-SNS -1-1-1-1-1-1-1-1-1
sumFleet -1-1-1-1-1-1-1-1-1
Slot "logN.vars":
012345678
011111111
Slot "logP.vars":
[1] 012
Slot "catchabilities":
age
fleet 012345678
catch A -1-1-1-1-1-1-1-1-1
catch BD -1-1-1-1-1-1-1-1-1
catch C -1-1-1-1-1-1-1-1-1
HERAS -1 11222222
IBTS-Q1 -1 3-1-1-1-1-1-1-1
IBTSO 0-1-1-1-1-1-1-1-1
IBTS-Q3 45678 9-1-1-1
LAI-ORSH 10-1-1-1-1-1-1-1-1
LAI-BUN 10-1-1-1-1-1-1-1-1
LAI-CNS 10-1-1-1-1-1-1-1-1
LAI-SNS 10-1-1-1-1-1-1-1-1
sumFleet -1-1-1-1-1-1-1-1-1
Slot "power.law.exps":
age
fleet 012345678
catch A -1-1-1-1-1-1-1-1-1
catch BD -1-1-1-1-1-1-1-1-1
catch C -1-1-1-1-1-1-1-1-1
HERAS -1-1-1-1-1-1-1-1-1
IBTS-Q1 -1 -1 -1 -1-1-1 -1 -1 -1

```
IBTSO -1-1-1-1-1-1-1-1-1
IBTS-Q3 -1-1-1-1-1-1-1-1-1
LAI-ORSH -1 -1 -1 -1 -1-1-1-1-1
LAI-BUN -1-1-1-1-1-1-1-1-1
LAI-CNS -1-1-1-1-1-1-1-1-1
LAI-SNS -1 -1-1-1-1-1-1-1
sumFleet -1-1-1-1-1-1-1-1-1
```

Slot "f.vars":
age
fleet 012345678
catch A -1 011111222
catch BD 34444 4-1-1-1
catch C-1567777-1-1
HERAS -1-1-1-1-1-1-1-1-1
IBTS-Q1 -1-1-1-1-1-1-1-1-1
IBTSO -1-1-1-1-1-1-1-1-1
IBTS-Q3 -1-1-1-1-1-1-1-1-1
LAI-ORSH -1-1-1-1-1-1-1-1-1
LAI-BUN -1-1-1-1-1-1-1-1-1
LAI-CNS -1-1-1-1-1-1-1-1-1
LAI-SNS -1-1-1-1-1-1-1-1-1
sumFleet -1-1-1-1-1-1-1-1-1
Slot "obs.vars":
age
fleet 012345678
catch A - 101111122
catch BD $345555-1-1-1$
catch C -1 67888 8-1-1
HERAS -1 910111212121313
IBTS-Q1 -1 14-1-1-1-1-1-1-1
IBTSO 15-1-1-1-1-1-1-1-1
IBTS-Q3 1616171717 17-1-1-1
LAI-ORSH 18-1-1-1-1-1-1-1-1
LAI-BUN 18-1-1-1-1-1-1-1-1
LAI-CNS 18-1-1-1-1-1-1-1-1
LAI-SNS 18-1-1-1-1-1-1-1-1
sumFleet -1-1-1-1-1-1-1-1-1
Slot "srr":
[1] 0
Slot "scaleNoYears":
[1] 0
Slot "scaleYears":
[1] NA
Slot "scalePars":
age
years 012345678

Slot "cor.F":
[1] 222

Slot "cor.obs":

age

fleet 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8
catch A NA NA NA NA NA NA NA NA catch BD NA NA NA NA NA NA NA NA catch C NA NA NA NA NA NA NA NA HERAS -1 NA NA NA NA NA NA NA IBTS-Q1 -1 -1 -1 -1 -1 -1 -1 -1 IBTSO $-1 \begin{array}{lllllll}1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$ IBTS-Q3 $000000-1-1$ LAI-ORSH -1 -1 -1 -1 -1 -1 -1 -1 LAI-BUN -1 -1 -1 LAI-CNS -1 -1 -1 -1 -1 -1 -1 -1 LAI-SNS -1 -1 -1 -1 -1 -1 -1 -1 sumFleet -1 -1 -1 -1 -1 -1 -1 -1

```
Slot "cor.obs.Flag":
[1]ID ID ID ID ID ID AR ID ID ID ID <NA>
Levels: ID AR US
Slot "biomassTreat":
[1] -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1 -1
Slot "timeout":
[1] }360
Slot "likFlag":
[1] LN LN
Levels: LN ALN
Slot "fixVarToWeight":
[1] FALSE
Slot "simulate":
[1] FALSE
Slot "residuals":
[1] TRUE
Slot "sumFleets":
[1] "A" "BD" "C"
```

Table 2.7.1. North Sea herring. Intermediate year (2022) assumptions for the stock.

Variable	Value	Notes
$\begin{aligned} & \text { Fages (wr) 2-6 } \\ & \text { (2022) } \end{aligned}$	0.278	Based on estimated catch 2021
SSB (2022)	1233347	Calculated based on catch constraint (in tonnes)
Rage (wr) 0 (2022)	16619677	Estimated by assessment model (in thousands)
Rage (wr) 0 (2023)	22556738	Weighted mean over 2011-2020 (in thousands)
Total catch (2022)	451651	Estimated realized catch of autumn spawning herring derived from agreed TACs for A-D fleets, the proportion of NSAS herring in the catch (for A, C and D fleets), the transfer of TAC to the North Sea (C fleet) and the uptake of the bycatch quota (for B and D fleets).

Table 2.7.2. North Sea herring. Intermediate year (2021), fleet wise assumptions for the catches and the fishing mortality. Weights are in tonnes

	Field	Value	Note
TACs	A-fleet TAC	427628	
	B-fleet TAC	8174	
	C-fleet TAC	25021	Total TAC in IIIa (including WBSS and NSAS)
	D-fleet TAC	6659	Total TAC in IIIa (including WBSS and NSAS)
TACs to catches variables	C-fleet transfer FcY	0.9546	Taken from ImY as \% of C-fleet TAC
	C-fleet transfer ImY	23885	Value for the Intermediate year in tonnes
	D-fleet transfer	0.5	Value for the Intermediate year in \%
	WBSS/NSAS split in the North Sea	0.0136	Value from terminal year
	B-fleet uptake	0.78	Average over the last 3 years (2018-2020)
	C-fleet NSAS/WBSS split	0.3551	Average over the last 3 years (2018-2020)
	D-fleet NSAS/WBSS split	0.7	Average over the last 3 years (2018-2020)
	D-fleet uptake	0.0707	Average over the last 3 years (2018-2020)
F by fleet and total	$\mathrm{F}_{(\mathrm{wr}) \text { 2-6 }}$ A-fleet	0.269	
	$\mathrm{F}_{(\mathrm{wr})}$ 0-1 B -fleet	0.048	
	$\mathrm{F}_{(\mathrm{wr}) \text { 1-3 }} \mathrm{C}$-fleet	0	
	$\mathrm{F}_{(\mathrm{wr})}$ 0-1 ${ }^{\text {D-fleet }}$	0	
	$\mathrm{F}_{(\mathrm{wr})}$ 2-6	0.27	
	$\mathrm{F}_{(\mathrm{wr})} 0-1$	0.051	
NSAS catches by fleet	Catches A-fleet	445371	Fleet TAC $(427628 \mathrm{t})+$ what is transferred from the C fleet in 3a to the North sea (23885 t) scaled by the 3 year average proportion of NSAS in A fleet catch ($98.6 \%, 2019-2021$)
	Catches B-fleet	7099	Fleet TAC $(8174 \mathrm{t})+$ a 50% transfer from the F fleet TAC (6659 t) in 3a to the North Sea scaled with the fleet uptake in 2021 (78%).
	Catches C-fleet	403	Catches corresponding to 1136 t catch in 3a scaled by the 3 year average proportion of NSAS in the C fleet catch (35.5%, 2019-2021)
	Catches D-fleet	0	Total catch set at 0 t because considered negligible

value	description	basis
0.9546	C-fleet transfer FcY (\%)	aken from ImY as \% of C-fleet TAC
23885	C-fleet transfer ImY (tonnes)	Value for the Intermediate year
0.5	D-fleet transfer ImY (tonnes)	Value for the Intermediate year
0.3551	C-fleet NSAS/WBSS split	Average over the last 3 years
0.7	D-fleet NSAS/WBSS split	Average over the last 3 years
0.0136	WBSS/NSAS split in the north s	ea Value from terminal year
0.78	B-fleet uptake Ave	rage over the last 3 years
0.0707	D-fleet uptake A	erage over the last 3 years

Table 2.7.3. North Sea herring. reference points.

| wg fmsy | Fsq | Flim | Fpa | Blim | Bpa msyBtrigger | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $---~$ | | | | | | | |
| IBPNSherring2021 | 0.31 | . | 0.4 | 0.31 | 874198 | 956483 | 1232828 |
| WKPELA2018 | 0.26 | . | 0.34 | 0.3 | $8 e+05$ | $9 e+05$ | 1400000 |

Table 2.7.4. North Sea herring. All scenarios following WBSS TAC advice.

TACs to catches variables.

value	description	basis
0.9546	C-fleet transfer FcY (\%)	aken from ImY as \% of C-fleet TAC
23885	C-fleet transfer ImY (tonnes)	Value for the Intermediate year
0.5	D-fleet transfer ImY (tonnes)	Value for the Intermediate year
0.3551	C-fleet NSAS/WBSS split	Average over the last 3 years
0.7	D-fleet NSAS/WBSS split	Average over the last 3 years
0.0136	WBSS/NSAS split in the north s	ea Value from terminal year
0.78	B-fleet uptake Ave	rage over the last 3 years
0.0707	D-fleet uptake Av	verage over the last 3 years

Basis Fbar26A Fbar01B Fbar13C Fbar01D Fbar26 Fbar01 CatchA CatchB CatchC CatchD SSB1 SSB2

[^4]Table 2.7.5. North Sea herring. All scenarios with status quo in C-D fleet catches.
Basis Fbar26A Fbar01B Fbar13C Fbar01D Fbar26 Fbar01 CatchA CatchB CatchC CatchD total_catch SSB1 SSB2 SSB_change TAC_change advice_change
 46.9
45.7 $\begin{array}{cllllllllllllllll}\text { fmsy } & 0.31 & 0.051 & 0 & 0 & 0.31 & 0.053 & 523438 & 8745 & 0 & 0 & 532183 & 1280829 & 1286757 & -7.4 \\ \mathrm{nf} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1614283 & 1998030 & 16.7 & -100 & -100\end{array}$ $\begin{array}{lllllllllllllllllll}\text { tacro } & 0.197 & 0.032 & 0.006 & 0.002 & 0.2 & 0.039 & 356357 & 5619 & 6405 & 351 & 368732 & 1387630 & 1481508 & 0.3 & 0 & -0.8\end{array}$ $\begin{array}{llllllllllllllllll}\text { fsq } & 0.186 & 0.031 & 0 & 0 & 0.186 & 0.032 & 339749 & 5334 & 0 & 0 & 345083 & 1401049 & 1513391 & 1.3 & -4.7 & -5.5\end{array}$ $\begin{array}{lllllllllllllllll}\text { fpa } & 0.31 & 0.051 & 0 & 0 & 0.31 & 0.053 & 523438 & 8745 & 0 & 0 & 532183 & 1280829 & 1286757 & -7.4 & 46.9 & 45.7\end{array}$ $\begin{array}{llllllllllllllllll}\text { flim } & 0.4 & 0.066 & 0 & 0 & 0.4 & 0.069 & 640910 & 11169 & 0 & 0 & 652079 & 1202140 & 1153649 & -13.1 & 79.9 & 78.3\end{array}$ $\begin{array}{lllllllllllllllll}\text { bpa } & 0.743 & 0.122 & 0 & 0 & 0.744 & 0.128 & 995805 & 19986 & 0 & 0 & 1015791 & 956483 & 802300 & -30.9 & 179.4 & 177.1\end{array}$
$\begin{array}{llllllllllllllllllllll}\text { blim } & 0.886 & 0.146 & 0 & 0 & 0.887 & 0.153 & 1111504 & 23480 & 0 & 0 & 1134984 & 874198 & 703021 & -36.8 & 211.9 & 209.3\end{array}$
$\begin{array}{lllllllllllllllllll}\text { MSYBtrigger } & 0.364 & 0.06 & 0 & 0 & 0.364 & 0.063 & 595343 & 10204 & 0 & 0 & 605547 & 1232828 & 1204229 & -10.9 & 67.1 & 65.7\end{array}$
$\begin{array}{llllllllllllllllll}\text { fmsyAR_no_transfer_Btarget } & 0.31 & 0.047 & 0 & 0 & 0.31 & 0.05 & 523477 & 8162 & 0 & 0 & 531639 & 1280829 & 1286893 & -7.4 & 46.9 & 45.7\end{array}$
$\begin{array}{llllllllllllllllll}\text { fmsyAR_transfer_sq TAC C\&D } & 0.314 & 0.05 & 0.003 & 0.002 & 0.316 & 0.057 & 529663 & 8653 & 3330 & 351 & 541997 & 1275260 & 1274284 & -7.8 & 48.6 & 47.4\end{array}$
$\begin{array}{llllllllllllllll} \\ \text { fmsyAR no transfer_sq C\&D } & 0.307 & 0.05 & 0.006 & 0.002 & 0.31 & 0.059 & 519293 & 8653 & 6405 & 351 & 534702 & 1280821 & 1281588 & -7.4 & 45.7 \\ 4 & 44.5\end{array}$

Table 2.7.6. North Sea herring. Final scenario table.

Basis Fbar26A Fbar01B Fbar13C Fbar01D Fbar26 Fbar01 CatchA CatchB CatchC CatchD total_catch SSB1 SSB2 SSB_change TAC_change advice_change

Table 2.9.1. North Sea herring. Old and new reference points following WKNSHERRING 2021.

Framework ${ }^{\wedge}$	Reference point	Old Value	Old Technical basis	Old Source	New value	New basis
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	1400000	5th percentile of $\mathrm{B}_{\text {FMSY }}$	$\begin{aligned} & \text { ICES } \\ & \text { (2018b) } \end{aligned}$	1232828	unchanged
	$\mathrm{F}_{\text {MSY }}$	0.26	Stochastic simulations with a segmented regression and Ricker stock-recruitment curve from the short time-series (20022016).	ICES (2018b)	0.31	Same rationale with extended time series (2002-2020)
Precautionary approach	$\mathrm{Bl}_{\text {lim }}$	800000	Breakpoint in the segmented regression of the stock-recruitment timeseries (1947-2016).	ICES (2018b)	874198	Breakpoint in the segmented regression of the stock-recruitment time-series (1947-2020, excluding the recovery period 1979-1990).
	B_{pa}	900000	$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \times \exp (1.645 \times \sigma)$ with $\sigma \approx 0.10$, based on the average $C V$ from the terminal assessment year.	ICES (2018b)	956483	$\begin{aligned} & \mathrm{B}_{\mathrm{pa}}= \\ & \mathrm{B}_{\mathrm{lim}} \times \exp (1.645 \times \sigma) \end{aligned}$ with $\sigma \approx 0.06$, based on the σ from the terminal assessment year.
	$\mathrm{F}_{\text {lim }}$	0.34	$\mathrm{F}_{\mathrm{P} 50 \%}$ leading to 50\% probability of SSB $>\mathrm{B}_{\text {lim }}$ with a segmented regression and Ricker stock-recruitment curve (2002-2016).	ICES (2018b)	0.39	The F that on average leads to Blim
	F_{pa}	0.30	$\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\lim } \times \exp (-1.645 \times \sigma)$ with $\sigma \approx 0.08$, based on the average $C V$ from the terminal assessment year.	ICES (2018b)	0.31	The F that provides a 95\% probability for SSB to be above Blim (FP05 with AR)

Herring catches 2021 1st quarter

Figure 2.1.1a. Herring catches in the North Sea in the 1st quarter of 2021 (in tonnes) by statistical rectangle.

Herring catches 2021 2nd quarter

Figure 2.1.1b. Herring catches in the North Sea in the second quarter of 2021 (in tonnes) by statistical rectangle.

Herring catches 2021 3rd quarter

Figure 2.1.1c. Herring catches in the North Sea in the 3rd quarter of 2021 (in tonnes) by statistical rectangle.

Herring catches 2021 4th quarter

Figure 2.1.1d. Herring catches in the North Sea in the 4th quarter of 2021 (in tonnes) by statistical rectangle.

Herring catches 2021 all quarters

Figure 2.1.1e. Herring catches in the North Sea in all quarters of 2021 (in tonnes) by statistical rectangle.

Figure 2.2.1. Proportions of age groups (numbers) in the total catch of herring caught in the North Sea (upper, 19602021, and lower panel, 1980-2021).

Figure 2.2.2. Proportion of age groups (numbers) in the total catch of NSAS and herring caught in the North Sea in 2021.

Figure 2.3.1.1. Cruise tracks and survey area coverage in the HERAS acoustic surveys in 2021 by nation.

Figure 2.3.1.2. Distribution of NASC attributed to herring in HERAS in 2021. Acoustic intervals represented by light grey dot with green circles representing size and location of herring aggregations. NASC values are resampled at 5 nmi intervals along the cruise track. The red lines show the strata system.

Figure 2.3.2.1. North Sea herring - Abundance of larvae < $10 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$ in the Orkney/Shetlands and northern Buchan area, second half of September 2021 (maximum circle size $=9475 \mathrm{n} / \mathrm{m}^{2}$).

Figure 2.3.2.1. North Sea herring - Abundance of larvae $<10 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$ in the Buchan area and the central North Sea, second half of September 2021 (maximum circle size $=2081 \mathrm{n} / \mathrm{m}^{2}$).

Figure 2.3.2.3. North Sea herring - Abundance of larvae $<11 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$ in the Southern North Sea and English Channel, second half of December 2021 (maximum circle size = $19018 \mathrm{n} / \mathrm{m}^{2}$).

Figure 2.3.2.4. North Sea herring - Abundance of larvae <11 mm ($\mathrm{n} / \mathrm{m}^{2}$) in the Southern North Sea and English Channel, first half of January 2022 (maximum circle size = $1900 \mathrm{n} / \mathrm{m}^{2}$).

Figure 2.3.3.1.1 North Sea herring. Length distribution of all herring larvae caught in the MIK during the 2022 Q1 IBTS.

Index: 62.4
0-ringers yearclass 2019

Index: 95.2
0 -ringers yearclass 2020

Index: 47.8

Figure 2.3.3.1.2 North Sea herring. Distribution of 0-ringer herring, year classes 2019-2021. Density estimates of 0-ringers within each statistical rectangle are based on MIK catches during IBTS in January/February 2020-2022. Areas of filled circles illustrate densities in no $\mathrm{m}-2$, the area of the largest circle represents a density of $\mathbf{3 . 8 2} \mathbf{m - 2}$. All circles are scaled to the same order of magnitude of the square root transformed densities.

Index: 1021
1-ringers yearclass 2018

Index: 3133
1-ringers yearclass 2019

Index: 806
1-ringers yearclass 2020

Figure 2.3.3.2.1 North Sea herring. Distribution of 1-ringer herring, year classes 2018-2020. Density estimates of 1-ringers within each statistical rectangle are based on GOV catches during IBTS in January/February 2020-2022. Areas of filled circles illustrate numbers per hour, scaled proportionally to the square root transformed CPUE data, the area of the largest circle extending across the boundary of a rectangle represents $201,826 \mathrm{~h}-1$.

Figure 2.3.3.2.2 North Sea herring. Time series of 0-ringer (blue) and 1-ringer indices (orange). Year-classes 1991 to 2021 for 0-ringers, year-classes 1991-2020 for 1-ringers.

Figure 2.4.1.1. North Sea Herring. Mean weights-at-age for the 3 rd quarter in Divisions 4 and 3.a from the acoustic survey (upper panel) and mean weights-in-the-catch (lower panel) for comparison.

Figure 2.5.1.1 North Sea herring. Relationship between indices of 0 -ringers, calculated with the new algorithm, and 1ringers for year-classes 1991 to 2020.

Figure 2.6.1.1. North Sea Herring. Time-series of proportion mature at ages 0 to $8+$ as used in the North Sea herring assessment.

Figure 2.6.1.2. North Sea Herring. Time-series of stock weight at ages 0 to $8+$ as used in the North Sea herring assessment.

Figure 2.6.1.3. North Sea Herring. Time-series of catch weight at ages 0 to $8+$ as used in the North Sea herring assessment.

Figure 2.6.1.4. North Sea Herring. Time-series of absolute natural mortality values at age 0-8+ as used in the North Sea herring assessment. Natural mortality values are based on the 2019 North Sea key-run (ICES WGSAM, 2021)

Figure 2.6.1.5. North Sea Herring. Proportion of catch at age since 2000.

Figure 2.6.1.6. North Sea Herring. Proportion of HERAS index at age since 2000.

Figure 2.6.1.7. North Sea herring. Internal consistency plot of the acoustic survey (HERAS). Above the diagonal the linear regression is shown including the observations (in points) while under the diagonal the r^{2} value that is associated with the linear regression is given.

Figure 2.6.1.8. North Sea herring. Internal consistency plot of the IBTS in quarter 3. Above the diagonal the linear regression is shown including the observations (in points) while under the diagonal the r^{2} value that is associated with the linear regression is given.

Figure 2.6.2.1. North Sea herring. Stock summary plot of North Sea herring with associated uncertainty for SSB (top panel), F ages 2-6 (middle panel) and recruitment (bottom panel).

Residuals by year Catch

Figure 2.6.2.2. North Sea herring. Bubble plot of standardized catch residual at age.

Residuals by year HERAS

Figure 2.6.2.3. North Sea herring. Bubble plot of standardized acoustic survey residuals at age.

Figure 2.6.2.4. North Sea herring. Bubble plot of standardized IBTSQ1 residuals at age.

Residuals by year IBTS-Q3

Figure 2.6.2.5. North Sea herring. Bubble plot of standardized IBTSQ3 residuals at age.

Observation variances by data source

Figure 2.6.2.6. North Sea herring. Observation variance by data source as estimated by the assessment model. Observation variance is ordered from least (left) to most (right). Colours indicate the different data sources. Observation variance is not individually estimated for each data source thereby reducing the parameters needed to be estimated in the assessment model. In these cases of parameter bindings, observation variances have equal values.

Observation variance vs uncertainty

Figure 2.6.2.7. North Sea herring. Observation variance by data source as estimated by the assessment model plotted against the CV estimate of the observation variance parameter.

Survey catchability parameters

Figure 2.6.2.8. North Sea herring. Catchability at age for the HERAS and IBTSQ3 surveys.

Figure 2.6.2.9. North Sea herring. Assessments retrospective pattern of SSB (top panel) F (middle panel) and recruitment (bottom panel).

Figure 2.6.2.10. North Sea herring. Model uncertainty; distribution and quantiles of estimated SSB and F2-6 in the terminal year of the assessment. Estimates of precision are based on a parametric bootstrap from the FLSAM estimated variance/covariance estimates from the model.

North Sea Herring

Figure 2.6.2.11. North Sea herring. Correlation plot of the FLSAM assessment model with the final set of parameters estimated in the model. The diagonal represents the correlation with the data source itself.

Selectivity of the Fishery by Pentad

Figure 2.6.2.12. North Sea herring. Fishing selectivity by pentad.

North Sea herring multifleet

Figure 2.6.3.1 North Sea herring multi-fleet model. Stock summary plot with associated uncertainty for SSB (top panel), F ages 2-6 (middle panel) and recruitment (bottom panel).

Figure 2.6.3.2 North Sea herring multi-fleet model. Comparison between single fleet and multi-fleet assessment models for SSB (top panel), F ages 2-6 (middle panel) and recruitment (bottom panel).

Residuals by year Catch fleet A

Figure 2.6.3.3. North Sea herring multifleet assessment model. Bubble plot of standardized residuals for catches of fleet A.

Residuals by year Catch fleet BD

Figure 2.6.3.4. North Sea herring multifleet assessment model. Bubble plot of standardized residuals for catches of fleet B\&D.

Residuals by year Catch fleet C

Figure 2.6.3.5. North Sea herring multifleet assessment model. Bubble plot of standardized residuals for catches of fleet C.

Observation variances by data source

Figure 2.6.3.6. North Sea herring multifleet assessment model. Observation variance by data source as estimated by the assessment model. Observation variance is ordered from least (left) to most (right). Colours indicate the different data sources. Observation variance is not individually estimated for each data source thereby reducing the parameters needed to be estimated in the assessment model. In these cases of parameter bindings, observation variances have equal values.

Observation variance vs uncertainty

Figure 2.6.3.7. North Sea herring multifleet assessment model. Observation variance by data source as estimated by the assessment model plotted against the CV estimate of the observation variance parameter.

North Sea Herring

Figure 2.6.3.8. North Sea multifleet assessment model. Correlation plot of the FLSAM assessment model with the final set of parameters estimated in the model. The diagonal represents the correlation with the data source itself.

Figure 2.6.3.9. North Sea herring multifleet assessment model. Assessments retrospective pattern of SSB (top panel) F (middle panel) and recruitment (bottom panel).

Selectivity of the Fishery by Pentad

Figure 2.6.3.10. North Sea herring multifleet assessment model. Fishing selectivity fleet A.

Figure 2.6.3.11. North Sea herring multifleet assessment model. Fishing selectivity fleet B and D combined.

Figure 2.6.3.12. North Sea herring multifleet assessment model. Fishing selectivity fleet \mathbf{C}.

Figure 2.7.1.1. North Sea herring. FMSY advice rule and SSB/Fbar data point since 2019.

Figure 2.7.2.1. North Sea herring. comparison of SSB trajectory between short term forecasts applied to HAWG2021 and HAWG2022 data. oY: old years (prior to data year). DtY: data year. ImY: intermadiate year. FcY: forecast year. CtY: continuation year.

 stf

Figure 2.7.2.2. North Sea Herring. Realized and projected catch (in weight) by age (wr) between 2020 assessment (2021 as forecast year), 2021 assessment (2022 as forecast year) and 2022 assessment (2023 as forecast year).

Figure 2.7.2.3. North Sea Herring. Catch proportions for the different ages between the $\mathbf{2 0 2 0}$ short-term forecast (2021 as forecast year), 2021 short-term forecast (2022 as forecast year) and 2022 short term forecast (2023 as forecast year).

Assessment and medium term forecast MSY AR without transfer

Figure 2.7.2.4. North Sea Herring. Short-term projections using an F status quo from TAC year (i.e. advice year). Intermediate year is in 2022 and the TAC year is 2023.

Figure 2.11.1. North Sea herring. Time-series of spawning-stock biomass of each component (top), and contribution of each component to the total stock (bottom; Payne, 2010) as estimated from the LAI index Areas are arranged from top to bottom according to the south-to-north arrangement of the components.

Figure 2.13.1. North Sea Autumn Spawning Herring stock recruitment curve, plotting estimated spawning-stock biomass against the resulting recruitment. Year classes spawned after 2001 are plotted with open red circles, to highlight the years of recent low recruitment. The most recent year class is plotted in solid red.

Figure 2.13.2. North Sea Autumn Spawning Herring time-series of recruits per spawner (RPS). RPS is calculated as the estimated number of recruits from the assessment divided by the estimated number of mature fish at the time of spawning and is plotted against the year in which spawning occurred. Black points: RPS in a given year. Red line: Smoother to aid visual interpretation. Note the logarithmic scale on the vertical axis.

Figure 2.13.3. North Sea Autumn Spawning Herring time-series of larval survival ratio (Dickey-Collas \& Nash, 2005; Payne et al., 2009), defined as the ratio of the SSB larval index (representing larvae less than $\mathbf{1 0} \mathbf{- 1 1} \mathbf{~ m m}$) and the IBTSO index (representing the late larvae, $\mathbf{>} \mathbf{1 8} \mathrm{mm}$). Survival ratio is plotted against the year in which the larvae are spawned.

Figure 2.13.4. North Sea Autumn Spawning Herring time-series of larval survival ratio (Dickey-Collas \& Nash, 2005; Payne et al., 2009) for the northern-most spawning components (Banks, Buchan, Orkney-Shetland), defined as the ratio of the sum of the larvae indices for these components (representing larvae less than $10-11 \mathrm{~mm}$) and the IBTSO index (representing the late larvae, > $\mathbf{1 8} \mathbf{~ m m}$). Survival ratio is plotted against the year in which the larvae are spawned.

3 Herring in Division 3.a and subdivisions 22-24, spring spawners [Update Assessment]

3.1 The Fishery

3.1.1 Advice and management applicable to 2021 and 2022

ICES advised in 2021 on the basis of the MSY approach. This corresponds to zero catch in 2022 (ICES 2021).
The EU and Norway agreement on a herring TAC for 2021 was 21604 t in Division 3.a for the human consumption fleet and a bycatch ceiling of 6659 t to be taken in the small mesh fishery. For 2022, the EU and Norway agreed on herring TACs in Division 3.a corresponding to 25021 t for the human consumption fleet (21684 t for EU and 3337 t for Norway) and a bycatch ceiling of 6659 t for the small mesh fishery (only EU). The agreement also states that of these overall fishing opportunities no more than 1136 t of herring would be taken in Division 3.a with the possibility to transfer up to 100% of the human consumption TAC from 3.a to the North Sea and up to 50% for the bycatch small mesh fishery (see Council Regulation (EU) 2021/1888) for more specifics on area limitations on the transfer within the North Sea).

Prior to 2006, no separate TAC for subdivisions 22-24 was set. In 2021, a TAC of 1575 t was set on the Western Baltic stock component. The TAC for 2022 was set at 788 t .

3.1.2 Landings in 2021

Herring caught in Division 3.a are a mixture of mainly North Sea Autumn Spawners (NSAS) and Western Baltic Spring Spawners (WBSS). This section gives the landings of both NSAS and WBSS, but the stock assessment applies only to WBSS.

Landings from 1989 to 2021 are given in Table 3.1.1 and Figure 3.1.1. In 2021, the total landings in Division 3.a and subdivisions 22-24 have decreased to 14918 t. Landings in 2021 decreased by 29% in the Skagerrak, by 6% in the Kattegat and by 60% in subdivisions $22-24$. As in previous years the 2021 landing data are calculated by fleet according to the fleet definitions used by the working group (see section 3.1.3).

3.1.3 Fleets

One of the unresolved issues from the benchmark in 2018 was the definition of the fleets, which differs between years and countries (ICES WKPELA, 2018).
The definition of the fleets in the EU TAC and quota regulation, since 1998 (e.g. EU 2017/127 and 2016/1903)

Fleet C: Catches of herring in Kattegat and Skagerrak taken in fisheries using nets with mesh sizes equal to or larger than 32 mm .
Fleet D: Exclusively for catches of herring in Kattegat and Skagerrak taken as bycatch in fisheries using nets with mesh sizes smaller than 32 mm .
Fleet F: Not defined directly in the regulation, but landings from subdivisions 22-24. Most of the catches are taken in a directed fishery for herring and some as bycatch in a directed sprat fishery

The definition used by HAWG, since 2010.
Fleet C: Directed fishery for herring in Kattegat and Skagerrak in which trawlers (with 32 mm minimum mesh size) and purse-seiners participate. This fleet also includes the Swedish fishery with mesh sizes less than 32 mm assuming that there is no difference in age structure of the landings between vessels using different mesh sizes.

Fleet D: Bycatch of herring in Kattegat and Skagerrak in the industrial fleet and only including Danish landings. Covering all fisheries with mesh sizes less than 32 mm e.g., the sprat fishery, but also including other fisheries where herring is landed as bycatch e.g. Norway pout, sandeel and blue whiting fisheries.

Fleet F: Landings from subdivisions 22-24. Most of the catches are taken in a directed fishery for herring and some as bycatch in a directed sprat fishery.

In Table 3.1.2 the landings are given for 2004 to 2021 in thousands of tonnes by fleet (as defined by HAWG) and quarter.
The text table below gives the TACs and Quotas (t) for the fishery by the C- and D-fleets in Division 3.a and for the F-fleet in subdivisions 22-24.

	TAC	DK	GER	FI	PL	SWE	EC	NOR	
2021		21604	9800	145			9498	18723	2881
Div. 3.a fleet-C	6659	5692	51			916	6659		
Div. 3.a fleet-D	1575	221	869	0	205	280	1575		
SD 22-24 fleet-F									
\% of 3.a fleet-C can be taken in 4 EU waters									
\% of 3.a fleet-C can be taken in 4 Norwegian waters									
\% of 3.a fleet-D can be taken in 4	50%								

3.1.4 Regulations and their effects

Before 2009, HAWG has calculated a substantial part of the catch reported as taken in Division
3.a in fleet C actually has been taken in Subarea 4. These catches have been allocated to the North Sea stock and accounted for under the A-fleet at earlier HAWG meetings. Misreported catches
have been moved to the appropriate stock for the assessment. However, from 2009 and on onwards, information from both the industry and VMS estimates suggest that this pattern of misreporting of catches into Division 3.a does no longer occur. Therefore, no catches were moved out of Division 3.a to the North Sea for catches taken in 2020.

Since 2011 the EU-Norway agreement allowed 50% of the Division 3.a quotas for human consumption (Fleet C) to be taken in the North Sea. The optional transfer of quotas from one management area to another introduces uncertainty for catch predictions and thus influence the quality of the stock projections. To decrease the uncertainty industry agreed in the 2013 benchmark to inform HAWG prior to the meeting of the assumed transfer in the intermediate year. In the last few years this information has proved to be highly valuable and consistent with the realized distribution of the catches.

In 2021 and 2022, following the agreed record from the bilateral consultations between the EU and Norway for Skagerrak, the C-fleet inter-area flexibility from Division 3.a to Subarea 4 has been increased to 100%, and a flexibility of 50% has been given to the D-fleet, in order to protect WBSS herring. In addition, in 2022, EU and Norway committed to limit overall herring catches in Division 3.a to 969 t and 167 t , respectively.

The quota for the C fleet and the bycatch TAC for the D fleet are set for the NSAS and the WBSS stocks together. The implication for the catch of NSAS must also be considered when setting quotas for the fleets that exploit these stocks.

3.1.5 Changes in fishing technology and fishing patterns

The amount of WBSS herring taken as bycatch in the D-fleet has been varying between years depending on the utilization of the bycatch TAC and the proportion of WBSS in the catches. In 2021 the amount of WBSS taken was 35 t , which is the lowest recorded catch. However, the TAC utilization was 2.1% being also the lowest recorded utilization. Prediction of TAC utilization is further complicated by the merging of the sprat stocks in 3.a and the North Sea (ICES 2018) with a common management and the optional transfer of 50% of the herring bycatch quota from the D-fleet in 3.a to the B-fleet in the North Sea.

3.1.6 Winter rings vs. ages

To avoid confusion and facilitate comparability among herring stocks with different "spawning style" (i.e., NSAS) the age of WBSS, as well as other HAWG herring stocks, is specified in terms of winter rings (wr) throughout the entire assessment and advice. In the case of WBSS perfect correspondence exists between wr and age with no actual risk of confusion, so that a wr 1 is also an age 1 WBSS herring.

3.2 Biological composition of the landings

Tables 3.2.1 and 3.2.2 show the total catch in numbers and mean weight-at-age in the catch for herring by quarter and fleet landed from Skagerrak and Kattegat, respectively. The total catch in numbers and mean weights-at-age for herring landed from subdivisions 22-24 are shown in Table 3.2.3.

The 14918 t of landed herring were submitted stratified by area, fleet, and quarter, resulting in 57 strata with landings. 22 of these strata were sampled - accounting for 86% of the landings. Some strata with relatively large amounts of landings were unsampled, but the main problem being that fleet C only was sampled in the third quarter in Skagerrak (Table 3.2.4). Furter, it seems like it is getting more and more difficult for countries to sample the trawler landings in
the F fleet. Unsampled strata accounted in total for 2038 t and samples from either other nations or adjacent areas and quarters were used to estimate catch in numbers and mean weight-at-age (Table 3.2.5).

Based on the proportions of spring- and autumn-spawners in the landings, catches were split between NSAS and WBSS (Table 3.2.6 and the stock annex for more details).

The total numbers and mean weight-at-age of the WBSS and NSAS landed from Kattegat, Skagerrak, and the sum of the two (Division 3.a) respectively were then estimated by quarter and fleet (Tables 3.2.7-3.2.12).

In 2022, the age composition for the A-fleet in the transfer area was taken directly from the transfer area rather than from the entire Division 4aE given that samples were available in the Norwegian catches.

The total catch, expressed as SOP, of the WBSS taken in the North Sea + Division 3.a in 2020 was estimated to be 12579 t , which represents a decrease of 31% compared to 2020 (Table 3.2.13).

Total catches of WBSS from the North Sea, Division 3.a, and subdivisions 22-24 by quarter, were estimated to be 14180 for 2021 (Table 3.2.14). Additionally, the total catches of WBSS in numbers and tonnes, divided between the North Sea and Division 3.a and subdivisions 22-24 respectively for 1993-2021, are presented in tables 3.2.15 and 3.2.16.

The total catch of NSAS in Division 3.a amounted to 4244 t in 2021, which represents the second lowest value in the 28 -year time-series (Table 3.2.17).
The catches of WBSS from Subdivision 4.aE and the catches of NSAS from Division 3.a in 2021 were reallocated to the appropriate stocks as shown in the text table below:

Stock	Catch reallocation	Tonnes
WBSS	$4 . a E$ (A-fleet)	3505
NSAS	3.a (C+D-fleet)	4244

3.2.1 Quality of Catch Data and Biological Sampling Data

No quantitative estimates of discards were available to the Working Group from all countries. During the 2022 meeting one country checked their estimated discard of herring in the demersal, Nephrops and shrimp fisheries in SD 20-24, and for 2020 the estimated discard constituted 1% of the landings, so an insignificant amount. Therefore, the overall amount of discards for 2021 is assumed to be insignificant, as in previous years.

Table 3.2.4 shows the number of fishes aged by country, area, fishery, and quarter. The overall sampling in 2021 meets the recommended level of one sample per 1000 t landed per quarter and the coverage of areas, times of the year and gear (mesh size). Occasional lack of national sampling of catches by quarter and area has been covered by similar fisheries in other countries, but as mentioned in the section before, only a single quarter and area combination was sampled in the D fleet.

Splitting of catches into WBSS (Spring spawners) and NSAS (Autumn spawners) in Division 3.a were based on Swedish analyses of otolith micro-structure (OM) of hatch type and genetic analyses for Danish catches from 2022. Different components of NSAS herring spawn at different times of the year, the three northern components spawn in autumn and are assigned to OM hatch month 9, whereas the Downs components spawning during winter in the Eastern Channel assigned to OM hatch month 12 . Herring are predominantly spawning during spring in the western Baltic, the Kattegat and the Skagerrak and are assigned to the OM hatch month 4, however smaller stock components from the Western Baltic Sea and Baltic Sea also spawn in autumn and
winter, which leads to an assignment to OM hatch month 9 and 12, respectively. This would hence lead to an erroneous assumption that these Western Baltic Sea and Baltic Sea autumn and winter spawners belonged to the NSAS stock. Moreover, winter-hatched individuals have traditionally been assigned differently in Danish and Swedish samples, where OM hatch month 12 has been assigned to WBSS in Sweden and to NSAS in Denmark. The samples from the IBTS have been split according to the Danish perception of stock affiliation. However, since the implementation of splitting by genetic markers, these issues have been resolved.

For Danish data, a genetic stock identification method was used to classify individual fish to genetic stock origin. The total sample size for hatch type was 2028 (674 Danish and 1354 Swedish) with 70% of the samples in Subdivision 20 (Skagerrak) and 30% in Subdivision 21 (Kattegat). Sampling from the Danish fishery had a lower coverage of quarters and subdivisions than sampling of the Swedish fishery. Proportions of WBSS in sampled age classes were weighted by the national catches in the respective quarters and subdivisions. The sampling did not cover all age classes and thus proportions were estimated using information from relevant adjacent age classes, or from cruises in the same quarter and subdivision. Proportions were estimated for commercial catch by country, wr, quarter, and subdivision by a logistic mixed effects regression model. The model included wr, subdivision, quarter, and cruise as fixed effects and had a random intercept varying by trip/haul ${ }^{1}$. Both commercial and survey samples from both countries were used in the analysis. Total composition estimates per wr, quarter, and subdivision were calculated as a weighted average of the country-wise estimates. Total estimates were only calculated for combinations of wr, quarter, and subdivision with catches. For combinations with Danish or Swedish catches, the country-wise estimates were weighted by the catches. For combinations without Danish and Swedish catches, country-wise estimates were weighted by the sum of catches for the relevant quarter and subdivision.

Random samples of 175 individual herring from Norwegian commercial catches in the "transfer area" in $4 . a E$ are analyzed for size at age distribution and stock affiliation based on a genetic stock identification method using an extended SNP panel (82 markers where 53 are included also in the panel used for Danish samples). A common baseline with small deviations was used for stock identification for Danish and Norwegian samples. Based on expected vertebral series counts, genetic stock origin was converted to NSAS/WBSS to continue the historical time series. Catches from the so called "transfer area" are split into proportions of NSAS and WBSS by quarter and wr based on a logistic mixed effects regression model.

A total of 88253 tonnes of herring was caught in the transfer area in 2021, with catches constituting 74% in quarter 2 and 20% in quarter 3 , however with only four samples ($40,42,45$, and 48 fish) from quarter 2 being available for calculating stock proportions.

For quarter 2 and 3, the same split was applied based on the combined samples from HERAS and the fishery in the transfer area (251 fish). This was done under the assumption that the fishery is restricted to the same period as HERAS in June and July and would catch similar proportions of the two stocks in this period. The regression model included a B-spline on wr with 5 knots and additional dummy variables for commercial samples wr 1, 2, and 3 to account for different selectivities. Finally, a random intercept varying by trip/haul was included.

Due to lack of sampling data in 2021 the split for quarters 1 and 4 had to be carried over from 2020. Quarter 1 and 4 estimates from 2020 were based on data from the time-series of samples

[^5]from the commercial fishery with respectively 48 (from 2016 Q1) and 342 herring (from Q4 in 2008, 2012 and 2014) available for the analysis.

Based on the splitting method, 3505 tonnes of WBSS herring were caught in the transfer area in 2021.

There are clear indications from weight at age of mixing with Central Baltic herring in catches from SD 24 throughout the year from most of the countries. However, the catches are dominated by the German directed fishery in the spawning areas where mixing is likely to be minimum.

Catch data were not corrected for this mixing neither for potential catches of Western Baltic Spring-spawning herring in SD 25-26.

3.3 Fishery-independent Information

3.3.1 German Autumn Acoustic Survey (GERAS) in subdivisions 21-24

As a part of Baltic International Acoustic Survey (BIAS); the German autumn acoustic survey (GERAS) was carried out with R/V "SOLEA" between 8-28 October 2021 in the Western Baltic, covering subdivisions $21,22,23$ and 24 . A survey report is given in the report of the 'ICES Working Group of International Pelagic Surveys' (ICES WGIPS, 2022). In the western Baltic, the distribution areas of two stocks, the Western Baltic Spring Spawning (WBSS) herring and the Central Baltic herring (CBH) overlap. Survey results indicated in the recent years that in SD 24, which is part of the WBSS herring management area, a considerable fraction of CBH is present and correspondingly erroneously allocated to WBSS stock indices (ICES 2013/ACOM:46). Accordingly, a stock separation function (SF) based on growth parameters in 2005 to 2010 has been developed to quantify the proportion of CBH and WBSS herring in the area (Gröhsler et al., 2013; Gröhsler et al., 2016). The estimates of the growth parameters from baseline samples of WBSS and CBH in 2011-2018 and 2020-2021 support the applicability of the SF (Oeberst et al., 2013; WD/WGIPS Oeberst et al., 2014, 2015; WD/WGBIFS Oeberst et al., 2016, 2017; WD/WGBIFS Gröhsler and Schaber, 2018, 2019; WD/WGIPS Gröhsler and Schaber 2021, WD/WGIPS Gröhsler and Schaber 2022). The applicability of the SF could not be test-ed in 2019 due some higher degree of mixing of CBH/WBSS in the baseline area of WBSS herring in SDs 21 and 23.
The age-length distribution of herring in SD 21 and in SD 22 in 2021 indicated also some contribution of fish of CBH origin. Besides the standard procedure to use the SF in SD 24 and in SD 23/39G2 (since biological samples of that rectangle were also used to raise the corresponding mean NASC values in the SD 24 area of the rectangle), the SF was accordingly also applied in SD 21 and SD 22 in 2021.

Haul 32 (41G2, SD 23) targeting a large aggregation of herring yielded a substantial sample of almost exclusively large herring that were spawning (maturity 6). Since the herring could not be allocated to WBSS, both the hydroacoustic data from that aggregation as well as the biological data from haul 32 were removed from the further analysis for producing a biomass and abundance estimate for WBSS. Genetic samples have been taken and are currently being analysed to identify stock origin of that herring.

Individual mean weight, total numbers and biomass by age as estimated from the GERAS-Index (covering the standard survey area, which generally excludes 43G1/43G2 in SD 21 and 37G3/37G4 in SD 24) are presented in Table 3.3.1. The Western Baltic spring spawning herring GERAS-Index in 2021 was estimated to be 0.8×10^{9} fish or about 29.3×10^{3} tonnes in subdivisions $21-24$. The biomass index in 2021 represents the lowest in the time series.

The time-series has been revised in 2008 (ICES 2008/ACOM:02) to include the southern part of SD 21. The years 1991-1993 were excluded from the assessment due to different recording
method and 2001 was also excluded from the assessment since SD 23 was not covered during that year (ICES 2008/ACOM:02).

Age (wr) classes (1-4) are included in the assessment.

3.3.2 Herring Summer Acoustic Survey (HERAS) in Division 3.a and the North Sea

The Herring acoustic survey (HERAS) was conducted from 21 June to 6 July 2021 and covered the Skagerrak and the Kattegat and the North Sea. The 2020 estimate of Western Baltic springspawning herring was 105×10^{3} tonnes and 0.911 million herring. Compared to the values in 2020, the 2021 estimates represent a decrease of 48% in numbers and of 35% in biomass. The stock biomass is dominated by 2-4 winter ring (79\%). The present numbers of older herring (3+ group) in the stock only represent 45% of the average of the whole times series till 2020 (2021: 649 million; mean 1991-2020: 1411 million). The results from the HERAS index are summarised in Table 3.3.2.

The 1999 survey was excluded from the assessment due to different survey area coverage.
Ages (wr) 3-6 are used in the assessment.

3.3.3 Larvae Surveys (N20)

Herring larvae surveys (Greifswalder Bodden and adjacent waters; SD 24) were conducted in the western Baltic Sea at weekly intervals during the 2021 spawning season (March-June). The larval index was defined as the total number of larvae that reach the length of 20 mm (N20; Table 3.3.3; Oeberst et al., 2009). With an estimated product of 2751 million larvae, the 2021 N20 recruitment index is more than 10 times higher than that of the record low in 2020 and the highest value since 2015 (for further details see WD Polte and Gröhsler, HAWG 2021).

The larval index is used as recruitment index age (wr) 0) in the assessment.

3.3.4 IBTS/BITS Q1 and Q3-Q4

Since the recent benchmark (ICES, WKPELA 2018), the IBTS and the BITS data are combined according to the standardization methodology proposed by Berg et al., (2014) (hauls showed in Figures 3.3.1-3.3.2). In addition to the standardization model, two extra modelling steps are included, which consist of splitting the survey length and age data by stock using subsamples of stock- identified individuals (limited to the IBTS and not for the BITS). First, the length distributions are split by haul into WBSS / non-WBSS. Next the individual age samples are split into WBSS / non-WBSS. This gives a stock-specific ALK, which is used to convert the split length distributions from the first step into numbers-at-age by haul. Stock proportions for these splitting are based on otolith microstructure from the IBTS samples by assuming that only OM4 (Springspawning) contribution to the WBSS fraction, while OM9 and OM12 (Autumn and Winter spawning) are considered non-WBSS. The following equation describes the model considered for both the presence/absence and positive parts of the Delta-Lognormal model:
$\mathrm{g}(\mu \mathrm{i})=\mathrm{Year}(\mathrm{i})+\mathrm{Gear}(\mathrm{i})+\mathrm{f} 1($ loni; lati $)+\mathrm{f} 2($ Depthi $)+\mathrm{f} 3($ timei $)+\log ($ HaulDuri $)$
where Gear(i) and Year(i) maps the ith haul to categorical gear/year effects for each age group.
Age (wr) classes (1-3) and (2-3) from the surveys in Q1 and Q3-4 are included in the assessment

3.4 Mean weights-at-age and maturity-at-age

Mean weights at age in the catch in the 1st quarter were used as estimates of mean weight-at-age in the stock (Table 3.2.14).

The maturity ogive of WBSS applied in HAWG has been assumed constant between years and has been the same since 1991 (ICES 1992/Assess:13), although large year-to-year variations in the percentage mature have been observed (Gröhsler and Müller, 2004). Maturity ogive has been investigated in the recent benchmark assessment of WBSS (ICES 2013/ACOM:46). WKPELA in 2013 decided to carry on with the application of the constant maturity ogive vector for WBSS.

The same maturity ogive was used as in the last year assessment (ICES CM 2018/ACOM:07):

W-rings	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 +}$
Maturity	0.00	0.00	0.20	0.75	0.90	1.00	1.00	1.00	1.00

3.5 Recruitment

Indices of recruitment of 0-ringer WBSS for 2021 were available from the N20 larval surveys (see Section 3.3.3).

The strong correlation of the N20 with the 1 -wr group of the GERAS $\left(\mathrm{R}^{2}=0.75\right.$, Figure 3.5.1), which also shows a good internal consistency with the GERAS 2-wr group, indicates that the N20 is a good proxy for the strength of the new incoming year class. Since 2010, the N20 recruitment index lies below the long-term average (1992-2021: 5389 million). The 2021 N20 recruitment index is more than 10 times higher than that of the record low in 2020 and the highest value since 2015 (Table 3.3.3).

3.6 Assessment of Western Baltic spring spawners in Division 3.a and subdivisions 22-24

3.6.1 Input data

All input data can be found in Tables 3.6.1-3.6.8.
Only the input landings and weights data differ between the single and multi-fleet model - the rest of the input files are the same for both models.

3.6.1.1 Landings data

Catch in numbers-at-age from 1991 to 2021 were available for Subdivision 27.4.aEast (fleet A), Division 27.3.a (fleet C and D, respectively) and subdivisions 27.3.c-27.3.d. 24 (fleet F) (Table 3.6.1.a-d). Years before 1991 are excluded due to lack of reliable data for splitting spawning type and also due to a large change in fishing pattern caused by changes in the German fishing fleets (ICES 2008/ACOM:02).

Mean weights-at-age in the catch vary annually and are available for the same period as the catch in numbers (Table 3.6.2.a-d; Figure 3.6.1.1). Proportions at age thus reflect the combined variation in weight at age and numbers-at-age (Figures 3.6.1.2 and 3.6.1.3).

3.6.1.2 Biological data

Estimates of the mean weight of individuals in the stock (Table 3.6.3 (taken from weights in catches in Q1) and Figure 3.6.1.4) are available for all years considered.

Natural mortality was assumed constant over time and equal to $0.3,0.5$, and 0.2 for 0 -ringers, 1 ringers, and $2+$-ringers respectively (Table 3.6.4). The estimates of natural mortality were derived as a mean for the years 1977-1995 from the Baltic MSVPA (ICES 1997/J:2) as no new values were available as confirmed in the recent benchmark.

The percentage of individuals that are mature is assumed constant over time (Table 3.6.5): ages (wr) $0-1$ are assumed to be all immature, ages (wr) $2-4$ are $20 \%, 75 \%$ and 90% mature respectively, and all older ages are 100% mature.

The proportions of fishing mortality and natural mortality before spawning are 0.1 and 0.25 respectively and are assumed to be constant over time (Table 3.6.6-7). The difference between these two values is due to differences in the seasonal patterns of fishing and natural mortality.

3.6.1.3 Surveys

Surveys indices used in both the model runs can be found in Tables 3.6.8a-e.
According to the last benchmark of WBSS (ICES WKPELA, 2018), the following age (w-rings) classes (in grey) are used from each survey to tune the assessment of this stock:

Survey	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$8+$	
HERAS										
GERAS										
N20										
IBTS/BITS Q1										
IBTS/BITS Q3-4										

3.6.2 Assessment method

Since the 2018 benchmark (ICES WKPELA, 2018), the WBSS assessment is based on the statespace multi-fleet assessment model SAM. The assessment model presents one fishing mortality matrix for each of the four fleets fishing WBSS herring (A, C, D, and F). The model is designed to handle fleet disaggregated catches, which are available only from year 2000 while the model is run over the time period 1991-2021. The current implementation is an R-package based on Template Model Builder (TMB) and can be found at https://github.com/fishfollower/SAM (branch "multi"), more details in Nielsen et al. 2021.

The benchmark found highly consistent estimates of SSB, F and Recruitment as well as combined age selections between the multi- and the single-fleet SAM using comparable model settings.

The disaggregation of the fishing catches in the multi-fleet SAM can bring problems of convergence due to the increase of zeros in the fleet observed catches, which are ignored by the model since zeros cannot be fitted with a lognormal distribution. It is therefore important to compare the outputs of both the single and the multi-fleet models every year and check that the results are consistent between the models. For this year update assessment, the corresponding single fleet version is available with a configuration as close as possible to the multi-fleet model. The single fleet model output is represented as an overlay in the SSB, F, recruitment, and total catch plots in the multi-fleet output. Both the multi-fleet (WBSS_HAWG_2022) and the single fleet (WBSS_HAWG_2022_sf) outputs are available at www.stockassessment.org.

Details of the software version employed are given in Table 3.6.9.

3.6.3 Assessment configuration

The model configuration was set as specified in Table 3.6.10.
During the 2020 assessment, problems of convergence occurred with the multifleet model when adding the 2019 data due to difficulties estimating the variance parameter of the F process for the C-fleet (logSdLogFsta). Coupling the variance parameters for all fleets so only one logSdLogFsta parameter is estimated as a first run and then running the model with the original configuration removed the problem of convergence in 2020. However, this year, this was not enough to solve convergence problems.

During the 2018 benchmark it was chosen to replace missing data in catches at age for all fleets by a small value (1 tonne). In addition to the method described in the previous paragraph, removing this constraint for the C-fleet and letting the model handling the zeros as missing data enabled the convergence of the 2021 assessment model.

There was no problem of convergence in 2022 in the multifleet model.

3.6.4 Final run

The results of the assessment are given in Tables 3.6.11-3.6.14. The estimated SSB for 2021 is 62 765 [44 766, $88002(95 \%$ CI)] t. The mean fishing mortality (ages 3-6) is estimated as 0.149 [0.080, $0.277(95 \% \mathrm{CI})]$ yr-1. This means that the F_{3-6} is estimated to be below $\mathrm{F}_{\mathrm{mSy}}$ and F_{pa}, and below Flim^{2}.

After a marked decline from almost 300000 t in the early 1990s to a low of about 120000 t in the late 1990s, the SSB of this stock was above 120000 t in the early 2000s (Figure 3.6.4.1). After a small peak in 2006 coinciding with the maturing of the last major year-class, the SSB has declined up to 2011 with a SSB of 69.3 kt . SSB has only slightly increased in the following period up to 83.7 kt in 2015 and then has declined to 54.4 kt in 2019, which is the lowest SSB of the time-series. A slight increase in SSB was then estimated since 2020 to around 62.8 kt in 2021.

Fishing mortality on this stock was high in the mid-1990s, reaching a maximum of $0.66 \mathrm{yr}-1 \mathrm{in}$ 1996. In 1999-2009, F F_{3-6} stabilized between 0.45 and 0.61 . In 2010 and 2011, F_{3-6} decreased significantly to a value of 0.40 and $0.31 \mathrm{yr}-1$, respectively. It stabilized between 0.31 and $0.43 \mathrm{yr}-1$ for few years until it increased again above 0.49 yr-1 from 2016 to 2018. F3-6 then decreased to 0.30 yr-1 in 2019, 0.18 yr-1 in 2020 and then 0.15 in 2021, which is the lowest estimated F_{3-6} of the entire time series (Table 3.6.11, Figure 3.6.4.2).

Recruitment was the highest ($\sim 3-5$ billion) at the beginning of the time-series (1991-1999) and has been decreasing overall since 1999. The 2020 estimate of 550822 thousands is the lowest on record and the estimate in 2021 has slightly increased to 609230 thousands (Tables 3.6.11, Figure 3.6.4.3). The stock-recruitment plot for the WBSS stock (Figure 3.6.4.4) shows three distinct periods of recruitment with an early period of high recruitments varying between 3 and 5 billion coinciding with a declining SSB from 300 kt to 120 kt in the years 1991-1999 and no signs of densitydependence. This is followed by a distinct decline in recruitment to values below 3 billion at a relatively constant spawning-stock biomass between 120 and 160 kt over the period from 20002006. In the most recent period, from 2007 to 2021 recruitment has varied from about 1.5 billion to less than 1 billion at SSB between 54 kt and 110 kt , with a trend of declining recruitment in 20172020 and some slight increased recruitment in 2021.

The total catch is well fitted (Figure 3.6.4.5) as well as the catch per fleet (Figure 3.6.4.6) except for the fleet A where some observations are outside the confidence interval of the estimated catch. In 2021, the model started to accommodate the large catches of the A-fleet in 2019 and 2020 by an increase in the upper limit of the confidence interval on the catches for this fleet. This year, the 2021 catch of the A-fleet is well fitted.

The estimated partial fishing mortalities show remarkable differences between the four fleets reflecting the targeted ages of the individual fisheries, increasing with age for the A-fleet and the F-fleet, whereas distinct peaks are found for the C-fleet and the D-fleet at ages 2 and 1 (wr) respectively (Figure 3.6.4.7). The fishing mortality increases in the recent years for the A-fleet. The Cfleet shows a variable F over time with a peak in F in 2017-2018 and a decrease in F since. There is a clear decrease in F for the D - and F-fleet in recent years. The selectivity pattern for the Dfleet has a tendency of shifting its highest selectivity from age 2 to age 3 (wr) in later years. Total fishing mortality on the WBSS stock increased with herring age (Figure 3.6.4.8). It decreased overall over time but showed an increase in 2014-2018 and a decrease again up to 2021, well below Fmsy in 2020-2021.

The model was constrained to have the same selectivity for the two oldest ages (wr) 7+ in all fleets. The fishing mortality was assumed to be independent across ages for the A-fleet (see $\$$ corFlag in Table 3.6.10). The estimated correlation parameter in the F random walk for the Cfleet was estimated to a very high value, which caused convergence problems in initial runs during the benchmark, and it was therefore assigned a fixed high value in the subsequent assessment runs resulting in parallel selection patterns.

The estimated survey catchability is rather different among the surveys. The HERAS and the GERAS surveys are relatively constant over the applied ages (wr) 3-6 and 1-4 respectively. Whereas both IBTS+BITS-Q1 and -Q3.4 surveys show, sharp declines with increasing ages 1-3 and $2-3$, respectively (Figure 3.6.4.9). Interpretation of the different catchability patterns is complex, and likely, a number of reasons including ontogenetic differences in the spatial distribution and behaviour of the different age classes at the time of the surveys may affect their relative availability to the different samplings.

The surveys present some strong correlations notably between the older ages (Figure 3.6.4.10). The same is observed for fleets C and F. The tracking of each cohort can be observed in Figure 3.6.4.11.

The F-fleet (ages 1-8+) has a lower observation variance than the GERAS and the HERAS, the Cfleet (ages 2-8+) is lower than the IBTS+BITS- Q3.4 surveys variance, the IBTS+BITS-Q1 and the N20. Both the D-fleet and the A-fleet have very high observation variances, as well as the age 0 for all fishing fleets (Figure 3.6.4.12).

Residuals for catch in different fleets generally show poorer fit to the youngest year-classes 0-1 wr (Figure 3.6.4.13). The A-fleet shows large positive residuals in 2018-2020 showing that the model underestimates the catches-at-age in those years. The inverse is observed for the C-fleet with large negative residuals in 2019 for ages 3-8+, showing an overestimation of the catches for these ages. The F-fleet presents large negative residuals for ages $0-1$ over the entire time-series. Further, the fit by fleet to some degree follows the amount of catches in the fleets with increasingly better fit from A-fleet, D-fleet, C-fleet to the F-fleet (Figures 3.6.4.13-3.6.4.17). The fit to the combined fleets at the beginning of the time-series follows the observations to some degree except for the two youngest age classes $0-1 \mathrm{wr}$, which exhibit a rather poor fit. (Figure 3.6.4.18).
Inspection of model diagnostics shows the occurrence of high residuals in some years (i.e., 2009 and 2018-2021 in the GERAS and 1991 and 2013-2014 in HERAS; Figure 3.6.4.13). Overall, the agreement between the data and the fitted model appears acceptable throughout the data sources, which are most influential in the model. The individual survey diagnostics show some differences in how the model fit the different survey data, and the level of fitting is widely in agreement with the estimated observation variance for each data component (Figures 3.6.4.1923). In general, a similar fit is found for all included ages (wr) 3-6 of the HERAS index (Figure 3.6.4.19). In recent years, GERAS shows a clear drop in observed indices for ages (wr) 1-4 that are poorly fitted and show therefore large negative residuals (Figures 3.6.13 and 3.6.4.20). The model picks up the overall negative trend of the recruitment index (N20) and is conservative on
the high index value estimated in 2021 which is the largest observed since 2013 (Figure 3.6.4.21). Poorer fit is observed for the IBTS+BITS-Q1 for all ages (wr) 1-3, over the entire time-series (Figure 3.6.4.22) and likewise to the IBTS+BITS-Q3.4 for the two ages (wr) 2-3 (Figure 3.6.4.23) with large positive residuals for age (wr) 2 in recent years (Figure 3.6.4.13).

Retrospective patterns are of the same order of magnitude as last year assessment (Figure 3.6.4.24-27). The SSB has a 5 years Mohn's rho of 21% (compared to 20% in 2021) but the retrospective estimates are considerably improved for the 1- to 3-year peels remaining inside the confidence intervals of the SSB estimates. Average fishing mortality retrospective estimates are also outside the confidence bounds for F for the 4 to 5 -year peels (Mohn's rho $=-14 \%$ compared to -13% in the 2021 assessment, Figure 3.6.4.25). The retrospective for recruitment is acceptable having a Mohn's rho $=11 \%$ (7% in 2021, Figure 3.6.4.26). Retrospective is very small for total catch (Figure 3.6.4.27).

This year the age composition for the A-fleet was taken directly from the transfer area rather than from the entire Division 4 aE given that samples were available in the Norwegian catches. Sensitivity runs were performed for both the single and multifleet models and are available on stockassessment.org (WBSS_HAWG_2022_sf_4aE, WBSS_HAWG_2022_4aE respectively). No makeable differences were present for the multifleet models and the age composition from the Norwegian catches (main fleet) is believed to be more representative of the composition available in the transfer area than the one in Division 4aE. It was therefore agreed to take the assessment with age compositions from the transfer area forwards as final assessment.

Since the 2019 assessment, the GERAS survey indices have been the most influential of all surveys on the estimated decrease in the stock. While the GERAS indices are still low in 2021 and continue to show the largest contribution to the estimated SSB level, the small SSB increase in 2021 appear independent from any individual specific survey (Figures 3.6.4.28-31).

3.7 State of the stock

The stock was benchmarked in 2018 with a substantial increase in the chosen value of Blim and a slight downwards revision of the SSB levels. The stock has decreased consistently from mid 2000s to a historical low in 2019 (Tables 3.6.11, Figure 3.6.4.1). With the new Blim (120 kt) the stock has been in a state of impaired recruitment since 2007 but 2021 is showing a small sign of recovery.

The 2018 benchmark calculated a new $\mathrm{F}_{\text {MSY }}$ of 0.31 . Fishing mortality (F_{3-6}) was reduced between 2008 and 2011 from 0.58 to 0.31 (Tables 3.6.11, Figure 3.6.4.2). F_{3-6} has then remained stable above FMSY until 2015 (0.34-0.43) but showed an increase in 2016-2018 with an estimated F_{3-6} between 0.49 and 0.51 . F_{3-6} has decreased since 2019 from 0.30 to 0.15 in 2021, which is the lowest F_{3-6} on records.

Recruitment has been declining since 2014 with a historical low value in 2020 of 550822 thousands (Tables 3.6.11, Figure 3.6.4.3). Recruitment increased to 609230 thousands in 2021, possibly due to a cold winter in 2020-2021. Despite the increase in 2021, recruitment is still low compared to the average of the time series. Low fishing mortality should continue to support a slow rebuilding of the stock given the present levels of low recruitment.

3.8 Comparison with previous years perceptions of the stock

The table below summarizes the differences between the current and the previous year assessment. The addition of the 2021 data resulted in a negative change in the perception of the stock
back in time compared to last year assessment of around 6-7\%. The recent estimates of recruitment have however drastically increased by 19% in the current assessment and F appears to be larger than previously estimated in $2019(+3.9 \%)$ but smaller in $2020(-5.5 \%)$.

Parameter	Assessment in 2021	Assessment in 2022	Difference (2022-
SSB (t) 2019	57841	54388	-6.35%
$F_{(3-6)} 2019$	0.288	0.300	3.94%
Recr. ('000) 2019	676518	839747	19.4%
SSB (t) 2020	58434	54606	-7.01%
$F_{(3-6)} 2020$	0.193	0.182	-5.52%

3.9 Short-term predictions

Short-term projections are possible both as stochastic and deterministic forecasts. While SAM runs with parameter values represented by percentiles, forecasts in multi-fleet SAM have to switch to a representation by means and standard deviations in order for catches in the individual fleets to add up the totals predicted. However, to be in line with the median representation, all values would have to be recalculated back from the representation by means. Although statistically correct, the HAWG did not want to perform these operations without a prior scrutinizing of the effects on the presentation of the advice. Therefore, HAWG in line with all other assessments of the working group calculated deterministic predictions using that forecast option of the multi-fleet SAM and following the settings in the stock annex.

3.9.1 Input data

In the short-term predictions recruitment (0-winter ring, wr) is assumed to be constant, and it is calculated as the mean of the last five years prior the last year model estimate (i.e., for the 2022 assessment, recruitment for the forecasts was calculated on the period 2016-2020, see Table 3.9.1). For all older ages, the stock numbers are projected forward from the last data year to the intermediate year according to the estimated total mortalities based on fleet wise expected catches and natural mortalities. The mean weight-at-age in the catch and in the stock as well as the maturity ogive were calculated as the arithmetic averages over the last five years of the assessment (20172021). Based on earlier considerations in HAWG, the different periods were chosen to reflect recent levels in recruitment and weights.

3.9.2 Intermediate year 2022

A catch constraint was assumed for the intermediate year (2022). Predicted 2022 catch by fleet is summarized in the table below and depends on two main assumptions:

- Both NSAS and WBSS herring stocks are caught in the Division 3.a (C and D-fleets) and Subdivision 4.aE (A-fleet) whereas the subdivision 22-24 catch (F-fleet) is assumed to only be WBSS herring.
- The F-fleet utilizes its entire TAC in Subdivision 22-24

Fleets	TAC 2022 NSAS+WBSS (\mathbf{t})	Predicted 2022 WBSS catch (\mathbf{t})	Predicted 2022 WBSS catch explained (\mathbf{t})
A	427628	6142	$1.36 \%(427628+25021-(969+167))$
C	25021	733	$64.5 \%(969+167)$
D	6659	0	Considered negligible
F	788	788	$100 \% 2022$ TAC
Total	460096	7663	

In the past assessments, the amount of WBSS taken in the transfer area by the A-fleet in the intermediate year was assumed equal to the observed average A-fleet catch over the last 3 years. This year, it was chosen to make the assumption for the A-fleet in 2022 consistent with what is usually assumed for the NSAS advice. This assumption results in a total catch of WBSS herring of 6142 t corresponding to the sum of the A-fleet TAC (427628 t) and what is transferred from the C-fleet in Division 3.a to the North Sea (23885 t), scaled by the 3-year average proportion of WBSS in A-fleet catch (1.36\%, 2019-2021).

In $2022,100 \%$ of the herring quotas for the Division 3.a can be transferred to the North Sea, against 50% the previous years. This results in an important change in the assumed proportion of each fleet in the total WBSS catch compared to what was observed in 2021. This is discussed further in part 3.12. The Council Regulation (EU) 2022/109 stipulates that the catches in Division 3.a should be limited to 1136 t (969 t of EU catches +167 t of Norwegian catches) in 2022 as the sum of directed and bycatch fisheries. Given the recent downward trends in the observed D-fleet catches, ICES considers that the bycatch in the D-fleet will be negligible in 2022 and it was therefore set to zero in the forecast. The 1136 t are assumed to be taken by the C-fleet in 2022 and was scaled by the 3-year average proportion of WBSS in the C-fleet catch (64.5\%, 2019-2021).

The catch by the F-fleet fishing for human consumption in Subdivisions 22-24 is usually very close to the TAC and a utilization of 100% is assumed for the intermediate year, hence 788 t .

Misreporting of catches from the North Sea into Division 3.a is no longer assumed to occur after 2008. Therefore, no account was taken in the compilations.

These assumptions give the expected catch by fleet summing up to 7663 t of WBSS herring in 2022.

3.9.3 Catch scenarios for 2023-2025

The inputs and outputs of the short-term predictions are based on a catch constraint in the intermediate year 2022 of 7663 t and are given in Tables 3.9.1-3.9.17.

Different catch options for the years after the intermediate year were explored with fleet-wise selection patterns and deterministic forecasts. In the past forecasts, to most closely resemble current WBSS management, a constraint was added to the forecasts so that, after the intermediate year, for all scenarios (except for the constant intermediate year TAC, the F = 0 and the catch for bycatch fleets only scenarios) the F-fleet is assumed to get 50% of the total catch of WBSS herring. This year, this constraint was removed since it is considered now not representative of the WBSS management where most of the catch in Division 3.a can now be transferred to the North Sea and the A-fleet is now catching most WBSS herring, while the F-fleet catch keeps decreasing due to the decrease in TAC in Subdivisions 22-24.

3.9.4 Exploring a range of total WBSS catches for 2023 (advice year) to 2025

ICES gives advice according to the FMSY approach for the WBSS stock. Because the forecasted SSB in 2024 is below $B_{\lim }$ even when $F=0$, ICES advises a zero catch for 2023.

None of the catch scenarios for 2023, including zero catch, is expected to bring SSB above Blim in 2024. For the past 2 years, besides requested standard scenarios HAWG also calculated the potential development of the stock projections until 2025 with different low F scenarios, where F2024 = F2023. None of these scenarios, even when F = 0, can bring the SSB above Blim in 2025.
Since 2020, two new scenarios were requested by ACOM for zero catch advice stocks: (1) the "Catch for bycatch fleets only" scenario, and (2) a scenario where the biomass is constant between the advice year and the year after that. The first scenario is given in the Table below. Similarly, to last year the latter scenario was not run for the following reasons. For a stock with SSB calculated on the 1st of January (and the final year of assessment being 2021), this can be easily done because SSB in 2023 only depends on F in 2022 and F is estimated given a TAC constraint so is the same for all forecast scenarios. As a result, all scenarios tested in the short-term forecast would have the same SSB in 2023 and the F in 2023 can be estimated to obtain a SSB in 2024 equal to 2023. For WBSS, there are complications to this calculation because the advice is annual (JanDec) but the SSB is calculated and reported at spawning time (spring). This means that SSB in 2023 is in fact the result of catches assumed (agreed TACs) for the intermediate year (2022) and some catches in the first months of 2023. In other words, the SSB in 2023 depends on F in 2022 but also on a fraction of the F in 2023, which is the advice year. What to assume for the first months of 2023 is the real issue here. For instance, if a zero catch is assumed in 2023 according to the advice, it will be uninformative because the table of advice would still only show the average F in 2023 (so F = 0). If an F that makes SSB 2023 = SSB 2022 is assumed for 2023, it will be an unrealistic high F needed to compensate for the low catches assumed in 2022. Given the reasons described above, the constant SSB between 2023 and 2024 scenario could not be meaningfully run for WBSS herring and is not included among the catch scenarios presented by the EG.

Table	Basis	Total catch	F3-6	$\begin{gathered} \hline \text { SSB }^{*} \\ (2023) \\ \hline \end{gathered}$	$\begin{gathered} \text { SSB* } \\ (2024) \\ \hline \end{gathered}$	$\% \text { SSB }$ change	\% advice
ICES advice basis							
3.9.2	MSY approach: zero	0	0	80978	95882	18	
Other scenarios							
3.9.3	MAP^: F = FMSY						
	\times	19391	0.147	79256	79224	0	
3.9.4	MAP^: F =						
	FMSY lower \times	14025	0.102	79772	83745	5	
3.9.5	MAP^: F =						
	FMSY upper \times	23085	0.179	78880	76152	-3	
3.9.6	F= FMSY	36088	0.310	77401	65861	-15	
3.9.7	F = Fpa	44481	0.410	76296	59278	-22	
3.9 .8	$\mathrm{F}=\mathrm{Flim}$	47526	0.450	75860	56930	-25	
	SSB (2022) =						
	Blim ${ }^{\wedge}$						
	SSB (2022) = Bpa						
	SSB (2022) = MSY	er ${ }^{\wedge}$					
3.9.9	F = F2022	9073	0.064	80221	88093	10	
3.9.15	Catch for bycatch	6142	0.039	80475	90852	13	

* For spring-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries and natural mortality between 1 January and spawning time (April).
** SSB (2024) relative to SSB (2023).
*** The advised catch in 2021 was 0 tonnes.
${ }^{\wedge}$ Because SSB $_{2022}$ is below MSY Btrigger, the FMSY, FMSY lower, and FMSY upper values in the MAP are adjusted by the SSB2022/MSY Btrigger ratio.
^^ Blim and Bpa cannot be achieved in 2024, even with zero catch advice.
$\wedge \wedge \wedge$ Only the A-fleet that targets North Sea autumn-spawning (NSAS) herring and therefore catches WBSS herring as bycatch in the eastern part of the North Sea, assuming the same catch as in the intermediate year 2022. The D-fleet that is bycatch fleet has zero catch because of the intermediate year assumption (C- and F-fleets are directed WBSS fisheries so have zero catch in this scenario).

Table	Basis	Total catch (2023)	Total catch (2024)	$\begin{gathered} \text { F3-6 } \\ \text { (2023) } \end{gathered}$	$\begin{gathered} \text { SSB* } \\ (2023) \end{gathered}$	$\begin{gathered} \hline \text { SSB }^{*} \\ (2024) \end{gathered}$	$\begin{gathered} \hline \text { SSB }^{*} \\ (2025) \end{gathered}$	\% SSB change $(2023-2024)$	\% SSB change $(2024-2025)$
Medium-term catch scenarios									
3.9.10	$\mathrm{F}=0$	0	0	0	80978	95882	111989	18	17
3.9.17	$\mathrm{F}=0.01$	1488	1856	0.010	80859	94594	109348	17	16
3.9.16	$\mathrm{F}=0.025$	3670	4466	0.025	80681	92713	105581	15	14
3.9.11	$\mathrm{F}=0.05$	7177	8395	0.050	80385	89708	99777	12	11
3.9.12	$\mathrm{F}=0.01$	13742	14913	0.100	79799	84145	89698	5	7
3.9.13	$\mathrm{F}=0.15$	19767	20008	0.150	79218	79114	81275	0	3
3.9.14	Constant catch 2022-2024	7662	7662	0.054	80345	89405	100170	11	12

* For spring-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries and natural mortality between 1 January and spawning time (April).
** It is assumed that the fleets' 2022 catches are kept constant for 2023-2024.

3.10 Reference points

The WBSS stock was benchmarked in 2018 (ICES WKPELA, 2018) with subsequent changes of reference points. Blim was revised from 90000 to 120000 t to take account of the new perception that recruitment is impaired when the spawning-stock biomass (SSB) is below 120000 t . B_{pa} and MSY B trigger were subsequently set to 150000 t . Using the EqSim software FMSY was estimated to $0.31, \mathrm{~F}_{\lim } 0.45$ (5\% risk to Blim) and $\mathrm{F}_{\mathrm{pa}} 0.41$ (since 2020, $\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\mathrm{p} 05}$; ICES, 2021). The values were based on stochastic simulation of recruitment generated on a combination of Beverton \& Holt, Ricker and segmented regression (ICES 2014/ACOM:64).

3.11 Quality of the Assessment

The stock was benchmarked in 2018 (ICES, 2018), which led to a change in perception for the entire time-series. Similarly, to last year, the 2022 assessment is very consistent with the 2021 assessment.

The herring assessed in subdivisions 20-24 is a complex mixture of populations predominantly spawning in spring, but with local components spawning also in autumn and winter. The population dynamics and the relative contribution of these components is currently unknown but are likely to affect the precision of the assessment. Moreover, mixing between WBSS and central Baltic herring in subdivisions 22-24 may contribute to uncertainty in the assessment.

Inter-annual variability of the herring migration patterns and the distribution of the fisheries (including the optional transfer of quotas between divisions 3.a and 4) certainly add uncertainty to the assessment and forecasts of this meta-population. Since these cannot be predicted, recent average proportions between stocks are assumed in projections. It is expected that the implementation of genetic stock separation (which allows for identifying these smaller stock components) will improve data on their contributions to subdivisions 20-22 in years to come.

3.12 Considerations on the 2022 advice

This year assessment shows an SSB consistent with last year's assessment. Recruitment is still low but has slightly increased in 2021 (609 230 thousands). Under these conditions the stock is not expected to increase above Blim in the short-term (2024) nor in the medium-term (2025) for any level of fishing mortality (SSB $_{2025}=111989 \mathrm{t}$ assuming $\mathrm{F}=0$).

To explore the potential development of the stock, projections until 2025 with different low F scenarios are provided in the Table in section 3.9.4. The development of a rebuilding plan for this stock remains a high priority and it is recommended by HAWG.

The EU-Norway TAC-setting procedure used for herring in Division 3.a (EU-Norway, 2013) calculates the TAC for the combined WBSS and NSAS stocks in the C-fleet as 41% of the ICES MSY advice for WBSS plus 5.7% of the TAC for the A-fleet (see section 3.13 for more details). However, according to a safety clause in the procedure, the method should not apply if serious concerns exist about the status of one of the two stocks, which is the case given the severe overexploitation of the WBSS stock.

This stock is caught across three different management units, and recovery will be impaired if catches of this stock are not minimized in all units. Based on agreed catches for 2022 and assumptions on stock mixing, it is predicted that around 80% of the total WBSS catches will be taken in Division 4.a in 2022. For the other two areas, catch shares in 2022 are predicted to be around 10% for subdivisions 20-21 and 10\% for subdivisions 22-24.

The Council Regulation (EU) 2022/109 stipulates that the catches in Division 3.a should be limited to 1136 t in 2022 as the sum of directed and bycatch fisheries. Given the recent downward trends in the observed D-fleet catches, ICES considers that the bycatch in the D-fleet will be negligible in 2022 and it was therefore set to zero in the forecast. The 1136 t are assumed to be taken by the C-fleet in 2022.

In $2022,100 \%$ of the herring quotas for the Division 3.a can be transferred to the North Sea, against 50% the previous years. This results in an important change in the assumed proportion of each fleet in the total WBSS catch compared to what was observed in 2021. The predicted catch for the C-fleet in 2022, which has been the fleet catching most of WBSS herring in the past 2 years, is drastically reduced compared to 2021. The A-fleet is now predicted to catch most of WBSS herring in 2022 and this is carried forward in the catch projections. Predicted catches of WBSS herring by the A-fleet are particularly uncertain, notably if the quotas are transferred from Division 3.a to the eastern part of the North Sea where both WBSS and North Sea autumn-spawning (NSAS) herring mix.

3.13 Management Considerations

3.13.1 Quotas in Division 3.a

The quota for the C-fleet and the bycatch quota for the D-fleet are set for both stocks of North Sea autumn spawners (NSAS) and Western Baltic spring spawners (WBSS) together (see Section 2.7). Since $2011,50 \%$ of the EU and Norwegian quotas for human consumption can optionally be transferred from Division 3.a and taken in Subarea 4. In 2021, the transfer was increased to 100%, effective in 2022. ICES assumes that most of the quotas in Division 3.a will be transferred in 2022 resulting in a maximum catch of NSAS and WBSS herring of 1136 t in Division 3.a (cf. part 3.9).

3.13.2 ICES catch predictions vs. management TAC

ICES gives advice on catch scenarios for the entire distribution of the NSAS and WBSS herring stocks separately whereas herring is managed by areas (see the following text diagram). The procedure of setting TACs in ICES Division 3.a and SD 22-24 takes into account the occurrence of different fleet's catches of both WBSS and NSAS herring, utilization of TACs and the proportion of NSAS and WBSS that mix in the areas. In the flowchart below, a schematic is presented:

Box 1: Each year estimations of the WBSS and NSAS stock size are made using a stock assessment model. Stock size estimation together with the estimated pattern of harvesting is used as the starting point for the short-term forecast.

Box 2: To derive at a TAC proposal in the forecast year, first the intermediate year (the year where the TAC has already been agreed on) catches need to be resolved. Four different fleets catch WBSS: the A-fleet (within the transfer area where they take it as a mixture of mainly NSAS and partly WBSS), the C- and D-fleet (within the Division 3.a where they take it as a mixture of mainly WBSS and NSAS), and the F-fleet (within SDs 22-24 where they only take WBSS). Each of these fleets target herring taking into account a fleet share of the total TAC. Only part of this TAC is WBSS catches and not all fleets utilize their full TAC fleet share. This results in an estimate of the intermediate year WBSS catches. Given WBSS stock size and these intermediate year catches, the fishing mortality that the WBSS stock is exploited at can be estimated.
Box 3: Based on the estimated fishing mortality we can now calculate the survivors from the intermediate year to the forecast year assuming an incoming constant recruitment. The calculation of the stock size January 1st in the forecast year is needed to project catches in the forecast year.
Box 4: The management rule for the C-fleet TAC uses the potential WBSS catches calculated from the FMSY advice plus a fraction of the NSAS TAC to define the total TAC in ICES Division 3.a as well as SD22-24 (see Application of the management rule below). Dependent on the relative development of the NSAS and WBSS stocks and the quota transfer from the C-fleet to the A- fleet the realized WBSS catches may deviate from the predictions based on FMSY.

Box 5: The TAC advice from box 4 is taken into the political arena. The result of this will be taken into account to calculate the WBSS population again the year after. Hence box 5 is similar to box 1 .

3.13.3 Application of the management rule for the herring fishery for human consumption in Division 3.a

ICES has not evaluated the agreed management rule after revision of reference points in the 2018 benchmark.

The agreed management rule has since 2014 been the basis for setting the C-fleet TAC in Division 3.a and is calculated as the sum of 41% of the WBSS MSY advised catch and 5.7% of the North Sea herring TAC for the A-fleet.

However, given the new Blim, the stock has been below Blim since 2018 raising serious concerns about the status of the WBSS stock. According to a safety clause, which was part of the TACsetting procedure evaluation, the procedure itself therefore should not be applied and it should be re-evaluated.

3.14 Ecosystem considerations

3.14.1 Migration

Herring in Division 3.a and subdivisions 22-24 is a migratory stock. There are feeding migrations from the Western Baltic Sea into the more saline waters of Division 3.a and to the eastern parts of Division 4.a. There are indications from parasite infections that yet unknown proportions of stock components spawning at the southern coast in the Baltic Sea may perform similar migrations (Podolska et al., 2006), and this notion is corroborated with genetic data. Herring in Division 3.a and subdivisions 22-24 migrate back to the Rügen area (SD 24) and other spawning areas at the beginning of winter. Moreover, there are recent indications that Central Baltic herring perform migrations into Subdivision 24 (Gröhsler et al., 2013; Bekkevold et al. in review).
Overwintering is considered to take place in the Öresund (Nielsen et al., 2001). However, recent observations on the acoustic surveys (Gröhsler and Schaber, 2018) indicate changes in distribution and it is currently unclear whether fish still aggregate in the shallow parts of the Sound or whether the density of herring accumulating in the area has changed overall. Whatever the temporal limitation of this survey is and whatever the cause for this observation might be, it may underline the need to validate the multiple-decade-old information on WBSS herring migration patterns.

Similar to the NSAS, the WBSS has produced a series of poor year classes in the last one and a half decade and the declining trend continues. An earlier analysis on different Baltic herring stocks showed that the Baltic Sea Index (BSI) reflecting Sea Surface Temperature (SST) was the main predictor for the recruitment of WBSS (Cardinale et al., 2009), however at the moment there is no understanding of the mechanisms driving this relationship. At the current stage there are no indications of systematic changes in growth or age at maturity that could be related to environmental variability, as well as there is no clear study that link WBSS recruitment to the abundance of prey and/or predators. The low recruitment phase appears to have been initiated before the observed occurrence of Mnemiopsis leidyi (Ctenophore) in the Western Baltic (Kube et al., 2007). The specific reasons for this low recruitment are unknown. Further investigation of the causes of the poor recruitment will require targeted research projects.

3.14.2 Predation

Predation on larval herring by gelatineous plankton (Aurelia aurita) in the Western Baltic Sea was described to a be a major impact on recruitment strength of the population in the 1980s (Möller, 1984). Currently, in the inshore nursery grounds around Rügen the bloom of A. aurita is rather seasonally decoupled from major larval production periods as the jelly fish occur in large quantities during summer (July-Sept.). The same is true for the invading ctenophore Mnemiopsis leidyi, that appears from August on (Polte and Kotterba, pers. obs.). The seasonal peaks of jelly fish blooms, however, might be subjected to change and should be kept under close surveillance as in the past two years A. aurita became more abundant during June therefore increasing the temporal overlap with WBSS larvae (Polte, pers. obs. RHLS).

Besides this potential predator, in Greifswald Bay there is evidently significant predation pressure on herring eggs by three-spined sticklebacks and- to a lower percentage by juv. Perch (Perca fluviliatis) and 9-spined stickleback, Pungitius pungitius (Kotterba et al., 2014; Kotterba et al., 2017a). In contrast the predation on larvae by the sticklebacks was found rather minor (Kotterba et al., 2017b). Unfortunately, there are no historical baseline data available on stickleback densities in the system, but they are considered to have increased speculatively by a trophic cascade including overfishing of predators (Bergstrom et al., 2015).

The non-indigenous goby (Neogobius melanostomus) has reached extremely high abundances in the coastal Baltic Sea during recent years (Kornis et al., 2012). It has been suspected to significantly increase predation pressure on herring eggs. However, a recent study revealed a minor effect by juvenile gobies that would ingest eggs when encountered but N. melanostomus in general is rather specialized on mollusc-prey and additionally there is a temporal mismatch among the juvenile gobies and the herring spawning period (Wiegleb et al., 2018).

3.14.3 Eutrophication

Estuarine WBSS herring spawning grounds in the Western Baltic Sea are still subject of increased nutrient levels and steady input of agricultural discharge. The resulting increased turbidity leads to a strict vertical limitation of perennial macrophytes in Greifswald Bay to the very littoral zone with a growth limit of about 3.5 m (Kanstinger et al., 2018). The major spawning zone in the system is considered to be located in a range of 1-2 m water depth (Moll, 2018). Besides a potential reduction in spawning beds the depth limitation evidently results in increased exposure against storm-induced turbulence and consequently increased herring egg mortality (Moll et al., 2018).

Although spring-spawning herring facultative selects other spawning substrates for egg deposition (e.g., stones), the complexity of spawning substrate as provided by macrophytes promotes egg survival by unknown mechanisms (von Nordheim et al., 2018). Additionally, increased blooms of filamentous algae (Pilayella littoralis) promoted by elevated nutrient levels in synergy with warming spring temperatures cause significant herring egg mortality (von Nordheim et al., 2020)

3.15 Changes in the Environment

3.15.1 Climate drivers

There is ample indication that prevailing winter temperature- as expressed by the Baltic Sea Index (BSI) - significantly affect recruitment strength of WBSS herring (Cardinale et al., 2009; Gröger et al., 2014). The exact ecological mechanisms causing this link remain widely unknown. How-
ever, for larval herring production in Greifswald Bay it could be shown that the optimal temperature window for embryonic development (Peck et al., 2012) is very important for reproduction success and tends to have contracted in recent years (Dodson et al., 2019). There are strong indications that according to recent mild winter regimes the seasonal timing of spawning migration and reproduction has shifted, and those phenology changes are responsible for limited reproduction success as expressed by larval productivity in Greifswald Bay reflected by the abundance of 1-year juveniles in the outer Western Baltic Sea as expressed by the GERAS 1-wr abundance index (Polte et al., 2021). As currently the initial hatching cohorts are not resulting in significant numbers of larval survivors beyond the critical period after yolk-sac consumption, later cohorts are contributing most to recent recruitment patterns (Polte et al., 2014). However, this might overall result in low recruitment compared to earlier years when the larvae of initial cohorts drove the numbers of survivors. Additionally, those later cohorts (hatching mid-Aprilearly May) are exposed to a suite of different stressors: If the seasonal SST curve is steep and the shallow water heats fast during spring, those larvae are increasingly encountering physiological limits. Moyano et al. (2020) could recently show that WBSS larvae develop cardiac arrhythmia beyond an SST threshold of $16^{\circ} \mathrm{C}$ and that the number of days above this threshold increased in Greifswald Bay during past decades. Besides those direct temperature effects, synergistic effects of eutrophication and warming (see Eutrophication above) lead to multiple cascades affecting egg survival of those later cohorts in particular.

Table 3.1.1 Western Baltic spring spawning herring. Total catch (both WBSS and NSAS) in 1989-2021 (1000 tonnes). (Data provided by Working Group members in HAWG 2022).

	198		199	199	199	199	199	199	199	199	199	200	200	200	200	200
Year	9	1990	1	2	3	4	5	6	7	8	9	0	1	2	3	4
Skagerrak																
Denmark	47.4	62.3	58.7	64.7	87.8	44.9	43.7	28.7	14.3	10.3	10.1	16.0	16.2	26.0	15.5	11.8
Faroe Islands																
Germany															0.7	0.5
Lithuania																
Norway	1.6	5.6	8.1	13.9	24.2	17.7	16.7	9.4	8.8	8.0	7.4	9.7				
Sweden	47.9	56.5	54.7	88.0	56.4	66.4	48.5	32.7	32.9	46.9	36.4	45.8	30.8	26.4	25.8	21.8
Total	96.9	124.4	121. 5	$\begin{array}{r} 166 . \\ 6 \end{array}$	$\begin{array}{r} 168 . \\ 4 \end{array}$	$\begin{array}{r} 129 . \\ 0 \end{array}$	$\begin{array}{r} 108 . \\ 9 \end{array}$	70.8	56.0	65.2	53.9	71.5	47.0	52.3	42.0	34.1
Kattegat																
Denmark	57.1	32.2	29.7	33.5	28.7	23.6	16.9	17.2	8.8	23.7	17.9	18.9	18.8	18.6	16.0	7.6
Sweden	37.9	45.2	36.7	26.4	16.7	15.4	30.8	27.0	18.0	29.9	14.6	17.3	16.2	7.2	10.2	9.6
Total	95.0	77.4	66.4	59.9	45.4	39.0	47.7	44.2	26.8	53.6	32.5	36.2	35.0	25.9	26.2	17.2

Subdivisions

$22+\mathbf{2 4}$																
Denmark	21.7	13.6	25.2	26.9	38.0	39.5	36.8	34.4	30.5	30.1	32.5	32.6	28.3	13.1	6.1	7.3
Germany	56.4	45.5	15.8	15.6	11.1	11.4	13.4	7.3	12.8	9.0	9.8	9.3	11.4	22.4	18.8	18.5
Poland	8.5	9.7	5.6	15.5	11.8	6.3	7.3	6.0	6.9	6.5	5.3	6.6	9.3		4.4	5.5
Sweden	6.3	8.1	19.3	22.3	16.2	7.4	15.8	9.0	14.5	4.3	2.6	4.8	13.9	10.7	9.4	9.9
Total	92.9	76.9	65.9	80.3	77.1	64.6	73.3	56.7	64.7	49.9	50.2	53.3	62.9	46.2	38.7	41.2

Subdivision 23

Denmark	1.5	1.1	1.7	2.9	3.3	1.5	0.9	0.7	2.2	0.4	0.5	0.9	0.6	4.6	2.3	0.1
Sweden	0.1	0.1	2.3	1.7	0.7	0.3	0.2	0.3	0.1	0.3	0.1	0.1	0.2		0.2	0.3
Total	1.6	1.2	4.0	4.6	4.0	1.8	1.1	1.0	2.3	0.7	0.6	1.0	0.8	4.6	2.6	0.4

Grand Total	286. 4	279.9	$257 .$	311. 4	$294 .$ 9	$234 .$ 4	$\begin{array}{r} 231 . \\ 0 \end{array}$	172. 7	$149 .$ 8	$169 .$ 4	$137 .$ 2	$162 .$ 0	$145 .$	$128 .$	109. 5	92.8	
	200	2006	200	200	200	201	201	201	201	201	201	201	201	201	201	202	202
Year	5	**	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1*

Skagerrak

Denmark	14.8	5.2	3.6	3.9	12.7	5.3	3.6	3.2	4.9	6.4	4.1	3.6	2.7	0.9	0.6	3.2	2.9
Faroe Is-																	
lands	0.4			0.0	0.6	0.4					0.5	0.3	0.4	0.1			

Year	$\begin{array}{r} 198 \\ 9 \end{array}$	1990	$\begin{array}{r} 199 \\ 1 \end{array}$	$\begin{array}{r} 199 \\ 2 \end{array}$	$\begin{array}{r} 199 \\ 3 \end{array}$	199 4	$\begin{array}{r} 199 \\ 5 \end{array}$	$\begin{array}{r} 199 \\ 6 \end{array}$	$\begin{array}{r} 199 \\ 7 \end{array}$	$\begin{array}{r} 199 \\ 8 \end{array}$	$\begin{array}{r} 199 \\ 9 \end{array}$	200 0	$\begin{array}{r} 200 \\ 1 \end{array}$	200 2	$\begin{array}{r} 200 \\ 3 \end{array}$	$\begin{array}{r} 200 \\ 4 \end{array}$	
Germany	0.8	0.6	0.5	1.6	0.3	0.1	0.1	0.6	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1
Lithuania						0.4											
Nether- lands											0.03						
Norway			3.5	4.0	3.3	3.3	0.1	0.4	3.0	2.0	2.5	3.9	3.3	3.4	2.5	2.1	1.1
Sweden	32.5	26.0	19.4	16.5	12.9	17.4	9.5	16.2	16.7	12.6	12.9	13.3	11.9	11.3	8.5	9.1	6.1
Total	48.5	31.8	26.9	26.0	29.7	27.0	13.2	20.5	24.8	21.2	20.1	21.2	18.5	16.0	11.7	14.5	10.3
Kattegat																	
Denmark	11.1	8.6	9.2	7.0	4.9	7.6	5.2	6.3	3.9	4.3	4.0	2.4	0.9	1.3	1.5	0.7	0.2
Sweden	10.0	10.8	11.2	5.2	3.6	2.7	1.7	0.8	2.6	3.4	3.8	6.2	7.4	6.0	1.7	2.6	2.8
Germany					0.6	0.0											
Total	21.1	19.4	20.3	12.2	9.1	10.3	6.8	7.1	6.5	7.7	7.7	8.7	8.3	7.3	3.2	3.2	3.1
Subdivi- sions																	
22+24																	
Denmark	5.3	1.4	2.8	3.1	2.1	0.8	3.1	4.1	5.1	4.3	4.5	5.7	5.6	4.5	2.0	0.6	0.1
Finland														$\begin{array}{r} 0.00 \\ 1 \end{array}$			
Germany	21.0	22.9	24.6	22.8	16.0	12.2	8.2	11.2	14.6	10.2	13.3	14.4	14.7	11.3	5.6	2.1	0.8
Poland	6.3	5.5	2.9	5.5	5.2	1.8	1.8	2.4	3.1	2.4	2.6	2.9	3.3	1.8	1.1	0.6	0.2
Sweden	9.2	9.6	7.2	7.0	4.1	2.0	2.2	2.7	2.1	1.1	1.5	1.7	2.3	0.9	0.7	0.2	0.1
Total	41.8	39.4	37.6	38.5	27.4	16.8	15.3	20.4	24.8	18.0	21.9	24.7	25.9	18.5	9.5	3.5	1.3
Subdivi- sion 23																	
Denmark	1.8	1.8	2.9	5.3	2.8	0.1^{*}	0.03	0.04	0.04	0.05	0.03	0.03	0.3	0.1	0.01	$\begin{array}{r} 0.00 \\ 1 \end{array}$	0.01
Sweden	0.4	0.7		0.3	0.8	0.9	0.5	0.7	0.6	0.3	0.2	0.3	0.4	0.4	0.4	0.5	0.3
Total	2.2	2.5	2.9	5.7	3.6	1.0	0.6	0.7	0.7	0.4	0.2	0.4	0.6	0.5	0.4	0.5	0.3
Grand To- tal	$113 .$ 6	93.0	87.7	82.3	69.9	55.2	35.9	48.8	56.7	47.2	50.0	55.0	53.3	42.2	24.7	21.7	14.9

*Preliminary data

${ }^{* *} 2000 \mathrm{t}$ of Danish catches are missing (HAWG 2007)
***3103 tofficially reported catches (HAWG 2011)

Table 3.1.2 Western Baltic spring spawning herring. Catch (SOP) in 2004-2021 by fleet \& quarter (1000 t). (both WBSS and NSAS)

Year	Quarter	Div. Illa		SD 22-24Fleet F	Div. Illa + SD 22-24	Year	Quarter	Div. Illa		SD 22-24 Fleet F	Div. Illa + SD 22-24
		Fleet C	Fleet D		Total			Fleet C	Fleet D		Total
2004	1	13.5	2.8	20.4	36.7	2013	1	8.5	0.8	11.7	20.9
	2	2.8	3.3	10.4	16.5		2	1.7	0.6	8.5	10.8
	3	8.2	10.8	2.4	21.4		3	8.4	1.0	1.1	10.4
	4	5.9	5.0	8.6	19.4		4	9.8	0.5	4.3	14.7
	Total	30.3	22.0	41.7	93.9		Total	28.4	2.9	25.5	56.7
2005	1	16.6	6.1	20.4	43.1	2014	1	6.2	0.2	10.8	17.3
	2	3.4	1.9	15.6	20.9		2	2.3	0.5	2.3	5.1
	3	23.4	3.4	1.9	28.7		3	10.7	2.4	0.8	14.0
	4	12.0	2.6	5.8	20.5		4	5.7	0.8	4.4	10.9
	Total	55.4	14.1	43.7	113.3		Total	24.9	4.0	18.3	47.2
2006	1	15.3	5.9	15.1	36.2	2015	1	9.0	1.9	14.2	25.1
	2	2.6	0.1	17.2	19.9		2	1.0	0.1	2.8	3.9
	3	15.7	0.8	3.0	19.5		3	7.5	1.5	0.9	9.9
	4	8.3	2.4	6.5	17.3		4	4.1	2.8	4.3	11.1
	Total	41.9	9.3	41.9	93.0		Total	21.6	6.3	22.1	50.0
2007	1	7.7	3.0	18.8	29.5	2016	1	7.9	0.7	15.5	24.0
	2	3.8	0.1	10.5	14.4		2	0.4	0.3	3.5	4.1
	3	22.4	0.8	1.7	24.9		3	15.7	1.3	1.4	18.5
	4	7.7	1.8	9.5	18.9		4	3.4	0.3	4.7	8.3
	Total	41.6	5.7	40.5	87.7		Total	27.4	2.5	25.1	55.0
2008	1	8.2	3.9	18.4	30.5	2017	1	7.5	0.0	16.8	24.3
	2	2.7	0.3	11.3	14.3		2	0.2	0.1	3.4	3.6
	3	14.9	0.6	6.0	21.5		3	12.1	0.1	1.0	13.2
	4	6.5	1.0	8.4	16.0		4	6.6	0.3	5.3	12.2
	Total	32.3	5.9	44.1	82.3		Total	26.4	0.4	26.5	53.3
2009	1	11.1	2.7	19.5	33.2	2018	1	10.0	0.0	12.0	21.9
	2	3.1	0.1	6.8	10.1		2	0.2	0.1	3.4	3.8
	3	14.3	0.9	1.4	16.6		3	10.2	0.1	0.2	10.6
	4	6.0	0.7	3.3	10.0		4	2.5	0.1	3.4	6.0
	Total	34.5	4.3	31.0	69.9		Total	22.9	0.4	19.0	42.2
2010	1	8.4	1.1	10.2	19.8	2019	1	4.4	0.1	6.0	10.5
	2	3.9	0.7	5.4	10.1		2	0.5	0.0	0.4	1.0

Year	Quarter	Div. Illa		SD 22-24 Fleet F	Div. Illa + SD $22-24$Total	Year	Quarter	Div. Illa		SD 22-24 Fleet F	Div. Illa + SD $22-24$Total
		Fleet C	Fleet D					Fleet C	Fleet D		
	3	13.4	0.4	0.4	14.3		3	6.5	0.2	0.3	7.0
	4	9.2	0.1	1.8	11.1		4	3.1	0.0	3.1	6.3
	Total	35.0	2.3	17.9	55.2		Total	14.6	0.4	9.8	24.7
2011	1	7.0	0.5	7.8	15.3	2020	1	4.3	0.0	2.0	6.3
	2	0.5	0.2	4.1	4.8		2	0.3	0.1	0.2	0.6
	3	6.5	1.0	0.8	8.3		3	9.5	0.6	0.4	10.5
	4	3.4	0.9	3.2	7.4		4	2.7	0.2	1.4	4.4
	Total	17.4	2.6	15.8	35.9		Total	16.9	0.9	4.0	21.7
2012	1	4.5	1.8	14.0	20.3	2021	1	4.4	0.0	0.5	4.9
	2	0.3	0.7	2.5	3.5		2	1.1	0.0	0.2	1.3
	3	12.3	1.7	1.1	15.0		3	6.5	0.1	0.1	6.7
	4	5.2	1.1	3.5	9.9		4	1.1	0.1	0.9	2.0
	Total	22.3	5.4	21.1	48.8		Total	13.2	0.1	1.6	14.9

Table 3.2.1 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t). by age as Wringers and quarter (both WBSS and NSAS).
Division: Skagerrak Year: 2021 Country: ALL

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	1.76	25.6			1.76	25.6
	2	31.73	58.4			31.73	58.4
	3	3.36	73.1			3.36	73.1
	4	0.30	96.0			0.30	96.0
	5						
	6						
	7						
	8+	0.11	154.5			0.11	155
	Total	37.26		0.00		37.26	
	SOP		2,190		0		2,190
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0				45.3	1.18	30.1
	1	0.91	25.6	0.27	45.3	16.55	58.4
	2	16.48	58.4	0.07	67.3	1.75	73.1

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	3	1.75	73.1			0.15	96.0
	4	0.15	96.0				
	5						
	6						
	7					0.06	154.5
	8+	0.06	154.5			0.0004	130.0
	Total	19.35		0.34		19.69	
	SOP		1,137		17		1,154
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0						
	1	10.03	55.0	0.81	45.3	10.84	54.3
	2	14.64	126.3	0.20	67.3	14.85	125.5
	3	7.76	133.9			7.76	133.9
	4	7.52	159.4			7.52	159.4
	5	3.85	171.6			3.85	171.6
	6	3.18	196.5			3.18	196.5
	7	1.34	206.5			1.34	206.5
	8+	1.53	201.3			1.53	201.3
	Total	49.84		1.02		50.86	
	SOP		6,507		51		6,557
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	8.39	10.8			8.39	10.8
	1	1.65	51.7	0.06	45.3	1.71	51.4
	2	0.60	119.8	0.02	67.3	0.61	118.4
	3	0.20	136.2			0.20	136.2
	4	0.19	161.9			0.19	161.9
	5	0.11	174.2			0.11	174.2
	6	0.10	203.8			0.096	203.8
	7	0.04	226.3			0.04	226.3
	8+	0.03	189.1			0.03	189.1
	Total	11.30		0.08		11.38	

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	SOP		359		4		363
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	8.39	10.8			8.39	10.8
	1	14.35	49.1	1.15	45.3	15.50	48.8
	2	63.45	74.6	0.29	67.3	63.74	74.6
	3	13.07	110.2			13.07	110.2
	4	8.16	156.0			8.16	156.0
	5	3.96	171.6			3.96	171.6
	6	3.27	196.8			3.27	196.8
	7	1.38	207.1			1.38	207.1
	8+	1.73	196.5			1.73	196.5
	Total	117.75		1.43		119.2	
	SOP		10,192		71		10,263

Table 3.2.2 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as \mathbf{W} ringers and quarter (both WBSS and NSAS).
Division: Kattegat Year: $2021 \quad$ Country: ALL

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	0.91	22.8	0.08	45	0.98	24.5
	2	34.80	51.4	0.02	67	34.82	51.4
	3	4.16	73.4			4.16	73.4
	4	0.64	112.9			0.64	112.9
	5	0.09	81.1			0.09	81.1
	6						
	7						
	8+						
	Total	40.59		0.10		40.68	
	SOP		2,193.542		5		2,198.272
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0						
	1	0.0048	22.8	0.03	45.3	0.0387	42.5

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	2	0.1857	51.4	0.01	67.3	0.1941	52.1
	3	0.0222	73.4			0.0222	73.4
	4	0.00340	112.9			0.0034	112.9
	5	0.00048	81.1			0.0005	81.1
	6						
	7						
	8+						
	Total	0.2166		0.04		0.2588	
	SOP		11.7		2		14
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0						
	1						
	2						
	3	0.00	193.9			0.00	193.9
	4	0.03	169.8			0.03	169.8
	5	0.05	177.5			0.05	177.5
	6	0.03	181.6			0.03	181.6
	7	0.01	194.8			0.01	194.8
	8+	0.01	183.3			0.01	183.3
	Total	0.13		0.00		0.13	
	SOP		24		0		24
Quarter		Fleet C		Fleet D		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0						
	1			0.97	45.3	0.97	45.3
	2			0.24	67.3	0.24	67.3
	3	0.07	193.9			0.07	193.9
	4	0.92	169.8			0.92	169.8
	5	1.63	177.5			1.63	177.5
	6	1.06	181.6			1.06	181.6
	7	0.35	194.8			0.35	194.8
	8+	0.21	183.3			0.212	183.3

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	Total	4.24		1.21		5.46	
	SOP		759		60		819
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0						
	1	0.91	22.8	1.08	45.3	1.99	35.0
	2	34.99	51.4	0.27	67.3	35.26	51.5
	3	4.25	75.5			4.25	75.5
	4	1.59	146.9			1.59	146.9
	5	1.77	172.6			1.77	172.6
	6	1.09	181.6			1.09	181.6
	7	0.36	194.8			0.36	194.8
	8+	0.22	183.3			0.219	183.3
	Total	45.18		1.35		46.53	
	SOP		2,987		67		3,055

Table 3.2.3 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as W-ringers and quarter (WBSS).

Subdivisions: 22-24

Year: $2021 \quad$ Country: ALL

Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						
1	0								
	1	0.002	16.2			0.35	16.2	0.35	16.2
	2	0.004	52.5	0.02	133.1	0.64	52.5	0.67	55.4
	3	0.005	74.9	0.12	149.7	0.73	73.4	0.85	83.9
	4	0.009	120.1	0.14	164.2	0.40	121.6	0.54	132.2
	5	0.04	147.4	0.06	165.9	0.33	131.9	0.43	138.0
	6	0.03	155.7	0.01	187.3	0.53	178.3	0.57	177.3
	7	0.00	164.7	0.01	212.7	0.35	180.5	0.36	181.4
	8+	0.01	169.9	0.01	172.4	0.40	184.5	0.43	183.7
	Total	0.10		0.37		3.73		4.21	
	SOP		15		60		416		491
Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						

Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						
2	1	0.00003	16.2			0.054	16.2	0.054	16.2
	2	0.002	56.0	0.002	133.1	0.12	52.1	0.13	53.6
	3	0.011	77.8	0.01	149.7	0.16	71.1	0.18	76.2
	4	0.007	95.2	0.01	164.2	0.11	111.4	0.13	115.5
	5	0.01	113.7	0.006	165.9	0.14	135.6	0.16	135.1
	6	0.01	145.8	0.001	187.3	0.21	160.4	0.22	159.9
	7	0.01	154.9	0.001	212.7	0.19	157.5	0.19	157.7
	8+	0.008	164.1	0.001	172.4	0.29	167.1	0.30	167.0
	Total	0.05		0.035		1.27		1.36	
	SOP		7		5.5		161		173
Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						
3	0	0.0000	20.1			0.00	20.1	0.00	20.1
	1	0.00001	38.4			0.01	38.4	0.01	38.4
	2	0.0002	62.5	0.02	133.1	0.06	83.1	0.07	93.7
	3	0.0005	71.7	0.07	149.7	0.11	106.7	0.19	123.7
	4	0.0006	106.2	0.09	164.2	0.09	135.2	0.17	149.4
	5	0.001	122.6	0.04	165.9	0.04	149.8	0.08	157.1
	6	0.001	157.3	0.01	187.3	0.03	170.6	0.04	173.6
	7	0.0008	164.4	0.01	212.7	0.02	181.8	0.03	189.8
	8+	0.001	169.7	0.01	172.4	0.01	185.6	0.02	177.7
	Total	0.006		0.24		0.36		0.60	
	SOP		0.9		38		44		83
Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						
4	0	0.000002	20.1			0.04	19.1	0.04	19.1
	1	0.00001	38.4			0.18	38.2	0.18	38.2
	2	0.0003	57.4	0.07	133.1	0.83	81.3	0.90	85.5
	3	0.001	74.3	0.35	149.7	1.62	105.6	1.98	113.5
	4	0.003	121.8	0.41	164.2	1.27	134.0	1.68	141.3
	5	0.009	142.0	0.19	165.9	0.64	148.2	0.83	152.1
	6	0.02	160.3	0.04	187.3	0.45	169.0	0.50	170.1
	7	0.01	165.4	0.04	212.7	0.29	176.8	0.34	180.5

Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						
	8+	0.02	169.6	0.04	172.4	0.13	180.8	0.19	178.1
	Total	0.05		1.14		5.45		6.64	
	SOP		9		182		663		853
Quarter	W-rings	Sub-division 22		Sub-division 23		Sub-division 24		Total	
		Numbers	Mean W.						
Total	0	0.000004	20.1			0.04	19.1	0.04	19.1
	1	0.002	16.3			0.59	23.0	0.59	23.0
	2	0.006	54.0	0.12	133.1	1.65	67.9	1.77	72.2
	3	0.017	76.6	0.55	149.7	2.62	94.6	3.19	104.1
	4	0.020	111.3	0.64	164.2	1.87	130.0	2.53	138.6
	5	0.06	139.3	0.29	165.9	1.15	142.0	1.50	146.5
	6	0.06	155.2	0.06	187.3	1.22	171.7	1.33	171.6
	7	0.02	162.5	0.06	212.7	0.85	174.2	0.93	176.3
	8+	0.04	168.5	0.06	172.4	0.83	177.9	0.92	177.1
	Total	0.22		1.78		10.81		12.81	
	SOP		31		286		1,284		1,601

Table 3.2.4 Western Baltic spring spawning herring. Samples of commercial catch by quarter and area for 2021 available to the Working Group. 1/2

Area	Country	Fleet	Quarter	Landings ('000 tons)	Numbers of samples	Numbers of fish meas.	Numbers of fish aged
Skagerrak	Denmark	C	1	0.032		o data available	
		C	2	0.175		o data available	
		C	3	2.529	7	584	297
		C	4	0.059		o data available	
	Total	Total		2.794	7	584	297
	Denmark	D	1	0.000		-	
		D	2	0.017		o data available	
		D	3	0.051	2	10	10
		D	4	0.004		o data available	
	Total	Total		0.071	2	10	10
	Germany	C	1	0.000		-	
		C	2	0.000		-	

Area	Country	Fleet	Quarter	Landings ('000 tons)	Numbers of samples	Numbers of fish meas.	Numbers of fish aged
		C	3	0.000		-	
		C	4	0.143		No data available	
	Total	Total		0.143			
	Norway	C	1	0.142		No data available	
		C	2	0.949		No data available	
		C	3	0.000			
		C	4	0.031		No data available	
	Total	Total		1.122	0	0	0
	Faroe Islands	C	1	0.000		-	
		C	2	0.000		-	
		C	3	0.000		-	
		C	4	0.000		-	
	Total	Total		0.000	0	0	0
	Sweden	C	1	2.016	5	620	619
		C	2	0.013		No data available	
		C	3	3.978	6	430	428
		C	4	0.126	8	262	262
	Total	Total		6.133	19	1,312	1,309
Kattegat	Denmark	C	1	0.129		No data available	
		C	2	0.011		No data available	
		C	3	0.001		No data available	
		C	4	0.002		No data available	
	Total	Total		0.143	0	0	0
	Denmark	D	1	0.005		No data available	
		D	2	0.002		No data available	
		D	3	0.000		No data available	
		D	4	0.060		No data available	
	Total	Total		0.067	0	0	0
	Sweden	C	1	2.064	13	875	875
		C	2	0.001		No data available	
		C	3	0.023		No data available	
		C	4	0.757	1	60	60
	Total	Total		2.845	14	935	935

Table 3.2.4 (continued) Western Baltic spring spawning herring. Samples of commercial catch by quarter and area for 2021 available to the Working Group. 2/2

Area	Country	Fleet	Quarter	Landings ('000 tons)	Numbers of samples	Numbers of fish meas.	Numbers of fish aged
Subdivision 22	Denmark	F	1	0.0004	No data available		
		F	2	0.002	1	100	100
		F	3	0.001	No data available		
		F	4	0.006	No data available		
	Total	Total		0.009	1	100	100
	Sweden	F	1	0.000	-		
		F	2	0.000	-		
		F	3	0.000	-		
		F	4	0.000	-		
	Total	Total		0.000	0	0	0
	Germany	F	1	0.014	5	1,094	169
		F	2	0.004	3	958	145
		F	3	0.000	No data available		
		F	4	0.003	No data available		
	Total	Total		0.022	8	2,052	314
Subdivision 23	Denmark	F	1	0.000	No data available		
		F	2	0.004	-		
		F	3	0.0001	-		
		F	4	0.001	-		
	Total	Total		0.005	0	0	0
	Sweden	F	1	0.060	No data available		
		F	2	0.002	No data available		
		F	3	0.038	No data available		
		F	4	0.181	1	61	61
	Total	Total		0.281	1	61	61
Subdivision 24	Denmark	F	1	0.107	2	243	102
		F	2	0.009	4	681	212
		F	3	0.000	2	301	102
		F	4	0.022	6	982	327
	Total	Total		0.138	14	2207	743
	Finland	F	1	0.000	-		
		F	2	0.000	-		

Area	Country	Fleet	Quarter	Landings ('000 tons)	Numbers of samples	Numbers of fish meas.	Numbers of fish aged
		F	3	0.000		-	
		F	4	0.000		-	
	Total	Total		0.000	0	0	0
	Germany	F	1	0.246	9	1,598	312
		F	2	0.087	5	1,051	171
		F	3	0.00005		No data available	
		F	4	0.488	6	1,624	640
	Total	Total		0.8217	20	4,273	1,123
	Poland	F	1	0.061	2	490	117
		F	2	0.065	3	625	160
		F	3	0.044		-	
		F	4	0.079		-	
	Total	Total		0.249	5	1115	277
	Sweden	F	1	0.002		No data available	
		F	2	0.000		-	
		F	3	0.0003		No data available	
		F	4	0.073	1	65	65
	Total	Total		0.075	1	65	65
Total	Skagerrak	C	1-4	10.192	26	1,896	1,606
		D	1-4	0.071	2	10	10
	Kattegat	C	1-4	2.987	14	935	935
		D	1-4	0.067	0	0	0
	Subdivision 22	F	1-4	0.031	9	2,152	414
	Subdivision 23	F	1-4	0.286	1	61	61
	Subdivision 24	F	1-4	1.284	40	7,660	2,208
	Total	Total	1-4	14.918	92	12,714	5,234

Table 3.2.5. Western Baltic spring spawning herring. Samples of catch by quarter and area used to estimate catch in numbers and mean weight at age as W-ringers for 2021. 1/2

	Country	Quarter	Fleet	Sampling
Skagerrak	Denmark	1	C	Sweden 27.3.a. 20 fleetC Q1
		2	C	Sweden 27.3.a. 20 fleetC Q1
		3	C	Sampling
		4	C	Denmark 27.3.a. 20 fleetC Q3
	Germany	1	C	No landings
		2	C	No landings
		3	C	No landings
		4	C	Denmark 27.3.a. 20 fleetC Q3
	Sweden	1	C	Sampling
		2	C	Sweden 27.3.a. 20 fleetC Q1
		3	C	Sampling
		4	C	Sampling
	Denmark	1	D	No landings
		2	D	Denmark 27.3.a. 20 fleetD Q3
		3	D	Sampling
		4	D	Denmark 27.3.a. 20 fleetD Q3
	Netherlands	1	C	No landings
		2	C	No landings
		3	C	No landings
		4	C	No landings
	Faroe Islands	1	C	No landings
		2	C	No landings
		3	C	No landings
		4	C	No landings
	Norway	1	C	Sweden 27.3.a. 20 fleetC Q1
		2	C	Sweden 27.3.a.20 fleetC Q1
		3	C	Denmark 27.3.a. 20 fleetC Q3
		4	C	Denmark 27.3.a. 20 fleetC Q3
Kattegat	Denmark	1	C	Sweden 27.3.a. 21 fleetC Q1
		2	C	Sweden 27.3.a. 21 fleetC Q1
		3	C	Sweden 27.3.a. 21 fleetC Q4
		4	C	Sweden 27.3.a. 21 fleetC Q4
	Sweden	1	C	Sampling

	Country	Quarter	Fleet	Sampling
		2	C	Sweden 27.3.a. 21 fleetC Q1
		3	C	Sweden 27.3.a. 21 fleetC Q4
		4	C	Sampling
	Germany	1	C	No landings
		2	C	No landings
		3	C	No landings
		4	C	No landings
	Denmark	1	D	Denmark 27.3.a. 20 fleetD Q3
		2	D	Denmark 27.3.a. 20 fleetD Q3
		3	D	No landings
		4	D	Denmark 27.3.a. 20 fleetD Q3
Subdivision 22	Denmark	1	F-active	No landings
		2	F-active	Denmark 27.3.d. 24 fleetF - active Q1
		3	F-active	No landings
		4	F-active	No landings
	Denmark	1	F-passive	Germany 27.3.c. 22 fleetF - passive Q1
		2	F-passive	Sampling
		3	F-passive	Germany 27.3.c. 22 fleetF - passive Q3
		4	F-passive	Germany 27.3.c. 22 fleetF - passive Q4
	Sweden	1	F	No landings
		2	F	No landings
		3	F	No landings
		4	F	No landings
	Germany	1	F-active	Denmark 27.3.d. 24 fleetF - active Q1
		2	F-active	Denmark 27.3.d. 24 fleetF - active Q1
		3	F-active	National imputation (see WD)
		4	F-active	National imputation (see WD)
	Germany	1	F-passive	Sampling
		2	F-passive	Sampling
		3	F-passive	National imputation (see WD Gröhsler)
		4	F-passive	National imputation (see WD Gröhsler)

[^6]Table 3.2.5. (continued) Western Baltic spring spawning herring. Samples of catch by quarter and area used to estimate catch in numbers and mean weight at age as W-ringers for 2021. 2/2

	Country	Quarter	Fleet	Sampling
Subdivision 23	Denmark	1	F-passive	No landings
		2	F-passive	Sweden 27.3.b. 23 fleetF Q4
		3	F-passive	Sweden 27.3.b. 23 fleetF Q4
		4	F-passive	Sweden 27.3.b. 23 fleetF Q4
	Sweden	1	F	Sweden 27.3.b. 23 fleetF Q4
		2	F	Sweden 27.3.b. 23 fleetF Q4
		3	F	Sweden 27.3.b. 23 fleetF Q4
		4	F	Sampling
Subdivision 24	Denmark	1	F - active	Sampling
		2	F-active	Denmark 27.3.d. 24 fleetF - active Q1
		3	F-active	Germany 27.3.d. 24 fleetF - active Q4
		4	F-active	Sampling
	Denmark	1	F-passive	No landings
		2	F-passive	Sampling
		3	F-passive	Sampling
		4	F-passive	Sampling
	Finland	1	F	No landings
		2	F	No landings
		3	F	No landings
		4	F	No landings
	Germany	1	F-active	Denmark 27.3.d.24 fleetF - active Q1
		2	F-active	Denmark 27.3.d.24 fleetF - active Q1
		3	F-active	No landings
		4	F-active	Sampling
		1	F - passive	Sampling
		2	F-passive	Sampling
		3	F-passive	National imputation (see WD Gröhsler)
		4	F - passive	National imputation (see WD Gröhsler)
	Poland	1	F-active	Denmark 27.3.d.24 fleetF - active Q1
		2	F-active	Denmark 27.3.d.24 fleetF - active Q1
		3	F-active	Germany 27.3.d. 24 fleetF - active Q4
		4	F-active	Germany 27.3.d.24 fleetF - active Q4

Poland	$\mathbf{1}$	F - passive	Sampling
	$\mathbf{2}$	F - passive	Sampling
	$\mathbf{3}$	F - passive	No landings
	$\mathbf{4}$	F - passive	No landings
Sweden	$\mathbf{1}$	\mathbf{F}	Denmark 27.3.d.24 fleetF - active Q1
	$\mathbf{2}$	\mathbf{F}	No landings
	$\mathbf{3}$	\mathbf{F}	Germany 27.3.d.24 fleetF - active Q4
	$\mathbf{4}$	\mathbf{F}	Sampling

Fleet $\mathrm{C}=$ Human consumption, Fleet $\mathrm{D}=$ Industrial catch, Fleet $\mathrm{F}=$ All catch from Subdivisions 22-24.

Table 3.2.6 Western Baltic spring spawning herring. Proportion of North Sea autumn spawners (NSAS) and Western Baltic spring spawners (WBSS) given in \% in Skagerrak and Kattegat by age as W-ringers and quarter.
Year: 2021

Quarter	W-rings	Skagerrak			Kattegat		
		NSAS	WBSS	n	NSAS	WBSS	n
	2	51.04\%	48.96\%	207			66
	3	22.16\%	77.84\%	149	11.46\%	88.54\%	49
	4	14.09\%	85.91\%	87	7.89\%	92.11\%	23
	5	11.48\%	88.52\%	41	6.33\%	93.67\%	11
	6	8.81\%	91.19\%	31	4.27\%	95.73\%	16
	7	5.11\%	94.89\%	14	1.78\%	98.22\%	4
	8	1.66\%	98.34\%	19	0.47\%	99.53\%	5
			gerrak			egat	
Quarter	W-rings	NSAS	WBSS	n	NSAS	WBSS	n
4	0	82.33\%	17.67\%	52			0
	1	65.23\%	34.77\%	22	65.74\%	34.26\%	0
	2	87.75\%	12.25\%	0	80.35\%	19.65\%	0
	3	81.20\%	18.80\%	0	42.32\%	57.68\%	1
	4	63.85\%	36.15\%	0	29.23\%	70.77\%	11
	5	44.51\%	55.49\%	0	17.91\%	82.09\%	20
	6	39.88\%	60.12\%	0	12.90\%	87.10\%	13
	7	62.07\%	37.93\%	0	15.04\%	84.96\%	4
	8	95.18\%	4.82\%	0	33.62\%	66.38\%	2

Table 3.2.7 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet.
North Sea Autumn spawners Division: Kattegat Year: 2021 Country: All

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	0.82	22.8	0.07	45.3	0.88	24.5
	2	11.40	51.4	0.01	67.3	11.40	51.4
	3	0.38	73.4			0.38	73.4
	4	0.03	112.9			0.03	112.9
	5	0.004	81.1			0.004	81
	6					0.00	
	7					0.00	
	8+					0.00	
	Total	12.63		0.07		12.70	
	SOP		636.0		3.5		639.5

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	0					0.00	
	1	0.0040	22.8	0.03	45.3	0.03	42.5
	2	0.0183	51.4	0.001	67.3	0.02	52.1
	3	0.00087	73.4			0.0009	73.4
	4	0.00018	112.9			0.0002	112.9
	5	0.00003	81.1			0.00003	81.1
	6					0.00	
	7					0.00	
	8+					0.00	
	Total	0.023		0.03		0.05	
	SOP		1.12		1.3		2.4
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0					0.00	
	1					0.00	
	2					0.00	
	3	0.0003	193.9			0.0003	193.9
	4	0.002	169.8			0.002	169.8
	5	0.003	177.5			0.003	177.5
	6	0.001	181.6			0.001	181.6
	7	0.0002	194.8			0.0002	194.8
	8+	0.00003	183.3			0.00003	183.3
	Total	0.01		0.00		0.01	
	SOP		1.3		0.0		1.3
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0					0.00	
	1			0.64	45	0.64	45.3
	2			0.20	67	0.20	67.3
	3	0.03	193.9			0.03	193.9
	4	0.27	169.8			0.27	169.8

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	5	0.29	177.5			0.29	177.5
	6	0.136	181.6			0.14	181.6
	7	0.05	194.8			0.05	194.8
	8+	0.071	183.3			0.07	183.3
	Total	0.85		0.83		1.69	
	SOP		151.4		42.1		193.5
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	0.00		0.00		0.00	
	1	0.82	22.8	0.73	45.3	1.55	33.4
	2	11.41	51.4	0.20	67.3	11.62	51.7
	3	0.41	82.4	0.00		0.41	82.4
	4	0.30	164.0	0.00		0.30	164.0
	5	0.30	176.2	0.00		0.30	176.2
	6	0.14	181.6	0.00		0.14	181.6
	7	0.05	194.8	0.00		0.05	194.8
	8+	0.07	183.3	0.00		0.07	183.3
	Total	13.51		0.94		14.44	
	SOP		790		47		837

Table 3.2.8 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet.
North Sea Autumn spawners Division: Skagerrak Year: 2021 Country: All

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	1.68	25.6			1.68	25.6
	2	14.00	58.4			14.00	58.4
	3	0.39	73.1			0.39	73.1
	4	0.02	96.0			0.02	96.0
	5					0.00	
	6					0.00	
	7					0.00	
	8+	0.01	154.5			0.01	154.5
	Total	16.10		0.00		16.10	

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	SOP		892.4		0.0		892.4
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	0					0.00	
	1	0.84	25.6	0.25	45.3	1.09	30.1
	2	2.60	58.4	0.01	67.3	2.61	58.4
	3	0.10	73.1			0.10	73.1
	4	0.011	96.0			0.01	96.0
	5					0.00	
	6					0.00	
	7					0.00	
	8+	0.000000003	154.5			0.000000003	154.5
	Total	3.54		0.26		3.80	
	SOP		181.2		11.9		193.1
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0					0.00	
	1	9.48	55.0	0.77	45.3	10.25	54.3
	2	7.47	126.3	0.10	67.3	7.58	125.5
	3	1.72	133.9			1.72	133.9
	4	1.06	159.4			1.06	159.4
	5	0.44	171.6			0.44	171.6
	6	0.28	196.5			0.28	196.5
	7	0.07	206.5			0.07	206.5
	8+	0.03	201.3			0.03	
	Total	20.55		0.87		21.43	
	SOP		2,014.5		41.8		2,051.2
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0	6.91	10.8			6.91	10.8
	1	1.07	51.7	0.04	45.3	1.11	51.4
	2	0.53	119.8	0.01	67.3	0.54	
	3	0.17	136.2			0.17	

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	4	0.12	161.9			0.12	
	5	0.05	174.2			0.05	
	6	0.04	203.8			0.04	
	7	0.02	226.3			0.02	
	8+	0.03	189.1			0.03	
	Total	8.93		0.05		8.99	
	SOP		262.2		2.7		131.9
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	6.91	10.8	0.00		6.91	10.8
	1	13.07	49.1	1.06	45.3	14.13	48.8
	2	24.59	80.3	0.13	67.3	24.72	80.3
	3	2.38	121.5	0.00		2.38	121.5
	4	1.21	158.1	0.00		1.21	158.1
	5	0.49	171.8	0.00		0.49	171.8
	6	0.32	197.4	0.00		0.32	197.4
	7	0.09	211.7	0.00		0.09	211.7
	8+	0.06	188.8	0.00		0.06	188.8
	Total	49.12		1.18		50.31	
	SOP		3,350.3		56.5		3,407

Table 3.2.9 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet.

Western Baltic Spring spawners
 Division: Kattegat Year: 2021
 Country: All

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	0.09	22.8	0.01	45.3	0.10	24.5
	2	23.40	51.4	0.01	67.3	23.42	51.4
	3	3.78	73.4			3.78	73.4
	4	0.61	112.9			0.61	112.9
	5	0.09	81.1			0.09	81.1
	6					0.00	
	7					0.00	
	8+					0.00	

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	Total	27.96		0.02		27.98	
	SOP		1,557.5		1.2		1,558.7
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	0.0009	22.8	0.01	45.3	0.01	42.5
	2	0.17	51.4	0.01	67.3	0.18	52.1
	3	0.02	73.4			0.02	73.4
	4	0.00	112.9			0.00	112.9
	5	0.0004	81.1			0.0004	81.1
	6					0.00	
	7					0.00	
	8+					0.00	
	Total	0.193		0.01		0.21	
	SOP		10.59		0.8		11.4
Quarter		Fleet C		Fleet D		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0					0.00	
	1					0.00	
	2					0.00	
	3	0.00	193.9			0.00	193.9
	4	0.03	170			0.03	169.8
	5	0.05	178			0.05	177.5
	6	0.03	182			0.03	181.6
	7	0.01	195			0.01	
	8+	0.01	183			0.01	183.3
	Total	0.12		0.00		0.12	
	SOP		22.3		0.0		20.2
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0					0.00	
	1			0.33	45.3	0.33	45
	2			0.05	67.3	0.05	67
	3	0.04	193.9			0.04	194

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	4	0.65	169.8			0.65	170
	5	1.34	177.5			1.34	178
	6	0.92	181.6			0.92	182
	7	0.30	194.8			0.30	195
	8+	0.14	183.3			0.14	183
	Total	3.39		0.38		3.77	
	SOP		607		18		625.5
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	0.00		0.00		0.00	
	1	0.09	22.8	0.35	45.3	0.44	40.5
	2	23.57	51.4	0.07	67.3	23.64	51.4
	3	3.84	74.8	0.00		3.84	74.8
	4	1.28	142.8	0.00		1.28	142.8
	5	1.47	171.9	0.00		1.47	171.9
	6	0.95	181.6	0.00		0.95	181.6
	7	0.31	194.8	0.00		0.31	194.8
	8+	0.15	183.3	0.00		0.15	183.3
	Total	31.67116		0.41		32.09	
	SOP		2,197.6		20.3		2,217.9

Table 3.2.10 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as W - ringers, quarter and fleet.
Western Baltic Spring spawners
Division: Skagerrak
Year: 2021
Country: All

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	0.08	25.6			0.08	25.6
	2	17.74	58.4			17.74	58.4
	3	2.97	73.1			2.97	73.1
	4	0.28	96.0			0.28	96.0
	5					0.00	
	6					0.00	
	7					0.00	
	8+	0.10	154.5			0.10	

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	Total	21.16		0.00		21.16	
	SOP		1,297.3		0		1,281.3
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	0.08	25.6	0.02	45.3	0.10	30.1
	2	13.88	58.4	0.06	67.3	13.94	58.4
	3	1.65	73.1			1.65	73.1
	4	0.14	96.0			0.14	96.0
	5					0.00	
	6					0.00	
	7					0.00	
	8+	0.06	154.5			0.0585	154.5
	Total	15.81		0.08		15.89	
	SOP		955.8		4.9		960.7
Quarter		Fleet C		Fleet D		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0					0.00	
	1	0.55	55.0	0.04	45.3	0.59	54.3
	2	7.17	126.3	0.10	67.3	7.27	125.5
	3	6.04	133.9			6.04	133.9
	4	6.46	159.4			6.46	159.4
	5	3.41	171.6			3.41	171.6
	6	2.90	196.5			2.90	196.5
	7	1.27	206.5			1.27	206.5
	8+	1.50	201.3			1.50	201.3
	Total	29.29		0.14		29.43	
	SOP		4,492.3		8.7		4,501.0
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0	1.48	10.8			1.48	10.8
	1	0.57	51.7	0.02	45.3	0.59	51.4
	2	0.07	119.8	0.00	67.3	0.08	118.4
	3	0.04	136.2			0.04	136.2

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	4	0.07	161.9			0.07	161.9
	5	0.06	174.2			0.06	174.2
	6	0.06	203.8			0.06	203.8
	7	0.01	226.3			0.01	226.3
	8+	0.00	189.1			0.00	189.1
	Total	2.37		0.02		2.39	
	SOP		96.5		1.1		94.3
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	1.48	10.8	0.00		1.48	10.8
	1	1.28	49.9	0.09	45.3	1.36	49.6
	2	38.86	71.0	0.16	67.3	39.02	71.0
	3	10.69	107.7	0.00		10.69	107.7
	4	6.95	155.6	0.00		6.95	155.6
	5	3.47	171.6	0.00		3.47	171.6
	6	2.95	196.7	0.00		2.95	196.7
	7	1.28	206.7	0.00		1.28	206.7
	8+	1.66	196.8	0.00		1.66	196.8
	Total	68.63		0.25		68.88	
	SOP		6,841.9		14.6		6,857

Table 3.2.11 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet.
North Sea Autumn spawners Division: 3.a Year: $2021 \quad$ Country: All

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	2.49	24.7	0.07	45.3	2.56	25.2
	2	25.39	55.3	0.01	67.3	25.40	55.3
	3	0.77	73.2			0.77	73.2
	4	0.05	106.7			0.05	106.7
	5	0.00	81.1			0.00	81.1
	6					0.00	
	7					0.00	
	8+	0.01	154.5			0.01	154.5

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	Total	28.72		0.07		28.80	
	SOP		1,528.4		3.5		1,531.9
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	0					0.00	
	1	0.84	25.6	0.28	45.3	1.12	30.5
	2	2.61	58.4	0.01	67.3	2.63	58.4
	3	0.10	73.1			0.10	73.1
	4	0.011	96.3			0.01	96.3
	5	0.000	81.1			0.00	81.1
	6					0.00	
	7					0.00	
	8+	0.000000003	154.5			0.000000003	154.5
	Total	3.56		0.29		3.85	
	SOP		182.3		13.3		195.6
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0					0.00	
	1	9.48	55.0	0.77	45.3	10.25	54.3
	2	7.47	126.3	0.10	67.3	7.58	125.5
	3	1.72	133.9			1.72	133.9
	4	1.062	159.4			1.06	159.4
	5	0.45	171.6			0.45	171.6
	6	0.28	196.5			0.28	196.5
	7	0.07	206.5			0.07	206.5
	8+	0.03	201.3			0.03	201.3
	Total	20.56		0.87		21.43	
	SOP		2,015.8		41.8		2,057.6
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0	6.91	10.8			6.91	10.8
	1	1.07	51.7	0.68	45.3	1.75	49.2
	2	0.53	119.8	0.21	67.3	0.73	104.8

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	3	0.20	145.2			0.20	145.2
	4	0.39	167.3			0.39	167.3
	5	0.34	177.0			0.34	177.0
	6	0.17	186.46			0.17	186.5
	7	0.08	204.68			0.08	204.7
	8+	0.10	184.95			0.10	185.0
	Total	9.78		0.89		10.67	
	SOP		413.7		44.8		458.4
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	6.91	10.8	0.00		6.91	10.8
	1	13.89	47.5	1.79	45.3	15.69	47.3
	2	36.01	71.2	0.33	67.3	36.34	71.1
	3	2.79	115.8	0.00		2.79	115.8
	4	1.51	159.3	0.00		1.51	159.3
	5	0.79	173.5	0.00		0.79	173.5
	6	0.46	192.6	0.00		0.46	192.6
	7	0.15	205.5	0.00		0.15	205.5
	8+	0.13	185.9	0.00		0.13	185.9
	Total	62.63		2.12		64.75	
	SOP		4,140.1		103.4		4,244

Table 3.2.12 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as W - ringers, quarter and fleet.
Western Baltic Spring spawners Division: 3.a Year: 2021 Country: All

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	0.17	24.1	0.01	45.3	0.18	25.0
	2	41.14	54.4	0.01	67.3	41.15	54.4
	3	6.74	73.3			6.74	73.3
	4	0.88	107.6			0.88	107.6
	5	0.09	81.1			0.09	81.1
	6					0.00	
	7					0.00	

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	8+	0.10	154.5			0.10	154.5
	Total	49.13		0.02		49.15	
	SOP		2,854.8		1.2		2,856.0
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	0.08	25.6	0.03	45.3	0.11	30.9
	2	14.05	58.3	0.06	67.3	14.11	58.4
	3	1.67	73.1			1.67	73.1
	4	0.15	96.4			0.15	96.4
	5	0.0004	81.1			0.0004	81.1
	6					0.00	
	7					0.00	
	8+	0.06	154.5			0.0585	154.5
	Total	16.00		0.09		16.09	
	SOP		966.4		5.6		972.1
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0					0.00	
	1	0.55	55.0	0.04	45.3	0.59	54.3
	2	7.17	126.3	0.10	67.3	7.27	125.5
	3	6.04	134.0			6.04	134.0
	4	6.49	159.5			6.49	159.5
	5	3.46	171.6			3.46	171.6
	6	2.93	196.4			2.93	196.4
	7	1.28	206.4			1.28	206.4
	8+	1.51	201.2			1.51	201.2
	Total	29.41		0.14		29.56	
	SOP		4,515		8.7		4,523.2
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
	0	1.48	10.8			1.48	10.8
	1	0.57	51.7	0.35	45.3	0.93	49.2
	2	0.07	119.8	0.05	67.3	0.12	98.6

Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	3	0.08	166.1			0.08	166.1
	4	0.72	169.0			0.72	169.0
	5	1.40	177.4			1.40	177.4
	6	0.98	182.9			0.98	182.9
	7	0.31	196.3			0.31	196.3
	8+	0.14	183.4			0.14	183.4
	Total	5.76		0.40		6.16	
	SOP		703.7		19.4		723.1
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	1.48	10.8	0.00		1.48	10.8
	1	1.37	48.0	0.43	45.3	1.80	47.4
	2	62.43	63.6	0.23	67.3	62.66	63.6
	3	14.53	99.0	0.00		14.53	99.0
	4	8.23	153.6	0.00		8.23	153.6
	5	4.94	171.7	0.00		4.94	171.7
	6	3.91	193.0	0.00		3.91	193.0
	7	1.59	204.4	0.00		1.59	204.4
	8+	1.81	195.7	0.00		1.81	195.7
	Total	100.30		0.66		100.96	
	SOP		9,039.4		34.9		9,074

multifleet assessment input

Table 3.2.13 Western Baltic spring spawning herring. Total catch in numbers (mill) and mean weight (g), SOP (tonnes) of Western Baltic Spring spawners in Division 3.a and the North Sea in the years 1993-2021.

Year/	W-rings	0	1	2	3	4	5	6	7	$8+$	Total
1993	Numbers	161.25	371.50	315.82	219.05	94.08	59.43	40.97	21.71	8.22	1,292.03
	Mean W.	15.1	25.9	81.4	127.5	150.1	171.1	195.9	209.1	239.0	
	SOP	2,435	9,612	25,696	27,936	14,120	10,167	8,027	4,541	1,966	104,498
1994	Numbers	60.62	153.11	261.14	221.64	130.97	77.30	44.40	14.39	8.62	972.19
	Mean W.	20.2	42.6	94.8	122.7	150.3	168.7	194.7	209.9	220.2	
	SOP	1,225	6,524	24,767	27,206	19,686	13,043	8,642	3,022	1,898	106,013
1995	Numbers	50.31	302.51	204.19	97.93	90.86	30.55	21.28	12.01	7.24	816.86
	Mean W.	17.9	41.5	97.8	138.0	163.1	198.5	207.0	228.8	234.3	
	SOP	902	12,551	19,970	13,517	14,823	6,065	4,404	2,747	1,696	76,674
1996	Numbers	166.23	228.05	317.74	75.60	40.41	30.63	12.58	6.73	5.63	883.60
	Mean W.	10.5	27.6	90.1	134.9	164.9	186.6	204.1	208.5	220.2	
	SOP	1,748	6,296	28,618	10,197	6,665	5,714	2,568	1,402	1,241	64,449
1997	Numbers	25.97	73.43	158.71	180.06	30.15	14.15	4.77	1.75	2.31	491.31
	Mean W.	19.2	49.7	76.7	127.2	154.4	175.8	184.4	192.0	208.0	
	SOP	498	3,648	12,176	22,913	4,656	2,489	879	337	480	48,075
1998	Numbers	36.26	175.14	315.15	94.53	54.72	11.19	8.72	2.19	2.09	699.98
	Mean W.	27.8	51.3	71.5	108.8	142.6	171.7	194.4	184.2	230.0	
	SOP	1,009	8,980	22,542	10,287	7,804	1,922	1,695	403	481	55,121
1999	Numbers	41.34	190.29	155.67	122.26	43.16	22.21	4.42	3.02	2.40	584.77
	Mean W.	11.5	51.0	83.6	114.9	121.2	145.2	169.6	123.8	152.3	
	SOP	477	9,698	13,012	14,048	5,232	3,225	749	373	366	47,179
2000	Numbers	114.83	318.22	302.10	99.88	50.85	18.76	8.21	1.35	1.40	915.60
	Mean W.	22.6	31.9	67.4	107.7	140.2	170.0	157.0	185.0	210.1	
	SOP	2,601	10,145	20,357	10,756	7,131	3,189	1,288	249	294	56,010
2001	Numbers	121.68	36.63	208.10	111.08	32.06	19.67	9.84	4.17	2.42	545.65
	Mean W.	9.0	51.2	76.2	108.9	145.3	171.4	188.2	187.2	203.3	
	SOP	1,096	1,875	15,863	12,093	4,657	3,371	1,852	780	492	42,079
2002	Numbers	69.63	577.69	168.26	134.60	53.09	12.05	7.48	2.43	2.02	1,027.26
	Mean W.	10.2	20.4	78.2	117.7	143.8	169.8	191.9	198.2	215.5	
	SOP	709	11,795	13,162	15,848	7,632	2,046	1,435	481	435	53,544
2003	Numbers	52.11	63.02	182.53	65.45	64.37	21.47	6.26	4.35	1.81	461.38
	Mean W.	13.0	37.4	76.5	113.3	132.7	142.2	153.5	169.9	162.2	
	SOP	678	2,355	13,957	7,416	8,540	3,053	961	740	294	37,994

Year/	W-rings	0	1	2	3	4	5	6	7	8+	Total
2004	Numbers	25.67	209.34	96.02	93.98	18.24	16.84	4.51	1.51	0.59	466.71
	Mean W.	27.1	43.2	81.9	117.1	145.4	157.4	170.7	184.4	187.1	
	SOP	695	9,047	7,869	11,005	2,652	2,651	769	279	111	35,078
2005	Numbers	95.3	96.9	203.3	75.4	46.9	9.3	11.5	3.5	1.4	543.51
	Mean W.	14.1	54.9	85.6	121.6	148.3	162.7	176.3	178.3	200.6	
	SOP	1,341	5,319	17,415	9,163	6,961	1,519	2,028	618	282	44,645
2006 c	Numbers	7.3	104.1	115.6	114.2	48.9	55.7	11.1	10.3	5.2	472.49
	Mean W.	16.6	36.9	82.9	113.0	142.5	175.2	198.2	209.5	220.0	
	SOP	121	3,847	9,584	12,907	6,972	9,765	2,199	2,159	1,134	48,688
2007	Numbers	1.6	103.9	90.9	36.9	30.8	12.8	9.4	6.2	2.7	295.22
	Mean W.	25.2	65.6	85.0	115.7	138.4	159.2	190.8	178.6	211.9	
	SOP	41	6,816	7,723	4,269	4,265	2,035	1,802	1,114	567	28,632
2008	Numbers	4.9	101.8	71.1	38.9	13.5	15.1	7.7	4.5	1.3	258.80
	Mean W.	19.2	71.5	91.1	114.5	142.2	171.2	181.4	200.0	196.4	98.02
	SOP	94	7,281	6,472	4,456	1,917	2,590	1,402	900	256	25,368
2009	Numbers	14.8	149.6	132.3	45.9	24.4	10.9	7.8	7.7	5.3	398.63
	Mean W.	13.4	52.0	90.3	118.6	167.5	181.4	213.9	228.9	259.5	90.89
	SOP	199	7,783	11,946	5,436	4,094	1,974	1,669	1,757	1,371	36,230
2010	Numbers	9.1	48.6	106.1	45.2	20.8	8.6	5.9	7.2	5.9	257.38
	Mean W.	8.2	59.3	84.7	129.8	165.9	196.2	221.8	234.3	257.2	106.71
	SOP	75	2,878	8,991	5,870	3,445	1,686	1,311	1,696	1,513	27,465
2011	Numbers	6.2	83.1	29.9	21.0	13.4	6.0	3.0	1.0	1.1	164.56
	Mean W.	8.4	33.7	89.0	120.4	140.2	170.2	185.9	216.3	211.8	72.57
	SOP	52	2,797	2,660	2,522	1,878	1,020	554	222	237	11,941
2012	Numbers	1.5	30.5	94.3	20.7	9.5	7.1	4.2	2.2	8.6	178.68
	Mean W.	9.3	47.0	76.1	134.2	165.1	182.0	204.1	222.0	225.6	98.24
	SOP	14	1,434	7,180	2,780	1,570	1,290	858	495	1,931	17,553
2013	Numbers		12.0	51.7	71.4	11.3	4.4	1.4	0.5	1.0	153.62
	Mean W.		59.5	94.2	131.8	162.6	195.0	207.8	247.9	238.1	119.29
	SOP		716	4,872	9,409	1,830	848	290	118	242	18,325
2014	Numbers	25.3	31.5	22.4	24.2	44.6	7.6	4.6	2.3	2.9	165.42
	Mean W.	9.3	52.2	98.5	137.4	178.2	199.2	211.7	225.1	227.0	114.98
	SOP	236	1,647	2,203	3,332	7,942	1,513	964	524	659	19,020
2015	Numbers	3.3	57.8	59.9	21.0	14.1	14.6	4.9	2.7	3.9	182.10
	Mean W.	16.0	31.8	67.9	115.2	152.4	172.8	193.4	198.7	212.9	84.28

Year/	W-rings	0	1	2	3	4	5	6	7	8+	Total
	SOP	53	1,838	4,067	2,418	2,150	2,521	939	532	830	15,348
2016	Numbers	23.9	27.2	161.7	43.0	13.3	12.1	13.2	3.6	6.6	304.65
	Mean W.	7.1	40.1	63.8	126.1	160.7	175.1	200.8	212.8	235.0	86.08
	SOP	170	1,091	10,312	5,426	2,142	2,119	2,661	765	1,539	26,224
2017	Numbers	1.4	48.4	42.2	42.8	34.2	10.2	10.9	7.4	2.9	200.41
	Mean W.	30.5	44.1	61.3	113.2	141.8	162.8	171.2	182.9	169.9	98.93
	SOP	44	2,137	2,585	4,848	4,844	1,668	1,863	1,345	493	19,827
2018	Numbers	0.3	20.5	179.1	17.6	15.2	22.3	6.8	3.9	3.1	268.88
	Mean W.	10.3	55.7	55.3	109.3	154.4	179.7	195.0	194.9	206.4	82.07
	SOP	3	1,140	9,902	1,927	2,346	4,007	1,334	761	647	22,066
2019	Numbers	5.3	38.2	59.2	21.0	8.2	9.7	11.1	3.0	2.6	158.51
	Mean W.	20.0	52.8	85.0	118.9	138.4	166.1	183.3	193.9	211.4	98.35
	SOP	106	2,019	5,036	2,502	1,138	1,619	2,035	577	557	15,589
2020	Numbers	10.8	36.6	54.9	23.3	17.1	7.8	13.6	8.3	5.7	178.18
	Mean W.	13.6	47.1	67.1	132.5	160.7	180.8	186.1	199.3	204.8	101.94
	SOP	146	1,723	3,681	3,094	2,753	1,406	2,536	1,663	1,160	18,163
2021	Numbers	1.5	2.2	63.8	17.3	15.6	9.4	5.8	2.7	4.1	122.29
	Mean W.	10.8	60.2	64.9	107.1	156.4	169.8	186.8	194.9	196.1	102.87
	SOP	16	132	4,138	1,856	2,436	1,597	1,082	525	796	12,579

Data for 1995 to 2001 was revised in 2003.
${ }^{c}$ values have been corrected in 2007

Table 3.2.14 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet. Western Baltic Spring spawners (values from the North Sea, see tables 2.2.1-2.2.5) North Sea + Div. 3.a + SD 22-24 Year: 2021 Country: All

Quarter	W-rings	Division IV		Division Illa		Subdivision 22-24		Total	
		Numbers	Mean W.						
1	0							0.00	
	1	0.00001	116.00	0.18	25.02	0.35	16.17	0.54	19.18
	2	0.004	134.00	41.15	54.42	0.67	55.44	41.83	54.45
	3	0.006	145.00	6.74	73.27	0.85	83.90	7.59	74.51
	4	0.003	155.00	0.88	107.59	0.54	132.16	1.43	117.04
	5	0.011	163.00	0.09	81.10	0.43	138.04	0.53	129.30
	6	0.002	168.00			0.57	177.32	0.58	177.29
	7					0.36	181.41	0.36	181.41
	8+	0.006	182.00	0.10	154.50	0.43	183.71	0.53	178.06
	Total	0.031		49.15		4.21		53.39	
	SOP		4.9		2,856.0		491.1		3,352.0
Quarter	W-rings	Division IV		Division Illa		Subdivision 22-24		Total	
		Numbers	Mean W.						
2	1	0.363	116.00	0.11	30.93	0.05	16.17	0.52	88.39
	2	1.009	134.00	14.11	58.36	0.13	53.64	15.25	63.33
	3	2.576	145.00	1.67	73.10	0.18	76.17	4.43	115.06
	4	6.764	155.00	0.15	96.37	0.13	115.55	7.04	153.05
	5	4.115	163.00	0.00	81.10	0.16	135.10	4.27	161.96
	6	1.704	168.00			0.22	159.88	1.92	167.08
	7	1.015	176.00			0.19	157.74	1.21	173.06
	8+	1.756	184.43	0.06	154.50	0.30	167.04	2.11	181.17
	Total	19.301		16.09		1.36		36.75	
	SOP		3,058.6		972.1		172.9		4,203.6
Quarter	W-rings	Division IV		Division Illa		Subdivision 22-24		Total	
		Numbers	Mean W.						
3	0					0.002	20.10	0.002	20.10
	1	0.03	158.00	0.59	54.26	0.01	38.38	0.63	59.16
	2	0.08	187.00	7.27	125.47	0.07	93.69	7.42	125.84
	3	0.21	202.00	6.04	133.95	0.19	123.72	6.44	135.90
	4	0.56	214.00	6.49	159.46	0.17	149.35	7.22	163.45
	5	0.34	224.00	3.46	171.64	0.08	157.07	3.88	175.97

single fleet assessment input
multifleet assessment input

Table 3.2.15 Western Baltic spring spawning herring. Total catch in numbers (mill) of Western Baltic Spring Spawners in North Sea + Div. 3.a + SD 22-24 in the years 1993-2021.

Year	W-rings	0	1	2	3	4	5	6	7	8+	Total
	Area										
1993	Div. 4+Div.										1130.
	$3 . \mathrm{a}$	161.3	371.5	315.8	219.0	94.1	59.4	41.0	21.7	8.2	8
	Subdiv.										
	22-24	44.9	159.2	180.1	196.1	166.9	151.1	61.8	42.2	16.3	973.7
1994	Div. 4+Div.										
	3.a	60.6	153.1	261.1	221.6	131.0	77.3	44.4	14.4	8.6	911.6
	Subdiv.										
	22-24	202.6	96.3	103.8	161.0	136.1	90.8	74.0	35.1	24.5	721.6
1995	Div. 4+Div.										
	3.a	50.3	302.5	204.2	97.9	90.9	30.6	21.3	12.0	7.2	816.9
	Subdiv.										1951.
	22-24	491.0	1,358.2	233.9	128.9	104.0	53.6	38.8	20.9	13.2	5

1996	Div. 4+Div.										
	3.a	166.2	228.1	317.7	75.6	40.4	30.6	12.6	6.7	5.6	883.6
	Subdiv.										
	22-24	4.9	410.8	82.8	124.1	103.7	99.5	52.7	24.0	19.5	917.1
	Div. 4+Div.										
1997	3.a	26.0	73.4	158.7	180.1	30.2	14.2	4.8	1.8	2.3	491.3
	Subdiv.										
	22-24	350.8	595.2	130.6	96.9	45.1	29.0	35.1	19.5	21.8	973.2
	Div. 4+Div.										
1998	3.a	36.3	175.1	315.1	94.5	54.7	11.2	8.7	2.2	2.1	700.0
	Subdiv.										
	22-24	513.5	447.9	115.8	88.3	92.0	34.1	15.0	13.2	12.0	818.4
	Div. 4+Div.										
1999	3.a	41.3	190.3	155.7	122.3	43.2	22.2	4.4	3.0	2.4	584.8
	Subdiv.										
	22-24	528.3	425.8	178.7	123.9	47.1	33.7	11.1	6.5	3.7	830.5
	Div. 4+Div.										
2000	3.a	114.83	318.22	302.10	99.88	50.85	18.76	8.21	1.35	1.40	915.6
	Subdiv.										1079.
	22-24	37.7	616.3	194.3	86.7	77.8	53.0	30.1	12.4	9.3	9

	Div. 4+Div. 3.a	121.7	36.6	208.1	111.1	32.1	19.7	9.8	4.2	2.4	545.6
	Subdiv.										

Year	W-rings	0	1	2	3	4	5	6	7	8+	Total
	Area										
	Subdiv.										
	22-24	80.6	81.4	113.6	186.7	119.2	45.1	31.1	11.4	6.3	675.4
	Div. 4+Div.										
2003	3.a	52.1	63.0	182.5	64.0	62.2	20.3	5.9	3.8	1.6	455.5
	Subdiv.										
	22-24	1.4	63.9	82.3	95.8	125.1	82.2	22.9	13.1	7.0	493.6
	Div. 4+Div.										
2004	3.a	25.7	209.3	96.0	94.0	18.2	16.8	4.5	1.5	0.6	466.7
	Subdiv.										
	22-24	217.9	248.4	101.8	70.8	75.0	74.4	44.5	13.4	10.4	856.5
	Div. 4+Div.										
2005	3.a	95.3	96.9	203.3	75.4	46.9	9.3	11.5	3.5	1.4	543.5
	Subdiv.										
	22-24	11.6	207.6	115.9	102.5	83.5	51.3	54.2	27.8	11.2	665.5
2006	Div. 4+Div.										
c	3.a	7.3	104.1	115.6	114.2	48.9	55.7	11.1	10.3	5.2	472.5
	Subdiv.										
	22-24	0.6	44.8	72.1	119.0	101.7	43.0	31.4	22.1	12.2	446.8
	Div. 4+Div.										
2007	$3 . \mathrm{a}$	1.6	103.9	90.9	36.9	30.8	12.8	9.4	6.2	2.7	295.2
	Subdiv.										1206.
	22-24	19.0	668.5	158.3	169.7	112.8	65.1	24.6	5.9	1.8	8
	Div. 4+Div.										
2008	3.a	4.9	101.8	71.1	38.9	13.5	15.1	7.7	4.5	1.3	258.8
	Subdiv.										1206.
	22-24	19.0	668.5	158.3	169.7	112.8	65.1	24.6	5.9	1.8	8
	Div. 4+Div.										
2009	3.a	14.8	149.6	132.3	45.9	24.4	10.9	7.8	7.7	5.3	398.6
	Subdiv.										
	22-24	5.9	31.5	110.7	55.5	45.5	37.2	31.9	13.2	7.2	338.7
	Div. 4+Div.										
2010	3.a	9.1	48.6	106.1	45.2	20.8	8.6	5.9	7.2	5.9	257.4
	Subdiv.										
	22-24	3.3	26.5	31.3	39.3	28.5	22.4	13.9	8.0	7.5	180.6
	Div. 4+Div.										
2011	3.a	6.2	83.1	29.9	21.0	13.4	6.0	3.0	1.0	1.1	164.6
	Subdiv.										
	22-24	5.6	15.5	16.4	17.8	35.9	21.6	19.6	11.2	8.2	152.0
	Div. 4+Div.										
2012	3.a	1.5	30.5	94.3	20.7	9.5	7.1	4.2	2.2	8.6	178.7

Year	W-rings	0	1	2	3	4	5	6	7	8+	Total
	Area										
	Subdiv.										
	22-24	0.5	46.3	36.5	43.8	37.8	28.4	14.0	9.0	8.4	224.6
2013	Div. 4+Div.										
	3.a		12.0	51.7	71.4	11.3	4.4	1.4	0.5	1.0	153.6
	Subdiv.										
	22-24	1.0	60.6	37.1	43.3	55.9	28.7	25.3	11.5	11.0	274.5
2014	Div. 4+Div.										
	3.a	25.3	31.5	22.4	24.2	44.6	7.6	4.6	2.3	2.9	165.4
	Subdiv.										
	22-24	5.8	35.3	37.7	42.1	37.5	19.0	11.2	6.5	6.2	201.4
2015	Div. 4+Div.										
	3.a	3.3	57.8	59.9	21.0	14.1	14.6	4.9	2.7	3.9	182.1
	Subdiv.										
	22-24	26.7	46.2	72.8	38.5	48.4	29.8	14.9	7.9	9.1	294.3
2016	Div. 4+Div.										
	3.a	23.9	27.2	161.7	43.0	13.3	12.1	13.2	3.6	6.6	304.6
	Subdiv.										
	22-24	20.0	22.3	37.2	93.9	45.7	30.5	17.4	10.5	8.3	285.8
2017	Div. 4+Div.										
	3.a	1.4	48.4	42.2	42.8	34.2	10.2	10.9	7.4	2.9	200.4
	Subdiv.										
	22-24	0.1	9.4	32.8	38.5	78.3	38.5	26.9	13.5	10.2	248.3
2018	Div. 4+Div.										
	3.a	0.3	20.5	179.1	17.6	15.2	22.3	6.8	3.9	3.1	268.9
	Subdiv.										
	22-24	0.4	48.4	18.5	34.6	23.1	51.3	16.3	8.8	4.5	205.8
2019	Div. 4+Div.										
	3.a	5.3	38.2	59.2	21.0	8.2	9.7	11.1	3.0	2.6	158.5
	Subdiv.										
	22-24	0.3	6.9	20.7	15.6	13.3	10.3	15.9	6.0	3.5	92.4
2020	Div. 4+Div.										
	3.a	10.8	36.6	54.9	23.3	17.1	7.8	13.6	8.3	5.7	178.2
	Subdiv.										
	22-24	0.0	1.7	2.5	4.6	4.7	6.7	4.1	5.3	1.6	31.2
2021	Div. 4+Div.										
	3.a	1.5	2.2	63.8	17.3	15.6	9.4	5.8	2.7	4.1	122.3
	Subdiv.										
	22-24	0.0	0.6	1.8	3.2	2.5	1.5	1.3	0.9	0.9	12.8

Data for 1995-2001 for the North Sea and Division 3.a was revised in 2003.
C values have been corrected in 2007.

Table 3.2.16 Western Baltic spring spawning herring. Mean weight (g) and SOP (t) of Western Baltic Spring Spawners in North Sea + Div. 3.a + SD22-24 in the years 1993-2021.

	W-rings	0	1	2	3	4	5	6	7	8+	SOP
Year	Area										
1993	Div. 4+Div.										
	3.a	15.1	25.9	81.4	127.5	150.1	171.1	195.9	209.1	239.0	104,498
	24	16.2	24.5	44.5	73.6	94.1	122.4	149.4	168.5	178.7	80,512
1994	Div. 4+Div.										
	3.a	20.2	42.6	94.8	122.7	150.3	168.7	194.7	209.9	220.2	106,013
	Subdiv. 22-										
	24	12.9	28.2	54.2	76.4	95.0	117.7	133.6	154.3	173.9	66,425
1995	Div. 4+Div.										
	3.a	17.9	41.5	97.8	138.0	163.1	198.5	207.0	228.8	234.3	76,674
	Subdiv. 22-										
	24	9.3	16.3	42.8	68.3	88.9	125.4	150.4	193.3	207.4	74,157
1996	Div. 4+Div.										
	3.a	10.5	27.6	90.1	134.9	164.9	186.6	204.1	208.5	220.2	64,449
	Subdiv. 22-										
	24	12.1	22.9	45.8	74.0	92.1	116.3	120.8	139.0	182.5	56,817
1997	Div. 4+Div.										
	3.a	19.2	49.7	76.7	127.2	154.4	175.8	184.4	192.0	208.0	48,075
	Subdiv. 22-										
	24	30.4	24.7	58.4	101.0	120.7	155.2	181.3	197.1	208.8	67,513
1998	Div. 4+Div.										
	3.a	27.8	51.3	71.5	108.8	142.6	171.7	194.4	184.2	230.0	55,121
	Subdiv. 22-										
	24	13.3	26.3	52.2	78.6	103.0	125.2	150.0	162.1	179.5	51,911
1999	Div. 4+Div.										
	3.a	11.5	51.0	83.6	114.9	121.2	145.2	169.6	123.8	152.3	47,179
	Subdiv. 22-										
	24	11.1	26.9	50.4	81.6	112.0	148.4	151.4	167.8	161.0	50,060
2000	Div. 4+Div.										
	3.a	22.6	31.9	67.4	107.7	140.2	170.0	157.0	185.0	210.1	56,010
	Subdiv. 22-										
	24	16.5	22.2	42.8	80.4	123.5	133.2	143.4	155.4	151.4	53,904
2001	Div. 4+Div.										
	$3 . \mathrm{a}$	9.0	51.2	76.2	108.9	145.3	171.4	188.2	187.2	203.3	42,079
	Subdiv. 22-										
	24	12.9	22.3	46.8	69.0	93.5	150.8	145.1	146.3	153.1	63,724
	Div. 4+Div.										
2002	3.a	10.2	20.4	78.2	117.7	143.8	169.8	191.9	198.2	215.5	53,544

Year	W-rings	0	1	2	3	4	5	6	7	8+	SOP
	Area										
Subdiv. 22-											
	24	10.8	27.3	57.8	81.7	108.8	132.1	186.6	177.8	157.7	52,647
2003	Div. 4+Div.										
	3.a	13.0	37.4	76.5	112.7	132.1	140.8	151.9	167.4	158.2	37,075
	Subdiv. 22-										
	24	22.4	25.8	46.4	75.3	95.2	117.2	125.9	157.1	162.6	40,315
2004	Div. 4+Div.										
	3.a	27.1	43.2	81.9	117.1	145.4	157.4	170.7	184.4	187.1	35,078
	Subdiv. 22-										
	24	3.7	14.3	47.4	77.7	96.4	125.5	150.4	165.8	151.0	41,736
2005	Div. 4+Div.										
	3.a	14.1	54.9	85.6	121.6	148.3	162.7	176.3	178.3	200.6	50,765
	Subdiv. 22-										
	24	13.6	14.2	48.3	73.3	89.3	115.5	143.6	159.9	170.2	37,013
2006	Div. 4+Div.										
	3.9	16.6	36.9	82.9	113.0	142.5	175.2	198.2	209.5	220.0	25,965
	Subdiv. 22-										
	24	21.2	34.0	56.7	84.0	102.2	125.3	143.9	175.8	170.0	70,911
2007	Div. 4+Div.										
	3.a	25.2	65.6	85.0	115.7	138.4	159.2	190.8	178.6	211.9	28,632
	Subdiv. 22-										
	24	11.9	27.8	57.3	74.9	106.3	121.3	140.8	162.7	185.5	39,548
2008	Div. 4+Div.										
	3.9	19.2	71.5	91.1	114.5	142.2	171.2	181.4	200.0	196.4	25,368
	Subdiv. 22-										
	24	16.3	49.5	65.2	88.1	110.5	133.2	140.3	156.7	172.2	43,116
2009	Div. 4+Div.										
	3.a	13.4	52.0	90.3	118.6	167.5	181.4	213.9	228.9	259.5	36,230
	Subdiv. 22-										
	24	10.5	28.3	48.1	90.5	123.7	145.2	160.4	171.2	181.8	31,032
2010	Div. 4+Div.										
	3.a	8.2	59.3	84.7	129.8	165.9	196.2	221.8	234.3	257.2	27,465
	Subdiv. 22-										
	24	12.2	22.2	52.2	87.1	119.8	154.8	170.6	191.9	194.1	17,917
2011	Div. 4+Div.										
	3.a	8.4	33.7	89.0	120.4	140.2	170.2	185.9	216.3	211.8	11,941
	Subdiv. 22-										
	24	12.4	23.0	55.1	78.1	113.2	136.6	147.6	161.2	168.0	15,830
	Div. 4+Div.										
2012	3.9	9.3	47.0	76.1	134.2	165.1	182.0	204.1	222.0	225.6	17,553

	W-rings	0	1	2	3	4	5	6	7	8+	SOP
Year	Area										
	Subdiv. 22-										
	24	18.1	15.9	55.0	95.4	115.1	150.3	167.6	177.4	191.2	21,095
	Div. 4+Div.										
2013	3.9		59.5	94.2	131.8	162.6	195.0	207.8	247.9	238.1	18,325
	Subdiv. 22-										
	24	13.7	17.8	54.1	86.8	129.4	136.9	145.3	159.1	179.8	25,504
	Div. 4+Div.										
2014	3.a	9.3	52.2	98.5	137.4	178.2	199.2	211.7	225.1	227.0	19,020
	Subdiv. 22-										
	24	16.5	30.0	59.0	82.3	122.1	158.4	156.0	163.0	175.5	18,338
	Div. 4+Div.										
2015	3.a	16.0	31.8	67.9	115.2	152.4	172.8	193.4	198.7	212.9	15,348
	Subdiv. 22-										
	24	7.1	15.9	50.4	79.3	107.6	144.7	170.6	135.6	149.4	22,144
	Div. 4+Div.										
2016	3.a	7.1	40.1	63.8	126.1	160.7	175.1	200.8	212.8	235.0	26,224
	Subdiv. 22-										
	24	10.3	34.1	51.7	84.6	95.0	129.5	160.4	168.1	169.2	25,073
	Div. 4+Div.										
2017	3.a	30.5	44.1	61.3	113.2	141.8	162.8	171.2	182.9	169.9	19,827
	Subdiv. 22-										
	24	18.1	34.3	57.7	82.8	117.9	123.5	137.6	147.5	139.8	26,513
	Div. 4+Div.										
2018	3.a	10.3	55.7	55.3	109.3	154.4	179.7	195.0	194.9	206.4	22,066
	Subdiv. 22-										
	24	15.9	14.5	51.8	87.2	108.4	142.7	143.4	157.7	170.1	18,992
	Div. 4+Div.										
2019	3.a	20.0	52.8	85.0	118.9	138.4	166.1	183.3	193.9	211.4	15,589
	Subdiv. 22-										
	24	16.7	30.7	56.9	83.7	123.6	139.6	165.6	138.3	166.7	9,831
	Div. 4+Div.										
2020	3.a	13.6	47.1	67.1	132.5	160.7	180.8	186.1	199.3	204.8	18,163
	Subdiv. 22-										
	24	18.5	38.3	69.1	87.3	111.3	145.5	155.9	172.1	171.0	3,966
	Div. 4+Div.										
2021	3.a	10.8	60.2	64.9	107.1	156.4	169.8	186.8	194.9	196.1	12,579
	Subdiv. 22-										
	24	19.1	23.0	72.2	104.1	138.6	146.5	171.6	176.3	177.1	1,601

Data for 1995-2001 for the North Sea and Division 3.a was revised in 2003.
${ }^{\mathrm{c}}$ values have been corrected in 2007.

Table 3.2.17 Western Baltic spring spawning herring. Transfers of North Sea autumn spawners from Div. 3.a to the North Sea. Numbers (millions) and mean weight (g), SOP (tonnes) in 1993-2021.

	W-Rings	0	1	2	3	4	5	6	7	8+	Total
Year											
1993	Number	2,795.4	2,032.5	237.6	26.5	7.7	3.6	2.7	2.2	0.7	5,109.0
	Mean W.	12.5	28.6	79.7	141.4	132.3	233.4	238.5	180.6	203.1	
	SOP	34,903	58,107	18,939	3,749	1,016	850	647	390	133	118,734
1994	Number	481.6	1,086.5	201.4	26.9	6.0	2.9	1.6	0.4	0.2	1,807.5
	Mean W.	16.0	42.9	83.4	110.7	138.3	158.6	184.6	199.1	213.9	
	SOP	7,723	46,630	16,790	2,980	831	460	287	75	37	75,811
1995	Number	1,144.5	1,189.2	161.5	13.3	3.5	1.1	0.6	0.4	0.3	2,514.4
	Mean W.	11.2	39.1	88.3	145.7	165.5	204.5	212.2	236.4	244.3	
	SOP	12,837	46,555	14,267	1,940	573	225	133	86	65	76,680
1996	Number	516.1	961.1	161.4	17.0	3.4	1.6	0.7	0.4	0.3	1,661.9
	Mean W.	11.0	23.4	80.2	126.6	165.0	186.5	216.1	216.3	239.1	
	SOP	5,697	22,448	12,947	2,151	565	307	145	77	66	44,403
1997	Number	67.6	305.3	131.7	21.2	1.7	0.8	0.2	0.1	0.1	528.7
	Mean W.	19.3	47.7	68.5	124.4	171.5	184.7	188.7	188.7	192.4	
	SOP	1,304	14,571	9,025	2,643	285	146	40	16	25	28,057
1998	Number	51.3	745.1	161.5	26.6	19.2	3.0	3.1	1.2	0.5	1,011.6
	Mean W.	27.4	56.4	79.8	117.8	162.9	179.7	197.2	178.9	226.3	
	SOP	1,409	41,994	12,896	3,137	3,136	547	608	211	108	64,045
1999	Number	598.8	303.0	148.6	47.2	13.4	6.2	1.2	0.5	0.5	1,119.4
	Mean W.	10.4	50.5	87.7	113.7	137.4	156.5	188.1	187.3	198.8	
	SOP	6,255	15,297	13,037	5,369	1,841	974	230	90	92	43,186
2000	Number	235.3	984.3	116.0	21.9	22.9	7.5	3.3	0.6	0.1	1,391.8
	Mean W.	21.3	28.5	76.1	108.8	163.1	190.3	183.9	189.4	200.2	
	SOP	5,005	28,012	8,825	2,377	3,731	1,436	601	114	13	50,115
2001	Number	807.8	563.6	150.0	17.2	1.4	0.3	0.5	0.0	0.0	1,540.8
	Mean W.	8.7	49.4	75.3	108.2	130.1	147.1	219.1	175.8	198.1	
	SOP	7,029	27,849	11,300	1,856	177	43	109	8	5	48,376
2002	Number	478.5	362.6	56.7	5.6	0.7	0.2	0.1	0.0	0.0	904.5
	Mean W.	12.2	38.0	100.6	121.5	142.7	160.9	178.7	177.4	218.6	
	SOP	5,859	13,790	5,705	684	106	26	21	8	5	26,205
2003	Number	21.6	445.0	182.3	13.0	16.2	1.8	1.1	1.2	0.2	682.4
	Mean W.	20.5	33.7	67.0	123.2	150.3	163.5	190.2	214.6	186.8	

Year	W-Rings	0	1	2	3	4	5	6	7	8+	Total
	SOP	442	14,992	12,219	1,606	2,436	293	213	264	33	32,498
2004	Number	88.4	70.9	179.9	20.7	6.0	9.7	1.8	2.0	0.9	380.4
	Mean W.	22.5	55.3	70.2	120.6	140.9	151.7	170.6	186.6	178.5	
	SOP	1,993	3,921	12,638	2,498	851	1,479	312	367	154	24,214
2005	Number	96.4	307.5	159.2	16.2	5.4	2.4	2.3	0.5	0.2	589.9
	Mean W.	16.5	50.5	71.0	105.9	154.6	173.5	184.5	200.2	208.9	
	SOP	1,595	15,527	11,304	1,712	828	412	420	95	34	31,927
2006	Number	35.1	150.1	50.2	10.2	3.3	3.3	0.6	0.4	0.2	253.3
	Mean W.	14.3	53.5	79.2	117.6	140.2	185.5	190.4	215.6	206.9	
	SOP	503	8,035	3,975	1,200	456	620	107	81	37	15,015
2007	Number	67.7	189.3	76.9	2.1	0.4	1.4	0.3	0.6	0.0	338.7
	Mean W.	26.7	62.6	71.1	108.1	124.4	151.7	183.7	174.7	153.8	
	SOP	1,807	11,857	5,464	224	55	219	48	110	3	19,788
2008	Number	85.7	86.6	72.0	1.9	0.3	0.1	0.1	0.3	0.1	247.0
	Mean W.	16.2	57.6	86.4	109.1	138.7	167.7	175.4	203.1	197.7	
	SOP	1,386	4,986	6,222	205	35	25	10	67	13	12,949
2009	Number	116.8	77.5	7.0	0.4	0.2	0.0	0.0	0.0	0.1	202.0
	Mean W.	9.4	59.8	101.0	81.3	206.4	0.0	0.0	0.0	268.5	
	SOP	1,095	4,635	710	29	46	0	0	0	28	6,542
2010	Number	48.6	197.0	43.3	0.3	0.1	0.1	0.0	0.1	0.0	289.6
	Mean W.	7.5	50.6	76.8	122.3	149.3	191.3	221.5	216.3	204.5	
	SOP	364	9,975	3,325	35	22	19	4	13	3	13,759
2011	Number	203.8	35.4	61.5	3.2	0.3	0.2	0.1	0.1	0.0	304.6
	Mean W.	7.5	35.1	83.6	113.3	133.9	191.5	193.2	234.3	248.3	
	SOP	1,524	1,244	5,137	364	37	33	23	22	5	8,388
2012	Number	145.83	174.74	43.05	1.85	1.14	0.19	0.20	0.11	0.03	367.1
	Mean W.	12.29	39.70	66.75	123.69	169.16	174.56	199.39	219.78	215.93	
	SOP	1,792	6,937	2,873	229	193	33	39	24	6	12,128
2013	Number	0.90	86.19	85.82	2.39	0.36	0.28				175.9
	Mean W.	33.66	75.39	74.64	133.88	160.14	200.37				
	SOP	30	6,498	6,405	320	57	56				13,367
2014	Number	284.74	61.13	80.21	5.90	0.54	0.50	0.17	0.03	0.06	433.3
	Mean W.	8.98	56.96	73.62	108.56	162.38	190.94	209.02	221.12	227.82	
	SOP	2,557	3,482	5,905	641	88	95	36	6	13	12,823

Year	W-Rings	0	1	2	3	4	5	6	7	8+	Total
2015	Number	30.71	169.58	97.57	6.96	1.25	4.89	1.11	1.20	0.35	313.6
	Mean W.	15.79	29.72	68.01	132.87	157.09	179.85	195.87	197.22	214.93	
	SOP	485	5,040	6,636	925	197	880	218	238	75	14,692
2016	Number	133.30	23.33	47.56	5.95	0.53	0.30	0.22	0.03	0.06	211.3
	Mean W.	6.74	37.42	59.01	123.13	149.08	156.65	207.97	209.50	234.59	
	SOP	899	873	2,807	733	79	47	46	7	15	5,506
2017	Number	0.15	75.99	34.43	6.91	2.97	1.20	0.07	0.05	0.03	121.8
	Mean W.	30.81	48.55	67.62	102.48	138.67	172.88	170.96	184.78	161.99	
	SOP	5	3,690	2,328	709	412	208	12	8	5	7,375
2018	Number	14.51	19.17	28.49	1.13	1.79	1.04	0.18	0.12	0.09	66.5
	Mean W.	10.05	48.67	57.48	102.82	155.48	179.69	189.49	186.69	202.12	
	SOP	146	933	1,638	116	279	187	35	22	17	3,372
2019	Number	23.72	101.32	19.84	4.56	0.10	0.13	0.07	0.01	0.003	149.8
	Mean W.	11.66	41.00	62.01	84.37	116.20	118.10	164.56	202.20	158.50	
	SOP	277	4,154	1,230	385	12	15	11	2	0.4	6,087
2020	Number	79.43	26.58	44.16	5.27	2.18	0.30	0.61	0.80	0.001	159.3
	Mean W.	13.49	36.49	65.71	138.58	168.38	174.62	199.24	216.74	137.84	
	SOP	1,072	970	2,902	730	367	53	122	173	0.1	6,388
2021	Number	6.91	15.69	36.34	2.79	1.51	0.79	0.46	0.15	0.135	64.8
	Mean W.	10.80	47.26	71.13	115.75	159.30	173.46	192.63	205.52	185.88	
	SOP	75	741	2,585	323	241	137	88	30	25.0	4,244

Table 3.3.1 Western Baltic spring spawning herring. German acoustic survey (GERAS) on the Spring Spawning Herring in Subdivisions 21 (Southern Kattegat, 41G0-42G2) - 24 in autumn 1993-2021 (September/October).

Year	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	$\begin{aligned} & * * * \\ & 2006 \end{aligned}$	$\begin{aligned} & \text { *** } \\ & 2007 \end{aligned}$
W-rings/Numbers in millions														
	5,474.5	5,107.7	1,833.1	2,859.2	2,490.0	5,993.82	1,008.9	2,477.9	4,102.5	3,776.7	2,554.6	3,055.5	4,159.3	2,588.9
0	40	80	30	20	90	0	10	72	95	80	80	95	11	22
		1,675.3	1,439.4	1,955.4		1,338.71	1,429.8	1,125.7		1,238.4				
1	415.730	40	60	00	801.350	0	80	16	837.557	80	968.860	750.199	940.892	558.851
								1,226.9						
2	883.810	328.610	590.010	738.180	678.530	287.240	453.980	32	421.396	222.530	592.360	590.756	226.959	260.402
3	559.720	357.960	434.090	394.530	394.070	232.510	328.960	844.088	575.358	217.270	346.230	295.659	279.618	117.412
4	443.730	353.850	295.170	162.430	236.830	155.950	201.590	366.841	341.120	260.350	163.150	142.778	212.201	76.782
5	189.420	253.510	305.550	118.910	100.190	51.940	78.930	131.430	63.678	96.960	143.320	78.541	139.813	43.919
6	60.400	126.760	119.260	99.290	50.980	8.130	38.610	85.690	24.520	38.040	79.030	79.018	97.261	12.144
7	23.510	46.430	46.980	33.280	23.640	1.470	5.920	19.471	9.690	8.580	22.600	25.564	66.937	9.262
$8+$	2.330	27.240	18.910	47.850	9.330	2.100	4.190	9.683	13.380	9.890	11.770	15.013	27.789	8.839
	8,053.1	8,277.4	5,082.5	6,409.0	4,785.0	8,071.87	3,550.9	6,287.8	6,389.2	5,868.8	4,882.0	5,033.1	6,150.7	3,676.5
Total	90	80	60	90	10	0	70	23	93	80	00	23	81	32
group	10	50	60	856.290	815.040	452.100	658.200	03	46	631.090	766.100	636.573	823.619	268.357
W-rings/Biomass ('000 tonnnes)														
0	66.889	58.540	16.564	28.497	23.760	71.814	13.784	31.163	38.209	33.928	23.074	32.794	42.958	25.202
1	14.466	58.620	46.643	76.396	39.899	51.117	57.530	48.177	34.165	44.791	35.885	29.790	38.230	22.782
2	40.972	20.939	29.127	43.461	50.085	22.016	28.431	75.879	29.957	16.089	34.542	46.478	18.013	20.202
3	40.749	30.091	31.035	35.942	35.280	27.484	27.740	77.137	56.769	22.008	27.726	31.876	31.946	11.366
4	43.038	40.104	21.174	22.291	28.049	16.664	24.065	37.936	40.360	34.167	18.364	20.414	31.253	9.679
5	24.198	27.268	37.141	16.743	11.430	6.768	9.259	18.458	9.029	14.561	17.348	12.772	24.876	6.724
6	12.313	14.915	16.056	13.998	6.157	0.867	5.620	13.267	3.497	5.715	12.225	13.820	17.959	2.001
7	5.294	9.269	6.101	5.333	3.716	0.350	1.210	3.866	1.075	1.343	3.413	5.111	13.431	1.703
${ }^{8+}$	0.627	6.570	2.930	10.636	2.170	$\underline{0.458}$	0.757	2.101	1.908	1.615	1.991	3.447	6.344	1.798
Total	248.545	266.316	206.771	253.297	200.547	197.537	168.395	307.984	214.967	174.218	174.568	196.503	225.010	101.456
$3+$ group	126.218	128.217	114.438	104.943	86.802	52.590	68.651	152.765	112.637	79.410	81.067	87.441	125.809	33.270
W-rings/Mean weight (g)														
0	12.2	11.5	9.0	10.0	9.5	12.0	13.7	12.6	9.3	9.0	9.0	10.7	10.3	9.7
1	34.8	35.0	32.4	39.1	49.8	38.2	40.2	42.8	40.8	36.2	37.0	39.7	40.6	40.8
2	46.4	63.7	49.4	58.9	73.8	76.6	62.6	61.8	71.1	72.3	58.3	78.7	79.4	77.6

Year	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	***2005	$\begin{gathered} * * * \\ \mathbf{2 0 0 6} \end{gathered}$	$\begin{gathered} * * * \\ 2007 \end{gathered}$
W-rings/Numbers in millions														
3	72.8	84.1	71.5	91.1	89.5	118.2	84.3	91.4	98.7	101.3	80.1	107.8	114.2	96.8
4	97.0	113.3	71.7	137.2	118.4	106.9	119.4	103.4	118.3	131.2	112.6	143.0	147.3	126.1
5	127.7	107.6	121.6	140.8	114.1	130.3	117.3	140.4	141.8	150.2	121.0	162.6	177.9	153.1
6	203.9	117.7	134.6	141.0	120.8	106.6	145.5	154.8	142.6	150.2	154.7	174.9	184.6	164.8
7	225.2	199.6	129.9	160.2	157.2	237.9	204.5	198.6	110.9	156.6	151.0	199.9	200.6	183.8
${ }^{8+}$	269.1	241.2	154.9	222.3	232.6	217.9	180.7	217.0	142.6	163.3	169.2	229.6	228.3	203.4
Total	30.9	32.2	40.7	39.5	41.9	24.5	47.4	49.0	33.6	29.7	35.8	39.0	36.6	27.6
	***	***	***	***	***	***	***	****	*****	***	***	\&	\&\&	
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
W-rings/Numbers in millions														
0	2,150.3	2,821.0	4,561.4	2,929.4	4,103.1	8,996.22	5,473.4		2,638.2	1,290.6	2,635.8	1,816.6	1,028.7	
	06	22	05	34	80	5	00	888.081	77	50	30	47	45	439.285
				1,206.7										
1	392.737	270.959	534.633	62	755.034	893.837	769.320	440.738	493.366	463.940	428.530	247.870	185.814	158.368
2	165.347	95.866	305.540	360.354	294.242	456.204	242.590	509.769	155.417	145.360	89.280	122.948	82.236	144.638
3	166.301	43.553	214.539	210.455	193.974	307.567	279.650	221.344	196.061	123.230	41.160	47.727	66.046	49.942
4	102.018	17.761	107.364	115.984	124.548	262.908	332.660	129.795	60.953	137.500	20.240	24.244	21.600	22.420
5	82.174	9.016	85.635	57.840	70.135	87.114	317.240	95.579	30.490	46.550	17.570	17.488	15.890	9.390
6	29.727	3.227	47.140	50.844	45.017	32.684	211.600	86.150	14.980	21.230	4.940	16.802	7.590	2.780
7	11.443	1.947	25.021	29.234	22.520	22.565	85.630	47.093	3.300	2.130	1.060	1.540	3.210	3.180
${ }^{8+}$	9.262	1.704	15.309	14.774	21.404	11.300	56.590	37.886	0.000	1.790	1.100	0.600	1.370	0.240
	3,109.3	3,265.0	5,896.5	4,975.6	5,630.0	11,070.4	7,768.6	2,456.4	3,592.8	2,232.3	3,239.7	2,295.8	1,412.5	
Total	14	55	86	82	54	05	80	35	44	80	10	67	00	830.243
	400.924	77.208	495.007	479.131	477.597	724.139	$1,283.3$	617.846	305.784	332.430	86.070	108.402	115.706	87.952
W-rings/Biomass (000 tonnnes)														
0	23.699	29.449	36.791	35.064	46.955	85.185	61.640	8.179	24.072	13.623	32.010	23.081	12.550	4.784
1	17.602	10.473	21.336	46.384	29.825	38.404	30.369	16.822	18.553	18.296	18.825	9.767	7.617	6.855
2	10.446	7.069	24.593	29.560	20.380	30.587	21.490	38.573	10.579	10.159	5.797	6.761	5.313	9.002
3	15.297	4.433	23.540	24.382	22.068	27.349	32.448	22.841	18.068	11.511	3.323	3.630	5.413	4.337
4	11.077	1.961	15.193	16.361	18.653	27.350	58.819	15.196	5.859	17.427	1.785	2.700	2.207	2.454
5	11.584	1.385	15.433	9.867	11.450	10.934	63.755	14.581	3.417	6.711	2.239	2.625	2.009	1.186
6	4.823	0.616	9.018	8.391	7.985	4.849	45.705	14.304	1.723	3.175	0.719	2.673	1.134	0.336
7	1.756	0.384	4.728	5.295	4.448	3.751	18.709	8.433	0.450	0.257	0.182	0.260	0.497	0.350

								*	**			***	***	***
Year	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
W-rings/Numbers in millions														
${ }^{8+}$	1.303	$\underline{0.284}$	3.013	3.015	3.876	1.821	13.498	7.108	0.000	0.190	0.203	0.060	0.230	0.038
Total	97.588	56.055	153.646	178.320	165.640	230.231	346.433	146.035	82.722	81.349	65.083	51.557	36.969	29.342
$\begin{array}{r} 3+ \\ \text { group } \end{array}$	45.840	$\underline{9.064}$	70.926	67.312	68.480	76.055	232.933	82.462	29.518	39.271	8.451	11.948	11.490	8.701
W-rings/Mean weight (g)														
0	11.0	10.4	8.1	12.0	11.4	9.5	11.3	9.2	9.1	10.6	12.1	12.7	12.2	10.9
1	44.8	38.7	39.9	38.4	39.5	43.0	39.5	38.2	37.6	39.4	43.9	39.4	41.0	43.3
2	63.2	73.7	80.5	82.0	69.3	67.0	88.6	75.7	68.1	69.9	64.9	55.0	64.6	62.2
3	92.0	101.8	109.7	115.9	113.8	88.9	116.0	103.2	92.2	93.4	80.7	76.1	82.0	86.8
4	108.6	110.4	141.5	141.1	149.8	104.0	176.8	117.1	96.1	126.7	88.2	111.4	102.2	109.5
5	141.0	153.6	180.2	170.6	163.3	125.5	201.0	152.5	112.1	144.2	127.4	150.1	126.4	126.4
6	162.2	190.9	191.3	165.0	177.4	148.4	216.0	166.0	115.0	149.5	145.6	159.1	149.4	120.7
7	153.5	197.4	189.0	181.1	197.5	166.2	218.5	179.1	136.4	120.5	172.0	168.7	154.9	110.0
$8+$	140.7	166.9	196.8	204.1	181.1	161.1	238.5	187.6	-	106.4	184.2	100.3	167.9	156.7
Total	31.4	17.2	26.1	35.8	29.4	20.8	44.6	59.5	23.0	36.4	20.1	22.5	26.2	35.3
		revisio	2015					small	sion in					
*incl. mean for Sub-division 23, which was not covered by RV SOLEA **incl. mean for Sub-division 21, which was not covered by RV SOLEA small revision in 2018														
	Centr Centr Centr Centra Centra Centra from h	Baltic Baltic Baltic altic H altic Baltic 32 (4	rring in rring in rring in ring in ring in rring in 2, SD	D 24 (S D 22, D 22, s 21-2 s 21 a Ds 21-2 , incl. a	23) bas 24 (SD 24 (SD based on SD 24 and SD ost exc	on SF) based based F 23) ba (SD 23 ively lar	röhsler n SF d on S based e herri	al. 201 cl. mat SF and that we	herri hy spawn	n SD 2 coustic (stage	stages ata/bio	cal		

Table 3.3.2 Western Baltic spring spawning herring. Acoustic surveys (HERAS) on the Western Baltic Spring Spawning Herring in the North Sea/Division 3.a in 1991-2021 (July).

		*	*	*	*	*			**							
Year	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
W-rings/Numbers in millions																
0		3,853	372	964												
					2,19	1,09			1,36	1,50		3,34	1,83	1,66	2,68	2,08
1		277	103	5	9	1	128	138	7	9	66	6	3	9	7	1
	1,86		2,76		1,88	1,00		1,68	1,14	1,89		1,57	1,11		1,34	2,21
2	4	2,092	8	413	7	5	715	2	3	1	641	7	0	930	2	7
	1,92		1,27		1,02							1,39				1,78
3	7	1,799	4	935	2	247	787	901	523	674	452	3	395	726	464	0
					1,27											
4	866	1,593	598	501	0	141	166	282	135	364	153	524	323	307	201	490
5	350	556	434	239	255	119	67	111	28	186	96	88	103	184	103	180
6	88	197	154	186	174	37	69	51	3	56	38	40	25	72	84	27
7	72	122	63	62	39	20	80	31	2	7	23	18	12	22	37	10
$8+$	10	20	13	34	21	13	77	53	1	10	12	17	5	18	21	0.1
	5,17	10,50	5,77	3,33	6,86	2,67	2,08	3,24	3,20	4,69	1,48	7,00	3,80	3,92	4,93	6,78
Total	7	9	9	9	7	3	8	8	1	6	1	2	7	6	9	6
$3+$	5,17		2,53	1,95	2,78		1,24	1,42		1,29		2,07		1,32		2,48
group	7	4,287	6	7	1	577	5	8	691	5	774	9	864	8	910	7
W-rings/Biomass ('000 tonnnes)																
0		34.3	1	8.7												
												137.			105.	112.
1		26.8	7	0.4	77.4	52.9	4.7	7.1	74.8	61.4	3.5	2	79.0	63.9	9	6
	177.				108.			136.	101.	138.		107.			100.	160.
2	1	169.0	139	33.2	9	87.0	52.2	1	6	1	55.8	2	91.5	75.6	1	5
	219.			114.	102.							126.				158.
3	7	206.3	112	7	6	27.6	81.0	84.8	59.5	68.8	51.2	9	41.4	89.4	46.6	6
	116.				145.											
4	0	204.7	69	76.7	5	17.9	21.5	35.2	14.7	45.3	21.5	55.9	41.7	41.5	28.9	56.3
5	51.1	83.3	65	41.8	33.9	17.8	9.8	13.1	3.4	25.1	17.9	12.8	13.9	29.3	16.5	23.7
6	19.0	36.6	26	38.1	27.4	5.8	9.8	6.9	0.5	10.0	6.9	7.4	4.2	11.7	14.9	4.1
7	13.0	24.4	16	13.1	6.7	3.3	14.9	4.8	0.3	1.4	4.7	3.5	2.0	4.1	7.5	1.6
8+	2.0	5.0	2	7.8	3.8	2.7	13.6	9.0	0.1	1.3	2.7	3.1	0.9	3.2	4.9	0.0
	597.		436.	325.	506.	215.	207.	297.	254.	351.	164.	454.	274.	318.	325.	517.
Total	9	756.1	5	8	2	1	5	0	9	4	2	0	5	8	3	5
$3+$	420.		291.	292.	319.		150.	153.		151.	104.	209.	104.	179.	119.	244.
group	9	560.3	0	3	9	75.2	6	7	78.5	9	9	6	0	3	3	4

Table 3.3.3. Western Baltic spring-spawning herring. N20 Larval Abundance Index.
Estimation of 0-Group herring reaching 20 mm in length in Greifswalder Bodden and adjacent waters (March/April to June).

Year	$\begin{gathered} \mathrm{N} 20 \\ \text { (millions) } \end{gathered}$
1992	1,060
1993	3,044
1994	12,515
1995	7,930
1996	21,012
1997	4,872
1998	16,743
1999	20,364
2000	3,026
2001	4,845
2002	11,324
2003	5,507
2004	5,640
2005	3,887
2006	3,774
2007*	1,829
2008*	1,622
2009	6,464
2010	7,037
2011	4,444
2012	1,140
2013	3,021
2014	539
2015	2,478
2016	442
2017	1,247
2018	1,563
2019	1,317
2020	239
2021	2,751

[^7]
TABLE 3.6.1.a WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet - Fleet A

Catch in number (CANUM, thousands)

	0	1	2	3	4	5	6	7	8
$\mathbf{2 0 0 0}$	0	0	8161	9752	10223	5660	2466	605	778
$\mathbf{2 0 0 1}$	0	454	11344	10224	6123	7151	2664	1556	410
$\mathbf{2 0 0 2}$	0	0	7589	14825	10583	3349	2877	969	620
$\mathbf{2 0 0 3}$	0	0	30	3130	5992	3502	1167	1305	605
$\mathbf{2 0 0 4}$	0	0	15140	27898	3520	4110	1002	456	146
$\mathbf{2 0 0 5}$	0	0	6569	17434	12680	2573	3787	1084	714
$\mathbf{2 0 0 6}$	0	129	3514	8783	13962	22370	5102	5258	3055
$\mathbf{2 0 0 7}$	0	0	74	2627	1253	596	806	377	613
$\mathbf{2 0 0 8}$	0	0	70	87	167	77	81	182	35
$\mathbf{2 0 0 9}$	0	0	1017	2075	3375	1423	1733	4471	3144
$\mathbf{2 0 1 0}$	0	26	32	518	985	389	518	270	1018
$\mathbf{2 0 1 1}$	0	0	63	442	400	235	69	109	298
$\mathbf{2 0 1 2}$	0	0	16	214	359	0	1432	0	7395
$\mathbf{2 0 1 3}$	0	0	53	409	172	494	312	67	645
$\mathbf{2 0 1 4}$	0	34	2451	3369	5406	802	2116	1045	1573
$\mathbf{2 0 1 5}$	0	20	95	868	1404	3872	1837	1446	2170
$\mathbf{2 0 1 6}$	0	20	1209	4109	1033	1137	1182	689	1210
$\mathbf{2 0 1 7}$	0	2.858	46.79	2368	1013	245.2	90.16	108.3	136.3
$\mathbf{2 0 1 8}$	0	28.6	329.8	900.6	2277	4270	1744	860.9	623.1
$\mathbf{2 0 1 9}$	0	7599	6239	4857	2750	7257	9687	2650	2583
$\mathbf{2 0 2 0}$	0	1812	3204	5845	7536	1219	10720	5325	4587
$\mathbf{2 0 2 1}$	0	393.8	1096	2794	7339	4469	1887	1100	2250

TABLE 3.6.1.b WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet - Fleet C
Catch in number (CANUM, thousands)

$\mathbf{2 0 0 0}$	59181	0	209579	294752	99060	55666	20361	7311	978
$\mathbf{2 0 0 1}$	2924	22479	184831	97597	25224	12059	5979	1672	882
$\mathbf{2 0 0 2}$	1207	108742	133960	118066	40768	8532	4442	1459	1345
$\mathbf{2 0 0 3}$	4704	27998	155177	57513	54639	16425	4427	2786	1051
$\mathbf{2 0 0 4}$	6559	78442	56286	42645	9927	7987	2586	671	290
$\mathbf{2 0 0 5}$	5318	62322	175515	53573	30534	6613	7336	2142	692
$\mathbf{2 0 0 6}$	2105	41760	91008	86554	29334	26306	4849	4390	1833
$\mathbf{2 0 0 7}$	230	90083	79527	31939	26596	11189	7371	5701	1931
$\mathbf{2 0 0 8}$	824	92818	60484	34255	12424	14454	7281	4175	1121
$\mathbf{2 0 0 9}$	442	91310	119936	41373	20153	9000	5845	3043	1921
$\mathbf{2 0 1 0}$	230	41741	96890	42943	17084	7087	4177	2768	2739
$\mathbf{2 0 1 1}$	89	41858	28489	19924	12990	5756	2913	915	822
$\mathbf{2 0 1 2}$	0	15350	81497	20357	9152	7091	2774	2230	1166
$\mathbf{2 0 1 3}$	0	6260	40605	68642	10640	3858	1085	409	372
$\mathbf{2 0 1 4}$	49	23096	16886	18895	39169	6795	2439	1283	1329
$\mathbf{2 0 1 5}$	115	17357	47337	19590	12579	10401	3016	1232	1727
$\mathbf{2 0 1 6}$	0	13761	146136	38528	12298	10290	12066	2906	5340
$\mathbf{2 0 1 7}$	1427	47128	36117	40438	33155	10000	10792	7246	2762
$\mathbf{2 0 1 8}$	2.36	18967	176762	16634	12912	18031	5096	3041	2511
$\mathbf{2 0 1 9}$	5231	29648	52720	16127	5473	2488	1414	326	54.23
$\mathbf{2 0 2 0}$	10315	32689	49813	16558	9210	6368	2864	3022	1071
$\mathbf{2 0 2 1}$	1482	1370	62429	14535	8234	4939	3907	1594	1811

TABLE 3.6.1.c WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet - Fleet D Catch in number (CANUM, thousands)

	0	1	2	3	4	5	6	7	8
$\mathbf{2 0 0 0}$	58480	109337	13888	5033	555	156	87	18	10
$\mathbf{2 0 0 1}$	118759	13695	11926	3256	711	460	1197	938	1130
$\mathbf{2 0 0 2}$	68427	468952	26715	1707	1742	169	160	0	53
$\mathbf{2 0 0 3}$	47410	35021	27318	4810	3741	1543	665	263	158
$\mathbf{2 0 0 4}$	19111	130900	24598	23435	4794	4746	918	387	156
$\mathbf{2 0 0 5}$	90002	35287	21250	4344	3718	149	377	238	0
$\mathbf{2 0 0 6}$	1551	47777	17551	14152	3926	5720	652	428	234
$\mathbf{2 0 0 7}$	1395	13772	11277	2346	2960	997	1270	161	133
$\mathbf{2 0 0 8}$	4079	8946	10511	4583	888	598	366	141	148
$\mathbf{2 0 0 9}$	14358	58292	11338	2404	913	457	224	164	219
$\mathbf{2 0 1 0}$	8879	6826	8183	202	310	83	0	0	0
$\mathbf{2 0 1 1}$	6080	41200	1317	590	0	0	0	0	0
$\mathbf{2 0 1 2}$	1521	15193	12792	138	0	0	0	0	0
$\mathbf{2 0 1 3}$	0	5770	11071	2313	444	0	0	0	0
$\mathbf{2 0 1 4}$	25267	8397	3039	1979	0	0	0	0	0
$\mathbf{2 0 1 5}$	3195	40377	12506	526	121	313	0	0	0
$\mathbf{2 0 1 6}$	23879	13397	14390	391	0	674	0	0	0
$\mathbf{2 0 1 7}$	0	1294	6017	18.3	0	0	0	0	0
$\mathbf{2 0 1 8}$	285.3	1471	2047	85.05	0	0	0	0	0
$\mathbf{2 0 1 9}$	75.4	985.6	279.9	61.46	0	0	0	0	0
$\mathbf{2 0 2 0}$	462.8	2107	1881	944.4	384.9	190.1	40.66	0	6.787
$\mathbf{2 0 2 1}$	0	434.9	226.5	0	0	0	0	0	0

TABLE 3.6.1.d WESTERN BALTIC SPRING SPAWNING HERRING
 Multi fleet - Fleet F
 Catch in number (CANUM, thousands)

	0	1	2	3	4	5	6	7	8
$\mathbf{2 0 0 0}$	37749	616321	194300	86731	77777	52964	30056	12428	9291
$\mathbf{2 0 0 1}$	634631	498179	283245	147601	75897	47807	28743	13928	4188
$\mathbf{2 0 0 2}$	80637	81436	113576	186714	119192	45110	31053	11414	6310
$\mathbf{2 0 0 3}$	1374	63857	82330	95798	125060	82178	22858	13098	7006
$\mathbf{2 0 0 4}$	217885	248412	101789	70788	74972	74400	44450	13363	10422
$\mathbf{2 0 0 5}$	11586	207562	115890	102482	83461	51304	54195	27767	11214
$\mathbf{2 0 0 6}$	650	44762	72070	118995	101731	43005	31364	22110	12157
$\mathbf{2 0 0 7}$	9095	68189	93857	106993	96054	52215	20752	15017	12082
$\mathbf{2 0 0 8}$	4707	73668	68438	98131	75655	70738	37572	13260	18475
$\mathbf{2 0 0 9}$	5934	31481	110715	55478	45495	37211	31948	13230	7244
$\mathbf{2 0 1 0}$	3285	26490	31314	39307	28455	22420	13894	7958	7505
$\mathbf{2 0 1 1}$	5643	15458	16413	17831	35934	21639	19649	11212	8214
$\mathbf{2 0 1 2}$	479	46311	36497	43760	37810	28353	13964	9008	8440
$\mathbf{2 0 1 3}$	1029	60576	37098	43312	55919	28716	25322	11498	10987
$\mathbf{2 0 1 4}$	5840	35272	37735	42119	37499	19023	11196	6541	6186
$\mathbf{2 0 1 5}$	26670	46242	72781	38506	48439	29846	14860	7857	9120
$\mathbf{2 0 1 6}$	20012	22342	37247	93863	45681	30535	17423	10455	8256
$\mathbf{2 0 1 7}$	51.79	9435	32839	38541	78328	38496	26936	13463	10170
$\mathbf{2 0 1 8}$	367.8	48383	18459	34635	23065	51273	16259	8843	4507
$\mathbf{2 0 1 9}$	270.3	6881	20667	15565	13301	10333	15868	6034	3517
$\mathbf{2 0 2 0}$	30.67	1690	2487	4580	4673	6707	4148	5326	1579
$\mathbf{2 0 2 1}$	42.55	591.9	1772	3192	2531	1501	1331	926.2	923.2

TABLE 3.6.2.a WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet - Fleet A
Weight at age as \mathbf{W}-ringers in the catch (WECA, kg)

	0	1	2	3	4	5	6	7	8
$\mathbf{2 0 0 0}$	0.0000	0.0000	0.1407	0.1652	0.1839	0.2070	0.2024	0.2176	0.2663
$\mathbf{2 0 0 1}$	0.0000	0.0790	0.1275	0.1514	0.1784	0.1884	0.1982	0.2208	0.2666
$\mathbf{2 0 0 2}$	0.0000	0.0000	0.1431	0.1542	0.1652	0.1864	0.1976	0.2075	0.2235
$\mathbf{2 0 0 3}$	0.0000	0.0000	0.1014	0.1356	0.1414	0.1632	0.1752	0.1846	0.1923
$\mathbf{2 0 0 4}$	0.0000	0.0000	0.1206	0.1328	0.1639	0.1659	0.1748	0.1843	0.2079
$\mathbf{2 0 0 5}$	0.0000	0.0000	0.1071	0.1539	0.1676	0.1793	0.1887	0.1864	0.2084
$\mathbf{2 0 0 6}$	0.0000	0.0247	0.1246	0.1488	0.1641	0.1752	0.2140	0.2243	0.2367
$\mathbf{2 0 0 7}$	0.0000	0.0000	0.1566	0.1482	0.1565	0.1850	0.1858	0.1993	0.2248
$\mathbf{2 0 0 8}$	0.0000	0.0000	0.1418	0.1647	0.1657	0.1680	0.1922	0.1994	0.2158
$\mathbf{2 0 0 9}$	0.0000	0.0000	0.1381	0.1701	0.2111	0.2110	0.2481	0.2484	0.2845
$\mathbf{2 0 1 0}$	0.0000	0.0678	0.1323	0.1573	0.2003	0.2056	0.2109	0.2190	0.2352
$\mathbf{2 0 1 1}$	0.0000	0.0000	0.1497	0.1670	0.1828	0.2078	0.2130	0.2106	0.2188
$\mathbf{2 0 1 2}$	0.0000	0.0000	0.1396	0.1846	0.2053	0.0000	0.2131	0.0000	0.2264
$\mathbf{2 0 1 3}$	0.0000	0.0000	0.1350	0.1542	0.2143	0.1956	0.2206	0.2433	0.2530
$\mathbf{2 0 1 4}$	0.0000	0.1037	0.1478	0.1595	0.1666	0.1957	0.1997	0.2116	0.2215
$\mathbf{2 0 1 5}$	0.0000	0.1147	0.1367	0.1436	0.1625	0.1809	0.2028	0.2040	0.2161
$\mathbf{2 0 1 6}$	0.0000	0.1218	0.1213	0.1537	0.1742	0.1819	0.2099	0.2198	0.2247
$\mathbf{2 0 1 7}$	0.0000	0.1013	0.1231	0.1460	0.1660	0.1801	0.2001	0.1973	0.2109
$\mathbf{2 0 1 8}$	0.0000	0.0964	0.1275	0.1626	0.1827	0.1974	0.2134	0.2236	0.2387
$\mathbf{2 0 1 9}$	0.0000	0.0722	0.1309	0.1582	0.1599	0.1792	0.1873	0.1959	0.2124
$\mathbf{2 0 2 0}$	0.0000	0.1050	0.1275	0.1457	0.1597	0.1698	0.1829	0.1934	0.2072
$\mathbf{2 0 2 1}$	0.0000	0.1193	0.1380	0.1493	0.1596	0.1677	0.1738	0.1810	0.1965

TABLE 3.6.2.b WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet - Fleet C
Weight at age as W-ringers in the catch (WECA, kg)

	0	1	2	3	4	5	6	7	8
2000	0.0216	0.0402	0.0685	0.1072	0.1390	0.1600	0.1463	0.1767	0.1554
2001	0.0244	0.0644	0.0744	0.1049	0.1377	0.1623	0.1906	0.1682	0.1987
2002	0.0095	0.0453	0.0856	0.1129	0.1382	0.1633	0.1887	0.1921	0.2132
2003	0.0130	0.0554	0.0808	0.1136	0.1327	0.1407	0.1553	0.1652	0.1473
2004	0.0237	0.0569	0.0736	0.1133	0.1392	0.1546	0.1677	0.1870	0.1774
2005	0.0230	0.0667	0.0863	0.1121	0.1413	0.1565	0.1711	0.1748	0.1926
2006	0.0262	0.0560	0.0842	0.1103	0.1343	0.1744	0.1816	0.1922	0.1962
2007	0.0472	0.0708	0.0881	0.1142	0.1379	0.1587	0.1912	0.1775	0.2078
2008	0.0362	0.0740	0.0925	0.1149	0.1421	0.1712	0.1809	0.1999	0.1967
2009	0.0227	0.0740	0.0902	0.1153	0.1605	0.1772	0.2039	0.2015	0.2247
2010	0.0279	0.0663	0.0880	0.1280	0.1592	0.1942	0.2109	0.2117	0.2257
2011	0.0215	0.0509	0.0910	0.1208	0.1389	0.1687	0.1853	0.2170	0.2093
2012	0.0000	0.0662	0.0818	0.1340	0.1635	0.1820	0.1994	0.2220	0.2206
2013	0.0000	0.0937	0.0994	0.1324	0.1628	0.1949	0.2041	0.2487	0.2123
2014	0.0141	0.0633	0.1046	0.1411	0.1798	0.1996	0.2221	0.2361	0.2336
2015	0.0175	0.0409	0.0747	0.1145	0.1500	0.1706	0.1877	0.1924	0.2089
2016	0.0000	0.0563	0.0659	0.1236	0.1595	0.1807	0.1999	0.2112	0.2374
2017	0.0305	0.0449	0.0673	0.1113	0.1410	0.1624	0.1710	0.1827	0.1679
2018	0.0216	0.0570	0.0553	0.1068	0.1495	0.1755	0.1887	0.1868	0.1984
2019	0.0201	0.0487	0.0798	0.1073	0.1275	0.1277	0.1556	0.1784	0.1616
2020	0.0138	0.0435	0.0620	0.1289	0.1634	0.1848	0.1994	0.2095	0.1949
2021	0.0108	0.0480	0.0636	0.0990	0.1536	0.1717	0.1930	0.2044	0.1957

TABLE 3.6.2.c WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet - Fleet D Weight at age as W-ringers in the catch (WECA, kg)

	0	1	2	3	4	5	6	7	8
$\mathbf{2 0 0 0}$	0.0236	0.0161	0.0658	0.1304	0.1549	0.1669	0.1937	0.0804	0.1499
$\mathbf{2 0 0 1}$	0.0086	0.0287	0.0564	0.0940	0.1276	0.1440	0.1540	0.1655	0.1840
$\mathbf{2 0 0 2}$	0.0102	0.0146	0.0230	0.1363	0.1427	0.1700	0.1797	0.0000	0.1790
$\mathbf{2 0 0 3}$	0.0130	0.0229	0.0516	0.0951	0.1184	0.1101	0.1043	0.1469	0.1469
$\mathbf{2 0 0 4}$	0.0282	0.0350	0.0772	0.1053	0.1448	0.1548	0.1746	0.1800	0.1855
$\mathbf{2 0 0 5}$	0.0135	0.0340	0.0738	0.1093	0.1402	0.1490	0.1531	0.1727	0.0000
$\mathbf{2 0 0 6}$	0.0142	0.0245	0.0721	0.1123	0.1368	0.1824	0.1961	0.2195	0.2047
$\mathbf{2 0 0 7}$	0.0215	0.0316	0.0624	0.0997	0.1355	0.1502	0.1915	0.1682	0.2107
$\mathbf{2 0 0 8}$	0.0158	0.0465	0.0826	0.1101	0.1396	0.1717	0.1884	0.2042	0.1896
$\mathbf{2 0 0 9}$	0.0132	0.0176	0.0871	0.1296	0.1607	0.1728	0.2103	0.2068	0.2058
$\mathbf{2 0 1 0}$	0.0077	0.0166	0.0399	0.0940	0.0410	0.1110	0.0000	0.0000	0.0000
$\mathbf{2 0 1 1}$	0.0082	0.0162	0.0448	0.0711	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 1 2}$	0.0093	0.0275	0.0398	0.0852	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 1 3}$	0.0000	0.0224	0.0748	0.1114	0.1378	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 1 4}$	0.0093	0.0216	0.0244	0.0643	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 1 5}$	0.0159	0.0279	0.0415	0.0971	0.2840	0.1470	0.0000	0.0000	0.0000
$\mathbf{2 0 1 6}$	0.0071	0.0234	0.0375	0.0805	0.0000	0.0780	0.0000	0.0000	0.0000
$\mathbf{2 0 1 7}$	0.0000	0.0150	0.0250	0.0750	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 1 8}$	0.0102	0.0385	0.0427	0.0480	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 1 9}$	0.0120	0.0279	0.0397	0.0645	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{2 0 2 0}$	0.0095	0.0531	0.0979	0.1147	0.1164	0.1168	0.1158	0.0000	0.1300
$\mathbf{2 0 2 1}$	0.0000	0.0453	0.0673	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

TABLE 3.6.2.d WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet - Fleet F
Weight at age as W-ringers in the catch (WECA, kg)

	0	1	2	3	4	5	6	7	8
$\mathbf{2 0 0 0}$	0.0165	0.0222	0.0428	0.0804	0.1235	0.1332	0.1434	0.1554	0.1514
$\mathbf{2 0 0 1}$	0.0129	0.0221	0.0467	0.0689	0.0933	0.1504	0.1445	0.1455	0.1522
$\mathbf{2 0 0 2}$	0.0108	0.0273	0.0578	0.0817	0.1088	0.1321	0.1866	0.1778	0.1577
$\mathbf{2 0 0 3}$	0.0224	0.0257	0.0464	0.0753	0.0952	0.1172	0.1259	0.1571	0.1626
$\mathbf{2 0 0 4}$	0.0037	0.0143	0.0474	0.0777	0.0964	0.1255	0.1504	0.1658	0.1510
$\mathbf{2 0 0 5}$	0.0136	0.0142	0.0483	0.0733	0.0893	0.1156	0.1436	0.1599	0.1702
$\mathbf{2 0 0 6}$	0.0212	0.0340	0.0567	0.0840	0.1022	0.1253	0.1439	0.1758	0.1700
$\mathbf{2 0 0 7}$	0.0119	0.0278	0.0573	0.0749	0.1063	0.1213	0.1407	0.1627	0.1855
$\mathbf{2 0 0 8}$	0.0163	0.0369	0.0649	0.0877	0.1103	0.1332	0.1406	0.1583	0.1747
$\mathbf{2 0 0 9}$	0.0105	0.0283	0.0481	0.0905	0.1238	0.1452	0.1604	0.1712	0.1818
$\mathbf{2 0 1 0}$	0.0122	0.0222	0.0522	0.0871	0.1198	0.1548	0.1706	0.1919	0.1941
$\mathbf{2 0 1 1}$	0.0124	0.0230	0.0551	0.0781	0.1132	0.1366	0.1476	0.1612	0.1680
$\mathbf{2 0 1 2}$	0.0181	0.0159	0.0550	0.0954	0.1151	0.1503	0.1676	0.1774	0.1912
$\mathbf{2 0 1 3}$	0.0137	0.0178	0.0541	0.0868	0.1294	0.1369	0.1453	0.1591	0.1798
$\mathbf{2 0 1 4}$	0.0165	0.0300	0.0590	0.0823	0.1221	0.1584	0.1560	0.1630	0.1755
$\mathbf{2 0 1 5}$	0.0071	0.0159	0.0504	0.0793	0.1076	0.1447	0.1706	0.1356	0.1494
$\mathbf{2 0 1 6}$	0.0103	0.0341	0.0517	0.0846	0.0950	0.1295	0.1604	0.1681	0.1692
$\mathbf{2 0 1 7}$	0.0220	0.0342	0.0577	0.0828	0.1179	0.1235	0.1376	0.1475	0.1398
$\mathbf{2 0 1 8}$	0.0159	0.0145	0.0518	0.0872	0.1084	0.1427	0.1434	0.1577	0.1701
$\mathbf{2 0 1 9}$	0.0167	0.0307	0.0569	0.0837	0.1236	0.1396	0.1656	0.1383	0.1667
$\mathbf{2 0 2 0}$	0.0185	0.0383	0.0691	0.0873	0.1113	0.1455	0.1559	0.1721	0.1710
$\mathbf{2 0 2 1}$	0.0191	0.0230	0.0722	0.1041	0.1386	0.1465	0.1716	0.1763	0.1771

TABLE 3.6.3 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Weight at age as W-ringers in the stock (WEST, kg)

	0	1	2	3	4	5	6	7	8
$\mathbf{1 9 9 1}$	0.0001	0.0308	0.0528	0.0787	0.1041	0.1245	0.1449	0.1594	0.1640
$\mathbf{1 9 9 2}$	0.0001	0.0203	0.0451	0.0818	0.1075	0.1313	0.1593	0.1710	0.1869
$\mathbf{1 9 9 3}$	0.0001	0.0156	0.0402	0.0967	0.1079	0.1409	0.1672	0.1827	0.1891
$\mathbf{1 9 9 4}$	0.0001	0.0186	0.0529	0.0836	0.1077	0.1392	0.1566	0.1768	0.2028
$\mathbf{1 9 9 5}$	0.0001	0.0131	0.0459	0.0708	0.1327	0.1674	0.1892	0.2097	0.2338
$\mathbf{1 9 9 6}$	0.0001	0.0181	0.0546	0.0905	0.1170	0.1197	0.1538	0.1467	0.1280
$\mathbf{1 9 9 7}$	0.0001	0.0131	0.0515	0.1063	0.1333	0.1662	0.1943	0.2090	0.2264
$\mathbf{1 9 9 8}$	0.0001	0.0221	0.0558	0.0829	0.1128	0.1338	0.1678	0.1683	0.1843
$\mathbf{1 9 9 9}$	0.0001	0.0211	0.0567	0.0871	0.1081	0.1480	0.1601	0.1439	0.1504
$\mathbf{2 0 0 0}$	0.0001	0.0140	0.0431	0.0837	0.1250	0.1436	0.1629	0.1650	0.1831
$\mathbf{2 0 0 1}$	0.0001	0.0169	0.0509	0.0783	0.1159	0.1690	0.1763	0.1681	0.1805
$\mathbf{2 0 0 2}$	0.0001	0.0164	0.0637	0.0905	0.1239	0.1736	0.1983	0.1980	0.2036
$\mathbf{2 0 0 3}$	0.0001	0.0144	0.0445	0.0793	0.1051	0.1268	0.1506	0.1729	0.1847
$\mathbf{2 0 0 4}$	0.0001	0.0131	0.0456	0.0811	0.1092	0.1440	0.1628	0.1932	0.2076
$\mathbf{2 0 0 5}$	0.0001	0.0126	0.0514	0.0800	0.1066	0.1322	0.1573	0.1677	0.1820
$\mathbf{2 0 0 6}$	0.0001	0.0185	0.0621	0.0953	0.1174	0.1659	0.1710	0.1858	0.1871
$\mathbf{2 0 0 7}$	0.0001	0.0150	0.0550	0.0800	0.1140	0.1430	0.1710	0.1750	0.1880
$\mathbf{2 0 0 8}$	0.0001	0.0180	0.0680	0.0860	0.1100	0.1390	0.1430	0.1410	0.1580
$\mathbf{2 0 0 9}$	0.0001	0.0230	0.0520	0.0900	0.1300	0.1560	0.1740	0.1850	0.1990
$\mathbf{2 0 1 0}$	0.0001	0.0140	0.0626	0.0974	0.1283	0.1618	0.1813	0.2023	0.2045
$\mathbf{2 0 1 1}$	0.0001	0.0090	0.0580	0.0950	0.1260	0.1560	0.1730	0.1850	0.1920
$\mathbf{2 0 1 2}$	0.0001	0.0120	0.0500	0.0920	0.1140	0.1580	0.1780	0.1910	0.2010
$\mathbf{2 0 1 3}$	0.0001	0.0140	0.0560	0.0950	0.1290	0.1430	0.1610	0.1790	0.1990
$\mathbf{2 0 1 4}$	0.0001	0.0160	0.0520	0.0810	0.1300	0.1650	0.1740	0.1900	0.2050
$\mathbf{2 0 1 5}$	0.0001	0.0150	0.0490	0.0880	0.1160	0.1570	0.1800	0.1690	0.1940
$\mathbf{2 0 1 6}$	0.0001	0.0138	0.0415	0.0811	0.1057	0.1366	0.1735	0.1824	0.1903
$\mathbf{2 0 1 7}$	0.0001	0.0177	0.0479	0.0815	0.1181	0.1324	0.1558	0.1731	0.1751
$\mathbf{2 0 1 8}$	0.0001	0.0125	0.0491	0.0828	0.1091	0.1432	0.1544	0.1696	0.1853
$\mathbf{2 0 1 9}$	0.0001	0.0256	0.0568	0.0771	0.1190	0.1481	0.1705	0.1778	0.1910
$\mathbf{2 0 2 0}$	0.0001	0.0238	0.0484	0.0781	0.1039	0.1465	0.1644	0.1686	0.1809
$\mathbf{2 0 2 1}$	0.0001	0.0192	0.0544	0.0745	0.1170	0.1293	0.1773	0.1814	0.1781

TABLE 3.6.4 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Natural mortality (NATMOR)

	0	1	2	3	4	5	6	7	8
$\mathbf{1 9 9 1}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 2}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 3}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 4}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 5}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 6}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 7}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 8}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{1 9 9 9}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 0}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 1}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 2}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 3}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 4}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 5}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 6}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 7}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 8}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 0 9}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 0}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 1}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 2}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 3}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 4}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 5}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 6}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 7}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 8}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 1 9}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 2 0}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathbf{2 0 2 1}$	0.3	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2

TABLE 3.6.5 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Proportion mature (MATPROP)

	0	1	2	3	4	5	6	7	8
$\mathbf{1 9 9 1}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 2}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 3}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 4}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 5}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 6}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 7}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 8}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{1 9 9 9}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 0}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 1}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 2}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 3}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 4}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 5}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 6}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 7}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 8}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 0 9}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 0}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 1}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 2}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 3}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 4}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 5}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 6}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 7}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 8}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 1 9}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 2 0}$	0	0	0.2	0.75	0.9	1	1	1	1
$\mathbf{2 0 2 1}$	0	0	0.2	0.75	0.9	1	1	1	1
									1

TABLE 3.6.6 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Fraction of harvest before spawning (FPROP)

	0	1	2	3	4	5	6	7	8
$\mathbf{1 9 9 1}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 2}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 3}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 4}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 5}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 6}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 7}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 8}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\mathbf{1 9 9 9}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2000	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2001	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2002	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2003	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2004	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2005	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2006	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2007	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2009	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2010	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2011	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2012	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2013	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2014	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2015	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2016	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2017	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2018	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2019	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2020	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2021	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

TABLE 3.6.7 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Fraction of natural mortality before spawning (MPROP)

$\mathbf{1 9 9 1}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 2}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 3}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 4}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 5}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 6}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 7}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 8}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{1 9 9 9}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 0}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 1}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 2}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 3}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 4}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 5}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 6}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 7}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 8}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 0 9}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 0}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 1}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 2}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 3}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 4}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 5}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 6}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 7}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 8}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 1 9}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 2 0}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\mathbf{2 0 2 1}$	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25

TABLE 3.6.8.a WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Survey indices: HERAS (number in thousands)

	3	4	5	6
$\mathbf{1 9 9 1}$	1927000	866000	350000	88000
$\mathbf{1 9 9 2}$	1799000	1593000	556000	197000
$\mathbf{1 9 9 3}$	1274000	598000	434000	154000
$\mathbf{1 9 9 4}$	935000	501000	239000	186000
$\mathbf{1 9 9 5}$	1022000	1270000	255000	174000
$\mathbf{1 9 9 6}$	247000	141000	119000	37000
$\mathbf{1 9 9 7}$	787000	166000	67000	69000
$\mathbf{1 9 9 8}$	901000	282000	111000	51000
$\mathbf{1 9 9 9}$	NA	NA	NA	NA
$\mathbf{2 0 0 0}$	673600	363900	185700	55600
$\mathbf{2 0 0 1}$	452300	153100	96400	37600
$\mathbf{2 0 0 2}$	1392800	524300	87500	39500
$\mathbf{2 0 0 3}$	394600	323400	103400	25200
$\mathbf{2 0 0 4}$	726000	306900	183700	72100
$\mathbf{2 0 0 5}$	463500	201300	102500	83600
$\mathbf{2 0 0 6}$	1780400	490000	180400	27000
$\mathbf{2 0 0 7}$	933000	499000	154000	34000
$\mathbf{2 0 0 8}$	843000	333000	274000	176000
$\mathbf{2 0 0 9}$	205000	161000	82000	86000
$\mathbf{2 0 1 0}$	254000	115000	65000	24000
$\mathbf{2 0 1 1}$	259000	163000	70000	53000
$\mathbf{2 0 1 2}$	236000	87000	76000	33000
$\mathbf{2 0 1 3}$	525000	53000	30000	12000
$\mathbf{2 0 1 4}$	176000	248000	28000	37000
$\mathbf{2 0 1 5}$	446000	224000	171000	82000
$\mathbf{2 0 1 6}$	381000	99000	40000	40000
$\mathbf{2 0 1 7}$	661000	401000	94000	53000
$\mathbf{2 0 1 8}$	271000	175000	169000	50000
$\mathbf{2 0 1 9}$	315000	109000	67000	52000
$\mathbf{2 0 2 0}$	225000	180000	74000	77000
$\mathbf{2 0 2 1}$	275000	203000	52000	49000

TABLE 3.6.8.b WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Survey indices: GerAS (number in thousands)

	1	2	3	4
$\mathbf{1 9 9 4}$	415730	883810	559720	443730
$\mathbf{1 9 9 5}$	1675340	328610	357960	353850
$\mathbf{1 9 9 6}$	1439460	590010	434090	295170
$\mathbf{1 9 9 7}$	1955400	738180	394530	162430
$\mathbf{1 9 9 8}$	801350	678530	394070	236830
$\mathbf{1 9 9 9}$	1338710	287240	232510	155950
$\mathbf{2 0 0 0}$	1429880	453980	328960	201590
$\mathbf{2 0 0 1}$	NA	NA	NA	NA
$\mathbf{2 0 0 2}$	837549	421393	575356	34119
$\mathbf{2 0 0 3}$	1238480	222530	217270	260350
$\mathbf{2 0 0 4}$	968860	592360	346230	163150
$\mathbf{2 0 0 5}$	750199	590756	295659	142778
$\mathbf{2 0 0 6}$	940892	226959	279618	212201
$\mathbf{2 0 0 7}$	558851	260402	117412	76782
$\mathbf{2 0 0 8}$	392737	165347	166301	102018
$\mathbf{2 0 0 9}$	270959	95866	43553	17761
$\mathbf{2 0 1 0}$	534633	305540	214539	107364
$\mathbf{2 0 1 1}$	1206762	360354	210455	115984
$\mathbf{2 0 1 2}$	755034	294242	193974	124548
$\mathbf{2 0 1 3}$	893837	456204	307567	262908
$\mathbf{2 0 1 4}$	769320	242590	279650	332660
$\mathbf{2 0 1 5}$	440738	509769	221344	129795
$\mathbf{2 0 1 6}$	493366	155417	196061	60953
$\mathbf{2 0 1 7}$	463940	145360	123230	137500
$\mathbf{2 0 1 8}$	428530	89280	41160	20240
$\mathbf{2 0 1 9}$	247870	122948	47727	24244
$\mathbf{2 0 2 0}$	185814	82236	66046	21600
$\mathbf{2 0 2 1}$	158368	144638	49942	22420

TABLE 3.6.8.c WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Survey indices: N20 (number in millions)

	0
1992	1060000
1993	3044000
1994	12515000
1995	7930000
1996	21012000
1997	4872000
1998	16743000
1999	20364000
2000	3026000
2001	4845000
2002	11324000
2003	5507000
2004	5640000
2005	3887000
2006	3774000
2007	1829000
2008	1622000
2009	6464000
2010	7037000
2011	4444000
2012	1140000
2013	3021000
2014	539000
2015	2478000
2016	442000
2017	1247000
2018	1563000
2019	1317000
2020	239000
2021	2751000

TABLE 3.6.8.d WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Survey indices: IBTS+BITS-Q1 (number per hour)

	1	2	3
$\mathbf{2 0 0 2}$	1045654	54550	10678
$\mathbf{2 0 0 3}$	642200	118519	3053
$\mathbf{2 0 0 4}$	290805	66533	11892
$\mathbf{2 0 0 5}$	187588	108625	6635
$\mathbf{2 0 0 6}$	144891	28465	5965
$\mathbf{2 0 0 7}$	222906	30955	3039
$\mathbf{2 0 0 8}$	161902	29000	3669
$\mathbf{2 0 0 9}$	571168	35698	1047
$\mathbf{2 0 1 0}$	291304	72528	8501
$\mathbf{2 0 1 1}$	147210	63866	11249
$\mathbf{2 0 1 2}$	291325	71455	3422
$\mathbf{2 0 1 3}$	184291	68128	12154
$\mathbf{2 0 1 4}$	143235	17888	2725
$\mathbf{2 0 1 5}$	244250	54514	1924
$\mathbf{2 0 1 6}$	195417	90784	5460
$\mathbf{2 0 1 7}$	447070	67306	11218
$\mathbf{2 0 1 8}$	96400	59785	2453
$\mathbf{2 0 1 9}$	391309	37485	4605
$\mathbf{2 0 2 0}$	357498	80377	5143
$\mathbf{2 0 2 1}$	345683	127508	7099

TABLE 3.6.8.e WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Survey indices: IBTS+BITS-Q3.4 (number per hour)

	2	3
$\mathbf{2 0 0 2}$	3197	1400
$\mathbf{2 0 0 3}$	6542	1487
$\mathbf{2 0 0 4}$	3457	1225
$\mathbf{2 0 0 5}$	3581	631.5
$\mathbf{2 0 0 6}$	2643	1201
$\mathbf{2 0 0 7}$	3637	622.3
$\mathbf{2 0 0 8}$	2271	1217
$\mathbf{2 0 0 9}$	3277	565.7
$\mathbf{2 0 1 0}$	4033	1251
$\mathbf{2 0 1 1}$	2701	660.3
$\mathbf{2 0 1 2}$	5626	792
$\mathbf{2 0 1 3}$	5499	1439
$\mathbf{2 0 1 4}$	1341	1413
$\mathbf{2 0 1 5}$	9467	1321
$\mathbf{2 0 1 6}$	8869	2069
$\mathbf{2 0 1 7}$	5674	1542
$\mathbf{2 0 1 8}$	5832	1089
$\mathbf{2 0 1 9}$	9943	3234
$\mathbf{2 0 2 0}$	9124	2527
$\mathbf{2 0 2 1}$	8641	1760

TABLE 3.6.9 WESTERN BALTIC SPRING SPAWNING HERRING
 Multi fleet/SAM software version

Model version: [$0.5 .4,0.5 .4,0.5 .4]$
Model SHA: [3c872568b9d7, 3c872568b9d7, 3c872568b9d7]

TABLE 3.6.10 WESTERN BALTIC SPRING SPAWNING HERRING 1/2 Multi fleet/SAM configuration settings

\# Configuration saved: Tue Feb 13 12:34:28 2018
\# Where a matrix is specified rows corresponds to fleets and columns to ages.
\# Same number indicates same parameter used
\# Numbers (integers) starts from zero and must be consecutive
\#
\$minAge
\# The minimium age class in the assessment
0
\$maxAge
\# The maximum age class in the assessment
8
\$maxAgePlusGroup
\# Is last age group considered a plus group (1 yes, or 0 no).
1
\$keyLogFsta
\# Coupling of the fishing mortality states (nomally only first row is used).
$\begin{array}{lllllllll}-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 6\end{array}$
789101112131414
151617181920212222
232425262728293030
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1
-1 -1 -1 -1 -1 $-1 \begin{array}{llll}1 & -1 & -1\end{array}$
-1 -1 -1 $-1 \begin{array}{lllll}1 & -1 & -1 & -1 & -1\end{array}$
-1 -1 -1 $-1 \begin{array}{lllll}1 & -1 & -1 & -1 & -1\end{array}$
-1

\$corFlag

\# Correlation of fishing mortality across ages (0 independent, 1 compound symmetry, or 2 AR(1)
0222
\$keyLogFpar
\# Coupling of the survey catchability parameters (nomally first row is not used, as that is covered by fishing mortality).

-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1
-1	-1	-1	-1	-1	-1	-1
	-1	5	-1	-1	-1	
8	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	13	-1	-1	

\$keyQpow
\# Density dependent catchability power parameters (if any).
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1
-1 -1 -1 -1 -1 -1 -1 $-1 \begin{aligned} & -1\end{aligned}$
-1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1

continued

TABLE 3.6.10 - WESTERN BALTIC SPRING SPAWNING HERRING 2/2

\$keyVarF

```
# Coupling of process variance parameters for log(F)-process (nomally only first row is used)
    -1 0
    1
    2
```



```
    -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
$keyVarLogN
# Coupling of process variance parameters for }\operatorname{log}(\textrm{N})\mathrm{ -process
011111111
$keyVarObs
# Coupling of the variance parameters for the observations.
\begin{tabular}{llllll}
-1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 4 & 4 & 4 \\
2 & 3 & 4 & 4 & 6 & 6 \\
4 & 4 & 6 & 6 & 8 & 8 \\
5 & 6 & 6 & 8 & 9 & 9 \\
6 & 6 & 8 & 9 & 10 & -1 \\
7 & 8 & 8 & -10 & -1 \\
-1 & 8 & -1 & -1 & -1 & -1 \\
9 & -1 & -1 & -1 & -1 & -1 \\
-1 & 10 & -1 & -1 & -1 & -1
\end{tabular}
\$obsCorStruct\# Covariance structure for each fleet ("ID" independent, "AR" AR(1), or "US" for unstructured). | Possible values are: "ID" "AR" "US"
"ID" "AR" "ID" "AR" "AR" "AR" "ID" "AR" "US" "NA"
```


\$keyCorObs

```
\# Coupling of correlation parameters can only be specified if the \(\operatorname{AR}(1)\) structure is chosen above.
\# NA's indicate where correlation parameters can be specified ( -1 where they cannot).
\#0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8
NA NA NA NA NA NA NA NA
\(3 \quad 3 \quad 3 \quad 34444\)
NA NA NA NA NA NA NA NA
\(\begin{array}{llllllll}3 & 3 & 3 & 3 & 4 & 4 & 4\end{array}\)
-1 -1 -1 \(0001-1\)-1
\(-1210-1-1-1-1\)
-1 -1 -1 -1 -1 \(-1 \begin{array}{llll}1 & -1\end{array}\)
\(-121-1-1-1-1-1\)
-1 -1 NA -1 -1 \(-1 \begin{array}{lll}1 & -1 & -1\end{array}\)
\(\begin{array}{llllllll}-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}\)
\$stockRecruitmentModelCode
\# Stock recruitment code ( 0 for plain random walk, 1 for Ricker, and 2 for Beverton-Holt).
0
\$noScaledYears
\# Number of years where catch scaling is applied.
0
\$keyScaledYears
\# A vector of the years where catch scaling is applied.
\$keyParScaledYA
\# A matrix specifying the couplings of scale parameters (nrow = no scaled years, ncols = no ages).
\$fbarRange
\# lowest and higest age included in Fbar
36
\$keyBiomassTreat
\# To be defined only if a biomass survey is used (0 SSB index, 1 catch index, and 2 FSB index).
```

```
-1 -1-1-1-1-1-1-1 -1-1
\$obsLikelihoodFlag
\# Option for observational likelihood | Possible values are: "LN" "ALN"
"LN" "LN" "LN" "LN" "LN" "LN" "LN" "LN" "LN" "LN"
\$fixVarToWeight
\# If weight attribute is supplied for observations this option sets the treatment ( 0 relative weight, 1 fix variance to weight). 0
```

table 3.6.11 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Stock summary - Estimated recruitment (1000), spawning stock biomass (SSB) (tons), average fishing mortality and total stock biomass (TSB) (tons).

Year	R(age 0)	Low	High	SSB	Low	High	Fbar (3-6)	Low	High	TSB	Low	High
1991	5037767	3883893	6534448	294145	240485	359778	0.429	0.311	0.590	591282	499712	699631
1992	3616981	2870641	4557363	301866	247819	367698	0.508	0.392	0.658	520728	441025	614834
1993	3024804	2343977	3903383	285247	234948	346314	0.580	0.447	0.752	453282	382161	537639
1994	4505757	3512008	5780695	225394	185870	273322	0.601	0.467	0.775	371093	313624	439092
1995	4177252	3303589	5281963	193228	158414	235693	0.600	0.455	0.791	313442	264433	371534
1996	4163472	3306420	5242679	132731	110050	160086	0.664	0.514	0.856	277023	237031	323763
1997	3473011	2703111	4462194	145701	120967	175493	0.635	0.492	0.819	276843	235928	324853
1998	4610783	3626141	5862794	117839	98741	140632	0.618	0.476	0.802	261908	225187	304617
1999	4948162	3922340	6242272	118531	99288	141503	0.515	0.397	0.670	266321	229353	309248
2000	3027959	2408357	3806967	123786	103914	147458	0.571	0.453	0.721	258256	222182	300187
2001	2746047	2208664	3414180	136674	115870	161213	0.614	0.488	0.771	279314	241566	322961
2002	2775373	2219597	3470312	159829	135505	188518	0.489	0.388	0.618	285590	246919	330318
2003	2983774	2386756	3730129	129623	109287	153743	0.445	0.352	0.561	222581	191989	258047
2004	2064899	1649260	2585285	134779	114065	159255	0.497	0.386	0.640	229826	198719	265802
2005	1762657	1401261	2217260	122478	103601	144795	0.531	0.422	0.668	215088	185124	249900
2006	1345815	1057685	1712435	134187	112186	160501	0.468	0.375	0.585	227319	193139	267547
2007	1404787	1102204	1790437	110775	92390	132817	0.533	0.425	0.668	179160	151522	211839
2008	1152732	914390	1453199	89997	75629	107095	0.580	0.463	0.727	156201	132897	183593
2009	1129287	905064	1409059	79847	67731	94129	0.528	0.409	0.682	138902	119583	161341
2010	1462341	1169351	1828742	73802	62903	86589	0.402	0.309	0.523	122489	106277	141175
2011	1354293	1083599	1692610	69344	58404	82333	0.311	0.240	0.401	113416	97100	132474
2012	1187034	950561	1482334	72453	61583	85242	0.386	0.293	0.507	124128	107179	143758
2013	1683600	1276677	2220223	80066	68156	94057	0.411	0.310	0.545	135979	117774	156996

Year	R(age 0)	Low	High	SSB	Low	High	Fbar $(3-6)$	Low	High	TSB	Low	High
2014	1146962	883669	1488703	82432	68629	99011	0.344	0.257	0.461	139635	119850	162687
2015	919966	707551	1196150	83726	68518	102309	0.431	0.336	0.552	142713	119648	170225
2016	832966	632450	1097055	79359	64556	97558	0.486	0.372	0.634	123340	101068	150521
2017	924380	699933	1220799	72396	60263	86973	0.510	0.372	0.700	113555	95190	135464
2018	813549	588524	1124615	60775	49335	74869	0.509	0.368	0.703	95351	78921	115202
2019	839747	570178	1236763	54388	41386	71476	0.300	0.215	0.417	97063	76077	123836
2020	550822	332631	912136	54606	40314	73964	0.182	0.118	0.281	92971	70274	122999
2021	609230	315073	1178016	62765	44766	88002	0.149	0.080	0.277	97357	70477	134490

TABLE 3.6.12.a WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Estimated fishing mortality - Sum all fleets

Year Age	0	1	2	3	4	5	6	7	8
1991	0.026	0.205	0.323	0.357	0.406	0.450	0.502	0.548	0.548
1992	0.026	0.221	0.354	0.405	0.475	0.536	0.617	0.686	0.686
1993	0.034	0.260	0.391	0.453	0.540	0.612	0.714	0.797	0.797
1994	0.041	0.287	0.411	0.469	0.561	0.632	0.743	0.826	0.826
1995	0.068	0.367	0.442	0.479	0.559	0.626	0.735	0.812	0.812
1996	0.046	0.317	0.444	0.509	0.615	0.702	0.829	0.923	0.923
1997	0.047	0.307	0.429	0.486	0.582	0.669	0.802	0.923	0.923
1998	0.052	0.317	0.434	0.479	0.567	0.652	0.774	0.917	0.917
1999	0.035	0.243	0.382	0.412	0.474	0.542	0.634	0.759	0.759
2000	0.028	0.236	0.400	0.442	0.524	0.604	0.716	0.861	0.861
2001	0.032	0.254	0.412	0.461	0.560	0.649	0.784	0.926	0.926
2002	0.026	0.200	0.346	0.375	0.446	0.517	0.620	0.735	0.735
2003	0.024	0.185	0.321	0.343	0.406	0.467	0.562	0.668	0.668
2004	0.025	0.204	0.338	0.374	0.455	0.523	0.637	0.755	0.755
2005	0.017	0.179	0.340	0.393	0.491	0.558	0.682	0.811	0.811
2006	0.016	0.174	0.343	0.368	0.437	0.487	0.581	0.685	0.685
2007	0.013	0.170	0.362	0.409	0.501	0.559	0.663	0.763	0.763
2008	0.013	0.178	0.385	0.437	0.543	0.614	0.727	0.822	0.822
2009	0.015	0.191	0.386	0.404	0.491	0.555	0.663	0.747	0.747
2010	0.007	0.119	0.292	0.310	0.375	0.420	0.504	0.570	0.570
2011	0.005	0.087	0.228	0.241	0.290	0.323	0.389	0.441	0.441
2012	0.005	0.097	0.241	0.278	0.358	0.408	0.498	0.561	0.561
2013	0.006	0.103	0.248	0.290	0.380	0.437	0.535	0.609	0.609
2014	0.005	0.088	0.226	0.253	0.318	0.364	0.442	0.514	0.514
2015	0.006	0.120	0.278	0.306	0.392	0.463	0.562	0.680	0.680
2016	0.006	0.116	0.304	0.344	0.433	0.525	0.642	0.808	0.808
2017	0.005	0.101	0.302	0.356	0.444	0.554	0.688	0.901	0.901
2018	0.004	0.097	0.293	0.349	0.437	0.555	0.695	0.963	0.963
2019	0.002	0.064	0.211	0.226	0.262	0.315	0.397	0.593	0.593
2020	0.001	0.054	0.184	0.163	0.172	0.174	0.220	0.348	0.348
2021	0.001	0.042	0.157	0.140	0.147	0.140	0.167	0.264	0.264

TABLE 3.6.12.b WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Estimated fishing mortality - Fleet A

Year Age	0	1	2	3	4	5	6	7	8
1991	0.000	0.000	0.004	0.019	0.016	0.018	0.017	0.016	0.016
1992	0.000	0.000	0.004	0.019	0.016	0.018	0.017	0.018	0.018
1993	0.000	0.000	0.004	0.019	0.016	0.017	0.019	0.019	0.019
1994	0.000	0.000	0.004	0.018	0.017	0.017	0.020	0.021	0.021
1995	0.000	0.000	0.004	0.019	0.018	0.018	0.021	0.022	0.022
1996	0.000	0.000	0.004	0.018	0.018	0.020	0.023	0.025	0.025
1997	0.000	0.000	0.004	0.018	0.018	0.020	0.023	0.032	0.032
1998	0.000	0.000	0.004	0.018	0.019	0.022	0.023	0.039	0.039
1999	0.000	0.000	0.004	0.019	0.019	0.025	0.025	0.045	0.045
2000	0.000	0.000	0.004	0.018	0.022	0.028	0.029	0.048	0.048
2001	0.000	0.000	0.004	0.017	0.022	0.029	0.032	0.048	0.048
2002	0.000	0.000	0.003	0.016	0.021	0.027	0.030	0.047	0.047
2003	0.000	0.000	0.002	0.015	0.019	0.023	0.027	0.043	0.043
2004	0.000	0.000	0.002	0.016	0.018	0.021	0.024	0.036	0.036
2005	0.000	0.000	0.002	0.013	0.018	0.018	0.024	0.039	0.039
2006	0.000	0.000	0.001	0.010	0.014	0.016	0.022	0.042	0.042
2007	0.000	0.000	0.001	0.007	0.010	0.009	0.017	0.029	0.029
2008	0.000	0.000	0.001	0.004	0.008	0.006	0.013	0.023	0.023
2009	0.000	0.000	0.001	0.004	0.008	0.006	0.014	0.031	0.031
2010	0.000	0.000	0.000	0.004	0.007	0.004	0.013	0.024	0.024
2011	0.000	0.000	0.000	0.003	0.006	0.003	0.013	0.018	0.018
2012	0.000	0.000	0.000	0.003	0.006	0.003	0.016	0.016	0.016
2013	0.000	0.000	0.000	0.004	0.006	0.004	0.018	0.020	0.020
2014	0.000	0.000	0.001	0.005	0.008	0.007	0.023	0.032	0.032
2015	0.000	0.000	0.001	0.006	0.009	0.010	0.026	0.044	0.044
2016	0.000	0.000	0.001	0.008	0.011	0.012	0.027	0.050	0.050
2017	0.000	0.000	0.001	0.009	0.013	0.013	0.026	0.057	0.057
2018	0.000	0.000	0.002	0.011	0.019	0.019	0.035	0.100	0.100
2019	0.000	0.000	0.003	0.014	0.025	0.025	0.048	0.140	0.140
2020	0.000	0.000	0.003	0.016	0.035	0.026	0.057	0.152	0.152
2021	0.000	0.000	0.003	0.016	0.038	0.030	0.053	0.133	0.13

TABLE 3.6.12.c WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Estimated fishing mortality - Fleet C

Year Age	0	1	2	3	4	5	6	7	
1991	0.001	0.037	0.143	0.109	0.087	0.079	0.074	0.075	0.075
1992	0.001	0.037	0.144	0.110	0.088	0.079	0.074	0.075	0.075
1993	0.001	0.038	0.145	0.111	0.088	0.080	0.075	0.076	0.076
1994	0.001	0.039	0.150	0.115	0.091	0.082	0.078	0.078	0.078
1995	0.001	0.040	0.155	0.119	0.095	0.085	0.080	0.081	0.08
1996	0.001	0.040	0.156	0.119	0.095	0.086	0.081	0.082	0.082
1997	0.001	0.041	0.158	0.121	0.096	0.087	0.082	0.083	0.08
1998	0.001	0.043	0.167	0.128	0.102	0.092	0.087	0.087	0.08
1999	0.001	0.046	0.177	0.136	0.108	0.097	0.092	0.093	0.093
2000	0.001	0.048	0.185	0.141	0.113	0.102	0.096	0.097	0.097
2001	0.001	0.046	0.178	0.136	0.108	0.098	0.092	0.093	0.093
2002	0.001	0.046	0.176	0.134	0.107	0.097	0.091	0.092	0.092
2003	0.001	0.042	0.162	0.124	0.099	0.089	0.084	0.085	0.085
2004	0.001	0.037	0.145	0.110	0.088	0.079	0.075	0.076	0.076
2005	0.001	0.040	0.154	0.118	0.094	0.085	0.080	0.081	0.08
2006	0.001	0.044	0.168	0.129	0.103	0.092	0.087	0.088	0.088
2007	0.001	0.046	0.176	0.134	0.107	0.097	0.091	0.092	0.092
2008	0.001	0.048	0.183	0.140	0.112	0.101	0.095	0.096	0.09
2009	0.001	0.050	0.192	0.146	0.117	0.105	0.099	0.100	0.10
2010	0.001	0.047	0.182	0.139	0.111	0.100	0.094	0.095	0.095
2011	0.001	0.040	0.154	0.118	0.094	0.085	0.080	0.081	0.081
2012	0.001	0.036	0.138	0.106	0.084	0.076	0.072	0.072	0.072
2013	0.001	0.034	0.129	0.099	0.079	0.071	0.067	0.068	0.06
2014	0.001	0.035	0.134	0.102	0.081	0.073	0.069	0.070	0.070
2015	0.001	0.038	0.147	0.112	0.089	0.081	0.076	0.077	0.077
2016	0.001	0.047	0.180	0.137	0.110	0.099	0.093	0.094	0.094
2017	0.001	0.051	0.198	0.151	0.121	0.109	0.103	0.104	0.104
2018	0.001	0.050	0.192	0.147	0.117	0.106	0.100	0.101	0.101
2019	0.001	0.042	0.163	0.125	0.099	0.090	0.084	0.085	0.085
2020	0.001	0.041	0.159	0.121	0.097	0.087	0.082	0.083	0.083
2021	0.001	0.038	0.147	0.112	0.090	0.081	0.076	0.077	0.07

TABLE 3.6.12.d WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Estimated fishing mortality - Fleet D

Year Age	0	1	2	3	4	5	6	7	
1991	0.014	0.042	0.017	0.008	0.004	0.003	0.004	0.003	0.003
1992	0.012	0.032	0.013	0.007	0.003	0.003	0.004	0.003	0.003
1993	0.017	0.046	0.018	0.009	0.004	0.003	0.004	0.004	0.00
1994	0.024	0.066	0.026	0.012	0.006	0.004	0.006	0.005	0.00
1995	0.051	0.146	0.054	0.023	0.010	0.007	0.009	0.007	0.00
1996	0.027	0.073	0.027	0.011	0.005	0.004	0.005	0.005	0.00
1997	0.030	0.076	0.027	0.011	0.005	0.004	0.005	0.004	0.00
1998	0.035	0.092	0.032	0.012	0.006	0.004	0.005	0.005	0.005
1999	0.022	0.056	0.021	0.008	0.004	0.003	0.004	0.003	0.003
2000	0.014	0.036	0.013	0.005	0.002	0.002	0.003	0.003	0.003
2001	0.018	0.052	0.022	0.009	0.005	0.005	0.009	0.010	0.010
2002	0.016	0.051	0.020	0.007	0.004	0.003	0.004	0.003	0.003
2003	0.016	0.058	0.032	0.014	0.009	0.008	0.009	0.008	0.00
2004	0.016	0.068	0.044	0.022	0.014	0.012	0.012	0.009	0.009
2005	0.008	0.035	0.024	0.011	0.006	0.005	0.004	0.003	0.003
2006	0.009	0.051	0.044	0.022	0.013	0.013	0.011	0.009	0.00
2007	0.005	0.032	0.030	0.014	0.007	0.008	0.007	0.007	0.007
2008	0.005	0.035	0.034	0.013	0.005	0.006	0.005	0.005	0.005
2009	0.008	0.065	0.054	0.016	0.004	0.004	0.003	0.004	0.00
2010	0.002	0.021	0.015	0.003	0.000	0.000	0.000	0.000	0.00
2011	0.001	0.012	0.007	0.001	0.000	0.000	0.000	0.000	0.000
2012	0.001	0.011	0.008	0.001	0.000	0.000	0.000	0.000	0.00
2013	0.001	0.016	0.016	0.002	0.000	0.000	0.000	0.000	0.00
2014	0.001	0.013	0.012	0.001	0.000	0.000	0.000	0.000	0.000
2015	0.002	0.032	0.031	0.003	0.000	0.000	0.000	0.000	0.000
2016	0.001	0.021	0.021	0.002	0.000	0.000	0.000	0.000	0.00
2017	0.000	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.00
2018	0.000	0.003	0.004	0.000	0.000	0.000	0.000	0.000	0.000
2019	0.000	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.007	0.010	0.001	0.000	0.000	0.000	0.000	0.000
2021	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.00

TABLE 3.6.12.e WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Estimated fishing mortality - Fleet \mathbf{F}

Year Age	0	1	2	3	4	5	6	7	8
1991	0.011	0.126	0.159	0.221	0.298	0.350	0.407	0.453	0.453
1992	0.013	0.152	0.192	0.270	0.368	0.437	0.522	0.590	0.590
1993	0.016	0.176	0.224	0.314	0.431	0.512	0.616	0.698	0.698
1994	0.016	0.182	0.231	0.324	0.447	0.528	0.640	0.722	0.722
1995	0.016	0.180	0.228	0.319	0.437	0.516	0.624	0.701	0.701
1996	0.018	0.204	0.257	0.360	0.496	0.592	0.720	0.812	0.812
1997	0.017	0.190	0.240	0.336	0.463	0.558	0.691	0.804	0.804
1998	0.016	0.182	0.231	0.321	0.441	0.533	0.659	0.786	0.786
1999	0.012	0.141	0.180	0.250	0.343	0.416	0.513	0.618	0.618
2000	0.013	0.152	0.198	0.278	0.387	0.473	0.588	0.714	0.714
2001	0.013	0.156	0.209	0.299	0.424	0.518	0.651	0.776	0.776
2002	0.009	0.104	0.146	0.217	0.314	0.391	0.495	0.593	0.593
2003	0.007	0.085	0.124	0.189	0.279	0.348	0.442	0.532	0.532
2004	0.008	0.098	0.147	0.226	0.335	0.412	0.526	0.634	0.634
2005	0.009	0.104	0.161	0.251	0.374	0.451	0.574	0.689	0.689
2006	0.006	0.079	0.129	0.207	0.307	0.366	0.461	0.546	0.546
2007	0.007	0.092	0.155	0.254	0.376	0.445	0.547	0.635	0.635
2008	0.008	0.095	0.168	0.280	0.419	0.501	0.614	0.698	0.698
2009	0.006	0.076	0.140	0.237	0.362	0.440	0.547	0.613	0.613
2010	0.004	0.051	0.094	0.165	0.257	0.315	0.396	0.450	0.450
2011	0.003	0.035	0.067	0.119	0.190	0.235	0.297	0.343	0.343
2012	0.004	0.049	0.094	0.169	0.268	0.329	0.410	0.472	0.472
2013	0.004	0.054	0.103	0.186	0.295	0.362	0.450	0.520	0.520
2014	0.003	0.040	0.079	0.145	0.228	0.284	0.350	0.412	0.412
2015	0.004	0.049	0.100	0.186	0.293	0.372	0.460	0.559	0.559
2016	0.004	0.049	0.103	0.197	0.313	0.414	0.522	0.664	0.664
2017	0.003	0.046	0.099	0.195	0.310	0.431	0.559	0.739	0.739
2018	0.003	0.044	0.095	0.190	0.302	0.431	0.560	0.762	0.762
2019	0.001	0.019	0.043	0.087	0.138	0.200	0.264	0.367	0.367
2020	0.000	0.005	0.012	0.025	0.041	0.061	0.080	0.113	0.113
2021	0.000	0.003	0.006	0.012	0.020	0.029	0.038	0.054	0.054

TABLE 3.6.13 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Estimated stock numbers (1000) at age

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1991 | 5037767 | 4152778 | 2239405 | 1862514 | 911484 | 552464 | 162679 | 48586 | 17471 |
| 1992 | 3616981 | 3678060 | 2039685 | 1331057 | 1065594 | 493743 | 286494 | 81333 | 31694 |
| 1993 | 3024804 | 2613813 | 1820583 | 1160759 | 734482 | 541210 | 234687 | 126478 | 46702 |
| 1994 | 4505757 | 2125920 | 1220799 | 1030078 | 595191 | 356466 | 238525 | 93840 | 63764 |
| 1995 | 4177252 | 3250180 | 974352 | 651334 | 545249 | 269338 | 157759 | 92122 | 56231 |
| 1996 | 4163472 | 2882002 | 1372791 | 515736 | 326682 | 253669 | 117700 | 62026 | 53977 |
| 1997 | 3473011 | 2951702 | 1266816 | 732587 | 254314 | 143062 | 100889 | 41997 | 38294 |
| 1998 | 4610783 | 2414609 | 1313562 | 676886 | 372650 | 116532 | 60610 | 36131 | 26194 |
| 1999 | 4948162 | 3255370 | 1053379 | 690433 | 345108 | 174883 | 49380 | 23238 | 19985 |
| 2000 | 3027959 | 3592662 | 1552176 | 582806 | 370368 | 177661 | 83383 | 21561 | 16553 |
| 2001 | 2746047 | 2153338 | 1726248 | 864024 | 301813 | 179311 | 78829 | 33835 | 13145 |
| 2002 | 2775373 | 1956179 | 989075 | 940780 | 458408 | 138649 | 77355 | 28793 | 15425 |
| 2003 | 2983774 | 1989547 | 972501 | 565107 | 528195 | 242975 | 66992 | 34143 | 17346 |
| 2004 | 2064899 | 2194123 | 1006436 | 582702 | 328116 | 285598 | 124875 | 31355 | 21498 |
| 2005 | 1762657 | 1475163 | 1099716 | 598788 | 327059 | 170573 | 138030 | 54387 | 20318 |
| 2006 | 1345815 | 1286753 | 732135 | 645666 | 340977 | 161972 | 81578 | 56435 | 27295 |
| 2007 | 1404787 | 970641 | 660367 | 423381 | 362093 | 184187 | 78626 | 38920 | 34023 |
| 2008 | 1152732 | 1039066 | 488296 | 377572 | 228986 | 178658 | 88045 | 33020 | 28098 |
| 2009 | 1129287 | 838937 | 535355 | 271283 | 196606 | 110295 | 77871 | 35312 | 22072 |
| 2010 | 1462341 | 812239 | 419821 | 295943 | 149795 | 99535 | 52179 | 31757 | 22589 |
| 2011 | 1354293 | 1084369 | 432245 | 254364 | 176318 | 84095 | 54134 | 26031 | 24847 |
| 2012 | 1187034 | 997377 | 614624 | 281027 | 161848 | 107610 | 49906 | 30065 | 26749 |
| 2013 | 1683600 | 863737 | 542561 | 405647 | 174044 | 92688 | 57884 | 25063 | 26565 |
| 2014 | 1146962 | 1279410 | 460539 | 343726 | 252354 | 95835 | 49269 | 27715 | 23428 |
| 2015 | 919966 | 844825 | 737972 | 300941 | 217459 | 145261 | 55348 | 25751 | 25566 |
| 2016 | 832966 | 672344 | 451363 | 471612 | 182513 | 119665 | 72387 | 25952 | 21634 |
| 2017 | 924380 | 610232 | 361438 | 264258 | 283448 | 98103 | 58273 | 30378 | 17463 |
| 2018 | 813549 | 691398 | 334816 | 217889 | 144543 | 154834 | 47149 | 23740 | 15594 |
| 2019 | 839747 | 599352 | 378496 | 201297 | 127075 | 76002 | 73095 | 19691 | 11957 |
| 2020 | 550822 | 630942 | 340672 | 247216 | 126752 | 82485 | 45375 | 40514 | 14276 |
| 2021 | 609230 | 402039 | 371783 | 230754 | 170687 | 85325 | 57280 | 29710 | 31433 |
| | | | | | | | | | |

TABLE 3.6.14.a WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Predicted catch in numbers - Sum fleets

	0	1	2	3	4	5	6	7	8
1991	113689.08	642575.03	612280.36	556371.63	299755.72	197116.86	63248.50	20208.01	7266.73
1992	81278.90	608531.20	604953.29	442208.19	398834.38	202630.35	130566.87	40041.95	15603.34
1993	87330.67	504343.69	591924.43	424814.09	304616.57	245793.18	119116.45	69241.46	25567.25
1994	156993.37	451218.37	416244.86	389270.12	255449.85	166271.59	124884.72	52838.65	35903.53
1995	239281.94	876402.85	358540.05	252560.21	234586.43	125313.98	82453.97	51530.71	31454.37
1996	162578.11	671920.36	501510.14	208794.98	150529.14	128036.50	66656.98	37744.30	32846.14
1997	139583.64	669355.49	449348.32	285317.56	112554.92	69849.22	55952.59	25684.43	23420.08
1998	202806.54	566561.22	472764.65	261340.21	162314.64	56092.20	32914.63	22215.18	16105.64
1999	148314.85	593466.78	336823.46	235086.49	130627.93	73481.46	23316.77	12671.04	10897.39
2000	72865.74	634280.36	515984.95	210709.91	152296.56	81453.33	43197.30	12858.31	9871.63
2001	76484.51	408986.76	591451.00	323335.39	130863.44	86841.58	43722.32	21218.92	8243.64
2002	60849.38	297098.17	288294.34	294216.02	165043.12	56172.63	36065.49	15368.76	8233.52
2003	60341.74	281332.76	265170.34	163417.60	175451.96	90538.43	28926.75	16951.39	8612.29
2004	43585.44	339435.91	289343.46	182438.71	119662.25	116030.53	58896.31	16827.26	11537.74
2005	25418.77	200807.12	316094.58	194428.53	126493.56	72573.86	68261.94	30663.83	11455.29
2006	18375.32	171400.01	213108.21	199133.68	120674.30	62465.78	36092.22	28601.46	13832.99
2007	15841.59	125764.24	201331.98	142698.77	142630.26	78663.62	38254.37	21105.98	18450.54
2008	13188.00	140934.02	157798.14	134735.04	96164.03	81832.69	45642.83	18784.80	15984.52
2009	14334.76	122196.00	174147.69	90588.46	76266.62	46844.76	37872.97	18948.73	11844.23
2010	9168.06	74237.16	103593.24	77470.16	46174.90	33544.16	20456.12	13833.74	839.80
2011	5521.18	73040.20	84336.50	52522.40	43008.33	22462.44	17039.32	9132.00	8716.66
2012	5562.90	74395.38	126787.82	66249.58	47393.88	34906.90	19170.29	12670.73	11273.28
2013	8360.12	68581.00	115862.73	99315.15	53502.94	31804.81	23506.48	11246.38	11920.29
2014	4606.59	87480.83	89580.30	74287.69	6589.80	28318.12	17275.42	11041.43	9333.79
2015	5108.76	78142.88	175785.90	77709.81	69062.11	52717.82	23595.22	12821.20	12729.30
2016	4130.51	60435.30	116403.27	135574.72	63596.17	48513.88	34478.32	14800.82	12338.46
2017	3616.42	47347.40	91685.09	78609.18	101367.80	41743.60	29332.34	18818.85	10818.18
2018	3032.46	51671.30	82569.29	63603.11	51199.17	66186.91	24018.32	15738.03	10337.58
2019	1666.58	29598.61	67940.88	39172.06	28612.44	20144.37	23948.47	9317.76	5657.87
2020	701.09	26535.26	53293.58	34979.14	19135.58	12605.31	8724.94	12064.15	4251.10
2021	483.41	12970.53	49589.80	28087.27	22025.68	10541.36	8447.08	6766.22	7158.59

TABLE 3.6.14.b WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Predicted catch in numbers - Fleet A

$\mathbf{1 9 9 1}$	0.00	10.46	8149.37	31695.61	13023.30	9088.34	2428.05	710.24	255.40
$\mathbf{1 9 9 2}$	0.00	9.27	7436.91	22232.77	15200.33	7843.94	4505.69	1301.68	507.23
$\mathbf{1 9 9 3}$	0.00	6.59	6571.66	19720.69	10782.78	8509.60	3920.73	2183.73	806.34
$\mathbf{1 9 9 4}$	0.00	5.36	4414.66	17019.67	9353.20	5594.28	4276.40	1740.48	1182.64
$\mathbf{1 9 9 5}$	0.00	8.19	3514.03	10933.65	8722.31	4399.55	3039.11	1839.09	1122.58
$\mathbf{1 9 9 6}$	0.00	7.26	4903.76	8567.62	5297.56	4447.24	2401.48	1409.11	1226.24
$\mathbf{1 9 9 7}$	0.00	7.44	4512.55	12060.90	4156.45	2597.20	2121.86	1184.94	1080.48
$\mathbf{1 9 9 8}$	0.00	6.08	4727.41	10950.43	6311.82	2344.33	1260.59	1260.06	913.52
$\mathbf{1 9 9 9}$	0.00	8.20	3806.70	11549.27	6012.46	3975.78	1095.77	926.19	796.55
$\mathbf{2 0 0 0}$	0.00	9.05	5577.05	9511.70	7251.02	4428.54	2132.71	916.63	703.72
$\mathbf{2 0 0 1}$	0.00	6.10	5683.05	13017.96	6004.13	4571.88	2228.51	1440.71	559.72
$\mathbf{2 0 0 2}$	0.00	4.87	2620.21	13703.07	8504.57	3306.86	2094.63	1211.51	649.04
$\mathbf{2 0 0 3}$	0.00	4.72	1715.16	7681.89	9071.04	4995.28	1619.24	1310.80	665.96
$\mathbf{2 0 0 4}$	0.00	5.40	2115.18	8187.20	5351.60	5254.59	2693.70	1012.98	694.56
$\mathbf{2 0 0 5}$	0.00	4.11	2011.44	7102.63	5225.18	2769.18	2982.49	1887.57	705.15
$\mathbf{2 0 0 6}$	0.00	4.37	955.94	5712.52	4438.30	2323.20	1590.86	2100.04	1015.68
$\mathbf{2 0 0 7}$	0.00	3.32	493.23	2548.67	3296.07	1544.53	1207.94	996.23	870.89
$\mathbf{2 0 0 8}$	0.00	3.80	270.39	1487.91	1605.21	994.84	1039.29	675.99	575.22
$\mathbf{2 0 0 9}$	0.00	3.53	261.67	1036.06	1438.78	568.16	1012.90	964.59	602.93
$\mathbf{2 0 1 0}$	0.00	4.19	143.92	963.53	967.41	400.72	632.74	696.13	495.15
$\mathbf{2 0 1 1}$	0.00	6.17	127.47	755.19	980.27	259.76	616.00	419.88	400.79
$\mathbf{2 0 1 2}$	0.00	6.93	170.46	806.36	863.61	253.06	725.61	426.78	379.71
$\mathbf{2 0 1 3}$	0.00	8.13	198.39	1344.52	987.71	368.01	950.00	459.46	486.99
$\mathbf{2 0 1 4}$	0.00	18.31	265.69	1551.56	1915.63	597.86	1020.06	800.08	676.34
$\mathbf{2 0 1 5}$	0.00	17.72	473.43	1613.58	1848.22	1323.75	1263.62	1001.64	994.46
$\mathbf{2 0 1 6}$	0.00	20.47	402.79	3241.34	1747.10	1262.46	1718.18	1144.63	954.20
$\mathbf{2 0 1 7}$	0.00	26.91	371.63	2264.30	3240.74	1171.91	1331.13	1535.56	882.73
$\mathbf{2 0 1 8}$	0.00	49.94	529.21	2154.28	2409.52	2615.16	1460.05	2056.79	1351.01
$\mathbf{2 0 1 9}$	0.00	72.99	964.96	2563.14	2836.12	1702.26	3129.12	2338.02	1419.68
$\mathbf{2 0 2 0}$	0.00	99.73	1041.45	3477.71	3910.67	1924.91	2290.22	5183.75	1826.62
$\mathbf{2 0 2 1}$	0.00	70.08	1135.69	3228.27	5705.83	2318.84	2681.00	3350.52	3544.82

TABLE 3.6.14.c WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Predicted catch in numbers - Fleet C

	0	1	2	3	4	5	6	7	
1991	2910.42	119313.74	271443.40	175237.17	69119.24	37920.68	10546.04	3181.20	1143.95
1992	2098.12	106098.16	248175.39	125718.57	81121.54	34023.29	18645.87	5346.37	2083.34
1993	1771.08	76094.36	223453.92	110609.18	56417.53	37631.00	15412.38	8389.14	097
1994	2727.51	63949.35	154554.11	101299.78	47198.88	25591.63	16175.07	6427.15	4367
1995	2619.90	101232.82	127481.76	66235.48	44728.54	20005.75	11069.27	6528.22	984.83
1996	2620.27	90069.67	180187.35	52616.98	26886.98	18904.21	8285.85	4410.06	3837.76
1997	2215.78	93493.31	168394.91	75709.51	21205.24	10801.76	7196.14	3025.37	27
1998	3112.34	80832.57	183948.93	73767.50	32787.93	9286.80	4563.58	2747.46	19
1999	3541.67	115421.59	155682.90	79497.27	32103.98	14739.27	3932.61	1869.03	1607.
2000	2260.65	132751.74	238436.68	69805.12	35859.66	15587.64	6913.72	1805.40	1386.05
2001	1969.88	76515.40	255654.22	99692.72	28135.89	15144.63	6291.37	2727.25	1059.
2002	1970.89	68825.03	145128.53	107525.13	42325.35	11597.81	6114.25	2298.56	1231.41
2003	1952.95	64620.17	132371.12	59824.41	45127.15	18799.80	4896.92	2520.80	1280.71
2004	1204.02	63616.90	123053.90	55304.06	25100.17	19776.34	8166.98	2071.40	1420.27
2005	1095.10	45523.20	142634.00	60347.64	26585.81	12554.52	9596.68	3819.64	6.93
2006	913.92	43332.10	103102.75	70763.01	30172.37	12983.25	6178.20	4317.39	20
2007	996.64	34119.75	96817.20	48347.06	33402.67	15395.08	6210.03	3105.16	27
2008	852.40	38037.49	74361.19	44821.12	21970.88	15535.45	7235.42	2741.10	2332.
2009	872.23	32048.13	84835.62	33539.99	19658.55	9997.17	6671.32	3055.84	1910.11
2010	1073.70	29528.54	63523.28	34901.16	14277.65	8597.96	4259.68	2618.85	18
2011	840.78	33441.06	56032.91	25621.82	14325.46	6187.56	3762.70	1827.85	4.7
2012	661.79	27671.42	72079.17	25564.98	11862.57	7139.76	3127.29	1903.40	1693.48
2013	879.13	22467.44	59841.92	34672.56	11978.42	5773.32	3404.81	1489.50	1578.75
2014	618.52	34352.52	52354.86	30295.96	17915.52	6158.49	2990.25	1699.45	14
2015	544.46	24857.20	91511.33	28974.27	16879.83	10210.64	3675.25	1727.58	1715.2
2016	604.18	24152.63	67546.19	54993.01	17199.12	10221.41	5844.05	2116.66	1764.5
2017	738.40	24091.10	59065.78	33715.08	29263.01	9185.04	5158.26	2716.50	156
2018	631.06	26523.10	53274.31	27049.73	14514.11	14097.75	4058.28	2064.33	1355.9
2019	552.49	19566.99	51780.55	21417.95	10913.23	5913.54	5374.08	1462.66	888.1
2020	352.12	20024.27	45381.44	25599.76	10590.70	6243.46	3245.18	2927.39	1031.54
2021	361.38	11855.52	46202.94	22264.17	13277.40	6010.91	3812.09	1997.72	211

TABLE 3.6.14.d WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Predicted catch in numbers - Fleet D

	0	1	2	3	4	5	6	7	8
$\mathbf{1 9 9 1}$	62342.05	133877.68	34226.10	13844.96	3358.65	1504.29	603.22	150.56	54.14
$\mathbf{1 9 9 2}$	37461.87	92100.15	24760.65	7934.89	3209.03	1123.40	913.56	221.48	86.31
$\mathbf{1 9 9 3}$	45158.63	93020.37	30151.19	9188.44	2873.35	1570.00	944.82	429.50	158.59
$\mathbf{1 9 9 4}$	92455.42	107037.38	28280.12	10904.09	3046.38	1320.87	1209.87	395.30	268.60
$\mathbf{1 9 9 5}$	179949.24	349667.57	46610.69	13301.79	5049.56	1716.81	1318.03	614.09	374.84
$\mathbf{1 9 9 6}$	96508.84	160188.86	32760.50	5329.16	1598.10	903.72	577.03	255.29	222.16
$\mathbf{1 9 9 7}$	88128.35	170388.51	30124.38	7211.98	1168.12	480.76	469.94	167.65	152.87
$\mathbf{1 9 9 8}$	137401.47	166982.35	37411.74	7496.29	1874.03	424.37	301.24	155.25	112.55
$\mathbf{1 9 9 9}$	93291.27	140226.89	19484.80	4984.14	1146.18	434.04	171.42	72.20	62.10
$\mathbf{2 0 0 0}$	36821.38	100543.52	18809.46	2747.47	824.57	305.47	206.82	49.51	38.01
$\mathbf{2 0 0 1}$	43223.68	85761.80	33541.74	7108.95	1488.74	861.15	654.45	292.27	113.55
$\mathbf{2 0 0 2}$	37953.83	75999.18	18194.76	6016.49	1518.03	358.25	248.03	73.91	39.59
$\mathbf{2 0 0 3}$	40136.07	88871.50	27953.79	7302.97	4139.84	1696.37	558.91	233.39	118.58
$\mathbf{2 0 0 4}$	27912.83	113499.13	39438.16	11716.62	4002.56	3062.29	1344.94	262.04	179.67
$\mathbf{2 0 0 5}$	11401.21	39961.96	23250.88	5826.40	1697.58	709.18	491.56	140.37	52.44
$\mathbf{2 0 0 6}$	10005.88	50641.65	28719.50	12964.50	3852.74	1873.54	809.46	456.57	220.82
$\mathbf{2 0 0 7}$	5922.69	24343.28	17701.10	5403.14	2375.09	1361.53	528.12	245.56	214.66
$\mathbf{2 0 0 8}$	4814.97	28321.13	14631.40	4524.05	1068.98	922.17	380.76	161.20	137.17
$\mathbf{2 0 0 9}$	7588.93	41474.97	25718.87	3831.73	739.32	408.45	199.01	113.02	70.65
$\mathbf{2 0 1 0}$	3062.77	13045.63	5591.75	715.91	52.77	26.04	6.78	5.27	3.75
$\mathbf{2 0 1 1}$	1459.83	10046.54	2922.35	218.27	11.63	3.96	1.42	1.10	1.05
$\mathbf{2 0 1 2}$	1000.96	8892.75	4689.13	232.51	7.82	3.73	0.96	1.02	0.91
$\mathbf{2 0 1 3}$	1506.41	10500.87	7578.15	698.13	16.79	6.24	1.78	1.30	1.38
$\mathbf{2 0 1 4}$	948.30	13432.38	5112.95	391.92	13.64	5.03	1.10	1.07	0.90
$\mathbf{2 0 1 5}$	1596.66	21264.16	20177.35	769.14	31.21	28.12	3.47	2.39	2.37
$\mathbf{2 0 1 6}$	871.79	10912.74	8394.35	643.75	13.81	17.42	3.85	2.23	1.85
$\mathbf{2 0 1 7}$	154.21	1731.88	1310.86	66.03	4.38	3.29	1.11	1.19	0.69
$\mathbf{2 0 1 8}$	117.49	1736.66	1099.13	54.88	2.55	5.77	1.17	1.23	0.81
$\mathbf{2 0 1 9}$	79.27	1019.27	852.86	42.84	2.59	3.43	2.26	1.15	0.70
$\mathbf{2 0 2 0}$	152.55	3699.95	3084.38	263.72	19.32	28.88	9.54	11.55	4.07
$\mathbf{2 0 2 1}$	16.20	207.79	239.79	13.82	1.63	2.18	1.11	0.98	1.03

TABLE 3.6.14.e WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Predicted catch in numbers - Fleet \mathbf{F}

	0	1	2	3	4	5	6	7	8
1991	48436.61	389373.15	298461.49	335593.89	214254.53	148603.55	49671.19	16166.01	5813.24
1992	41718.91	410323.62	324580.34	286321.96	299303.48	159639.72	106501.75	33172.42	12926.46
1993	40400.96	335222.37	331747.66	285295.78	234542.91	198082.58	98838.52	58239.09	21504.65
1994	61810.44	280226.28	228995.97	260046.58	195851.39	133764.81	103223.38	44275.72	30085.08
1995	56712.80	425494.27	180933.57	162089.29	176086.02	99191.87	67027.56	42549.31	25972.12
1996	63449.00	421654.57	283658.53	142281.22	116746.50	103781.33	55392.62	31669.84	27559.98
1997	49239.51	405466.23	246316.48	190335.17	86025.11	55969.50	46164.65	21306.47	19428.08
1998	62292.73	318740.22	246676.57	169125.99	121340.86	44036.70	26789.22	18052.41	13087.70
1999	51481.91	337810.10	157849.06	139055.81	91365.31	54332.37	18116.97	9803.62	8431.33
2000	33783.71	400976.05	253161.76	128645.62	108361.31	61131.68	33944.05	10086.77	7743.85
2001	31290.95	246703.46	296571.99	203515.76	95234.68	66263.92	34547.99	16758.69	6510.82
2002	20924.66	152269.09	122350.84	166971.33	112695.17	40909.71	27608.58	11784.78	6313.48
2003	18252.72	127836.37	103130.27	88608.33	117113.93	65046.98	21851.68	12886.40	6547.04
2004	14468.59	162314.48	124736.22	107230.83	85207.92	87937.31	46690.69	13480.84	9243.24
2005	12922.46	115317.85	148198.26	121151.86	92984.99	56540.98	55191.21	24816.25	9270.77
2006	7455.52	77421.89	80330.02	109693.65	82210.89	45285.79	27513.70	21727.46	10508.40
2007	8922.26	67297.89	86320.45	86399.90	103556.43	60362.48	30308.28	16759.03	14650.51
2008	7520.63	74571.60	68535.16	83901.96	71518.96	64380.23	36987.36	15206.51	12939.65
2009	5873.60	48669.37	63331.53	52180.68	54429.97	35870.98	29989.74	14815.28	9260.54
2010	5031.59	31658.80	34334.29	40889.56	30877.07	24519.44	15556.92	10513.49	7478.14
2011	3220.57	29546.43	25253.77	25927.12	27690.97	16011.16	12659.20	6883.17	6570.10
2012	3900.15	37824.28	49849.06	39645.73	34659.88	27510.35	15316.43	10339.53	9199.18
2013	5974.58	35604.56	48244.27	62599.94	40520.02	25657.24	19149.89	9296.12	9853.17
2014	3039.77	39677.62	31846.80	42048.25	46745.01	21556.74	13264.01	8540.83	7219.93
2015	2967.64	32003.80	63623.79	46352.82	50302.85	41155.31	18652.88	10089.59	10017.27
2016	2654.54	25349.46	40059.94	76696.62	44636.14	37012.59	26912.24	11537.30	9617.89
2017	2723.81	21497.51	30936.82	42563.77	68859.67	31383.36	22841.84	14565.60	8373.16
2018	2283.91	23361.60	27666.64	34344.22	34272.99	49468.23	18498.82	11615.68	7629.80
2019	1034.82	8939.36	14342.51	15148.13	14860.50	12525.14	15443.01	5515.93	3349.35
2020	196.42	2711.31	3786.31	5637.95	4614.89	4408.06	3180.00	3941.46	1388.87
2021	105.83	837.14	2011.38	2581.01	3040.82	2209.43	1952.88	1417.00	1499.17

TABLE 3.9.1 WESTERN BALTIC SPRING SPAWNING HERRING. Input table for short term predictions.

TABLE 3.9.2 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Forecast table. MSY approach (zero catch, $\mathrm{F}=0$)

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.000	0.000	0.000
fbar:low	0.149	0.064	0.000	0.000	0.000
fbar:high	0.149	0.064	0.000	0.000	0.000
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80978	95882	111989
ssb:low	62765	71011	80978	95882	111989
ssb:high	62765	71011	80978	95882	111989
catch:Estimate	15546	7662	0	0	0
catch:low	15546	7662	0	0	0
catch:high	15546	7662	0	0	0

Per fleet

Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	0	0	0
Fleet C : Estimate	10119	733	0	0	0
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	0	0	0

TABLE 3.9.3 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. MAP 2018: F=FMSY(0.31)*SSBy-1/MSYBtrigger

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.147	0.164	0.164
fbar:low	0.149	0.064	0.147	0.164	0.164
fbar:high	0.149	0.064	0.147	0.164	0.164
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	79293	792293	792293	792293
ssb:Estimate	62765	71011	79256	79224	80143
ssb:low	62765	71011	79256	79224	80143
ssb:high	62765	71011	79256	79224	80143
catch:Estimate	15546	7662	19391	21686	22149
catch:low	15546	7662	19391	21686	22149
catch:high	15546	7662	19391	21686	22149
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	15618	17363	17747
Fleet C : Estimate	10119	733	1764	2059	2143
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	2008	2265	2258

TABLE 3.9.5 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. MAP 2018: F=FMSYupper(0.379)*SSBy-1/MSYBtrigger

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.179	0.199	0.192
fbar:low	0.149	0.064	0.179	0.199	0.192
fbar:high	0.149	0.064	0.179	0.199	0.192
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	78880	76152	75303
ssb:low	62765	71011	78880	76152	75303
ssb:high	62765	71011	78880	76152	75303
catch:Estimate	15546	7662	23085	24572	23643
catch:low	15546	7662	23085	24572	23643
catch:high	15546	7662	23085	24572	23643

Per fleet

Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	18562	19567	18801
Fleet C : Estimate	10119	733	2127	2422	2415
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	2396	2582	2428

TABLE 3.9.6 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. F=FMSY=0.31

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.310	0.310	0.310
fbar:low	0.149	0.064	0.310	0.310	0.310
fbar:high	0.149	0.064	0.310	0.310	0.310
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	77401	65861	61838
ssb:low	62765	71011	77401	65861	61838
ssb:high	62765	71011	77401	65861	61838
catch:Estimate	15546	7662	36088	30159	28128
catch:low	15546	7662	36088	30159	28128
catch:high	15546	7662	36088	30159	28128
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	28829	23560	21780
Fleet C : Estimate	10119	733	3482	3372	3408
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	3777	3227	2941

TABLE 3.9.7 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. $\mathrm{F}=\mathrm{Fpa}=0.41$

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.410	0.410	0.410
fbar:low	0.149	0.064	0.410	0.410	0.410
fbar:high	0.149	0.064	0.410	0.410	0.410
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	79293	792293	792293	792293
ssb:Estimate	62765	71011	76296	59278	53441
ssb:low	62765	71011	76296	59278	53441
ssb:high	62765	71011	76296	59278	53441
catch:Estimate	15546	7662	44481	33646	30065
catch:low	15546	7662	44481	33646	30065
catch:high	15546	7662	44481	33646	30065
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	35369	25892	22796
Fleet C : Estimate	10119	733	4430	4115	4101
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	4681	3640	3169

TABLE 3.9.8 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. F=Flim=0.45

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.450	0.450	0.450
fbar:low	0.149	0.064	0.450	0.450	0.450
fbar:high	0.149	0.064	0.450	0.450	0.450
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	79293	792293	792293	792293
ssb:Estimate	62765	71011	75860	56930	50619
ssb:low	62765	71011	75860	56930	50619
ssb:high	62765	71011	75860	56930	50619
catch:Estimate	15546	7662	47526	34667	30569
catch:low	15546	7662	47526	34667	30569
catch:high	15546	7662	47526	34667	30569
Per fleet					
Yleet A : Estimate	3508	6142	37724	26522	22992
Fleet C : Estimate	10119	733	4791	4383	4349
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	5012	3763	3228

TABLE 3.9.9 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. F=F2022=0.064

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.064	0.064	0.064
fbar:low	0.149	0.064	0.064	0.064	0.064
fbar:high	0.149	0.064	0.064	0.064	0.064
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80221	88093	96763
ssb:low	62765	71011	80221	88093	96763
ssb:high	62765	71011	80221	88093	96763
catch:Estimate	15546	7662	9073	10387	11843
catch:low	15546	7662	9073	10387	11843
catch:high	15546	7662	9073	10387	11843

Per fleet

Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	7341	8436	9702
Fleet C : Estimate	10119	733	799	886	964
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	934	1065	1177

TABLE 3.9.10 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Forecast table. F=0

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.000	0.000	0.000
fbar:low	0.149	0.064	0.000	0.000	0.000
fbar:high	0.149	0.064	0.000	0.000	0.000
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80978	95882	111989
ssb:low	62765	71011	80978	95882	111989
ssb:high	62765	71011	80978	95882	111989
catch:Estimate	15546	7662	0	0	0
catch:low	15546	7662	0	0	0
catch:high	15546	7662	0	0	0

Per fleet

Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	0	0	0
Fleet C : Estimate	10119	733	0	0	0
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	0	0	0

TABLE 3.9.11 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. $\mathrm{F}=0.05$

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.050	0.050	0.050
fbar:low	0.149	0.064	0.050	0.050	0.050
fbar:high	0.149	0.064	0.050	0.050	0.050
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80385	89708	99777
ssb:low	62765	71011	80385	89708	99777
ssb:high	62765	71011	80385	89708	99777
catch:Estimate	15546	7662	7177	8395	9739
catch:low	15546	7662	7177	8395	9739
catch:high	15546	7662	7177	8395	9739
Per fleet					
Yleet A : Estimate	3508	6142	5811	6833	8004
Fleet C : Estimate	10119	733	628	704	771

TABLE 3.9.12 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. $\mathrm{F}=0.1$

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.100	0.100	0.100
fbar:low	0.149	0.064	0.100	0.100	0.100
fbar:high	0.149	0.064	0.100	0.100	0.100
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	79293	792293	792293	792293
ssb:Estimate	62765	71011	79799	84145	89698
ssb:low	62765	71011	79799	84145	89698
ssb:high	62765	71011	79799	84145	89698
catch:Estimate	15546	7662	13742	14913	16319
catch:low	15546	7662	13742	14913	16319
catch:high	15546	7662	13742	14913	16319
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	11096	12042	13257
Fleet C : Estimate	10119	733	1228	1330	1424
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	1418	1541	1639

TABLE 3.9.13 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. $\mathrm{F}=0.15$

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.150	0.150	0.150
fbar:low	0.149	0.064	0.150	0.150	0.150
fbar:high	0.149	0.064	0.150	0.150	0.150
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	79218	79114	81275
ssb:low	62765	71011	79218	79114	81275
ssb:high	62765	71011	79218	79114	81275
catch:Estimate	15546	7662	19767	20008	20840
catch:low	15546	7662	19767	20008	20840
catch:high	15546	7662	19767	20008	20840
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	15918	16027	16731
Fleet C : Estimate	10119	733	1801	1893	1988
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	2048	2088	2120

TABLE 3.9.14 WESTERN BALTIC SPRING SPAWNING HERRING Multi fleet/Forecast table. Constant 2022 TAC

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.054	0.046	0.039
fbar:low	0.149	0.064	0.054	0.046	0.039
fbar:high	0.149	0.064	0.054	0.046	0.039
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80345	89405	100170
ssb:low	62765	71011	80345	89405	100170
ssb:high	62765	71011	80345	89405	100170
catch:Estimate	15546	7662	7662	7662	7662
catch:low	15546	7662	7662	7662	7662
catch:high	15546	7662	7662	7662	7662
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	6142	6142	6142
Fleet C : Estimate	10119	733	733	733	733
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	788	788	788

TABLE 3.9.15 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. Catch for bycatch fleets only

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.039	0.033	0.027
fbar:low	0.149	0.064	0.039	0.033	0.027
fbar:high	0.149	0.064	0.039	0.033	0.027
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80475	90852	102935
ssb:low	62765	71011	80475	90852	102935
ssb:high	62765	71011	80475	90852	102935
catch:Estimate	15546	7662	6142	6142	6142
catch:low	15546	7662	6142	6142	6142
catch:high	15546	7662	6142	6142	6142
Per fleet					
Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	6142	6142	6142
Fleet C : Estimate	10119	733	0	0	0
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	0	0	0

TABLE 3.9.16 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. $\mathrm{F}=0.025$

Year	2021	2022	2023	2024	2025
fbar:Estimate	0.149	0.064	0.025	0.025	0.025
fbar:low	0.149	0.064	0.025	0.025	0.025
fbar:high	0.149	0.064	0.025	0.025	0.025
rec:Estimate	609230	792293	792293	792293	792293
rec:low	609230	792293	792293	792293	792293
rec:high	609230	792293	792293	792293	792293
ssb:Estimate	62765	71011	80681	92713	105581
ssb:low	62765	71011	80681	92713	105581
ssb:high	62765	71011	80681	92713	105581
catch:Estimate	15546	7662	3670	4466	5354
catch:low	15546	7662	3670	4466	5354
catch:high	15546	7662	3670	4466	5354

Per fleet

Year	2021	2022	2023	2024	2025
Fleet A : Estimate	3508	6142	2976	3650	4426
Fleet C : Estimate	10119	733	318	362	403
Fleet D : Estimate	24	0	0	0	0
Fleet F : Estimate	1895	788	376	454	525

TABLE 3.9.17 WESTERN BALTIC SPRING SPAWNING HERRING
Multi fleet/Forecast table. $\mathrm{F}=0.01$

Year	2021	2022	2023	2024	2025	
fbar:Estimate	0.149	0.064	0.010	0.010	0.010	
fbar:low	0.149	0.064	0.010	0.010	0.010	
fbar:high	0.149	0.064	0.010	0.010	0.010	
rec:Estimate	609230	792293	792293	792293	792293	
rec:low	609230	792293	792293	792293	792293	
rec:high	609230	792293	792293	792293	792293	
ssb:Estimate	62765	71011	80859	94594	109348	
ssb:low	62765	71011	80859	94594	109348	
ssb:high	62765	71011	80859	94594	109348	
catch:Estimate	15546	7662	1488	1856	2272	
catch:low	15546	7662	1488	1856	2272	
catch:high	15546	7662	1488	1856	2272	
Per fleet						
					2024	2025
Fleet A : Estimate	3508	6142	1208	1520	1885	
Fleet C : Estimate	10119	733	128	148	166	
Fleet D : Estimate	24	0	0	0	0	
Fleet F : Estimate	1895	788	152	188	222	

Figure 3.1.1 Western Baltic Spring Spawning Herring. CATCH and TACs (1000 t) by area. Note, the TAC for Division 3.a excludes the by-catch TAC, while the CATCH includes the by-catch.

Figure 3.3.1 WESTERN BALTIC SPRING SPAWNING HERRING. Map showing distribution of hauls and the density of fish per age in the IBTS+BITS-Q1 survey.

Figure 3.3.2 WESTERN BALTIC SPRING SPAWNING HERRING. Map showing distribution of hauls and the density of fish per age in the IBTS+BITS-Q3.4 survey.

Figure 3.5.1 WESTERN BALTIC SPRING SPAWNING HERRING. Correlation of 1 wr herring from GERAS with the N20 larvae index. Note the year lag between surveys. Labels show the year of the N20.

Mean weight at age in catch

Figure 3.6.1.1 WESTERN BALTIC SPRING SPAWNING HERRING. Weight (kg) at age as W-ringers (wr) in the catch (WECA).

Catch in weight

Figure 3.6.1.2 WESTERN BALTIC SPRING SPAWNING HERRING. Catch in weight. Upper panel: Catch in weight (1000 tons) at age as W-ringers ($\mathbf{w r}$). Lower panel: Proportion (by weight) of a given age as W-ringers ($\mathbf{w r}$) in the catch.

Catch in numbers

Figure 3.6.1.3 WESTERN BALTIC SPRING SPAWNING HERRING. Catch in Numbers. Upper panel: Catch in numbers (millions) at age as \mathbf{W}-ringers (wr). Lower panel: Proportion (by number) of a given age as W-ringers (wr) in the catch.

Mean weight at age in stock

Figure 3.6.1.4 WESTERN BALTIC SPRING SPAWNING HERRING. Weight (kg) at age as W-ringers (wr) in the stock (WEST).

Figure 3.6.4.1 WESTERN BALTIC SPRING SPAWNING HERRING. Stock summary plot. Spawning stock biomass (SSB). Estimates from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise 95\% confidence intervals are shown by line and shaded area.

Figure 3.6.4.2 WESTERN BALTIC SPRING SPAWNING HERRING. Stock summary plot. Average fishing mortality (F) for the shown age range. Estimates from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise 95% confidence intervals are shown by line and shaded area.

Figure 3.6.4.3 WESTERN BALTIC SPRING SPAWNING HERRING. Stock summary plot. Yearly recruitment (age 0 equal 0 W-ringers). Estimates from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise 95% confidence intervals are shown by line and shaded area.

Figure 3.6.4.4 WESTERN BALTIC SPRING SPAWNING HERRING. Recruitment at age 0 -wr (in thousands) is plotted against spawning stock biomass (tonnes) as estimated by the assessment.

Figure 3.6.4.5 WESTERN BALTIC SPRING SPAWNING HERRING. Total catch in weight (tonnes). Prediction from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise 95% confidence intervals are shown by line and shaded area. The yearly observed total catch weight (crosses) are calculated sum of catch per fleet.

Figure 3.6.4.6 WESTERN BALTIC SPRING SPAWNING HERRING. Total catch in weight (tonnes) by fleet. Prediction from the WBSS multi fleet assessment run and point wise 95% confidence intervals are shown by line and shaded area. The plot also shows the observed total catch weight per fleet (crosses).

Figure 3.6.4.7 WESTERN BALTIC SPRING SPAWNING HERRING. Estimated selection pattern at age as W-ringers (wr) per fleet and year. Order: 1 equal 1st year in the respective time span.

Figure 3.6.4.8 Western Baltic Spring Spawning Herring. Time-series of estimated fishing mortality-at-age as W-ringers (wr).

Figure 3.6.4.9 Western Baltic Spring Spawning Herring. Estimated survey catchabilities. N20 only covers age $\mathbf{0}$ (wr) and therefore only shows one point.

Figure 3.6.4.10 WESTERN BALTIC SPRING SPAWNING HERRING. Estimates correlations between age groups (wr) for each fleet.

Figure 3.6.4.11 WESTERN BALTIC SPRING SPAWNING HERRING. Estimated age (wr) distribution in the stock. Colours represent a cohort.

stockassessment.org, WBSS HAWG 2022, r16121, git: 3c872568b9d7

Figure 3.6.4.12 WESTERN BALTIC SPRING SPAWNING HERRING. Estimated observation variance in the WBSS multi fleet assessment run.

Figure 3.6.4.13 WESTERN BALTIC SPRING SPAWNING HERRING. BUBBLE PLOT. Standardized one-observation-ahead residuals from multi fleet run.

Figure 3.6.4.14 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet A. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.

Figure 3.6.4.15 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet C. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.

Figure 3.6.4.16 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet D. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.

Figure 3.6.4.17 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet F. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.

Figure 3.6.4.18 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. sum of fleets Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.

Figure 3.6.4.19 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the HERAS index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.

Figure 3.6.4.20 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the GERAS-index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.

Figure 3.6.4.21 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the N20 index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.

Figure 3.6.4.22 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the IBTS+BITS-Q1 index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.

Figure 3.6.4.23 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the IBTS+BITS-Q3.4 index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.

stockassessment.org, WBSS HAWG 2022, r16121, git: 3c872568b9d7

Figure 3.6.4.24 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Spawning stock biomass.

Figure 3.6.4.25 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Average fishing mortality for the shown age range.

Figure 3.6.4.26 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Recruitment.

stockassessment.org, WBSS HAWG 2022, r16121, git: 3c872568b9d7

Figure 3.6.4.27 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Catch.

Figure 3.6.4.28 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Spawning stock biomass.

stockassessment.org, WBSS HAWG 2022, r16121, git: 3c872568b9d7
Figure 3.6.4.29 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Average fishing mortality for the shown age range.

Figure 3.6.4.30
WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Recruitment.

Figure 3.6.4.31 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Catch.

4 Herring (Clupea harengus) in division 6.a (North), autumn spawners (West of Scotland)

Abstract

Herring in division 6.aN existed as a distinct management unit from 1982 to 2014 . Following the WKWEST benchmark meeting (ICES, 2015a) this stock was combined with herring in $6 . a S 7 . b-c$, as the survey indices could not be successfully split between the two areas. From 2015 to 2021 the two stocks were assessed together as a meta-population (ICES, 2021a) despite continuing to be considered by HAWG as discrete stocks. Following genetic work (Farrell, et al., 2021), the survey indices have been successfully split, and the combined stock was separated back into its components at the WKNSCS benchmark in 2022 (ICES, 2022a).

The location of the area occupied by the stock is shown in Figure 4.1. For assessment purposes this stock is considered as an autumn spawning stock only despite spring-spawning populations occurring in the area. The WG noted that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout this section. However, if the word "age" is used, it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings", which is not the case for the spring spawners. Further elaboration on the rationale behind this can be found in the Stock Annex. It is the responsibility of any user of age-based data for any of these herring stocks to consult the stock annex and if in doubt, consult a relevant member of the Working Group.

4.1 The Fishery

4.1.1 Advice and management applicable to 2016-2021

ICES gave separate advice for herring in $6 . a \mathrm{~N}$ up to 2015 , and advice for the combined stocks since 2016. After the benchmarking process in early 2015 (ICES 2015a), the stocks were assessed together. The management plans in place for either stock were no longer applicable for the combined stocks. Considering the low SSB and low recruitment estimated for the combined stocks in recent years, ICES advised in 2016 that it was not possible to identify any non-zero catch that would be compatible with the MSY and precautionary approach. There were no catch options consistent with the combined stocks recovering to above Blim, and consequently, ICES advised that the TAC be set at 0 t . In February 2016, the European Commission asked ICES to provide advice on a TAC of sufficiently small size to enable ongoing collection of fisheries-dependent data and continue the long-term catch-at-age dataset. ICES advised on a scientific monitoring TAC of 4840 t (with a TAC split of 3480 t to be taken in $6 . \mathrm{aN}$ and 1360 t in $6 . \mathrm{aS}$ and $7 . \mathrm{b}-\mathrm{c}$ (ICES 2016 g). Furthermore, the data should be collected in a way that (i) satisfied standard length, age, and reproductive monitoring purposes by EU Member States for ICES, and (ii) ensured that sufficient spawning-specific samples were available for morphometric and genetic analyses as agreed by the Pelagic Advisory Council monitoring scheme 2016 (Pelagic Advisory Council, 2016).

The European Commission set a monitoring TAC slightly higher than this advice, at 5800 t (TAC split of 4170 t in $6 . \mathrm{aN}$ and 1630 t in $6 . \mathrm{aS}$ and $7 . \mathrm{b}-\mathrm{c}$; (EU, 2016), and the same for 2017, 2018 and 2019 (EU, 2017; 2018; 2019). This was reduced to $4840 t$, split of $3480 t$ in 6.a.N and $1360 t$ in 6.a.S and 7.b-c for 2020 and 2021 (EU 2020; 2021).

Following the benchmark meeting in early 2022 (ICES 2022a), ICES has returned to providing separate advice for herring in $6 . \mathrm{aN}$, although now this advice only covers the autumn spawning population in $6 . a \mathrm{~N}$.

4.1.2 Changes in the fishery

There have been no significant changes in the fishing technology of the fleets in this area in recent years. In 6.aN, the fishery has become restricted to the northern part of the area since 2006, focusing on the autumn spawning population. Prior to 2006 there was a much more even distribution of effort, both temporally and spatially. In $6 . a \mathrm{~N}$ there were three fisheries prior to 2016, (i) a Scottish domestic pair trawl fleet and the Northern Irish fleet; (ii) the Scottish single boat trawl and purse-seine fleets and (iii) an international freezer-trawler fishery.

Since 2016 the fishery has been restricted to a monitoring fishery with a TAC of $4170 t$ between 2016-2019, and 3480 t in 2020-2022, a significant reduction on the 2015 TAC of 22690 t for $6 . \mathrm{aN}$.

4.1.3 The monitoring fishery

The industry-science survey aim is to improve the knowledge base for the spawning components of herring in $6 . \mathrm{aN}$ and $6 . \mathrm{aS} 7 . \mathrm{b}-\mathrm{c}$ and submit relevant data to ICES to assist in assessing the herring stocks and contribute to establishing a rebuilding plan.

Utilizing ICES advice on the monitoring fishery (ICES, 2016g) together with the experience from 2016 a review of spawning areas and timing and discussions with fishing skippers four areas were selected for surveying in $6 . a \mathrm{~N}$. Areas 2 and 4 are considered to be active spawning areas and Area 1 a pre-spawning aggregation area that contains an unknown mixture of stocks of Western and potentially North Sea herring where a large proportion of catches has been taken in the years prior to 2016 (ICES 2016g). Area 5 was a new addition for 2018 and 2019 based on evidence from 2017 from local creel fishers catches of herring on the east side of the North Minch.

Following the guidance arising from WKHASS (ICES 2020c), the survey area from 2020 onwards has focused on two principal spawning areas (Figure 4.1.3.1), with timing planned to coincide with the known spawning period. Strata 1 and 2 are reduced version of previous area 2 and 3 and correspond to regions that have been covered consistently since 2016. Moreover, refocusing the survey to these new strata means that it is now possible to provide a consistency the survey time-series, which will be necessary for developing time-series indices relevant for assessment purposes.

Following a proposal from industry to ensure that commercial catches in $6 . a \mathrm{~N}$ in 2020 were reduced to a bare minimum, the removal of herring was limited to sample hauls during the acoustic surveys. Details of the survey are reported in WGIPS (ICES 2021b) and Mackinson et al. (2021). In total only 177 tonnes of herring were caught in $6 . a \mathrm{~N}$ during 2020. Following continued concern over the poor state of the stock, industry reiterated their wish to minimise commercial catches in 6.aN in 2021 to a bare minimum, proposing that the only removal of herring from $6 . a \mathrm{~N}$ should be limited to sample hauls during the acoustic surveys (Mackinson et al. 2022). In 20211115 tonnes of herring were caught in division 6.aN. The low uptake of the monitoring TAC in 2020 and 2021 was due to a combination of the industry taking pro-active measures to avoid commercial catch when the stock is low, a change in management measures and difficulties in catching allocated monitoring quotas.

4.1.4 Stock recovery plan

The Pelagic Advisory Council submitted a revised proposed rebuilding plan for both $6 . \mathrm{aN}$ and 6.aS 7.b-c stocks combined which was reviewed by HAWG 2018 (ICES 2018b, Annex 9). However, ICES ACOM considered that further quantitative evaluation would be required to be used as the basis for advice. ICES advice in 2019 stated 'ICES still considers it important to develop a stock recovery plan for herring in divisions 6 .a and $7 . b-c$, but given the large changes in perception of the stock, fishing pressure and recruitment together with the continued uncertainty in the quality of the assessment, the requirement for a rebuilding plan (or plans) are considered to be better addressed during a full benchmark, anticipated for 2021'. There is no specific stock recovery plan in place for herring in $6 . a \mathrm{~N}$.

4.1.5 Regulations and their affects

The 4° meridian divides $6 . a N$ from the North Sea stock. It is not clear if this boundary is appropriate, as it bisects some of the spawning grounds and evidence suggests $6 . a \mathrm{~N}$ autumn spawning herring are genetically identical to North Sea autumn spawning herring (NSAS). Historically area misreporting is known to have occurred across the boundary. The north-south boundary between $6 . \mathrm{aN}$ and $6 . \mathrm{aS}$ (56° parallel) is also not appropriate as a boundary, because it traverses the spawning and feeding grounds of $6 . a S$ herring. Transboundary catches have occurred along this line in the past, although this has been less of an issue recently.

4.1.6 Catches in 2021

The Working Group's best estimate of removals from the stock is shown in Table 4.1.6.

4.1.7 Length Frequency information

Length frequency information are available from commercial market sampling from 2014 to 2015 before the introduction of the monitoring TAC and from commercial hauls under the monitoring TAC from 2016 to 2021 (Figure 4.1.7.1). In 2018 length frequency data from Dutch vessels were only collected to 1 cm bins, so all data were binned to this resolution for this year. In 2020 catches in $6 . a \mathrm{~N}$ were reduced to a minimum and removals were limited to survey hauls only, therefore commercial length frequency data are not available for this year. In 2021 the length frequency data come from commercial hauls by one vessel (Chris Andra) only.

4.2 Biological Composition of the Catch

Catch and sample data by country and by period (quarter) in 2021 are detailed in Table 4.2.1. Although the current assessment does not require data on numbers or weights at age in the catch, these data are detailed in tables 4.2.2 and 4.2.3 and displayed in figures 4.2.1 and 4.2.2. Biological data sampled from commercial hauls $(\mathrm{n}=2)$ were used to allocate the age distribution for the 6.aN catches. The allocation of age distributions to un-sampled catches and the calculation of total international catch-at-age and mean weight-at-age in the catches were done following established raising methods. A detailed description of the process can be found in (WD02 HAWG 2017). The principles described in that document were followed in 2021 as far as possible. The number of samples in 2021 does not meet the requirements of the monitoring fishery as advised by ICES (ICES 2016g), and caution should be applied when comparing trends in biological composition of the catch with other years when sampling was more comprehensive.

4.3 Fishery-independent Information

4.3.1 Acoustic surveys (A9481)

An acoustic survey has been carried out in Division 6.aN by Marine Scotland Science in JuneJuly since 1991. It originally covered an area bounded by the 200 m depth contour in the north and west, to the $4^{\circ} \mathrm{W}$ in the east and extended south to $56^{\circ} \mathrm{N}$; it had provided an age-disaggregated index of abundance as the sole tuning index for the analytical assessment of $6 . a \mathrm{~N}$ herring since 2002. In 2008, it was decided that this survey should be expanded into a larger coordinated summer survey on recommendation from WESTHER, HAWG and SGHERWAY (Hatfield et al., 2005; ICES 2007; ICES, 2010). The Scottish 6.aN survey was augmented with the participation of the Irish Marine Institute and the area was expanded to cover all of ICES divisions $6 . a$ and 7.b. The Malin Shelf Herring Acoustic Survey (MSHAS), as it is now known, has covered this increased geographical area in the period 2008 to 2020 as well as maintaining coverage of the original survey area in $6 . a N$. Genetic work (Farrell et al., 2021) has allowed estimates from this survey to be split between populations (ICES 2022a), but these only go back to 2014.

The Malin Shelf herring estimate of SSB for autumn spawning herring in $6 . \mathrm{aN}$ in 2021 is 43886 tonnes and 341 million individuals (Table 4.3.1), an increase compared to 2020. Although estimates appear to be improving from the minimum value in 2019, it should be noted that numbers of herring to the West of Scotland are very low compared to historical estimates prior to the genetic split (ICES 2021a).

Herring has in the past been found in high densities to the east of the $4^{\circ} \mathrm{W}$ line in association with a specific bathymetric feature and the occurrence of these herring west of the line in some years has the ability to strongly influence the annual estimate of abundance of the Malin Shelf/West of Scotland estimates. There is some evidence that this was the case in 2019. It appears that the increase in the 2017 and 2018 estimates compared to 2016 were a result of a greater spread in the distribution of herring rather than distributions occurring around the $4^{\circ} \mathrm{W}$ line. The stock in 2021 is dominated by 2-winter ringers (39.7% of the abundance, 2019 year class). Age disaggregated survey abundance indices for $6 . a \mathrm{~N}$ autumn spawning herring since 2014 are given in Table 4.3.2 and displayed in Figure 4.3.1.1.

The stock is highly contagious in its spatial distribution, which explains some of the high variability in the time-series. The survey covers the area at the time of year when aggregations of herring from both the $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$ stocks are offshore feeding (i.e. not at spawning time). These distributions of offshore herring aggregations are considered to be more available to the survey compared to surveying spawning aggregations, which aggregate close to the seabed and are generally found inshore in areas unsuitable for the large vessels carrying out summer acoustic surveys. Genetic analyses outlined in Farrell et al., 2021 split these indices into $6 . a \mathrm{~N}$ autumn spawning herring and $6 . \mathrm{aS}, 7 \mathrm{~b}-\mathrm{c}$ winter spawning herring for use in assessments.

4.3.1.1 Industry-Science Acoustic survey

From 2016 to 2021 industry acoustic surveys of herring during the spawning and pre-spawning period were undertaken as part of the monitoring fishery on this stock. The surveys cover known active spawning grounds in both $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 \mathrm{~b}$ at spawning time and aim to provide estimates of minimum spawning stock size in each of the areas. Two industry vessels were used to undertake acoustic surveys on the spawning ground in September to collect acoustic data and information on the size and age of herring required to generate an age-disaggregated acoustic estimate of the biomass of prespawning/ spawning herring in 6.aN.
Full results from the surveys can be found in (ICES 2022b), who conclude that the survey in 2021 provides a reliable estimate of the minimum biomass of mature herring at age and the minimum
spawning biomass observed in survey areas during the survey period. The limited sampling by one vessel involved in the survey in 2021 and some uncertainty over the quality of acoustic data recorded using the Furuno FCV-30 on another led to the decision to combine biological samples from both vessels in the acoustic analysis. While this practice is not uncommon, the temporal lag was not optimal.

4.4 Mean Weights-at-age, Maturity-at-age and natural mortality

4.4.1 Mean weight-at-age

Weights-at-age in the stock are obtained from the genetically split acoustic survey and are given in Table 4.3.1 (for the current year) and Table 4.4.1.1 (for the time-series). The weights-at-age in the stock have been steadily declining since 2014 (Figure 4.4.1.1). Weights-at-age in the catches are presented in Table 4.2.3.

There have been fluctuations in catch weights over time. In several years no 1 winter ring fish have been taken in the $6 . \mathrm{aN}$ fishery. In 2021 the catch weights have increased across age classes compared to 2020.

4.4.2 Maturity ogive

The maturity ogive is obtained from the acoustic survey (Table 4.4.2.1). The genetically split Malin Shelf Acoustic Survey (MSHAS) provides estimated values for the period 2014 to 2021, but in some years no estimates are available at younger ages. The proportion mature of ages 2 and 4-wr in 2021 were similar to 2020.

4.4.3 Natural mortality

The natural mortality used in previous assessments of several herring stocks to the West of Scotland, including 6.aN, were based on the results of a multispecies VPA for North Sea herring calculated by the ICES multispecies working group in 1987 (ICES 1987). From 2012 onwards the assessment of North Sea herring has used variable estimates of M-at-age derived from a new multispecies stock assessment model, the SMS model, used in WGSAM (Lewy and Vinther, 2004).
The benchmark of herring in Division 6.a and 7.b-c (ICES 2015) agreed to use the natural mortalities for North Sea herring from the current North Sea multispecies model, as it is deemed the best available proxy for natural mortality of herring in $6 . a$ and $7 . b-c$. The input data to the assessment of herring in divisions 6.a and 7.b-c are averaged annual M values from the 2011 SMS key run (period 1974-2010) for each age. This approach is similar to the pre-benchmarked assessment in that it is time invariant and age variant. This time-series reflects the most recent period of stability in terms of M from the North Sea SMS as it excludes the gadoid outburst of the 1960 which is of little relevance to present day conditions.

In 2020, the SMS model from the North Sea was updated (ICES 2021c), and new values for natural mortality became available (Table 4.4.3.1). At the latest benchmark (ICES 2022a) it was agreed that these values were the most suitable for herring in 6 .aN. For the category three methods, the value of M was taken from ages 3-6.

Detailed explanation regarding the natural mortality estimates can be found in the Stock Annex.

4.5 Recruitment

There are no specific recruitment indices for this stock. Although both the catch and the surveys generally have some catches at $1-w r$, both the fishery and survey encounter this age group only incidentally. The first reliable appearance of a cohort appears at $2-\mathrm{wr}$ in both the catch and the stock.

4.6 Assessment of 6.aN autumn spawning herring

The assessment presented here follows the procedure agreed by the most recent benchmark (ICES 2022a). The tool for the assessment of herring in $6 . a \mathrm{~N}$ follows the category 3 WKLIFE guidelines (ICES 2021d; ICES 2021e).

Data Exploration

For category three stocks, advice is provided using biomass or abundance trends-based assessments. The latest ICES guidance on applying these methods recommends that a Surplus Production in Continuous Time model (SPiCT, Pedersen and Berg, 2017) should be attempted first. If an acceptable SPiCT model is not possible, other data-limited approaches should be attempted, based on the von Bertalanffy growth parameter k for the population being assessed (ICES 2021d).

A SPiCT model using various model settings was attempted for herring in 6 .aN at the 2022 benchmark, but no suitable model could be developed for this stock (ICES 2022a). Following the recommendations of WKLIFE, (ICES 2021d), the growth parameter k was calculated for this stock.

At the benchmark meeting in 2022, length-at-age data from the commercial fishery were not available for the calculation of growth parameters, and the calculations were done using the biological data from the acoustic survey. Biological data from the $6 . a \mathrm{~N}$ genetically split acoustic survey were extracted from DATRAS and analysed to calculate k and asymptotic length (ICES 2022a). These fish are unquestionably $6 . a \mathrm{~N}$ autumn spawning herring (compared to catch/IBTS data where we don't have genetic samples available). Guidelines indicate that calculations of growth parameters should come from commercial data (ICES 2021d), and this calculation was updated for HAWG in 2022.

Commercial market sampling data from 2000-2015 and data from commercial hauls under the monitoring TAC were used to recalculate growth parameters. This assessment includes $6 . a \mathrm{~N}$ autumn spawning herring only, and individuals thought to be from the spring-spawning component should be removed. Therefore samples taken from the South Minch area (Figure 4.6.1) were removed from the market sampling data prior to the calculation of growth parameters.

Von Bertalanffy growth parameters were calculated from the combined commercial data for autumn spawning herring in $6 . a \mathrm{~N}$ from 2000-2021 (Figure 4.6.2), and gives and estimated L_{∞} value of 30.51 cm and an associated k value of 0.335 . Given that $0.32 \leq k \leq 0.45$, the Constant Harvest Rate should be used to provide advice.

Assessment

The constant harvest rate (CHR) applies a constant harvest rate ($\mathrm{Fmsy}_{\text {proxy calculated from catch }}$ length frequency data) that is considered a proxy for MSY harvest rate, and applies this to the biomass index. This rule is being applied using the genetically split acoustic survey index, so runs from 2014 onwards. The $\mathrm{F}_{\text {mSy proxy }}$ used in applying this rule is calculated from the length frequency data.

FMSY proxy is calculated as the average of the ratio of catch C to the biomass index I, calculated across all years for which mean length / target reference length >1. The target reference length $(\mathrm{Lf}=\mathrm{m})$ is calculated from the length frequency data and is key to the $\mathrm{F}_{\mathrm{MSY}}$ proxy value calculation. Target reference length is usually calculated using the following equation:
$\mathrm{LF}_{\mathrm{F}=\mathrm{M}}=\left(0.75^{*} \mathrm{Lc}_{\mathrm{C}} \mathrm{y}\right)+\left(0.25^{*} \mathrm{Linf}\right)$
This calculation assumes that the M / k ratio is equal to 1.5 . When the actual M / k ratio is calculated for $6 . a \mathrm{~N}$ herring the value comes to 0.65 , which is considerably different to the assumed value. Using the assumed method with an M / k ratio of 1.5 would suggest a natural mortality estimate of 0.51 for herring in $6 . a N$. This value contrasts with the values taken from the 2020 SMS key run. ICES technical guidelines (ICES 2018b) state that stock specific M / k values can be applied by using an alternative $\mathrm{Lf}=\mathrm{M}$ calculation from Jardim et al. 2015. This alternative method for calculating the target reference length was approved at the benchmark meeting in 2022 (ICES 2022a), using the following equation:
$\mathrm{Lf}_{\mathrm{F}}^{\mathrm{\gamma}} \mathrm{M}, \mathrm{K}=\theta \mathrm{M}=\theta \operatorname{Linf}+\mathrm{L}_{\mathrm{c}}(\gamma+1) / \theta+\gamma+1$
As per ICES, 2021d, advised catch is calculated as follows:
$\mathrm{Cy}+1=\mathrm{Iy}-1 \times \mathrm{F}_{\mathrm{MSY}}$ proxy $\times \mathrm{b} \times \mathrm{m}$
The components of this formula were estimated as follows.

- $\quad I_{y}$ is the biomass index for year y. In this case, using the $6 . a \mathrm{~N}$ autumn spawning herring from the Malin Shelf Herring Acoustic Survey , $\boldsymbol{I}_{\boldsymbol{y}}=43866$.
- $F_{M S Y \text { proxy }}$ is the average of the ratio of catch C to the biomass index I, calculated across all years for which $L_{\text {mean }} / L_{F=M}>1$. The comparison between $L_{\text {mean }}$ and $L_{F=M}$ is shown in Table 4.6.1, from which it can be seen that 2014-2018 should be used in the calculation of $F_{M S Y}$ proxy. The ratio C / I is shown in Figure 4.6.3, and the average is $\mathbf{0 . 3 3 5}$.
- $b=\min \left\{1, I_{y} / I_{\text {trigger }}\right\}$. The value used for $I_{\text {trigger }}, 14711$, is $1.4 I_{\text {loss }}$, where $I_{\text {loss }}=10508$ is the lowest observed biomass index value. Doing so results in $\boldsymbol{b}=\mathbf{1 . 0}$.
- m is a multiplier intended to avoid biomass declining below $B_{\text {lim }}$. In this situation WKLIFE recommends that $\boldsymbol{m}=\mathbf{0 . 5}$.

Using these estimates the formula gives:
$C y+1=43866 \times 0.335 \times 1 \times 0.5=7362$ tonnes
Under WKLIFE guidelines (ICES 2021d) a stability clause of $+20 \%$ and -30% is recommended relative to the previous year's advised catch. Herring in $6 . \mathrm{aN}$ is a new stock so the 'previous year's advice' does not apply in this case. Therefore, the stability clause should be applied against a mean of the past three year's catch (1010 tonnes). When the stability clause is applied, the advised catch for herring in $6 . a \mathrm{~N}$ under the CHR rule is 1212 tonnes.

4.6.1 Final Assessment for 6.aN autumn spawning herring

In accordance with the method set out in the Stock Annex, the final assessment of $6 . \mathrm{aN}$ autumn spawning herring was carried out using the Constant Harvest Rate (CHR) rule. This follows on from the benchmark in early 2022 (ICES 2022a).

4.6.2 State of the stock

Fishing mortality has been reduced since the introduction of zero catch advice and in line with the monitoring TAC in 2016. SSB remains at very low levels relative to the long term trend,
despite improvements since 2019. Recruitment has been low, with no big cohorts evident in recent years. Recent catches have been among the lowest in the time-series.

4.7 Quality of the Assessment

This assessment is now for herring in $6 . a \mathrm{~N}$ only, following 7 years of a combined assessment with herring in $6 . a S, 7 . b-c$. Unlike prior assessments for $6 . a \mathrm{~N}$ herring, this assessment only includes the Cape Wrath autumn spawning component, as the Minch spring spawners cannot currently be split out from the acoustic index using genetic information. Further information on this population of herring is detailed in section 8.2 of this report.

Herring in $6 . a N$ have been under zero advice and a monitoring TAC since 2016 under the combined assessment. Despite and increasing trend in recent biomass estimates, the survey biomass for this stock remains at low levels compared to historical values.

There have been indications that the autumn spawning herring population in $6 . a \mathrm{~N}$ are genetically identical to the North Sea autumn spawning population. These unresolved stock identity issues should be investigated in the future.

4.8 Management Considerations

Recruitment has been at a low level since 1998 and even lower since 2013. There is almost complete absence in the stock of 7,8 , and $9+$ winter ring fish in both the catches and the acoustic survey in recent years

The survey index across the whole Malin Shelf Herring Acoustic Survey has been steadily decreasing since 2008 (ICES 2022b). Although the 2021 estimates for autumn spawning $6 . a \mathrm{~N}$ herring indicate increases since 2019, the stock remains at very low levels compared to long term trends.

A monitoring TAC of 4170 t was implemented from 2016-2019, and reduced to 3480 t in 20202022 to allow sampling for each stock separation and maintain the time-series of catch composition.

The assessment for herring in $6 . a \mathrm{~N}$ includes only the autumn spawning component around Cape Wrath. The spring-spawning herring in the Minch area have not yet been split out from the acoustic survey and are no longer assessed by HAWG.

4.9 Ecosystem Considerations

Herring constitute some of the highest biomass of forage fish to the west of Scotland and Ireland, and are thus an integral part of the ecosystem. As a dominant planktivore, herring link zooplankton production with higher trophic level predators that eat them, including fish, sea mammals and birds. Ecosystem models of the West of Scotland (Bailey et al., 2011; Alexander et al., 2015) show herring to be an important mid-trophic level species along with sprat, sandeel, and horse mackerel. They can also act as predators on other fish species by their predation on fish eggs at certain times of year (ICES, 2014a). Work using a length-based ecosystem modelling, suggests a link between herring biomass and North Sea cod (Speirs et al., 2010), via the predation of cod eggs by herring.

As herring constitute an important part of the overall biomass of plankton feeding and forage fish in the west of Scotland and Ireland ecosystem, impacts from changes in productivity from environmental drivers are likely to be widely felt.

4.10 Changes in the Environment

Temperatures in this area have been increasing over the last number of decades, and there are indications that salinity is also increasing (ICES 2006). It is considered that this may have implications for herring. In addition, temperature increases and a positive AMO (Atlantic multi-decadal oscillation) index are thought to be related to drops in weight-at-age in Celtic Sea herring (Lyashevska, 2020). With environmental changes predicted to continue, the impacts on herring in 6.aN are uncertain.

Table 4.1.6. Herring in division 6.aN. ICES estimated catches by country. Units: Tonnes

Year	Denmark	Faroe Islands	France	Germany	Ireland	Netherlands	Lithuania	Norway	UK	Unallocated	Discards*	Total	Area misre- ported	ICES estimate
1992	0	0	119	5640	7985	8000	0	2389	32730	-5485	200	51578	-22593	28985
1993	0	0	818	4693	8236	6132	0	7447	32602	-3735	0	56175	-24397	31778
1994	0	274	5087	7938	6093	8183	0	30676	-4287	700	0	54664	-30234	24430
1995	0	0	3672	3733	3548	7808	0	4840	42661	-4541	0	61271	-32146	29575
1996	0	0	2297	7836	9721	9396	0	6223	46639	-17753	0	64359	-38254	26105
1997	0	0	3093	8873	1875	9873	0	4962	44273	-8015	62	64995	-29766	35233
1998	0	0	1903	8253	11199	8483	0	5317	42302	-11748	90	65799	-32446	33353
1999	0	0	463	6752	7915	7244	0	2695	36446	-8155	0	61514	-23623	29736
2000	0	0	870	4615	4841	4647	0	0	22816	0	0	37789	-14627	23162
2001	0	0	760	3944	4311	4534	0	0	21862	277	0	35688	-10437	25251
2002	0	800	1340	3810	4239	4612	0	0	20604	6244	0	41649	-8735	32914
2003	0	400	1370	2935	3581	3609	0	0	16947	2820	0	31622	-3581	28081
2004	0	228	625	1046	1894	8232	0	0	17706	3490	123	33344	-6885	26459
2005	0	1810	613	2691	2880	5132	0	0	17494	0	772	31392	-17263	14129
2006	0	570	701	3152	4352	7008	0	0	18284	0	163	34230	-6884	27346
2007	0	484	703	1749	5129	8052	0	0	17618	0	0	33735	-4119	29616
2008	0	927	564	2526	3103	4133	0	0	13963	0	0	25216	-9162	16054

Year	Denmark	Faroe Islands	France	Germany	Ireland	Netherlands	Lithuania	Norway	UK	Unallocated	Discards*	Total	Area misre- ported	ICES estimate
2009	0	1544	1049	27	1935	5675	0	0	11076	0	0	21306	-2798	18508
2010	0	70	511	3583	2728	3600	0	0	12018	0	95	22510	-2728	19877
2011	0	0	504	3518	3956	1684	0	0	11696	0	0	21358	-3599	17759
2012	0	0	244	1829	3451	3523	0	0	12249	0	0	21296	-2780	18516
2013	0	0	586	4025	3124	1775	0	0	15906	0	30	25446	-2468	22978
2014	0	360	589	3354	2632	1641	770	0	16769	0	0	26115	-4088	22027
2015	0	0	0	3292	1799	956	0	1	15260	0	0	21307	-2506	18801
2016	23	0	0	1028	569	300	0	0	3254	0	0	5174	-450	4724
2017	0	0	0	0	10	835	0	0	3356	0	0	4200	0	4201
2018	39	0	7	17	84	1000	0	4	2911	0	0	4063	0	4063
2019	71	0	46	2	37	653	0	3	928	0	0	1739	0	1739
2020	0	4	0	0	116	85	0	0	51	0	0	256	-79	177
2021	0	0	0	0	242	5	0	0	974	0	0	1221	-106	1115

*unraised discards

Table 4.2.1. Herring in division 6.aN. Catch and sampling effort by nation in the fishery in 2021

Country	Quarter	Sampled catch (t)	Official Catch (t)	No. Hauls	No. of samples	No. measured	No.aged	SOP
UK (SCO)	1	0	39		-		-	0\%
	3	671	751	2	2	182	43	112\%
UK (NI)	3	0	180		-		-	0\%
UK (ENG)	1	0	5		-	-	-	0\%
Ireland	1	0	137		-	-	-	0\%
Netherlands	4	0	5		-	-	-	0\%
Total		671	1115	2	2	182	43	112\%

Table 4.2.2. Herring in division 6.aN. Catch in number. Units: Thousands

Year	1	2	3	4	5	6	7	8	9+
1957	6496	74622	58086	25762	33979	19890	8885	1427	4423
1958	15616	30980	145394	39070	24908	27630	17405	9857	7159
1959	53092	67972	35263	116390	24946	17332	16999	7372	8595
1960	3561	102124	60290	22781	48881	11631	10347	6346	4617
1961	13081	45195	61619	33125	22501	12412	5345	4814	2582
1962	55048	92805	22278	67454	44357	19759	24139	6147	7082
1963	11796	78247	53455	11859	40517	26170	8687	13662	6088
1964	26546	82611	70076	26680	7283	24227	18637	8797	15103
1965	299483	19767	62642	59375	22265	5120	22891	18925	19531
1966	211675	500853	33456	60502	40908	19344	5563	17811	27083
1967	207947	27416	218689	37069	39246	29793	11770	5533	25799
1968	220255	94438	20998	159122	13988	23582	15677	6377	10814
1969	37706	92561	71907	23314	211243	21011	42762	26031	26207
1970	238226	99014	253719	111897	27741	142399	21609	27073	24082
1971	207711	335083	412816	302208	101957	25557	154424	16818	31999
1972	534963	621496	175137	54205	66714	25716	10342	55763	16631
1973	51170	235627	808267	131484	63071	54642	18242	6506	32223
1974	309016	124944	151025	519178	82466	49683	34629	22470	21042
1975	172879	202087	89066	63701	188202	30601	12297	13121	13698
1976	69053	319604	101548	35502	25195	76289	10918	3914	12014

Year	1	2	3	4	5	6	7	8	9+
1977	34836	47739	95834	22117	10083	12211	20992	2758	1486
1978	22525	46284	20587	40692	6879	3833	2100	6278	1544
1979	247	142	77	19	13	8	4	1	0
1980	2692	279	95	51	13	9	8	1	0
1981	36740	77961	105600	61341	21473	12623	11583	1309	1326
1982	13304	250010	72179	93544	58452	23580	11516	13814	4027
1983	81923	77810	92743	29262	42535	27318	14709	8437	8484
1984	2207	188778	49828	35001	14948	11366	9300	4427	1959
1985	40794	68845	148399	17214	15211	6631	6907	3323	2189
1986	33768	154963	86072	118860	18836	18000	2578	1427	1971
1987	19463	65954	45463	32025	50119	8429	7307	3508	5983
1988	1708	119376	41735	28421	19761	28555	3252	2222	2360
1989	6216	36763	109501	18923	18109	7589	15012	1622	3505
1990	14294	40867	40779	74279	26520	13305	9878	21456	5522
1991	26396	23013	25229	28212	37517	13533	7581	6892	4456
1992	5253	24469	24922	23733	21817	33869	6351	4317	5511
1993	17719	95288	18710	10978	13269	14801	19186	4711	3740
1994	1728	36554	40193	6007	7433	8101	10515	12158	10206
1995	266	82176	30398	21272	5376	4205	8805	7971	9787
1996	1952	37854	30899	9219	7508	2501	4700	8458	31108
1997	1193	55810	34966	31657	23118	17500	10331	5213	9883
1998	9092	74167	34571	31905	22872	14372	8641	2825	3327
1999	7635	35252	93910	25078	13364	7529	3251	1257	1089
2000	4511	22960	21825	51420	15504	9002	3897	1835	576
2001	147	83318	15368	9569	25175	9544	6813	4741	1028
2002	992	38481	93975	9014	18113	28016	9040	1547	1422
2003	56	33331	46865	53766	7462	4344	12818	9187	1407
2004	0	7235	23483	29421	48394	4151	8100	9023	4265
2005	182	9632	23236	20602	10237	9783	1014	1194	1430

Year	1	2	3	4	5	6	7	8	9+
2006	132	6691	9186	13644	41067	27781	20972	3041	5088
2007	130	34326	17754	6555	14264	30566	21517	13585	4242
2008	0	7898	13039	5427	3219	5688	14832	8142	8968
2009	1923	11508	10475	16586	8332	5688	7514	11793	9443
2010	10074	20339	16331	9957	14608	6322	4322	5388	13199
2011	1667	40587	15782	10333	7190	5071	3164	2611	7225
2012	979	14952	46647	9704	8097	6311	3873	1129	4013
2013	0	13681	18181	53116	11681	7093	5098	4324	5031
2014	0	8705	15144	21063	42229	7130	2944	2854	3511
2015	231	10854	13937	15716	19386	21621	6397	1932	1250
2016	12	8148	3341	3197	2791	2821	3148	739	431
2017	0	1122	11929	4082	2075	1443	1416	767	273
2018	0	1508	3215	6873	5253	3068	844	852	680
2019	1504	1333	1035	2007	3100	1003	214	79	42
2020	145	110	206	234	156	191	118	11	20
2021	0	3188	1748	378	378	449	295	35	83

Table 4.2.3. Herring in division 6.aN. Weights at age in the catch. Units: kilograms

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$9+$
1957	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1958	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1959	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1960	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1961	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1962	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1963	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1964	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1965	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1966	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185

Year	1	2	3	4	5	6	7	8	9+
1967	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1968	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1969	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1970	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1971	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1972	0.079	0.104	0.13	0.158	0.164	0.17	0.18	0.183	0.185
1973	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1974	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1975	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1976	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1977	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1978	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1979	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1980	0.09	0.121	0.158	0.175	0.186	0.206	0.218	0.224	0.224
1981	0.08	0.14	0.175	0.205	0.231	0.253	0.270	0.284	0.295
1982	0.08	0.14	0.175	0.205	0.231	0.253	0.270	0.284	0.295
1983	0.08	0.14	0.175	0.205	0.231	0.253	0.270	0.284	0.295
1984	0.069	0.103	0.134	0.161	0.182	0.199	0.213	0.223	0.231
1985	0.113	0.103	0.173	0.196	0.215	0.23	0.242	0.251	0.258
1986	0.073	0.143	0.183	0.211	0.22	0.238	0.241	0.253	0.256
1987	0.08	0.112	0.157	0.177	0.203	0.194	0.24	0.213	0.228
1988	0.082	0.142	0.145	0.191	0.19	0.213	0.216	0.204	0.243
1989	0.079	0.129	0.173	0.182	0.209	0.224	0.228	0.237	0.247
1990	0.084	0.118	0.16	0.203	0.211	0.229	0.236	0.261	0.271
1991	0.091	0.119	0.183	0.196	0.227	0.219	0.244	0.256	0.256
1992	0.089	0.128	0.158	0.197	0.206	0.228	0.223	0.262	0.263
1993	0.083	0.142	0.167	0.19	0.195	0.201	0.244	0.234	0.266
1994	0.106	0.142	0.181	0.191	0.198	0.214	0.208	0.277	0.277
1995	0.081	0.134	0.178	0.21	0.23	0.233	0.262	0.247	0.291

Year	1	2	3	4	5	6	7	8	9+
1996	0.089	0.136	0.177	0.205	0.222	0.223	0.219	0.238	0.263
1997	0.097	0.138	0.159	0.182	0.199	0.218	0.227	0.212	0.199
1998	0.076	0.13	0.158	0.175	0.191	0.21	0.225	0.223	0.226
1999	0.1084	0.1327	93910	25078	13364	7529	3251	1257	1089
2000	0.0834	0.1373	0.1637	0.1829	0.2014	0.2147	0.2394	0.2812	0.2526
2001	0.0490	0.1398	0.1628	0.1828	0.1922	0.1959	0.2047	0.2245	0.2716
2002	0.1066	0.1464	0.1625	0.1728	0.1595	0.1780	0.1863	0.2449	0.2802
2003	0.0609	0.1448	0.1593	0.1690	0.1852	0.1997	0.1942	0.1854	0.2938
2004	0	0.1541	0.1732	0.1948	0.2160	0.2197	0.1986	0.1885	0.3030
2005	0.1084	0.1327	0.1632	0.1845	0.2108	0.2258	0.2341	0.2556	0.2496
2006	0.0908	0.158	0.1676	0.1929	0.2076	0.2251	0.2443	0.2615	0.275
2007	0.1152	0.1667	0.1881	0.1968	0.2105	0.2214	0.2161	0.2618	0.303
2008	0	0.1705	0.206	0.231	0.2309	0.2489	0.2529	0.284	0.2877
2009	0.1121	0.1726	0.2141	0.2379	0.2457	0.2535	0.2599	0.2549	0.273
2010	0.0818	0.1549	0.1883	0.2129	0.2337	0.2394	0.2369	0.2400	0.2549
2011	0.0613	0.155	0.1894	0.2178	0.234	0.2388	0.247	0.2463	0.2522
2012	0.0725	0.1469	0.1894	0.2076	0.2161	0.2261	0.2408	0.2817	0.2467
2013	0	0.1441	0.1746	0.1965	0.202	0.2124	0.2304	0.2343	0.2476
2014	0	0.1451	0.1877	0.203	0.2279	0.2449	0.2608	0.2614	0.2835
2015	0.0769	0.1425	0.1795	0.2059	0.2136	0.2307	0.2386	0.2454	0.2685
2016	0.1	0.144	0.178	0.204	0.219	0.229	0.237	0.251	0.257
2017	0	0.137	0.167	0.187	0.204	0.213	0.221	0.233	0.249
2018	0	0.126	0.151	0.174	0.190	0.208	0.218	0.238	0.246
2019	0.089	0.129	0.148	0.182	0.199	0.210	0.220	0.257	0.244
2020	0.074	0.125	0.115	0.147	0.180	0.192	0.210	0.140	0.222
2021	0	0.137	0.158	0.178	0.202	0.201	0.214	0.278	0.238

Table 4.3.1. Herring in division 6.aN. Total numbers (millions) and biomass (thousands of tonnes) of 6.aN autumn spawning herring from the Malin Shelf Survey June-July 2021. Mean weights, mean lengths and fraction mature by age ring.

Age (ring)	Numbers	Biomass	Maturity	Weight (g)	Length (cm)
0	0	0.0	0.00	0.0	0.0
1	20.5	1.3	0.00	63.1	19.5
2	140.0	15.3	0.45	109.5	23.0
3	57.4	9.2	1.00	160.9	25.8
4	41.9	7.0	1.00	166.1	26.1
5	14.0	2.8	1.00	198.0	27.9
6	14.6	4.0	1.00	272.4	30.9
7	33.7	8.4	1.00	248.8	30.0
8	10.2	2.8	1.00	269.9	31.5
9+	9.1	2.2	1.00	239.5	30.1

Immature	98.0	9.0	91.8	21.8
Mature	243.4	43.9	180.3	26.7
Total	341.4	52.9	0.71	154.9

Table 4.3.2. Herring in division 6.aN. Numbers-at-age (millions) and SSB (thousands of tonnes) of 6.aN autumn spawning herring from the Malin Shelf herring acoustic survey time-series. Age (rings) from acoustic surveys 2014 to 2021.

Year\Ag e (Rings)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{\text { SSB }}$
2014	0.00	2.75	13.50	21.36	85.13	20.39	5.35	2.41	6.65	32.46
2015	0.00	35.56	139.03	127.40	97.37	106.38	24.68	3.81	5.76	107.11
2016	0.00	5.81	15.50	13.62	11.15	8.83	5.22	0.06	0.73	10.87
2017	0.00	0.71	35.75	25.40	26.44	11.41	9.93	2.48	1.86	21.86
2018	92.96	41.07	14.27	48.31	16.67	3.34	10.05	5.49	2.28	20.66
2019	0.00	17.17	17.32	15.80	20.17	4.64	0.16	0.00	0.51	10.51
2020	59.05	103.81	49.51	14.96	12.44	28.21	11.01	0.00	0.00	26.07
2021	20.48	140.01	57.44	41.87	13.98	14.57	33.73	10.25	9.07	43.89

Table 4.4.1.1. Herring in division 6.aN. Mean weights-at-age (kg) of 6 .aN autumn spawning herring from the Malin Shelf herring acoustic survey time-series. Age (rings) from acoustic surveys 2014 to 2021.

Year\Ag e (Rings)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
2014		0.142	0.179	0.182	0.212	0.216	0.229	0.226	0.255
2015		0.159	0.184	0.198	0.214	0.220	0.219	0.198	0.220
2016		0.147	0.154	0.174	0.195	0.209	0.201	0.219	0.225
2017		0.130	0.175	0.184	0.197	0.207	0.211	0.238	0.221
2018	0.051	0.103	0.164	0.181	0.203	0.206	0.200	0.232	0.217
2019		0.121	0.140	0.175	0.208	0.214	0.204		0.212
2020	0.050	0.112	0.149	0.168	0.198	0.199	0.220		
2021	0.063	0.110	0.161	0.166	0.198	0.272	0.249	0.270	0.239

Table 4.4.2.1. Herring in division 6.aN. Maturity at age of 6 .aN autumn spawning herring from the Malin Shelf herring acoustic survey time-series. Age (rings) from acoustic surveys 2014 to 2021.

Year\Age (Rings)	1	2	3	4	5	6	7	8	9
2014		0.98	1	0.95	1	1	1	1	1
2015		0.88	0.99	0.99	1	1	1	1	1
2016		1	0.98	1	1	1	1	1	1
2017		1	1	1	1	1	1	1	1
2018	0	0.37	0.97	1	1	1	1	1	1
2019		0.51	0.48	1	1	1	1		1
2020	0	0.47	0.97	1	1	1	1		
2021	0	0.45	1	1	1	1	1	1	1

Table 4.4.3.1. Natural mortality estimates for herring in 6.aN.

Age (Rings)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{3}$ to $\mathbf{6}$
	0.528	0.303	0.255	0.225	0.207	0.193	0.186	0.180	0.180	0.220

Table 4.6.1. F $_{\text {MSY proxy }}$ calculation for herring in $6 . a \mathrm{~N}$ under the constant harvest rate rule.

| Year | Survey
 Index | ICES
 landings | Modal
 Catch | Lc | Mean>Lc LF=M | f | Cy/ly | FMSY proxy | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2014 | 32460 | 22027 | 28.5 | 27.5 | 29.448 | 28.801 | 1.022 | 0.679 | 0.335 |
| 2015 | 107113 | 18801 | 29 | 27.5 | 29.208 | 28.801 | 1.014 | 0.176 | 0.335 |
| 2016 | 10870 | 4724 | 29.5 | 25.5 | 28.691 | 27.666 | 1.037 | 0.435 | 0.335 |
| 2017 | 21863 | 4200 | 27 | 25.5 | 27.702 | 27.666 | 1.001 | 0.192 | 0.335 |
| 2018 | 20663 | 4063 | 27 | 25 | 27.595 | 27.382 | 1.008 | 0.197 | 0.335 |
| 2019 | 10508 | 1739 | 23.5 | 20 | 23.982 | 24.543 | 0.977 | 0.165 | 0.335 |
| 2020 | 26070 | 177 | $N A$ | 0.007 | 0.335 |
| 2021 | 43886 | 1115 | 25.5 | 24 | 26.084 | 26.814 | 0.973 | 0.025 | 0.335 |

Figure 4.1. Location of ICES area 6.a (North) and adjacent areas with place names.

Figure 4.1.3.1. Acoustic survey recordings of herring and 'maybe herring' marks and locations of commercial catches 2016-2019 in defined Strata 1 and 2, showing overlap with previous survey Areas 2,3,5 (inset) and noting that the distribution of catches reflect spawning grounds. Catches (black dots) scaled proportionally. Acoustic marks are not scaled and denote location only.

Figure 4.1.7.1. Length-frequency of commercial catches in division 6 .aN. Since 2016 a monitoring TAC has been in place for this area. Some data in 2018 were reported to a 1 cm resolution, and therefore all data in this year have been binned to this level in this year. No length data from commercial hauls are available for 2020.

Catch in $6 . a N$

199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022 Year

Figure 4.2.1. Catch numbers at age for herring in division 6.aN.

Figure 4.2.2. Weights at age in the catch for herring in 6.aN.

Figure 4.3.1.1. Catch numbers at age for 6.aN autumn spawning herring from the Malin Shelf herring acoustic survey.

MSHAS 6.aN autumn spawners weights at age

Figure 4.4.1.1. Weights-at-age for 6.aN autumn spawning herring from the genetically split Malin Shelf Herring acoustic survey.

Figure 4.6.1. ICES rectangles where market sample data have been collected from 2000-2015.

Figure 4.6.2. Growth curve calculated from commercial catches in division 6.aN, and gives an estimated L_{∞} value of 30.51 cm with an associated k value of 0.335

Cy/ly value over time.

Figure 4.6.3. The ratio $C / /$ for 6.aN herring 2014-2021, from which the $F_{M S Y}$ proxy value is calculated.

5 Herring (Clupea harengus) in divisions 6.aS and 7.b-c

This is the first time since 2015 that the working group presents a separate assessment of herring in Division 6.aS, 7.b-c. This follows from the benchmark workshop, ICES WKNSCS (2022).

The WG noted that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout this section. However, if the word "age" is used, it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings", which is not the case for the spring spawners. Further elaboration on the rationale behind this can be found in the Stock Annex. It is the responsibility of any user of age-based data for any of these herring stocks to consult the stock annex and if in doubt, consult a relevant member of the Working Group.

5.1 The Fishery

5.1.1 Advice applicable to 2021-2022

ICES gave separate advice for the stocks in $6 a S, 7 b, c$ and $6 a N$ up to 2015 and advice for the combined stocks since 2016. After the benchmarking process in early 2022 (WKNSCS, 2022), the stocks were assessed separately again.

In February 2016, the European Commission asked ICES to provide advice on a TAC of sufficiently small size to enable ongoing collection of fisheries-dependent data and continue the long-term catch-at-age dataset. This monitoring TAC was 4840 t , split of 3480 t in 6 .aN and 1360 t in $6 . \mathrm{aS}$ and 7.b-c for 2021 (EU 2021/92). Since 2016 the fishery has been restricted to a monitoring fishery with a TAC of 1,630 t between 2016-2019, and 1,360 tin 2020 and 2021.

The advice in 2022 is provided for herring in $6 a S, 7 b, c$ and is a category 3 assessment, which is a biomass or abundance trends based assessment. The method applied is a constant harvest rate (method 2.2, ICES 2021g) that uses length, survey and catch data from 2014-2021.

5.1.2 Changes in the fishery

Since 2016 the fishery has been restricted to a monitoring fishery with a TAC of 1630 t between 2016 - 2019, and 1360 t in 2020 and 2021. The monitoring TAC, introduced in 2016 and continued up to 2021, has led to a change in the pattern of the fishery. In previous years, larger vessels dominated in the fishery and took their quotas often in one haul, in a somewhat opportunistic basis. The monitoring TAC was allocated to vessels in six different categories from over 24 m down to under 12 m . In $6 . \mathrm{aS}$, two main areas have been fished in recent years, particularly in Lough Swilly and in inshore areas of Donegal Bay. There has been little effort in $7 . b$ in recent years. In 6.aS a wide size range of pair and single trawlers predominate, and there are also smallscale artisanal fisheries using drift and ringnets in coastal waters.

The Herring fishery in 2021 opened on 1st November and was concentrated in 6.aS, primarily in two statistical rectangles (Figure 5.1.2). This was similar to the 2019 and 2020 fishery. As in 2020, there was also a fishery in January and February to allow for additional data collection.

5.1.3 Regulations and their affects

The north-south boundary between $6 . \mathrm{aN}$ and $6 . \mathrm{aS}$ (56° parallel) is not appropriate as a boundary, because it traverses the spawning and feeding grounds of $6 . \mathrm{aS}$ herring. Transboundary catches have occurred along this line in the past, although this has been less of an issue recently.

5.1.4 Catches in 2021

The Working Group's best estimate of removals from the stock is shown in Table 5.1.4 for herring in $6 . a S$ and $7 . b-c$. The time series from 1957-2021 is presented in Figure 5.1.4 and the Irish catch map is shown in Figure 5.1.2. In 2021 the majority of the catch was taken in the fourth quarter mainly in 6aS and close inshore.

5.2 Biological Composition of the Catch

5.2.1 Catches in numbers-at-age

Catch-at-age data for this fishery are shown in Table 5.2.1.1 and Figure 5.2.1 and in percentage terms since 1994 in Table 5.2.1.2. In 2021, the fishery was dominated by 2 - 5 -ringers, accounting for 95% of the catch (Table 5.2.1.2). Smaller proportions of 6-9 ringers are evident in the catch data and account for 5% of the total. 3 ringers are the dominant age class (58%) followed by 4 ringers $(15 \%), 2(13 \%), 5(9 \%) .2019$ was the first year since 2012 that 1 ringers are well represented in the catch-at-age data. These have followed through as 2 ringers in 2020 and 3 ringers in 2021.
The proportion-at-age in the catches from the fishery are similar to the catches from the split Malin shelf acoustic survey for most years. In 2020 the proportions of 1 ringers was higher in the acoustic survey than the catch while in 2019 a higher proportion of 1 ringers were found in the catch (Figure 5.3.1.3). In 2021 the catch picks up a high proportion of 3 ringers (2018 year class) while the survey peaks at 2 ring (2019 year class).

5.2.2 Quality of the catch and biological data

The 6.aS, 7.b-c stock is well sampled and there have been sufficient samples to achieve the precision level sought by the ICES advice on the monitoring fishery since 2016. The number of samples and the associated biological data collected by Ireland are shown in Table 5.2.2.

5.3 Fishery-independent Information

5.3.1 Acoustic surveys (A9526)

The Malin Shelf Acoustic Survey (MSHAS) is carried out annually in June/July. The Malin Shelf index includes all herring in the stock complex located in ICES areas $6 . a$ and 7.b, c. The survey area is bounded in the west and north by the 200 m depth contour, in the south by the $53.5^{\circ} \mathrm{N}$ latitude, and in the east by the $4^{\circ} \mathrm{W}$ longitude. The survey targets herring of $6 . \mathrm{aN}$ and $6 . \mathrm{aS}$ spawning origin in mixed feeding aggregations on the Malin Shelf in the summer. Full details about the survey and the genetic sampling and splitting procedure are presented in O'Malley et al. 2021 and summarised below.

Genetic samples have been collected since 2014 and averaged about 6 samples per year, but varied between 3 samples in 2019 and 10 samples in 2020. The target for an individual sample was 120 fish per haul, with most sampling events reaching that target. In the early years of the project,
sampling effort was targeted only at fish $>23 \mathrm{~cm}$, this was to align with a corresponding effort that was underway looking into stock splitting using morphometric methods; a continuation of the SGHERWAY project methods (ICES SGHERWAY, 2010). Prior to 2018, hauls comprising mostly $<23 \mathrm{~cm}$ fish were not sampled. The stock had also been at a low level during these years, some of the lowest in the time-series, meaning that obtaining samples on the MSHAS survey was generally very difficult during this time.

Application of the Genetic Assignments

Genetic Analyses: Baseline spawning samples and putatively mixed MSHAS samples were analysed with a panel of 45 informative genetic markers (45 SNPs) derived from whole genome sequencing analyses undertaken as part of a Norwegian/Swedish/Danish funded project entitled 'GENetic adaptations underlying population Structure IN herring' (GENSINC) (Han et al., 2020). The baseline genetic analyses indicated that herring in ICES Division 6.a comprise at least three distinct populations; $6 . \mathrm{aS}$ herring, $6 . \mathrm{aN}$ autumn spawning herring and $6 . \mathrm{aN}$ spring spawning herring. The $6 . a S$ herring are a primarily a winter spawning population though there is a later spawning component present in the area also. These components are currently inseparable and for the purposes of stock assessment should be combined as $6 . a S$ herring. The Celtic Sea herring and Irish Sea herring are distinct from each other and from the populations in ICES Divisions 6.a however the current genetic marker panel is not optimised for their inclusion in the baseline assignment dataset. This is not considered to be a significant issue as there is no robust evidence that Irish Sea herring are found in large abundance west of the Hebrides during summer. Subsequent to the completion of the EASME project further analyses were undertaken and additional baseline samples added to the $6 . a S$ herring and $6 . a \mathrm{~N}$ autumn spawning herring baselines. The revised baseline was used for the final assignment of the MSHAS 2014-2020 samples.

Genetic Assignment method: A Support Vector Machine learning (SVM) algorithm was used for classification of fish from mixed MSHAS samples to baselines, based on (Approach 1) prior knowledge of baseline sample origin and (Approach 2) genetic clustering of baseline samples. Approach 2 is more precautionary but neither approach would artificially inflate either stock in the resulting split as each approach allows for 'mixed' and 'unknown' categories that would not be included in either 6 aN or 6 aS indices. Both approaches resulted in self-assignment rates of $>90 \%$ indicating a high level of assignment accuracy and both were endorsed in an independent review by the ICES Stock Identification Methods Working Group (ICES SIMWG 2021). The more objective classification method of approach 2 , genetic clustering, was therefore chosen by the sub-group. All further reference to genetic assignment refers to approach 2.

Successful Assignment Threshold (0.67): A probability of classification of 0.67 was used as the threshold for successful stock assignment of an individual herring. This threshold indicated that an individual was twice as likely to be from one baseline group than the alternate group. The effects of different assignment thresholds were investigated by the sub-group. The results of this work are presented in the working document. Most resulting probabilities for approach 2 were in the region of 0.95 and the sub-group decided that a threshold probability of 0.67 struck an appropriate balance between certainty of stock assignment and retaining as many fish as possible in the analysis.

Genotyping fails vs. threshold fails: It was decided by the sub-group that genotyping fails were to be disregarded from the analysis (e.g. samples that could not be genetically analysed due to DNA degradation or did not pass genotyping quality control etc. See section 4.8 page 81 of the EASME report for details Farrell et al 2021). Such samples were NOT included as 'unknown' her27.6 a bc when proportioning biomass. Threshold failures however WERE included in the analysis and were therefore counted towards 'unknown' her-27.6a7bc.

StoX survey analysis software: The group decided that using StoX (Johnsen et al. 2019) would be the preferred method to split the MSHAS index. StoX is the accepted survey analysis software tool used by MSHAS and the wider WGIPS group dealing with acoustic surveys for herring in the Northeast Atlantic. StoX programmers (IMR, Norway) designed the StoX project and functions to suit the MSHAS split work. This helps ensure that the project is easily implemented in the Transparent Assessment Framework (ICES TAF) and that the survey projects can be re-run by any StoX user by downloading files from the ICES DB. The StoX project is designed to include bootstrapping of results to generate associated CVs.

MSHAS Splitting Results

The SSB time series for each index from 2014-2021 is presented in Figure 5.3.1.1. Herring in 6aS, 7 bc (her-irlw) shows a significant increase in biomass since the low SSB seen in all components in 2016. The catch numbers at age from the split are presented in Table 5.3.1.1. The CVs on the split survey estimates are within expected values for acoustic surveys for herring in this area (Table 5.3.1.1). The mean weights from the split survey are presented in Table 5.3.2.2. The maturity at age from the survey shows the most variability at 2 winter ring, with between 25% and 100% of fish mature at that age (Table 5.3.1.3). Cohort tracking of the catch numbers at age of the split MSHAS for $6 a S, 7 . b, \mathrm{c}$ is shown in figure 5.3.1.2. Some cohorts can be tracked and this is expected to improve when more data is added.

A comparison of the proportions at age in the catch versus the split MSHAS 6aS,7b, c index is shown in figure 5.3.1.3. Smaller and younger fish, particularly 1-wr fish are caught sporadically on this survey, and in some years don't appear in the samples on the survey. Younger immature fish may be outside of the survey area during the survey, and can be difficult to sample in some years.

The internal consistency for the split Malin shelf survey is presented in Figure 5.3.1.4. and is variable across ages. The time series is relatively short and the internal consistency is expected to improve when more data becomes available.

5.3.2 Industry-Science Acoustic survey

An industry science acoustic survey has been carried out in $6 a S, 7 b, c$ since 2016. The survey design has been evolving since its inception in 2016. The survey area covered in the first 3 years (201618) included significant offshore coverage in areas 6 aS and 7 b . The survey in 2019 was much reduced and mostly confined to inshore bays because of poor weather. The survey design changed in 2020 compared with previous years in that only 6 core areas with prior knowledge of herring distribution from the monitoring fishery were targeted for surveying. This was largely based on the results from ICES WKHASS (ICES 2020) and from lessons learned in the previous surveys in this area from 2016-2019. This design resulted in a much reduced survey area compared to previous years, but with better coverage of most of the important inshore bays where the monitoring fishery takes place. The survey design objective remained the same; to capture the distribution of winter spawning herring in the $6 \mathrm{aS}, 7 \mathrm{~b}$ area. The timing of surveys in the core areas was flexible from the outset by design. It was decided that greater flexibility would allow for a targeted spatial and temporal approach, which avoided the inevitable poor weather that can happen in this area during this time of the year and which lead to reduced survey effort in 2019, but also to some extent in 2017 and 2018. Using smaller vessels allowed surveys to be conducted in shallow inshore areas where herring are known to inhabit during this time of the year.

The 2021 survey again focused on 6 core areas and was carried out in December 2021 and January 2022. The 2021 survey was conducted using five vessels; MFVs Crystal Dawn WD201, Ros Ard SO745, Girl Kate SO427, K-Mar-K SO695 and Rachel D SO976. This survey is the sixth consecutive annual acoustic survey for pre-spawning herring in this area at this time of the year. A pole-
mounted system with a combi 38 kHz (split) 200 kHz (single) transducer was used successfully for the survey on small vessels $(<18 \mathrm{~m})$ in 2021. Herring were again distributed inshore in shallow areas, and the improved survey design and use of small vessels for the survey resulted in a good measure of uncertainty $(C V=0.23)$. The stock was not overall contained in 2021, particularly in the Donegal Bay area (Malin Beg, etc.) and more effort is required to target surveys earlier and later than December and January when herring tend to show up in these areas in difficult to predict patterns. Very strong herring marks were evident in Lough Foyle and Lough Swilly in the channel in marks that extended for many miles in some cases. This was in areas where smaller boats in the fishery were concentrating effort. Herring had left the Swilly by mid-December and the Foyle by mid-January. There was also a series of strong herring marks in Bruckless Bay, Fintra Bay (SE of Inishduff) and Inver Bay in discreet areas. The monitoring fishery was being conducted on smaller boats in the same areas and close to the same time as the survey and biological samples from some of these vessels were used. There was a fairly tight distribution of length classes in all hauls, with most hauls dominated by larger (> 22 cm) mature fish. The 2 - and $3-w r$ age class of herring accounted for 74% of the overall numbers in 2021. The total stock biomass (TSB) estimate of 35,944 tonnes is considered to be a minimum estimate of herring in the $6 \mathrm{aS}, 7 \mathrm{~b}$ survey area at the time of the survey. The flexible survey design and focusing on discreet areas was generally successful and is providing a good template for future survey designs. The NASC values from the 2020 and 2021 surveys is presented in Figure 5.3.2.1.

The full time series of herring acoustic surveys carried out in this area since 1994 is presented in Table 5.3.2.1. Surveys were not conducted every year and there are gaps in the time series. These surveys had different timing and design changes and are not comparable. The biomass estimates from the industry survey (2016-2021) are included in this table.

5.3.3 Bottom-trawl surveys

As part of the benchmark (WKNSCS, 2022), a herring index was developed from three groundfish surveys (IBTS), namely

- IE-IGFS - Irish Groundfish Survey (2003-2020) (G7212)
- SWC-IBTS - Scottish West Coast Groundfish Survey (1985-2009) (G1179, G4299)
- SCOWCGFS - Scottish West Coast Groundfish Survey (2011-2020) (G4748, G4815)

Using the same methodology as that used for the index calculations for many herring stocks, the model combines GAMs and continuation ratio logits (CRL) to model the probability of age given fish length and location. A geographic split was used, i.e. hauls were only included in the index calculation if they occurred within ICES divisions 6 aS or $7 \mathrm{~b}, \mathrm{c}$ (Figure 5.3.3.1). The optimum model includes the effect of haul location, depth and time of day. The internal consistency of this time series is presented in Figure 5.3.3.2. The internal consistency of the index is poor outside of the range 2-7 and ages 1,8 and 9 were excluded from exploratory assessment runs.

5.4 Mean Weights-at-age, Maturity-at-age and natural mortality

5.4.1 Mean weight-at-age

Weights-at-age in the catches for 6.aS, 7.b-c are presented in Table 5.4.1.1 and Figure 5.4.1.1. Catch weights are calculated from Irish sampling data from all quarters of the fishery. Over much of the time series the mean weight there is little trend with weights stable from the late 80 s up to the late 00s. The mean weights have been declining since about 2012 for many age classes. Increases can be seen for many age classes in 2021.

Weights-at-age in the stock are presented in Table 5.4.1.2 and Figure 5.4.1.2. Variable mean weights are available from 1985. In the previous separate assessment, the stock weights were calculated from Irish samples collected during the main spawning period that extends from October to February. These weights are used from 1985-2007. Mean weights from the Malin shelf acoustic survey are used from 2008-2013 and from the split acoustic survey from 2014. There is a downward trend in the stock weights over time but it is not as pronounced as for the catch weights. Greater variability is seen at the older ages. The weights-at-age in the stock have also increased for many age classes in 2021. In some years there were no 1 wr fish found on the survey. In these years a three year running average is used.

5.4.2 Maturity ogive

The proportions at age of herring in $6 . \mathrm{aS}, 7 \mathrm{~b}-\mathrm{c}$ that are considered mature are presented in Figure 5.4.2. Prior to 2007 a constant maturity ogive was used which assumes $0 \%, 57 \%$ and 96% maturity at 1,2 and 3 wr respectively and from 2008 to the present the ogive is derived from the summer acoustic survey in quarter 3 . The full survey is used from 2008-2013 and the split survey used from 2014-2021. The majority of herring in this area are mature at 4 wr with the greatest annual variability seen for 2 and 3 wr herring. The proportion mature at 2 wr is highly variable without any apparent trend and varies between 25% and 100%. For 3 wr herring the proportion mature varies between 64% and 100%. A high proportion of immature fish were encountered in the 2020 survey. Overall, it is not clear what drives this annual variability and it is also seen for other herring stocks such as North Sea and Irish Sea herring. It is likely a combination of limited sampling of that age group, varying proportions of herring from each population within the survey area and natural variability (ICES, 2015).

5.4.3 Natural mortality

Following the procedure agreed at WKWEST 2015 and applied to other herring stock around Ireland, the natural mortality values for the assessment were updated. The average M at age over the time series 1974-2019 from the 2020 SMS key run was calculated and is presented in figure 5.4.3 with the previous values used in the combined assessment for comparison. The updated values show a lower natural mortality across all ages and are presented in the text table below.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
0.528	0.303	0.255	0.225	0.207	0.193	0.186	0.180	0.180

A Detailed explanation regarding the natural mortality estimates can be found in the Stock Annex.

5.5 Recruitment

There is little information on terminal year recruitment in the catch-at-age data and there are as yet no recruitment indices from the surveys. Numbers of 1-ringers in the catches vary widely but, with the exception of 2012 (2010 cohort), have been consistently low. In 2019, however 1ringers represented a significant proportion (15\%) of the catch-at-age. In 2020 the number of 1ringers in the catch was lower than 2019 but higher than 2013-2018. In 2021 the numbers of 1ringers is lower than 2019 and 2020 and similar to the levels from 2013. Since the mid-1990s recruitment has been low, based on exploratory assessments.

5.6 Assessment of 6.aS and 7.b-c herring

The assessment presented here follows the procedure agreed by the recent benchmark (WKNSCS 2022)

5.6.1 Data Exploration

A comparison of the age structure in the catch data, acoustic survey and IBTS survey, is presented in Figure 5.6.1. In some years the surveys picks up a larger proportion of 1 winter ring fish but this is variable between years. Some years the 1 winter ring fish are not found in the catch or the survey but may be found in considerable quantities the following year as 2 winter ring fish.

1 ringers in 2019 were not found in a high proportion in the acoustic survey but were found in the catch and contributed to a high proportion of the IBTS data. This 2018 year-class was found by the catch and the survey as 2 ringers in 2020 and 3 ringers in 2021.

The 2017 year-class was found in high quantities by the IBTS survey and was strong in the acoustic survey but not in the catch in 2018. In 2019 this 2017 year-class was strong in the catch data and this has followed through to 4 ringers in 2021. The 2019 year-class was strongest in the acoustic survey in 2020 and is seen in significant proportions in 2021 in both surveys but is not as strong in the catch data. The ability of each of the data sources to track cohorts is variable.

The Malin shelf acoustic survey is used as the index in the assessment because this index is split genetically and known to contain fish from this stock only. The IBTS survey was not used in the final assessment as further investigations are needed to evaluate its utility in the assessment. The fact that the series begins in 2003 means it could be an important element to include in future analytical assessments at the next benchmark. The time-series of the Industry/Science acoustic survey is relatively short and the methodology has been evolving so the index was ultimately not included. While the genetically split MSHAS was the best biomass index available for the chr calculation, the reasons behind the variable internal consistency across age pairs need to be further investigated, particularly if this stock is to move to a category 1 or age-based assessment in the future.

5.6.2 Final Assessment for 6.aS and 7.b-c herring

The final assessment method applied to herring in $6 a S, 7 b, c$ and agreed at the 2022 benchmark (WKNSCS) was the category three method 2.2 - constant harvest rate (the chr rule).

5.6.2.1 Calculation of \mathbf{k}

The growth parameter k was calculated using length data from commercial catch sampling. Herring samples from 6 aS and 7 b from 2000-2021 were included in the analysis. This totaled over 594 thousand individual herring caught in a variety of gear types. The R packages 'FSA' and 'nlstools' were used to estimate the growth parameters and to plot the fit of the growth curve (Figure 5.2.6.1). The resulting growth parameters were:

- $\quad \mathrm{k}=0.339$
- \quad Linf $=30.50 \mathrm{~cm}$
- $\quad \mathrm{t} 0=-2.61$

Catches of $6 \mathrm{aS7bc}$ herring have been taken close to the north-west coast of Ireland since the introduction of the monitoring TAC in 2015. To ensure the growth fit was not influenced by mixed catches before 2015, an estimate using length data from 2015-2021 was also run. The resulting k was almost identical. This value is further supported by the literature, with a k of 0.37 for herring north-west of Ireland reported by Brunel and Dickey-Collas (2010); albeit calculated on the weight rather than the length.

As a further test, k was also calculated using length data from the genetically split MSHAS (6aS only). Due to sampling protocols, herring less than 23 cm were not routinely sampled for genetics prior to 2018 so only split data from 2018 onwards were included. The resulting k from this further analysis was 0.5 , which is quite different to the other values presented and would place herring $6 \mathrm{aS7bc}$ in the short lived species bracket. It is thought that this unusual growth estimate is due to the difference in timing of the survey versus the catch, which can be separated by up to 6 months. 1-ringed fish encountered during the summer survey would have recently turned 1 whereas 1 ringed fish in the catch would be approaching 2 . Further work is required to understand the different survey k but nevertheless the most appropriate k to use for the category 3 flowchart and the chr calculation is that from the catch sampling (0.339) as far more data points exist over a much wider timeframe.

5.6.2.2 Calculation of Constant Harvest Rate (chr)

Method 2.2 of WKLIFEX is the constant harvest rate (chr), also called the Fproxy rule or the "Icelandic" rule. It applies a constant harvest rate ($\mathrm{F}_{\text {MSY proxy }}$) that is considered a proxy for an MSY
harvest rate, and applies this to the biomass index (split MSHAS). As per the WKLIFEX (2021) report, advised catch $\left(\mathrm{C}_{y+1}\right)$ is calculated as follows:

$$
C_{y+1}=I_{y-1} \times F_{\text {proxy,MSY }} \times b \times m
$$

Definitions of the components used to calculate chr are presented in Table 5.6.2.2. This information is explained in further detail in the WKLIFEX report (see table 3.4.2.1 of that report for a full description of how FMSY proxy is calculated).

Table 5.6.2.3. shows the estimate of natural mortality (M) used in the exploratory assessments for herring in $6 \mathrm{aS}, 7 \mathrm{bc}$ and various M / k ratio calculations. Most appropriate M / k ratio highlighted in bold.

Target Harvest Rate

The derivation of the target harvest rate, FMSY proxy, from length frequency data requires calculating the target reference length, $\mathrm{Lf}=\mathrm{M}$. Target reference length is calculated using the following equation:

$$
\mathrm{L}_{\mathrm{F}=\mathrm{M}}=\left(0.75 \times \mathrm{Lc}_{(y)}\right)+\left(0.25 \times \mathrm{L}_{\text {inf }}\right)
$$

where L_{c} refers to the length at first catch. This calculation assumes that the M / k ratio is equal to 1.5 (ICES 2018). The actual M / k ratio for $6 \mathrm{aS7bc}$ herring is 0.649 , which is considerably different to the assumed value. ICES Technical Guidelines (2018) state that stock specific M / k values can be applied by using the following alternative Lf=m equation from Jardim et al. (2015):

$$
L_{F=\gamma M, K=\theta M}=\frac{\theta L_{\infty}+L_{c}(\gamma+1)}{\theta+\gamma+1}
$$

Using the assumed M / k of 1.5 and the best estimate of $\mathrm{k}, 0.339$, implies a natural mortality of 0.51 , which differs substantially from that used in the exploratory SAM and ASAP runs: Average for ages 3-6 of 0.22 . It was therefore deemed appropriate to use the stock specific M / k and the Jardim et al. (2015) equation to calculate FmSY proxy, for herring in 6aS,7bc.

All other calculations followed the WKLIFEX protocols.

5.6.2.3 Constant Harvest Rate Results

The split survey index is increasing since 2016 and the latest biomass estimate is above the trigger, which is 1.4 times the lowest observed survey biomass (Figure 5.6.2.3.1).

FMSY proxy is estimated at 0.034 and the target reference length for the latest year is 27.11 cm . Length frequency distribution are presented in Figure 5.6.2.3.2 These values will update for each year of data added to the time series.

The multiplier, m, was set at 0.5 as per ICES WKLIFEX guidelines for this method.
See table 5.6.2.3.1 for full details of the constants and calculations used.

Stability Clause

A stability clause constraining the change in advised catch to -30% or $+20 \%$ is also included. ICES guidelines state the mean of the previous 3 years' catch should be used when calculating the stability clause for the first time, which in this case is appropriate given the uptake of the monitoring quota in those years. It was agreed at WKNSCS that the most appropriate starting value
would be the average catch in the past three years (ICES, 2021h). Subsequent years will use the previously advised catch as the basis of the stability clause.

Summary

Category 3 method 2.2 chr rule using a stock specific M / k value was recommended by the benchmark group. Table 5.6.2.3.2 presents a summary table and resultant advice based on a chr using length, survey and catch data from 2014 - 2021 (inclusive). Note that Fmš proxy, can change with each year of additional data. In conjunction with herring in 6 aN , implementation of these calculations in R is being developed and will be uploaded to TAF.

5.7 State of the Stock

The genetically split Malin shelf acoustic survey abundance and biomass estimates for 2014-2021 (incl.) provide the most reliable index for this stock. The biomass has been increasing since 2016 ($36,706 \mathrm{t}$) with the 2021 estimate of 189,856 the second highest since the time series began in 2014 (Table 5.3.1.1. and Figure 5.3.1.1). Recent catches are among the lowest in the time series. A monitoring TAC has been in place for this stock since 2016 and this has restricted fishing mortality. There is little information on terminal year recruitment in the catch-at-age data and there are as yet no recruitment indices from the surveys. Recruitment of the 2018 year-class was good and this year class is now 3 winter ring and accounted for 58% of the catch numbers at age in 2021.

5.8 Short-term Projections

5.8.1 Short-term projections

No short term forecast was conducted at HAWG 2022.

5.8.2 Yield-per-recruit

No yield-per-recruit analysis was conducted at HAWG 2022.

5.9 Precautionary and Yield Based Reference Points

FMSY proxy is estimated at 0.034 for the years 2014-2021 (inclusive) and the target reference length for the latest year is 27.11 cm . These values will update for each year of data added to the time series.

5.10 Quality of the Assessment

Herring in 6.a South, 7.b-c have been part of a combined assessment with 6.a North since 2015 (ICES, 2015a). Following a benchmark meeting in 2022 (ICES, 2022a), these two stocks are now assessed separately. This was made possible by the development of a genetically split acoustic survey index (MSHAS; ICES, 2022b). This assessment represents one stock 6.aS,7.b-c herring.

A proportion of the acoustic survey biomass remains unassigned to either $6 \mathrm{aS}, 7 \mathrm{bc}$ or 6 aN (Figure 5.10.1). There is a spring spawning category that could be 6 aN fish or late spawning $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ fish. There is also an unknown category that contains a mix of herring from $6 \mathrm{a}, 7 \mathrm{bc}$ and are unknown or below threshold. Continued genetic work will reduce the portion of this unassigned biomass in future years.

The calculation of the length-based indicator (LBI) portion of the constant harvest rate (chr) requires adequate length frequency data from the commercial catch. Catch sampling in $6 . a S, 7 . b-c$ has been comprehensive in all years included in the current assessment (2014-2021).This sampling will continue in future years.

The length at first capture (Lc) and the target reference length were calculated independently for every year of data in order to be more responsive to changes in the stock and/or fishery selectivity as the stock rebuilds. As such, the FMSY proxy reference point may change in subsequent years.

5.11 Management Considerations

From 2015 to 2021 this stock was jointly assessed with herring in 6.a North because it was not possible to segregate the two stocks in commercial catches or surveys. The development of a genetic method to split the summer acoustic survey (MSHAS) into the component stocks means that separate advice is now possible. The survey index has been genetically split from 2014-present but catches are still apportioned geographically (south of $56^{\circ} \mathrm{N}$ and west of $7^{\circ} \mathrm{W}$). This is not an issue in recent years as the agreed 6.aS,7.b-c monitoring TAC has been taken close to the Irish coast at a time when the stocks are geographically isolated. Genetic sampling to split the commercial catches is required, particularly as the stocks recover and fishing expands. The Malin shelf acoustic survey index is an important part of this assessment and the continuation of the genetic sampling and analysis of this survey is also required. New baseline samples should be collected annually if possible and analysed at least with the established 45 SNP panel detailed in Farrell et al. (2021). Particular attention should be paid to building up the baseline samples of late spawning 6.a.S and the spring spawning 6 aN fish to improve the assignment of these fish.

5.12 Ecosystem Considerations

The Atlantic herring, Clupea haregus, is numerically one of the most important pelagic species in North Atlantic ecosystems. As well as being a commercially important species, herring represent an important prey species in the ecosystem west of the British Isles (ICES, 2021). Herring link zooplankton production with higher trophic levels (fish, sea mammals and birds) but also can act as predators on other fish species by their predation on fish eggs (ICES, 2015).

In this area the main oceanographic features are the Islay and Irish Shelf fronts. The waters to the west of Ireland are separated by the Irish shelf front. These fronts create turbulence and this may bring nutrients from deep waters to the surface, promoting the growth of phytoplankton and dinoflagellates in areas of increased stratification. Aggregations of fish are associated with these areas of increased productivity. The Islay front persists throughout the winter due to the stratification of water masses at different salinities (ICES, 2006). The ability to quantify any variability in frontal location and strength is an important element in understanding fisheries recruitment (Nolan and Lyons, 2006). These fronts play an important role in the transport of larvae and juveniles.

5.13 Changes in the Environment

Grainger (1978; 1980) found significant negative correlations between sea surface temperature and catches from the west of Ireland component of this stock at a time-lag of 3-4 years later. This indicates that recruitment responds favourably to cooler temperatures. The influence of the environment on herring productivity means that the biomass will always fluctuate (Dickey-Collas et al., 2010).

Changes in environmental conditions can have significant impacts for a variety of marine fish species. Oceanographic variation associated with temperature and salinity fluctuations appears to impact herring in the first year of life, possibly during the winter larval drift (Grainger, 1980). In addition, temperature increases and a positive AMO (Atlantic multi-decadal oscillation) index are thought to be related to drops in weight-at-age in Celtic Sea herring (Lyashevska, 2020). This study by Lyashevska, 2020 also found more stable size at age for herring in $6 \mathrm{aS}, 7 \mathrm{~b}, \mathrm{c}$ and this may reflect the stocks more northerly distribution, where there is less exposure to sub optimal temperatures. Reductions in size of after 1990 are noted which indicates a vulnerability to future temperature rises.

Table 5.1.4 Herring in divisions 6.aS, 7.b-c. Estimated Herring catches in tonnes, 1992-2021. These data do not in all cases correspond to the official statistics and cannot be used for management purposes.

Year	France	Germany	Ireland	Netherlands	UK (England \& Wales)	UK Scotland	Total landings	Unallocated / area misreported	Discards *	ICES estimated catch
1992	0	250	26000	900	0	0	27150	4600	100	31850
1993	0	0	27600	2500	0	200	30300	6250	250	36800
1994	0	0	24400	2500	50	0	26950	6250	700	33900
1995	0	11	25450	1207	24	0	26692	1100	0	27792
1996	0	0	23800	1800	0	0	25600	6900	0	32500
1997	0	0	24400	3400	0	0	27800	700	50	28550
1998	0	0	25200	2500	0	0	27700	11200	0	38900
1999	0	0	16325	1868	0	0	18193	7916	0	26109
2000	0	0	10164	1234	0	0	11398	8448	0	19846
2001	0	0	12820	2088	0	0	14908	1390	0	16298
2002	515	0	13072	366	0	0	13953	3873	0	17826
2003	0	0	12921	0	0	0	12921	3581	0	16502
2004	0	0	12290	64	0	0	12354	2813	0	15167
2005	0	0	13351	0	0	0	13351	2880	0	16231
2006	0	0	14840	353	0	6	15199	4000	0	19199
2007	0	0	12662	13	0	0	12675	5116	0	17791
2008	0	0	10237	0	0	0	10237	3103	0	13340
2009	0	0	8533	0	0	0	8533	1935	0	10468
2010	0	0	7513	0	0	0	7513	2728	0	10241
2011	0	0	4247	0	0	0	4247	2672	0	6919
2012	0	0	3727	0	0	0	3791	2780	0	6571
2013	0	0	1460	40	0	0	1500	2468	0	3968

Year	France	Germany	Ireland	Netherlands	UK (England \& Wales)	UK Scotland	Total landings	Unallocated / area misreported	Discards*	ICES estimated catch
2014	0	0	2933	0	0	0	2933	2163	0	5096
2015	0	0	73	0	0	5	78	1000	0	1078
2016	0	0	1171	72	0	0	1243	971	0	2214
2017	0	0	1707	0	0	0	1707	520	0	2227
2018	0	0	970	0	0	0	970	525	0	1495
2019	0	0	1625	65	0	0	1690	0	0	1690
2020	0	0	1138	3	0	0	1141	79	0	1220
2021	0	0	1715	0	0	0	1715	106	0	1821

*Unraised discards

Table 5.2.1.1. Herring in divisions 6.aS, 7.b-c. Catch in numbers-at-age (winter rings) from 1970-2021.

	1	2	3	4	5	6	7	8	9
1970	135	35114	26007	13243	3895	40181	2982	1667	1911
1971	883	6177	7038	10856	8826	3938	40553	2286	2160
1972	1001	28786	20534	6191	11145	10057	4243	47182	4305
1973	6423	40390	47389	16863	7432	12383	9191	1969	50980
1974	3374	29406	41116	44579	17857	8882	10901	10272	30549
1975	7360	41308	25117	29192	23718	10703	5909	9378	32029
1976	16613	29011	37512	26544	25317	15000	5208	3596	15703
1977	4485	44512	13396	17176	12209	9924	5534	1360	4150
1978	10170	40320	27079	13308	10685	5356	4270	3638	3324
1979	5919	50071	19161	19969	9349	8422	5443	4423	4090
1980	2856	40058	64946	25140	22126	7748	6946	4344	5334
1981	1620	22265	41794	31460	12812	12746	3461	2735	5220
1982	748	18136	17004	28220	18280	8121	4089	3249	2875
1983	1517	43688	49534	25316	31782	18320	6695	3329	4251
1984	2794	81481	28660	17854	7190	12836	5974	2008	4020
1985	9606	15143	67355	12756	11241	7638	9185	7587	2168
1986	918	27110	27818	66383	14644	7988	5696	5422	2127
1987	12149	44160	80213	41504	99222	15226	12639	6082	10187
1988	0	29135	46300	41008	23381	45692	6946	2482	1964
1989	2241	6919	78842	26149	21481	15008	24917	4213	3036
1990	878	24977	19500	151978	24362	20164	16314	8184	1130
1991	675	34437	27810	12420	$\begin{aligned} & 10044 \\ & \Lambda \end{aligned}$	17921	14865	11311	7660
1992	2592	15519	42532	26839	12565	73307	8535	8203	6286
1993	191	20562	22666	41967	23379	13547	67265	7671	6013
1994	11709	56156	31225	16877	21772	13644	8597	31729	10093
1995	284	34471	35414	18617	19133	16081	5749	8585	14215
1996	4776	24424	69307	31128	9842	15314	8158	12463	6472
1997	7458	56329	25946	387421	14583	5977	8351	3418	4264

	1	2	3	4	5	6	7	8	9
1998	7437	72777	80612	38326	30165	9138	5282	3434	2942
1999	2392	51254	61329	34901	10092	5887	1880	1086	949
2000	4101	34564	38925	30706	13345	2735	1464	690	1602
2001	2316	21717	21780	17533	18450	9953	1741	1027	508
2002	4058	32640	37749	18882	11623	10215	2747	1605	644
2003	1731	32819	28714	24189	9432	5176	2525	923	303
2004	1401	15122	32992	19720	9006	4924	1547	975	323
2005	209	28123	30896	26887	10774	5452	1348	858	243
2006	598	22036	36700	30581	21956	9080	2418	832	369
2007	76	24577	43958	23399	13738	5474	1825	231	131
2008	483	12265	19661	28483	11110	5989	2738	745	267
2009	202	12574	12077	12096	12574	5239	2040	853	17
2010	1271	13507	20127	6541	7588	6780	2563	661	189
2011	121	14207	9315	9114	3386	3780	2871	980	95
2012	5142	12844	16387	4042	1776	553	541	103	21
2013	61	3118	4532	12238	1665	1792	425	382	202
2014	34	465	8825	6735	12146	2406	1045	437	204
2015	27	1842	598	2553	1699	685	96	9	0
2016	69	1983	4252	1369	3025	2085	824	43	9
2017	30	1051	5241	4078	1025	2250	1061	480	76
2018	6	1567	1838	3280	2288	613	700	260	29
2019	1995	2627	3259	1509	1895	1166	381	464	171
2020	140	5164	2683	1703	597	684	265	98	48
2021	25	1975	8818	2297	1302	315	410	116	21

Table 5.2.1.2. Herring in divisions $6 . a S, 7 . b-c$. Percentage age composition (winter rings).

Year	1	2	3	4	5	6	7	8	9+
1994	6\%	28\%	15\%	8\%	11\%	7\%	4\%	16\%	5\%
1995	0\%	23\%	23\%	12\%	13\%	11\%	4\%	6\%	9\%
1996	3\%	13\%	38\%	17\%	5\%	8\%	4\%	7\%	4\%
1997	5\%	34\%	16\%	23\%	9\%	4\%	5\%	2\%	3\%
1998	3\%	29\%	32\%	15\%	12\%	4\%	2\%	1\%	1\%
1999	1\%	30\%	36\%	21\%	6\%	3\%	1\%	1\%	1\%
2000	3\%	27\%	30\%	24\%	10\%	2\%	1\%	1\%	1\%
2001	2\%	23\%	23\%	18\%	19\%	10\%	2\%	1\%	1\%
2002	3\%	27\%	31\%	16\%	10\%	9\%	2\%	1\%	1\%
2003	2\%	31\%	27\%	23\%	9\%	5\%	2\%	1\%	0\%
2004	2\%	18\%	38\%	23\%	10\%	6\%	2\%	1\%	0\%
2005	0\%	27\%	29\%	26\%	10\%	5\%	1\%	1\%	0\%
2006	0\%	18\%	29\%	25\%	18\%	7\%	2\%	1\%	0\%
2007	0\%	22\%	39\%	21\%	12\%	5\%	2\%	0\%	0\%
2008	1\%	15\%	24\%	35\%	14\%	7\%	3\%	1\%	0\%
2009	0\%	22\%	21\%	21\%	22\%	9\%	4\%	1\%	0\%
2010	2\%	23\%	34\%	11\%	13\%	11\%	4\%	1\%	0\%
2011	0\%	32\%	21\%	21\%	8\%	9\%	7\%	2\%	0\%
2012	12\%	31\%	40\%	10\%	4\%	1\%	1\%	0\%	0\%
2013	0\%	13\%	19\%	50\%	7\%	7\%	2\%	2\%	1\%
2014	0\%	1\%	27\%	21\%	38\%	7\%	3\%	1\%	1\%
2015	0\%	25\%	8\%	34\%	23\%	9\%	1\%	0\%	0\%
2016	0\%	15\%	31\%	10\%	22\%	15\%	6\%	0\%	0\%
2017	0\%	7\%	34\%	27\%	7\%	15\%	7\%	3\%	0\%
2018	0\%	15\%	17\%	31\%	22\%	6\%	7\%	2\%	0\%
2019	15\%	20\%	24\%	11\%	14\%	9\%	3\%	3\%	1\%
2020	1\%	45\%	24\%	15\%	5\%	6\%	2\%	1\%	0\%
2021	0\%	13\%	58\%	15\%	9\%	2\%	3\%	1\%	0\%

Table 5.2.2. Herring in divisions 6.aS, 7.b-c. Sampling intensity of catches in 2021.

Year	Quarter	Landings (t)	No. Samples	No. aged	No. Measured	Aged/1000 t
$6 . a S$	1	426	6	382	1841	896
$6 . a S$	4	1395	34	1655	8162	1187
Total	2021	1821	40	2037	10003	1119

Table 5.4.1.1. Herring in divisions 6.aS, 7.b-c. Mean weights-at-age in the catches 1970-2021.

	1	2	3	4	5	6	7	8	9+
1970	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1971	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1972	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1973	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1974	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1975	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1976	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1977	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1978	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1979	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1980	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1981	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1982	0.110	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1983	0.090	0.129	0.165	0.191	0.209	0.222	0.231	0.237	0.241
1984	0.106	0.141	0.181	0.210	0.226	0.237	0.243	0.247	0.248
1985	0.077	0.122	0.161	0.184	0.196	0.206	0.212	0.225	0.230
1986	0.095	0.138	0.164	0.194	0.212	0.225	0.239	0.208	0.288
1987	0.085	0.102	0.150	0.169	0.177	0.193	0.205	0.215	0.220
1988	0.082	0.098	0.133	0.153	0.166	0.171	0.183	0.191	0.201
1989	0.080	0.130	0.141	0.164	0.174	0.183	0.192	0.193	0.203
1990	0.094	0.138	0.148	0.160	0.176	0.189	0.194	0.208	0.216
1991	0.089	0.134	0.145	0.157	0.167	0.185	0.199	0.207	0.230
1992	0.095	0.141	0.147	0.157	0.165	0.171	0.180	0.194	0.219

	1	2	3	4	5	6	7	8	9+
1993	0.112	0.138	0.153	0.170	0.181	0.184	0.196	0.229	0.236
1994	0.081	0.141	0.164	0.177	0.189	0.187	0.191	0.204	0.220
1995	0.080	0.140	0.161	0.173	0.182	0.198	0.194	0.206	0.217
1996	0.085	0.135	0.172	0.182	0.199	0.209	0.220	0.233	0.237
1997	0.093	0.135	0.155	0.181	0.201	0.217	0.217	0.231	0.239
1998	0.095	0.136	0.145	0.173	0.191	0.196	0.202	0.222	0.217
1999	0.106	0.144	0.145	0.163	0.186	0.195	0.200	0.216	0.222
2000	0.102	0.129	0.154	0.172	0.180	0.184	0.204	0.203	0.204
2001	0.086	0.122	0.139	0.167	0.183	0.188	0.222	0.222	0.213
2002	0.097	0.127	0.140	0.155	0.175	0.196	0.204	0.218	0.226
2003	0.102	0.134	0.150	0.167	0.183	0.196	0.216	0.210	0.228
2004	0.085	0.140	0.150	0.167	0.182	0.193	0.222	0.221	0.285
2005	0.105	0.135	0.150	0.162	0.174	0.188	0.200	0.237	0.296
2006	0.106	0.137	0.141	0.158	0.169	0.178	0.199	0.221	0.243
2007	0.118	0.144	0.145	0.168	0.179	0.189	0.197	0.233	0.237
2008	0.1108	0.1478	0.1503	0.1663	0.1745	0.1845	0.1938	0.1990	0.2407
2009	0.077	0.146	0.171	0.194	0.200	0.207	0.211	0.218	0.275
2010	0.104	0.131	0.168	0.189	0.201	0.212	0.218	0.226	0.229
2011	0.094	0.122	0.141	0.174	0.193	0.202	0.217	0.218	0.246
2012	0.09	0.134	0.179	0.196	0.214	0.237	0.228	0.243	0.236
2013	0.083	0.121	0.141	0.170	0.181	0.196	0.202	0.226	0.226
2014	0.105	0.139	0.136	0.155	0.168	0.175	0.184	0.183	0.187
2015	0.090	0.113	0.145	0.152	0.161	0.168	0.176	0.185	0.188
2016	0.09	0.125	0.149	0.163	0.182	0.188	0.19	0.21	0.201
2017	0.072	0.106	0.132	0.145	0.159	0.168	0.172	0.179	0.183
2018	0.085	0.101	0.127	0.144	0.155	0.166	0.172	0.170	0.174
2019	0.063	0.099	0.127	0.147	0.159	0.164	0.180	0.174	0.172
2020	0.059	0.091	0.109	0.121	0.134	0.146	0.152	0.158	0.168
2021	0.080	0.108	0.116	0.124	0.134	0.141	0.147	0.151	0.173

Table 5.4.1.2. Herring in divisions 6.aS, 7.b-c. Mean weights-at-age in the stock at spawning time 1970-2021.

	1	2	3	4	5	6	7	8	9+
1970	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1971	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1972	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1973	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1974	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1975	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1976	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1977	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1978	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1979	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1980	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1981	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1982	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1983	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1984	0.120	0.169	0.210	0.236	0.260	0.273	0.283	0.290	0.296
1985	0.100	0.150	0.196	0.227	0.238	0.251	0.252	0.269	0.284
1986	0.098	0.169	0.209	0.238	0.256	0.276	0.280	0.287	0.312
1987	0.097	0.164	0.206	0.233	0.252	0.271	0.280	0.296	0.317
1988	0.097	0.164	0.206	0.233	0.252	0.271	0.280	0.296	0.317
1989	0.138	0.157	0.168	0.182	0.200	0.217	0.227	0.238	0.245
1990	0.113	0.152	0.170	0.180	0.200	0.217	0.225	0.233	0.255
1991	0.102	0.149	0.174	0.190	0.195	0.206	0.226	0.236	0.248
1992	0.102	0.144	0.167	0.182	0.194	0.197	0.214	0.218	0.242
1993	0.118	0.166	0.196	0.205	0.214	0.220	0.223	0.242	0.258
1994	0.098	0.156	0.192	0.209	0.216	0.223	0.226	0.230	0.247
1995	0.090	0.144	0.181	0.203	0.217	0.226	0.227	0.239	0.246
1996	0.086	0.137	0.186	0.206	0.219	0.234	0.233	0.249	0.253
1997	0.094	0.135	0.169	0.194	0.210	0.224	0.231	0.230	0.239
1998	0.095	0.136	0.145	0.173	0.191	0.196	0.202	0.222	0.217

	1	2	3	4	5	6	7	8	9+
1999	0.104	0.145	0.154	0.174	0.200	0.222	0.230	0.240	0.246
2000	0.100	0.134	0.157	0.177	0.197	0.207	0.217	0.230	0.245
2001	0.091	0.125	0.150	0.172	0.191	0.200	0.203	0.203	0.216
2002	0.092	0.127	0.146	0.170	0.190	0.201	0.210	0.227	0.229
2003	0.094	0.131	0.155	0.175	0.192	0.203	0.232	0.222	0.243
2004	0.081	0.133	0.151	0.175	0.194	0.207	0.238	0.233	0.276
2005	0.095	0.127	0.15	0.172	0.185	0.196	0.223	0.234	0.274
2006	0.092	0.130	0.133	0.162	0.177	0.186	0.209	0.238	0.247
2007	0.114	0.133	0.133	0.171	0.186	0.196	0.208	0.228	0.229
2008	0.098	0.136	0.140	0.174	0.185	0.196	0.192	0.205	0.234
2009	0.072	0.141	0.162	0.197	0.215	0.223	0.225	0.221	0.286
2010	0.092	0.128	0.157	0.189	0.208	0.227	0.234	0.239	0.247
2011	0.082	0.118	0.136	0.177	0.199	0.207	0.225	0.239	0.240
2012	0.084	0.135	0.182	0.203	0.214	0.226	0.225	0.21	0.226
2013	0.074	0.114	0.140	0.170	0.188	0.198	0.204	0.223	0.222
2014	0.093	0.128	0.135	0.154	0.169	0.170	0.188	0.169	0.206
2015	0.077	0.112	0.146	0.155	0.165	0.173	0.179	0.183	0.217
2016	0.078	0.119	0.147	0.164	0.185	0.191	0.197	0.21	0.175
2017	0.064	0.099	0.130	0.145	0.163	0.173	0.176	0.185	0.180
2018	0.072	0.097	0.126	0.146	0.156	0.168	0.172	0.169	0.170
2019	0.062	0.098	0.124	0.149	0.164	0.166	0.180	0.180	0.175
2020	0.056	0.088	0.110	0.125	0.144	0.154	0.157	0.164	0.168
2021	0.070	0.109	0.151	0.171	0.182	0.196	0.203	0.205	0.211

Table 5.3.1.1. Herring in divisions 6.aS, 7.b-c Total numbers (millions) and biomass (tonnes) of herring June-July 20142021. From the Split Malin Shelf acoustic survey

| Year | Age(-wr) | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9 +}$ | CV | SSB (t) |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2014 | her-irlw | | 30.02 | 118.63 | 271.01 | 252.21 | 99.34 | 31.38 | 10.39 | 4.90 | 0.26 | 149270 |
| 2015 | her-irlw | | 122.52 | 255.67 | 395.26 | 254.82 | 225.28 | 58.96 | 9.38 | | 0.24 | 226293 |
| 2016 | her-irlw | | 8.09 | 45.22 | 42.18 | 38.06 | 42.34 | 26.05 | 1.71 | 0.91 | 0.23 | 36707 |
| 2017 | her-irlw | | 6.55 | 112.57 | 87.69 | 39.22 | 58.66 | 39.21 | 21.65 | 0.33 | 0.33 | 66342 |
| 2018 | her-irlw | 572.95 | 303.59 | 68.30 | 199.14 | 92.34 | 36.80 | 47.08 | 14.63 | 6.14 | 0.57 | 96138 |
| 2019 | her-irlw | 3.80 | 170.70 | 213.96 | 103.46 | 91.97 | 47.16 | 5.93 | 17.27 | 8.92 | 0.26 | 92364 |
| 2020 | her-irlw | 895.11 | 776.20 | 401.75 | 188.20 | 71.45 | 120.21 | 24.77 | 6.64 | 8.51 | 0.24 | 135335 |
| 2021 | her-irlw | 173.49 | 1389.15 | 532.79 | 105.14 | 66.21 | 27.17 | 46.06 | 12.62 | 12.82 | 0.31 | 189856 |

Table 5.3.1.2. Herring in divisions 6.aS, 7.b-c. Mean Weights at age of herring June-July 2014-2021. From the Split Malin Shelf acoustic survey

| Year | Age(-wr) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2014 | her-irlw | | 134.74 | 159.19 | 177.5 | 201.06 | 211.04 | 213.03 | 224.16 | 231.2 |
| 2015 | her-irlw | | 134.47 | 173.81 | 188 | 194.66 | 201.2 | 205.55 | 206.98 | |
| 2016 | her-irlw | | 130.72 | 133.84 | 168.5 | 204.33 | 204.86 | 206.58 | 210.52 | 274.3 |
| 2017 | her-irlw | | 133.46 | 161.43 | 172.3 | 185.24 | 196.36 | 194.56 | 202.98 | 177 |
| 2018 | her-irlw | 48.67 | 107.92 | 149.17 | 172.5 | 183.84 | 206.14 | 208.64 | 210.24 | 218.7 |
| 2019 | her-irlw | 86.42 | 116.56 | 153.2 | 167.5 | 190.95 | 182.68 | 189.54 | 220.5 | 218.9 |
| 2020 | her-irlw | 54.98 | 110.01 | 136.84 | 157.8 | 171.39 | 190.92 | 203.78 | 201.1 | 233.3 |
| 2021 | her-irlw | 70.22 | 108.67 | 151.23 | 171.12 | 182.24 | 195.80 | 203.31 | 205.02 | 210.58 |

Table 5.3.1.3. Herring in divisions 6.aS, 7.b-c. Maturity at age of herring June-July 2014-2021. From the Split Malin Shelf acoustic survey

Year	Age(-wr)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$
2014	her-irlw	0	0.85	0.81	0.99	1	1	1	1	1
2015	her-irlw	0	0.41	0.84	0.98	0.94	0.99	0.98	1	
2016	her-irlw	0	1	1	1	1	1	1	1	1
2017	her-irlw	0	1	0.99	0.99	1	1	1	1	1
2018	her-irlw	0.01	0.42	0.82	0.97	0.98	1	1	1	1
2019	her-irlw	0	0.51	0.94	1	1	1	1	1	1
2020	her-irlw	0	0.25	0.64	1	1	1	1	1	1
2021	her-irlw	0.01	0.38	0.92	1	1	1	1	1	1

Table 5.3.2.1. Herring in divisions 6.aS, 7.b-c. Details of acoustic surveys dedicated to the 6a.S/7.b-c stock.

Year	Type	Biomass	SSB
1994	Feeding phase	-	353772
1995	Feeding phase	137670	125800
1996	Feeding phase	34290	12550
1997	-	-	-
1998	-	-	-
1999	Autumn	23762	22788
2000	Autumn	21000	20500
2001	Autumn	11100	9800
2002	Winter	8900	7200
2003	Winter	10300	9500
2004	Winter	41700	41399
2005	Winter	71253	66138
2006	Winter	27770	27200
2007	Winter	14222	13974
2016	Winter	35475	35475
2017	Winter	40646	40646
2018	Winter	50145	49523
2019*	Winter	25289	22386
2020**	Winter		45046
2021**	Winter		3594435859
*reduced survey area			
** Survey design changed significantly compared to other years, only 6 core areas covered			

Table 5.6.2.2. Herring in divisions 6.aS, 7.b-c. Definitions of the components used to calculate chr (from WKLIFEX, see table 3.4.2.1 of that report for a full description of how $F_{\text {MSY proxy }}$ is calculated).

Component	Definition
$F_{\text {proxy }, M S Y}$	Description and use
The index in year $y-1$.	

Table 5.6.2.3. Herring in divisions 6.aS, 7.b-c. Estimate of natural mortality (M) used in the exploratory assessments for herring in $\mathbf{6 a S}$, 7 bc and various M / k ratio calculations. Most appropriate M / k ratio highlighted in bold.

Age	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1}$ to $\mathbf{9}$	$\mathbf{2}$ to $\mathbf{9}$
\mathbf{M}	$\mathbf{3}$ to $\mathbf{6}$										
M	0.528	0.303	0.255	0.225	0.207	0.193	0.186	0.180	0.180	0.251	0.216
M / k									0.220		

Table 5.6.2.3.1. Herring in divisions 6.aS, 7.b-c. Constants, lengths, survey index and catch data used in the calculation of $F_{\text {MSY proxy }}$ and target reference lengths.

Year	2014	2015	2016	2017	2018	2019	2020	2021
Catch (t)	5,096	1,078	2,213	2,227	1,495	1,690	1,220	1,821
Biomass estimates (I)	149,270	226,293	36,707	66,342	96,138	92,364	135,335	189,856
modal length in catch L	28.00	27.00	28.00	26.00	27.00	25.50	24.00	25.5
L_{c} (Length of first capture)	26.00	26.50	25.00	25.00	25.50	23.00	22.50	24.5
Mean length $>L_{c}$ in catch	27.996	27.68	27.298	27.006	27.184	26.17	25.03	25.99
Target reference length ($L_{F=\gamma M, ~} \mathrm{k}=\theta \mathrm{M}$)	27.958	28.241	27.393	27.393	27.676	26.264	25.981	27.11
f	1.001	0.98	0.996	0.986	0.982	0.996	0.963	0.959
C_{y} / l y where f > 1	0.034							
$\mathrm{F}_{\text {MSY proxy }}$	0.034							
L_{∞}	30.50							
M	0.220							
k	0.339							
γ	1.000							
$\theta(=k / M)$	1.541							

Notes

Catch (t) Catch from 6aS7bc only Biomass estimates
(I)
modal length in catch L
Lc
Mean length > Lc in catch Target reference length $\quad \mathrm{LF}=\gamma \mathrm{M}, \mathrm{k}=$ em using Jardim et al. (2015) equation (see text)

The quantity f is the ratio of the mean length in the observed catch that is above the length of first capture relative to the target reference length (mean length/target reference length).
Is the ratio Cy/Iy for the set of historical years U for which the quantity $f>1$, and u is the
C_{y} / I_{y} where $\mathrm{f}>1$
number of years in the set.
Is the mean of the ratio C_{y} / I_{y} for the set of historical years U for which the quantity $f>1$, and
F, MSY proxy $\quad u$ is the number of years in the set.
$\mathrm{L}_{\infty} \quad$ L infinity estimated from catch sampled length data
M Mean natural mortality ages 3-6
k von Bertalannfy growth parameter estimated from catch sampled length data
$\gamma \quad$ Gamma set to 1
$\theta \quad$ Theta $=k / M$

Table 5.6.2.3.2. Herring in divisions 6.aS, 7.b-c. chr summary table and advice using length, survey and catch data from 2014-2021 (inclusive).

Catch ${ }_{y}-1$ (mean of last 3 years catch)	$1,577 \mathrm{t}$
Index $_{\mathrm{y}-1}($ survey SSB)	$189,856 \mathrm{t}$
FMSY proxy	0.034
b (biomass safeguard)	1
m (multiplier)	0.5
chr (Cyy+1 $=\mathrm{I}_{\mathrm{y}-1} \times \mathrm{F}_{\text {proxy,MSY } \times \mathrm{b} \times \mathrm{m})}$	$3,241 \mathrm{t}$
\% Change (from previous 3 yr catch)	$+106 \%$
Stability Clause Applied $(-30 \%$ or $+20 \%)$	$1,892 \mathrm{t}$
Advised Catch $\mathrm{y}+1$	$1,892 \mathrm{t}$

Figure 5.1.2 Herring in divisions 6.aS, 7.b-c. Irish catches in 2021.

Figure 5.1.4 Herring in divisions 6.aS, 7.b-c. Working group estimate of catches from 1957-2021.

6aS 7bc Herring Mean Standardised Catch Numbers At Age

Figure 5.2.1. Herring in divisions 6.aS, 7.b-c. catch numbers-at-age standardized by year for the fishery 1957-2021.

Figure 5.3.1.1. Herring in divisions 6.aS, 7.b-c . SSB (t) time-series for the individual MSHAS split indices (2014 - 2020). her-irlw refers to her.27.6aS,7b,c

Split Acoustic Survey Catch Numbers At Age

Figure 5.3.1.2. Herring in divisions 6.aS, 7.b-c. Malin Shelf Acoustic Survey - split catch numbers at age.

Proportions at age from the catch and the split acoustic survey 2014-2021

Figure 5.3.1.3. Herring in divisions 6.aS, 7.b-c. Proportions-at-age in the 6aS, 7.b-c catch and 6aS, 7.b-c Split Malin Shelf acoustic survey (MSHAS) 2014-2021.

Split_MSHAS

Lower right panels show the Coefficient of Determination $\left(r^{2}\right)$

Figure 5.3.1.4 Herring in divisions 6.aS, 7.b-c. Internal consistency between ages (rings) in the Split MSHAS herring acoustic survey time-series (2014-2021).

Figure 5.3.2.1. Herring in divisions 6.aS, 7.b-c. NASC distribution in the industry science surveys 2020 and 2021

Figure 5.3.3.1 Herring in divisions 6.aS, 7.b-c . IBTS hauls positons from IE-IGFS (green), SWC-IBTS (red) and SCOWCGFS (blue) surveys, left - all hauls, right hauls in div 6 a , south of $56^{\circ} \mathrm{N}$ and divisions 7 b and 7 c

Figure 5.3.3.2. Herring in divisions 6.aS, 7.b-c. Internal consistency plot showing pairwise regressions and associated $\mathbf{R}^{\mathbf{2}}$ values from the IBTS Index.

Figure 5.4.1.1. Herring in divisions 6.aS, 7.b-c. Mean weights in the catch (kg) by age in winter rings (1980-2021). Prior to 1981 weights were fixed.

6aS 7b,c Mean Weights in the stock

Figure 5.4.1.2. Herring in divisions 6.aS, 7.b-c. Mean weights in the stock (kg) at spawning time by age in winter rings (1980-2021). Prior to 1981 weights were fixed.

Figure 5.4.2. Herring in divisions 6.aS, 7.b-c. Maturity Ogive.

Figure 5.4.3. Herring in divisions 6.aS, 7.b-c. Natural Mortality at age updated at the benchmark in 2022 and the previously used value.

Figure 5.6.1. Herring in divisions 6.aS, 7.b-c. Proportions-at-age in the 6aS, 7.b-c catch and 6aS, 7.b-c Split Malin Shelf acoustic survey (MSHAS) and the IBTS survey 2014-2021.

Figure 5.6.2.1. Herring in divisions $6 . a S, 7 . b-c$. Fit of growth curve to length data from commercial catch of herring in 6 aS and $7 \mathrm{~b} . \mathrm{n}=594 \mathrm{k}$.

Figure 5.6.2.3.1 Herring in divisions 6.aS, 7.b-c. MSHAS 6aS Split Spawning Stock Biomass (tonnes) by year. Black line shows lowest observed value ($I_{\text {loss }}$); Red line shows $1.4 * I_{\text {loss }}\left(I_{\text {trigger }}\right)$.
 (Lc), Mean length above Lc (Mean>Lc), the median and the mode from catch sampling data.

Figure 5.10.1. Herring in divisions 6.aS, 7.b-c. Proportions of the MSHAS genetically assigned.

6 Herring in the Celtic Sea (divisions 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$ and 7.g, 7.h and 7.j)

Abstract

The assessment year for this stock runs from 1st April until 31st March. Unless otherwise stated, year and year class are referred to by the first year in the season i.e. 2021 refers to the 2021-2022 season.

The WG notes that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks such as this one, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age-based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

6.1 The Fishery

6.1.1 Advice and management applicable to 2021-2022

The TAC is set by calendar year. In 2019, the EC requested ICES to advise on the minimum level of catches (tonnages) required in a sentinel TAC, which would provide sufficient data for ICES in order to continue providing scientific advice on the state of the stock (ICES, 2019). ICES advised that at least 17 samples from the main and the sentinel fleet would be required to provide advice on similar bases as with a commercial fishery. Those samples could be obtained through a monitoring catch of 869 t . As a result, the monitoring TAC agreed by the Council of the European Union for 2021 and 2022 was 869 t.

6.1.2 The fishery in 2021-2022

In 2021, the Irish fishery took place in 7.g in Q3 and in 7.g and 7.a.S in Q4 as in previous years. There was also catch taken from 7.j in Q1 2022.

The Irish fishery is divided into two fleets, the main fleet and the sentinel fleet. The Celtic Sea Herring Management Advisory Committee (CSHMAC) provide input to the management of the Celtic Sea Herring. Fishing began in 7.g in September and continued until early November, with over 500 t landed in total. The fishery in 7 a .5 started in late November and continued until mid-December. In Q1 2022 all of the catch was taken in 7.j.

The Netherlands, Germany, France and the UK did not utilize their quota. The area 7.h is part of the management area, but it is unclear if it is part of the stock area.

The spatial distribution of the 2021 landings is presented in Figure 6.1.2.1. There was not full quota uptake in 2021.
The estimated catches from 1988-2021 for the combined areas (7.a.S, 7.g, 7.h, 7.j) by quota year and by assessment year (1 April-31 March) are given in tables 6.1.2.1 and 6.1.2.2 respectively. The catch taken during the 2021-2022 season increased from 132 t in 2020 to 745 t in 2021 (Figure 6.1.2.2).

The catch data include discards in the directed fishery until 1997. An independent observer study of the Celtic Sea herring fishery was conducted annually from 2012 to 2017. This observer programme was discontinued in 2018. Discards from these trips were raised to the total international catch using a weighted average for each year from 2012 to 2017.

Regulations and their effects

Under the previous rebuilding plan, the closure of Subdivision 7.a.S from 2007-present, except for a sentinel fishery, meant that only small dry hold vessels, no more than 50 feet total length, could fish in that area. In 2012, local quota management arrangements were adopted to restrict fishing in 7.a.S to vessels under 50 feet, but the total quota allocation increased from 8% to 11%. Therefore, from 2012 there was a slight increase in landings from this area. There is evidence that closure of Subdivision 7.a.S under the rebuilding plan helped to reduce fishing mortality (Clarke and Egan, 2017). The exact mechanisms for this are unclear.

6.1.3 Changes in fishing patterns

In 2019, the high prevalence of fish $<\operatorname{MCRS}(<20 \mathrm{~cm})$ limited the main fleet to 5 days and prevented it from catching the quota. There were no issues with < MCRS fish in 2021 and 745 t of the 869 t available was taken.

Vessels greater than 50 feet total length are excluded from 7.a.S under local Irish legislation. This has shifted effort onto The Smalls/Celtic Deep ground, south of the $52^{\circ} \mathrm{N}$ line, in an area which straddles the boundary between the Irish and UK exclusive economic zones (EEZs).

6.1.4 Discarding

As in all pelagic fisheries, estimation of discarding is very difficult. Individual instances of discarding may be quite infrequent in occurrence. However individual slippages could result in considerable quantities of herring being discarded. The estimates produced by the HAWG in 2012 provided a sensitivity analysis of the assessment to maximum possible discarding. The risk of discarding (slippage induced by restrictive vessel quotas) is now reduced, due to the flexibility mechanism introduced in quota allocation since 2012. Available evidence is that the discard rate is negligible in directed fisheries. In 2021 two observer trips were carried out during the Celtic Sea herring fishery by the Marine Institute with no discarding observed.
Estimates of discarding from observer trips for the purposes of marine mammal bycatch studies, reported 1% discarding in 2012, 0.8% in 2013 (McKeogh and Berrow, 2013), 3.4\% in 2014 (McKeogh and Berrow, 2014), 1.4\% in 2015 in the main fishery and 1.5% in the $7 . a . S$ small boat fishery (Pinfield and Berrow, 2015,), 1.13\% in 2016 (O'Dwyer et al., 2016) and 1.19% in 2017 (O'Dwyer and Berrow, 2017). This observer programme was discontinued in 2018; no discard estimates are available for subsequent years.

Since 2015, this stock is covered by the landings obligation.

6.2 Biological composition of the catch

6.2.1 Catches in numbers-at-age

Catch numbers-at-age are available for the period 1958-2021. Two winter ringers were the dominant age class in 2020 (61%), and this year class is again dominant in 2021 at 3 ring (61%) (Table 6.2.1.1.). In 2021 the proportion of 2 ringers is 25% followed by 4 ringers at 9%. The yearly
mean standardized catch numbers-at-age are shown in Figure 6.2.1.1. Older ages 6, 7, 8 and 9 wr were barely observed in the catch. Truncation of ages is again evident in this stock.

The overall proportions-at-age in the catch and the survey are presented in Figure 6.2.1.2. There is generally good agreement between the data sources. The Q4 acoustic survey picks up 1-wr fish in larger proportions than the catch data in some years. The 2018-year class is being tracked by the catch and the survey. A high proportion of 1 ringers were found in the catch and the survey in 2019 and these have been caught as 2 ringers in 2020 and 3 ringers in 2021.

Length-frequency data by division and quarter are presented in Table 6.2.1.2. In 2019 a significant amount of fish less than the MCRS $(<20 \mathrm{~cm})$ in the Q3 catches of 7.g led to the early closure of this fishery. Catches in 7.aS Q4 in 2021 did not exhibit a high proportion of below MCRS herring. The length frequencies sampled is very similar between all ICES divisions and quarters.

6.2.2 Quality of catch and biological data

Biological sampling of the catches was carried out in the area exploited by the Irish fishery (Table 6.2.2.1) in 2021. The 23 samples obtained from the monitoring TAC for the main and sentinel fleets in 2021 exceeded the 17 sample minimum advised by ICES in order to provide advice on a similar basis to a commercial fishery.

6.3 Fishery-Independent Information

6.3.1 Acoustic Surveys

The Celtic Sea herring acoustic survey (CSHAS) time-series currently used in the assessment runs from 2002 to 2021, excluding 2004 (no survey) and 2017 (insufficient biological data). The full survey time-series is presented in Table 6.3.1.1. The internal consistency between ages 1-9 from the acoustic survey is good and presented in Figure 6.3.1.4.

The acoustic survey of the 2021-2022 season was carried out from 8 to 28 October 2021, on the Celtic Explorer (O'Donnell et al., 2021, https://oar.marine.ie/handle/10793/1732). Geographical coverage was comparable to $2020(+2 \%)$. The herring stock was considered contained within the Celtic Sea survey area with no aggregations observed along the survey periphery, inshore or offshore. The acoustic survey track is shown in Figure 6.3.1.1.

The 2021 survey again consisted of laddered replicate surveys (two broad-scale passes and adaptive mini-surveys) covering the same area. Pass 1, the pass with the largest geographical coverage, provided the biomass and numbers-at-age that were used as input data to tune the assessment model. NASC distribution plots from the broad-scale survey are presented in Figure 6.3.1.2. The herring stock was considered contained within the Celtic Sea survey area with no aggregations observed along the survey periphery, inshore or offshore. Immature herring were observed primarily in coastal waters and were well represented in the survey estimate. Mature herring were observed in two main areas; offshore in a discreet patch and inshore within the confines of Waterford Harbour. In previous years herring were only found inshore.
Herring TSB (total-stock biomass) and abundance (TSN) estimates from the 2021 survey were $9,877 \mathrm{t}$ and 310 million individuals respectively. This is an increase on the low 2020 values of $4,717 \mathrm{t}$ and a total abundance of 67.3 million individuals.

A total of 27 trawl hauls were carried out during the survey in 2021, with twelve containing herring. Herring were observed either within 10 nmi of the coast and made up of immature
individuals or as offshore aggregations clustered around one particular area and composed of mature fish. Ten hauls contained immature herring from 1-14\% of the catch by weight.

The survey estimate is dominated by 3-wr fish representing over 43% of the total biomass. This 2018 year-class is now considered recruited to the spawning stock and has been successfully tracked across surveys. A significant proportion of 0 wr fish were found in the 2021 survey representing 33% of the total stock biomass and 82% of total stock numbers. The potential of this year class will be monitored through successive summer and autumn surveys.

6.4 Mean weights-at-age and maturity-at-age and Natural Mortality

The mean weights in the catch and mean weights in the stock at spawning time are presented in Figure 6.4.1.1 and Figure 6.4.1.2 respectively. There has been an overall downward trend in mean weights-at-age in the catch since the early 1980s. After a slight increase around 2008, they have declined again. In 2018 slight increases in mean weights at some ages were observed but subsequent years exhibited further decreases for almost all year classes. In 2021 increases in mean weight can be seen for all age classes. Mean weights in the stock at spawning time were calculated from biological samples from Q4 (Figure 6.4.1.2). The overall trends in stock weights are the same as the catch weights with increases also seen across all ages in 2021.

In the assessment, 50% of 1 -wr fish are considered mature. Sampling data from the Celtic Sea catches suggest that greater than 50% of 1-wr fish are mature (Lynch, 2011). However, the 2014 benchmark (ICES, 2014) concluded that there was insufficient information to change the maturity ogive.

Following the final procedure of HAWG 2015, natural mortality values used in the final assessment incorporated the SMS run as obtained in 2011.

The time-invariant natural mortalities and maturities-at-age are presented in the text table below.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$
Maturity	0.5	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1
Natural mortality	0.767	0.385	0.356	0.339	0.319	0.314	0.307	0.307	0.307

6.5 Recruitment

At present there are no independent recruitment estimates for this stock.

6.6 Assessment

This stock was benchmarked in 2015 by WKWEST (ICES, 2015) and inter-benchmarked by WKPELA 2018.

6.6.1 Stock Assessment

This update assessment was carried out using ASAP. The assessment was tuned using the Celtic Sea herring acoustic survey (CSHAS) ages 2-7 winter rings and excluding the 2004 and 2017
surveys. The input data are presented in tables 6.6.1.1 and 6.6.1.2. The ASAP settings are as per the 2018 inter-benchmark (Table 6.6.1.3). The stock summary is presented in Table 6.6.1.4.

Figure 6.6.1.1 shows the catch proportions-at-age residuals. The residuals are large for the young ages, which is to be expected because these are estimated with low precision. Larger residuals can be seen in recent years. Overall there is no consistent pattern in the residuals. Figure 6.6.1.2 shows the observed and predicted catches. The model closely followed the observed catches. The observed and predicted catch proportions-at-age are shown in Figure 6.6.1.3. There is some divergence in the most recent years, most notable at 9-wr, with a larger proportion predicted than observed catches. Overall the fits are good throughout the full time-series.

The selection pattern in the fishery for the final assessment run is shown in Figure 6.6.1.4. Selection is fixed at 1 for $3-w r$ which is the age that Celtic Sea herring are considered to be fully selected. Selection at all other ages is estimated by the model. This gives a dome-shaped selection pattern which is considered appropriate to this fishery. The model predicts a drop in selection at-age 9 -wr. This may be the case given the low abundance of 9 -wr in the catch data.

Figure 6.6.1.5 shows the residuals of the index proportions-at-age. In previous years the largest residuals can be seen at the younger ages. The index fit shows generally good agreement with the exception of the very large survey index in 2012 (Figure 6.6.1.6). The selectivity parameters were adjusted at the inter-benchmark. Selection is now fixed for ages 3-5. This gives a more dome-shaped selection pattern with selection declining at older ages (6 and 7 wr) (Figure 6.6.1.7).

The analytical retrospective for SSB, fishing pressure and recruitment is shown in Figure 6.6.1.8. The Mohn's Rho on SSB calculated by ASAP is 1.34 over a five-year peel. This is another significant increase compared to the previous update assessments (1.39 in 2021) and it is significantly higher than the 0.2 threshold. Regarding SSB (top panel of Figure 6.6.1.8), 2 of the last 5 peels were out of the 95% CI bounds. This is most likely due to the current low level of the stock, the low level of the survey index (associated with high CV) and the absence of index for the year 2017. Following the decision tree provided by WKFORBIAS, advice was given for this stock because SSB is less than Blim.

Figure 6.6.1.9 shows uncertainties over time in the assessment estimates. Overall, the uncertainty is higher at the start and at the end of the time-series. Recruitment exhibits the highest uncertainty from 2013 to 2021. This may be related to the lack of a fisheries-independent estimate of recruitment.

State of the stock

The stock summary plots from the final assessment in 2021 and the update assessment in 2022 are presented in Figure 6.6.1.10 and the stock summary in Table 6.6.1.4. The assessment shows SSB is very low and is estimated to be 15084 t in 2021, still well below $\operatorname{Blim}(34000 \mathrm{t}$). The 2022 assessment shows a similar SSB trajectory to the 2021 assessment but with SSB in 2020 revised downwards. An increase can be seen in 2021. The assessment indicates that the stock has been below Blim since 2016.

The update assessment estimated mean F ($2-5$ ring) in 2021 to be 0.069 , decreasing from the high of 1.2 for 2018 and increasing in from 0.02 in 2020. F was estimated to be above $\mathrm{F}_{\mathrm{pa}}(0.27)$ and $\mathrm{F}_{\mathrm{mSy}}$ (0.26) from 2014 until 2019 and above Flim (0.45) from 2015 until 2019. The sharp increase in F in 2016 and 2017 that was seen in the 2021 assessment is again evident in the 2022 assessment.

Recruitment was good for several years with strong cohorts in 2005, 2007, 2009, 2010, 2011, and 2012 having entered the stock. However, since 2013, recruitment has been below average and no strong cohort has entered the fishery. The uptick in recruitment for 2020 predicted by the model in the 2021 assessment was revised downwards in 2022. An increase in recruitment can be seen in 2021.

6.7 Short-term projections

6.7.1 Deterministic Short-Term Projections

The short-term forecast followed the procedure agreed at the 2014 benchmark (ICES 2014/ACOM 43).

Recruitment (final year, interim year and advice year) in the short-term forecast is to be set to the same value based on the segmented stock-recruit relationship, based on the SSB in the forecast year-2 (2020). As this SSB value (8741t) is below the change-point (16 887 t), the following adjustment is applied.
Recruitment $_{\text {forecast year }}=$ plateau recruitment $\times \frac{S S B_{\text {forecast year }-2}}{S S B_{\text {changepoint }}}$
Recruitment $_{2022}=380686.6 \times \frac{8740.64}{16886.81}=197044$
Interim year catch was taken to be the monitoring TAC (869 t), which has been agreed for 2022. No carryover on the national quotas was used as it is a monitoring TAC. Non-Irish intermediate year catches were not adjusted based on recent quota uptake as done in recent years.

The deterministic short-term forecast was performed in FLR. The input data are presented in Table 6.7.1.1.

The results of the short-term projection are presented in Table 6.7.1.2. Fishing in accordance with the MSY approach implies a zero catch in 2023.

6.7.2 Multiannual short-term forecasts

No multiannual simulations were conducted in 2021.

6.7.3 Yield-per-recruit

No yield-per-recruit analyses were conducted in 2021.

6.8 Long-term simulations

Long-term simulations were carried out as part of the ICES evaluation of the long-term management plan for Celtic Sea herring. ICES advised that the harvest control rule was no longer consistent with the precautionary approach. The management plan resulted in $>5 \%$ probability of the stock falling below Blim in several years throughout the 20 year simulated period. The simulations indicated the management plan could not ensure that the stock is fished and maintained at levels that can produce maximum sustainable yield as soon as or by 2020. The long-term management plan is no longer used to give advice for this stock.

In the framework of the development of a monitoring TAC for the CSH, long-term simulations were carried out to study the recovery of the stock under 2 scenarios, no catch and monitoring TAC (869 t). A shortcut approach implemented in SimpSim was used (ICES, 2016). The operating model was the update assessment agreed by the HAWG in 2019 (ICES, 2019). The simulations showed that in the no catch scenario, the stock would recover in 2023 (risk to Blim < 5\%). The recovery would be delayed by one year if the monitoring TAC would be taken. (ICES, 2019, special request monitoring TAC).

6.9 Precautionary and yield-based reference points

Reference points were re-estimated by WKPELA 2018.

Framework	Reference point	Value	Technical basis	Source
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	er 54000 t	B_{pa}	ICES (2018a)
	$\mathrm{F}_{\text {MSY }}$	0.26	Stochastic simulations using segmented regression stock-recruitment relationship from 1970-2014	ICES (2018a)
Precautionary approach	$\mathrm{Bl}_{\text {lim }} \quad 3$	34000 t	$\mathrm{B}_{\text {loss }}=$ the lowest observed SSB (1980)	ICES (2018a)
	$\mathrm{B}_{\mathrm{pa}} \quad 5$	54000 t	$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\text {lim }} \times \exp (1.645 \times \sigma \mathrm{B})$, with $\sigma \mathrm{B}=0.29$.	ICES (2018a)
	$\mathrm{F}_{\text {lim }} \quad 0$	0.45	Equilibrium F maintaining SSB $>\mathrm{B}_{\text {lim }}$ with 50% probability	ICES (2018a)
	$\mathrm{F}_{\mathrm{pa}} \quad 0$	0.26*	The F that provides a 95\% probability for SSB to be above $\mathrm{B}_{\mathrm{lim}}$ ($\mathrm{F}_{\mathrm{P} .05}$ with advice rule)	- ICES (2018a)

*Fpa changed in 2021; Fpa now equal to Fp0.5 (ICES 2021)

6.10 Quality of the Assessment

Figure 6.6.1.9 shows uncertainties over time in the assessment estimates for the three key parameters (SSB, recruitment and F). The CVs for each of the parameters are between 0.1 and 0.3 for the majority of the time-series; uncertainties have increased in the final years. Recruitment estimates in the final year show the highest uncertainty.

The SSB and F values based on the assessment and forecast in 2021 are compared with the assessment outputs in 2022 and are shown in the table below. The assessment in 2022 shows SSB revised upward in 2019 but downwards in 2020 and 2021. F is revised down in 2019 and upwards in 2020 and 2021. This can also be seen in the historical retrospective plot in Figure 6.10.1.

	2021 Assessment				2022 Assessment								\% change in the estimates		
Year	SSB	Catch	F 2-5	Year	SSB	Catch	F 2-5	SSB	F 2-5						
2019	5790	1841	0.77	2019	6168	1841	0.73	7%	-5%						
2020	11680	132	0.02	2020	8741	132	0.02	-25%	4%						
2021	19278^{*}	869^{*}	0.06^{*}	2021	15084	745	0.07	-22%	11%						

* from intermediate year in STF.

The 2021 acoustic survey estimate is an increase on the 2020 estimate but is still at a very low level with an SSB estimate of $6,634 \mathrm{t}$. The survey time-series used in the assessment includes data from 2002 to 2021 (no survey in 2004 and the 2017 survey excluded). The 2018 year class was the strongest encountered in the survey and the catch in 2021. Beginning in 2014 herring had been observed close to the bottom in the acoustic dead-zone of the echosounder meaning the survey estimate was less reliably. This issue was not as pronounced in 2020 and 2021 although the number of herring marks seen was again very low.
Estimates of recruitment are uncertain and this may be related to the lack of a fisheries-independent recruitment estimator. In the Irish Sea, mixing occurs between juvenile winter spawned Celtic Sea fish and autumn spawned Irish Sea fish but the level of mixing is unquantified.

6.11 Management Considerations

The stock has declined substantially from a high in 2012, as older cohorts have moved through the fishery. Recruitment has been below average since 2013. The stock is again forecast to be below $B_{\lim }$ in 2023. F is now below $\mathrm{F}_{\text {MSY }}(0.26)$ and $\mathrm{F}_{\text {lim }}(0.45)$. The advice provided for this stock for 2023 is based on the ICES MSY approach, as in recent years. The Council of the European Union set the 2020-2022 TACs based on the response to a special request where ICES advised that monitoring catches of 869 t would be required to collect sufficient information to provide advice on similar bases as with a commercial fishery.
The change in fish behaviour that was observed by the acoustic survey since 2014, whereby fish were located close to the bottom and therefore difficult to detect acoustically, seems to have dissipated.
The closure of the Subdivision 7.aS as a measure to protect first-time spawners has been in place since 2007-2008, with limited fishing allowed. Currently only vessels of no more than 50 feet in registered length are permitted to fish in this area. A maximum catch limitation of 11% of the Irish quota is allocated to this fishery.

6.12 Ecosystem considerations

Herring are an important prey species in the ecosystem and also one of the dominant planktivorous fish.
The spawning grounds for herring in the Celtic Sea are well known and are located close to the coast (O'Sullivan et al., 2013). These spawning grounds may contain one or more spawning beds on which herring deposit their eggs. Individual spawning beds within the spawning grounds have been mapped and consist of either gravel or flat stone (Breslin, 1998). Spawning grounds tend to be vulnerable to anthropogenic influences such as dredging, sand and gravel extraction, dumping of dredge spoil, waste from fish cages, and the erection of structures such as wind turbines. There has been an increase in marine anthropogenic activity. Activities that have a negative impact on the spawning habitat of herring are a cause for concern (see for example Groot, 1979, 1996; ICES, 2003, 2015a).

Herring fisheries are considered to be clean with little bycatch of other fish. Mega-fauna bycatch is unquantified, though anecdotal reports suggest that seals, blue sharks, tunas, and whitefish are caught from time to time. In the 2017 observer study of the Celtic Sea herring fishery, whiting was the most frequently recorded bycatch species followed by haddock and mackerel. No marine mammals or seabirds were recorded as bycatch in the fishery, with only one elasmobranch (an unidentified dogfish species) recorded. A total of 26 marine mammal sightings were recorded during observer trips (O'Dwyer and Berrow, 2017).

6.13 Changes in the environment

Weights in the catch and in the stock at spawning time have shown fluctuations over time (figures 6.4.4.1 and 6.4.1.2), but with a decline to lowest observations in the series at the end. The declines in mean weights are a cause for concern, because of their impact on yield and yield-perrecruit. Harma (unpublished) and Lyashevska et al. (2020) found that global environmental factors, reflecting recent temperature increases (AMO and ice extent) were linked to changes in the size characteristics during the 1970s-1980s. Outside this period, size-at-age patterns were correlated with more local factors (SST, salinity, trophic and fishery-related indicators). Generally, length-at-age was mostly correlated with global temperature-related indices (AMO and Ice),
and weight was linked to local temperature variables (SST). There was no evidence of densitydependent growth in the Celtic Sea herring population, which is in accordance with previous studies (Molloy, 1984; Brunel and Dickey-Collas, 2010; Lynch, 2011). Rather, stock size exhibited a positive relationship with long-term size-at-age of Celtic Sea herring (Harma, unpublished).
In the Celtic Sea, a change towards spawning taking place later in the season has been documented by Harma et al. (2013). The causes of this are likely to be environmental, though to date they have not been elucidated (Harma et al., 2013). The study noted that declines in mean weights are not explained by the relative contribution of heavier-at-age autumn spawners. Rather, both autumn and winter spawners experienced concurrent declines in mean weights in recent years.
A shift towards later spawning has also been reported by local fishers in this area. WKWEST received a submission from the Celtic Sea Herring Management Advisory Committee of substantial spawning aggregations in Division 7.j in January 2015. This area is mainly an autumn spawning area (O'Sullivan et al., 2012).
Analyses of productivity changes over time in European herring stocks was examined by ICES (HAWG, 2006). It was found that this stock was the only one not to experience a change in productivity or so-called regime shift. This is also seen in the surplus production per unit stock biomass using information from the 2013 assessment. Evidence from the new ASAP assessment, in terms of recruits per spawner, does not alter this perception (ICES, WKWEST 2015).

Table 6.1.2.1. Herring in the Celtic Sea. Landings by quota year (t), 1988-2021. (Data provided by Working Group members). These figures may not in all cases correspond to the official statistics and cannot be used for management purposes.

Year	Denmark	France	Germany	Ireland	Netherlands	UK	Unallocated	Discards	Total
1988	-	-	-	16800	-	-	-	2400	19200
1989	-	+	-	16000	1900	-	1300	3500	22700
1990	-	+	-	15800	1000	200	700	2500	20200
1991	-	+	100	19400	1600	-	600	1900	23600
1992	-	500	-	18000	100	+	2300	2100	23000
1993	-	-	-	19000	1300	+	-1100	1900	21100
1994	-	+	200	17400	1300	+	-1500	1700	19100
1995	-	200	200	18000	100	+	-200	700	19000
1996	-	1000	0	18600	1000	-	-1800	3000	21800
1997	-	1300	0	18000	1400	-	-2600	700	18800
1998	-	+	-	19300	1200	-	-200	-	20300
1999	-		200	17900	1300	+	-1300	-	18100
2000	-	573	228	18038	44	1	-617	-	18267
2001	-	1359	219	17729	-	-	-1578	-	17729
2002	-	734	-	10550	257	-	-991	-	10550
2003	-	800	-	10875	692	14	-1506	-	10875
2004	-	801	41	11024	-	-	-801	-	11065
2005	-	821	150	8452	799	-	-1770	-	8452
2006	-	-	-	8530	518	5	-523	-	8530
2007	-	581	248	8268	463	63	-1355	-	8268
2008	-	503	191	6853	291	-	-985	-	6853
2009	-	364	135	5760	-	-	-499	-	5760
2010	-	636	278	8406	325	-	-1239	na	8406
2011	-	241	-	11503	7	-	-248	na	11503
2012	-	3	230	16132	3135	-	2104	161*	21765
2013	-	-	450	14785	832	-	-	118	16185
2014	-	244	578	17287	821	-		644	19574
2015	-	-	477	15798	1304	+	-	247	17826
2016	-	-	419	15107	1025	559	-451	182	16841
2017	-	-	298	10184	648	64		130	11324
2018	-			4398	436		-245		4589

Year	Denmark	France	Germany	Ireland	Netherlands	UK	Unallocated	Discards	Total
2019	-	-	-	1803	38	-	-	-	1841
2020	-	-	-	132	+	-	-	-	132
2021	1	-	-	608	-	-	-	-	609

* Added in 2014 after report of 1\% discarding.

Table 6.1.2.2. Herring in the Celtic Sea. Landings (t) by assessment year (1 April-31 March) 1988/1989-2021/2022. (Data provided by Working Group members). These figures may not in all cases correspond to the official statistics and cannot be used for management purposes.

Year	Denmark	France	Germany	Ireland	Netherlands	UK	Unallocated	Discards	Total
1988/1989	-	-	-	17000	-	-	-	3400	20400
1989/1990	-	+	-	15000	1900	-	2600	3600	23100
1990/1991	-	+	-	15000	1000	200	700	1700	18600
1991/1992	-	500	100	21400	1600	-	-100	2100	25600
1992/1993	-	-	-	18000	1300	-	-100	2000	21200
1993/1994	-	-	-	16600	1300	+	-1100	1800	18600
1994/1995	-	+	200	17400	1300	+	-1500	1900	19300
1995/1996	-	200	200	20000	100	+	-200	3000	23300
1996/1997	-	1000	-	17900	1000	-	-1800	750	18850
1997/1998	-	1300	-	19900	1400	-	-2100	-	20500
1998/1999	-	+	-	17700	1200	-	-700	-	18200
1999/2000	-		200	18300	1300	+	-1300	-	18500
2000/2001	-	573	228	16962	44	1	-617	-	17191
2001/2002	-	-	-	15236	-	-	-	-	15236
2002/2003	-	734	-	7465	257	-	-991	-	7465
2003/2004	-	800	-	11536	610	14	-1424	-	11536
2004/2005	-	801	41	12702	-	-	-801	-	12743
2005/2006	-	821	150	9494	799	-	-1770	-	9494
2006/2007	-	-	-	6944	518	5	-523	-	6944
2007/2008	-	379	248	7636	327	-	-954	-	7636
2008/2009	-	503	191	5872	150	-	-844	-	5872
2009/2010	-	364	135	5745	-	-	-499	-	5745
2010/2011	-	636	278	8370	325	-	-1239	na	8370
2011/2012	-	241	-	11470	7	-	-248	na	11470
2012/2013	-	3	230	16132	3135	-	2104	161*	21765
2013/2014	-	-	450	14785	832	-	-	118	16185
2014/2015	-	244	578	17287	821	-	-	644	19574
2015/2016	-	-	477	16320	1304	+	-	254	18355

Year	Denmark	France	Germany	Ireland	Netherlands	UK	Unallocated	Discards	Total
$2016 / 2017$	-	-	419	14585	1025	559	-451	182	16319
$2017 / 2018$	-	-	298	9627	648	64	-	130	10767
$2018 / 2019$	-	-	-	4227	436	-	-245	-	4418
$2019 / 2020$	-	-	-	1803	38	-	-	-	1841
$2020 / 2021$	1	-	-	132	+	-	-	-	133
$2021 / 2022$	-	-	-	745	-	-	-	-	745

* Added in 2014 after report of 1\% discarding.

Table 6.2.1.1. Herring in the Celtic Sea. Comparison of age distributions (percentages) in the catches of Celtic Sea and 7.j herring from 1970-2021/2022. Age is in winter rings.

Year	1	2	3	4	5	6	7	8	9
1970	1\%	24\%	33\%	17\%	12\%	5\%	4\%	1\%	2\%
1971	8\%	15\%	24\%	27\%	12\%	7\%	3\%	3\%	1\%
1972	4\%	67\%	9\%	8\%	7\%	2\%	1\%	1\%	0\%
1973	16\%	26\%	38\%	5\%	7\%	4\%	2\%	2\%	1\%
1974	5\%	43\%	17\%	22\%	4\%	4\%	3\%	1\%	1\%
1975	18\%	22\%	25\%	11\%	13\%	5\%	2\%	2\%	2\%
1976	26\%	22\%	14\%	14\%	6\%	9\%	4\%	2\%	3\%
1977	20\%	31\%	22\%	13\%	4\%	5\%	3\%	1\%	1\%
1978	7\%	35\%	31\%	14\%	4\%	4\%	1\%	2\%	1\%
1979	21\%	26\%	23\%	16\%	5\%	2\%	2\%	1\%	1\%
1980	11\%	47\%	18\%	10\%	4\%	3\%	2\%	2\%	1\%
1981	40\%	22\%	22\%	6\%	5\%	4\%	1\%	0\%	1\%
1982	20\%	55\%	11\%	6\%	2\%	2\%	2\%	0\%	1\%
1983	9\%	68\%	18\%	2\%	1\%	0\%	0\%	1\%	0\%
1984	11\%	53\%	24\%	9\%	1\%	1\%	0\%	0\%	0\%
1985	14\%	44\%	28\%	12\%	2\%	0\%	0\%	0\%	0\%
1986	3\%	39\%	29\%	22\%	6\%	1\%	0\%	0\%	0\%
1987	4\%	42\%	27\%	15\%	9\%	2\%	1\%	0\%	0\%
1988	2\%	61\%	23\%	7\%	4\%	2\%	1\%	0\%	0\%
1989	5\%	27\%	44\%	13\%	5\%	2\%	2\%	0\%	0\%

Year	1	2	3	4	5	6	7	8	9
1990	2\%	35\%	21\%	30\%	7\%	3\%	1\%	1\%	0\%
1991	1\%	40\%	24\%	11\%	18\%	3\%	2\%	1\%	0\%
1992	8\%	19\%	25\%	20\%	7\%	13\%	2\%	5\%	0\%
1993	1\%	72\%	7\%	8\%	3\%	2\%	5\%	1\%	0\%
1994	10\%	29\%	50\%	3\%	2\%	4\%	1\%	1\%	0\%
1995	6\%	49\%	14\%	23\%	2\%	2\%	2\%	1\%	1\%
1996	3\%	46\%	29\%	6\%	12\%	2\%	1\%	1\%	1\%
1997	3\%	26\%	37\%	22\%	6\%	4\%	1\%	1\%	0\%
1998	5\%	34\%	22\%	23\%	11\%	3\%	2\%	0\%	0\%
1999	11\%	27\%	28\%	11\%	12\%	7\%	1\%	2\%	0\%
2000	7\%	58\%	14\%	9\%	4\%	5\%	2\%	0\%	0\%
2001	12\%	49\%	28\%	5\%	3\%	1\%	1\%	0\%	0\%
2002	6\%	46\%	32\%	9\%	2\%	2\%	1\%	0\%	0\%
2003	3\%	41\%	27\%	16\%	6\%	4\%	3\%	0\%	1\%
2004	5\%	10\%	50\%	24\%	9\%	2\%	1\%	0\%	0\%
2005	12\%	38\%	30\%	10\%	4\%	3\%	2\%	1\%	1\%
2006	3\%	58\%	19\%	4\%	11\%	4\%	1\%	0\%	0\%
2007	12\%	17\%	56\%	9\%	2\%	3\%	1\%	0\%	0\%
2008	3\%	31\%	20\%	38\%	6\%	1\%	1\%	0\%	0\%
2009	24\%	11\%	30\%	12\%	20\%	2\%	1\%	1\%	0\%
2010	4\%	33\%	13\%	25\%	8\%	16\%	1\%	0\%	1\%
2011	7\%	19\%	38\%	8\%	15\%	6\%	6\%	1\%	0\%
2012	6\%	34\%	24\%	20\%	3\%	6\%	3\%	2\%	0\%
2013	5\%	24\%	33\%	18\%	13\%	3\%	4\%	1\%	0\%
2014	11\%	16\%	25\%	22\%	15\%	7\%	2\%	2\%	1\%
2015	0\%	9\%	18\%	24\%	21\%	15\%	7\%	3\%	2\%
2016	2\%	8\%	20\%	18\%	20\%	18\%	8\%	4\%	1\%
2017	1\%	15\%	34\%	17\%	12\%	10\%	7\%	3\%	2\%
2018	4\%	19\%	51\%	15\%	6\%	3\%	1\%	1\%	0\%

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
2019	60%	18%	8%	10%	3%	1%	0%	0%	0%
2020	13%	61%	15%	4%	4%	1%	1%	0%	0%
2021	0%	25%	61%	9%	2%	2%	0%	0%	0%

Table 6.2.1.2. Herring in the Celtic Sea. Length frequency distributions of the Irish catches (raised numbers in '000s) in the 2021/2022 season.

	7gQ3	7gQ4	7aSQ4	7jQ1 2022
18.5			0.31	
19			0	
19.5			0	
20			0.94	
20.5			0.63	
21		9.98	10.37	
21.5	11.35	19.96	19.49	
22	79.46	72.36	42.44	54.53
22.5	79.46	152.21	77.02	13.63
23	283.79	227.06	100.91	149.95
23.5	289.47	361.80	105.63	149.95
24	368.93	494.04	126.06	218.10
24.5	306.50	441.64	129.83	211.29
25	266.76	281.95	88.65	204.47
25.5	147.57	122.26	46.84	61.34
26	45.41	77.35	17.61	47.71
26.5	34.06	29.94	11.95	34.08
27	5.68	9.98	3.46	20.45
27.5	5.68	7.49	0.95	6.82
28	5.68		0.63	
28.5			0.31	

Table 6.2.2.1. Herring in the Celtic Sea. Sampling intensity of commercial catches (2021-2022). Only Ireland provides samples of this stock.

Division	Year	Quarter	Catch (\mathbf{t})	No. Sam- ples	No. aged	No. Meas- ured	Aged/1000 t
$7 . \mathrm{g}$	2021	3	245	4	194	340	791
$7 . \mathrm{g}$	2021	4	273	4	200	925	733
$7 . \mathrm{aS}$	2021	4	90	14	600	2494	6654
$7 . \mathrm{j}$	2022	1	135	1	100	174	739
Total			744	$\mathbf{2 3}$	$\mathbf{1 0 9 4}$	$\mathbf{3 9 3 3}$	$\mathbf{1 4 7 2}$

Table 6.3.1.1. Herring in the Celtic Sea. Revised acoustic index of abundance used in the assessment. Total stock num-bers-at-age (10^{6}) estimated using combined acoustic surveys (age refers in winter rings, biomass and SSB in 000's tonnes). 2-7 ring abundances are used in tuning. There was no survey in 2004. The survey in 2017 (shaded) was excluded as it was not recommended for tuning by HAWG in 2018.

	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$
	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$
0	0	24	-	2	-	1	99	239	5	0	31	4
1	42	13	-	65	21	106	64	381	346	342	270	698
2	185	62	-	137	211	70	295	112	549	479	856	291
3	151	60	-	28	48	220	111	210	156	299	615	197
4	30	17	-	54	14	31	162	57	193	47	330	43
5	7	5	-	22	11	9	27	125	65	71	49	38
6	7	1	-	5	1	13	6	12	91	24	121	10
7	3	0	-	1	-	4	5	4	7	33	25	5
8	0	0	-	0	-	1		6	3	4	23	0
9	0	0	-	0	-	0		1		2	3	1
SSB	41	20	-	33	36	46	90	91	122	122	246	71
CV	.49	.34	-	.48	.35	.25	.20	.24	.20	.28	.25	.28

	2014	2015	2016	2017	2018	2019	2020	2021
	2015	2016	2017	2018	2019	2020	2021	2022
0	0	0	0	0	109	98	1	252.6
1	41	0	125	0	55	22	27.2	
2	117	40	21	6	16	8	32.2	17.2
3	112	48	43	3	27	0.5	5	35.3
4	69	41	40	7	6	0.3	1	3.3
5	20	38	36	5	0	0.1	0	1.2
6	24	7	25	4	0	0	0	0
7	7	6	5	1	-	0	0	0.6
8	17	5	6	1	-	0	0	0.1
9	1	0	0	0		0	0	0
Nos.	408	184	301	27	213	129	67	310

	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$
	2015	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$
SSB	48	25	30	4	8	0.3	3.1	6.6
CV	0.59	0.18	0.33	-	0.49	0.55	0.51	0.44

Table 6.6.1.1. Herring in the Celtic Sea: Natural mortality inputs to the ASAP model. Age is in winter rings.

Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9
0.767	0.385	0.356	0.339	0.319	0.314	0.307	0.307	0.307

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Maturity inputs to the ASAP model. Age is in winter rings.

Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9
0.5	1	1	1	1	1	1	1	1

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Weight-at-age in the catch inputs to the ASAP model. Age is in winter rings.

	1	2	3	4	5	6	7	8	9
1958	0.096	0.115	0.162	0.185	0.205	0.217	0.227	0.232	0.23
1959	0.087	0.119	0.166	0.185	0.2	0.21	0.217	0.23	0.231
1960	0.093	0.122	0.156	0.191	0.205	0.207	0.22	0.225	0.239
1961	0.098	0.127	0.156	0.185	0.207	0.212	0.22	0.235	0.235
1962	0.109	0.146	0.17	0.187	0.21	0.227	0.232	0.237	0.24
1963	0.103	0.139	0.194	0.205	0.217	0.23	0.237	0.245	0.251
1964	0.105	0.139	0.182	0.215	0.225	0.23	0.237	0.245	0.253
1965	0.103	0.143	0.18	0.212	0.232	0.243	0.243	0.256	0.26
1966	0.122	0.154	0.191	0.212	0.237	0.248	0.24	0.253	0.257
1967	0.119	0.158	0.185	0.217	0.243	0.251	0.256	0.259	0.264
1968	0.119	0.166	0.196	0.215	0.235	0.248	0.256	0.262	0.266
1969	0.122	0.164	0.2	0.217	0.237	0.245	0.264	0.264	0.262
1970	0.128	0.162	0.2	0.225	0.24	0.253	0.264	0.276	0.272
1971	0.117	0.166	0.2	0.225	0.245	0.253	0.262	0.267	0.283
1972	0.132	0.17	0.194	0.22	0.245	0.259	0.264	0.27	0.285
1973	0.125	0.174	0.205	0.215	0.245	0.262	0.262	0.285	0.285
1974	0.141	0.18	0.21	0.225	0.237	0.259	0.262	0.288	0.27
1975	0.137	0.187	0.215	0.24	0.251	0.26	0.27	0.279	0.284
1976	0.137	0.174	0.205	0.235	0.259	0.27	0.279	0.288	0.293
1977	0.134	0.185	0.212	0.222	0.243	0.267	0.259	0.292	0.298
1978	0.127	0.189	0.217	0.24	0.279	0.276	0.291	0.297	0.302
1979	0.127	0.174	0.212	0.23	0.253	0.273	0.291	0.279	0.284
1980	0.117	0.174	0.207	0.237	0.259	0.276	0.27	0.27	0.275
1981	0.115	0.172	0.21	0.245	0.267	0.276	0.297	0.309	0.315
1982	0.115	0.154	0.194	0.237	0.262	0.273	0.279	0.288	0.293
1983	0.109	0.148	0.198	0.22	0.276	0.282	0.276	0.319	0.325
1984	0.093	0.142	0.185	0.213	0.213	0.245	0.246	0.263	0.262
1985	0.104	0.14	0.17	0.201	0.234	0.248	0.256	0.26	0.263

	1	2	3	4	5	6	7	8	9
1986	0.112	0.155	0.172	0.187	0.215	0.248	0.276	0.284	0.332
1987	0.096	0.138	0.186	0.192	0.204	0.231	0.255	0.267	0.284
1988	0.097	0.132	0.168	0.203	0.209	0.215	0.237	0.257	0.283
1989	0.106	0.129	0.151	0.169	0.194	0.199	0.21	0.221	0.24
1990	0.099	0.137	0.153	0.167	0.188	0.208	0.209	0.229	0.251
1991	0.092	0.128	0.168	0.182	0.19	0.206	0.229	0.236	0.251
1992	0.096	0.123	0.15	0.177	0.191	0.194	0.212	0.228	0.248
1993	0.092	0.129	0.155	0.18	0.201	0.204	0.21	0.225	0.24
1994	0.097	0.135	0.168	0.179	0.19	0.21	0.218	0.217	0.227
1995	0.088	0.126	0.151	0.178	0.188	0.198	0.207	0.227	0.227
1996	0.088	0.118	0.147	0.159	0.185	0.196	0.207	0.219	0.231
1997	0.093	0.124	0.141	0.157	0.172	0.192	0.206	0.216	0.22
1998	0.099	0.121	0.153	0.163	0.173	0.185	0.199	0.204	0.225
1999	0.09	0.12	0.149	0.167	0.18	0.183	0.202	0.209	0.208
2000	0.092	0.111	0.148	0.168	0.185	0.187	0.197	0.21	0.224
2001	0.082	0.107	0.139	0.162	0.177	0.19	0.185	0.204	0.229
2002	0.096	0.115	0.139	0.156	0.185	0.196	0.203	0.211	0.226
2003	0.089	0.102	0.128	0.146	0.165	0.184	0.195	0.202	0.214
2004	0.08	0.13	0.134	0.151	0.159	0.174	0.203	0.215	0.225
2005	0.077	0.102	0.142	0.147	0.158	0.168	0.181	0.208	0.252
2006	0.093	0.105	0.127	0.151	0.155	0.165	0.174	0.186	0.198
2007	0.074	0.106	0.123	0.141	0.166	0.162	0.17	0.171	0.229
2008	0.091	0.12	0.144	0.156	0.172	0.191	0.194	0.199	0.224
2009	0.078	0.122	0.146	0.16	0.169	0.185	0.187	0.197	0.211
2010	0.076	0.111	0.131	0.145	0.158	0.159	0.163	0.178	0.19
2011	0.07	0.104	0.127	0.141	0.154	0.161	0.167	0.18	0.179
2012	0.072	0.094	0.124	0.138	0.152	0.157	0.164	0.164	0.171
2013	0.062	0.101	0.122	0.142	0.153	0.164	0.17	0.166	0.18
2014	0.067	0.1	0.127	0.14	0.153	0.161	0.163	0.179	0.176

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
2015	0.071	0.102	0.122	0.137	0.143	0.151	0.158	0.167	0.182
2016	0.061	0.095	0.119	0.131	0.140	0.144	0.151	0.157	0.162
2017	0.06	0.080	0.090	0.123	0.143	0.160	0.163	0.171	0.178
2018	0.067	0.092	0.11	0.124	0.136	0.146	0.162	0.143	0.15
2019	0.06	0.085	0.109	0.123	0.131	0.155	0.153	0.156	0.163
2020	0.052	0.078	0.096	0.117	0.124	0.128	0.144	0.169	0.052
2021	0.066	0.103	0.12	0.131	0.145	0.158	0.18	0.164	0.177

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Weight-at-age in the stock inputs to the ASAP model. Age is in winter rings.

	1	2	3	4	5	6	7	8	9
1958	0.096	0.115	0.162	0.185	0.205	0.217	0.227	0.232	0.23
1959	0.087	0.119	0.166	0.185	0.2	0.21	0.217	0.23	0.231
1960	0.093	0.122	0.156	0.191	0.205	0.207	0.22	0.225	0.239
1961	0.098	0.127	0.156	0.185	0.207	0.212	0.22	0.235	0.235
1962	0.109	0.146	0.17	0.187	0.21	0.227	0.232	0.237	0.24
1963	0.103	0.139	0.194	0.205	0.217	0.23	0.237	0.245	0.251
1964	0.105	0.139	0.182	0.215	0.225	0.23	0.237	0.245	0.253
1965	0.103	0.143	0.18	0.212	0.232	0.243	0.243	0.256	0.26
1966	0.122	0.154	0.191	0.212	0.237	0.248	0.24	0.253	0.257
1967	0.119	0.158	0.185	0.217	0.243	0.251	0.256	0.259	0.264
1968	0.119	0.166	0.196	0.215	0.235	0.248	0.256	0.262	0.266
1969	0.122	0.164	0.2	0.217	0.237	0.245	0.264	0.264	0.262
1970	0.128	0.162	0.2	0.225	0.24	0.253	0.264	0.276	0.272
1971	0.117	0.166	0.2	0.225	0.245	0.253	0.262	0.267	0.283
1972	0.132	0.17	0.194	0.22	0.245	0.259	0.264	0.27	0.285
1973	0.125	0.174	0.205	0.215	0.245	0.262	0.262	0.285	0.285
1974	0.141	0.18	0.21	0.225	0.237	0.259	0.262	0.288	0.27
1975	0.137	0.187	0.215	0.24	0.251	0.26	0.27	0.279	0.284
1976	0.137	0.174	0.205	0.235	0.259	0.27	0.279	0.288	0.293
1977	0.134	0.185	0.212	0.222	0.243	0.267	0.259	0.292	0.298

	1	2	3	4	5	6	7	8	9
1978	0.127	0.189	0.217	0.24	0.279	0.276	0.291	0.297	0.302
1979	0.127	0.174	0.212	0.23	0.253	0.273	0.291	0.279	0.284
1980	0.117	0.174	0.207	0.237	0.259	0.276	0.27	0.27	0.275
1981	0.115	0.172	0.21	0.245	0.267	0.276	0.297	0.309	0.315
1982	0.115	0.154	0.194	0.237	0.262	0.273	0.279	0.288	0.293
1983	0.109	0.148	0.198	0.22	0.276	0.282	0.276	0.319	0.325
1984	0.093	0.142	0.185	0.213	0.213	0.245	0.246	0.263	0.262
1985	0.104	0.14	0.17	0.201	0.234	0.248	0.256	0.26	0.263
1986	0.112	0.155	0.172	0.187	0.215	0.248	0.276	0.284	0.332
1987	0.096	0.138	0.186	0.192	0.204	0.231	0.255	0.267	0.284
1988	0.097	0.132	0.168	0.203	0.209	0.215	0.237	0.257	0.283
1989	0.106	0.129	0.151	0.169	0.194	0.199	0.21	0.221	0.24
1990	0.099	0.137	0.153	0.167	0.188	0.208	0.209	0.229	0.251
1991	0.092	0.128	0.168	0.182	0.19	0.206	0.229	0.236	0.251
1992	0.096	0.123	0.15	0.177	0.191	0.194	0.212	0.228	0.248
1993	0.092	0.129	0.155	0.18	0.201	0.204	0.21	0.225	0.24
1994	0.097	0.135	0.168	0.179	0.19	0.21	0.218	0.217	0.227
1995	0.088	0.126	0.151	0.178	0.188	0.198	0.207	0.227	0.227
1996	0.088	0.118	0.147	0.159	0.185	0.196	0.207	0.219	0.231
1997	0.093	0.124	0.141	0.157	0.172	0.192	0.206	0.216	0.22
1998	0.099	0.121	0.153	0.163	0.173	0.185	0.199	0.204	0.225
1999	0.09	0.12	0.149	0.167	0.18	0.183	0.202	0.209	0.208
2000	0.092	0.111	0.148	0.168	0.185	0.187	0.197	0.21	0.224
2001	0.082	0.107	0.139	0.162	0.177	0.19	0.185	0.204	0.229
2002	0.096	0.115	0.139	0.156	0.184	0.196	0.203	0.211	0.223
2003	0.078	0.1	0.13	0.141	0.156	0.158	0.168	0.2	0.213
2004	0.077	0.127	0.133	0.151	0.156	0.168	0.216	0.228	0.257
2005	0.074	0.103	0.145	0.143	0.155	0.161	0.175	0.221	0.233
2006	0.085	0.104	0.123	0.153	0.15	0.157	0.164	0.177	0.188

	1	2	3	4	5	6	7	8	9
2007	0.068	0.101	0.122	0.138	0.156	0.159	0.163	0.167	0.251
2008	0.083	0.117	0.14	0.156	0.17	0.18	0.177	0.189	0.232
2009	0.076	0.117	0.142	0.158	0.168	0.176	0.17	0.186	0.226
2010	0.076	0.106	0.127	0.139	0.152	0.157	0.164	0.188	0.18
2011	0.067	0.108	0.127	0.138	0.148	0.16	0.17	0.194	0.197
2012	0.061	0.094	0.125	0.138	0.149	0.159	0.161	0.165	0.167
2013	0.06	0.101	0.126	0.144	0.153	0.159	0.168	0.17	0.186
2014	0.065	0.1	0.128	0.142	0.153	0.158	0.163	0.177	0.169
2015	0.065	0.098	0.119	0.133	0.14	0.146	0.153	0.16	0.162
2016	0.059	0.096	0.117	0.131	0.139	0.143	0.150	0.160	0.165
2017	0.055	0.079	0.088	0.116	0.139	0.158	0.164	0.170	0.177
2018	0.065	0.095	0.121	0.142	0.154	0.166	0.171	0.166	0.170
2019	0.055	0.087	0.106	0.122	0.127	0.141	0.15	0.161	0.16
2020	0.047	0.082	0.099	0.124	0.128	0.138	0.148	0.175	0.162
2021	0.055	0.094	0.118	0.131	0.141	0.153	0.174	0.173	0.163

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Fishery Selectivity block inputs (1-9) to the ASAP model. Age is in winter rings.

Age	Selectivity	Block	$\# 1$	Data
1	0.3	1	0	1
2	0.5	1	0	1
3	1	-1	0	1
4	1	1	0	1
5	1	1	0	1
7	1	1	0	1
8	1	1	0	1
9	1	1	0	1

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Catch numbers-at-age and total catch inputs to the ASAP model. Age is in winter rings.

Year	1	2	3	4	5	6	7	8	9	Total catch
1958	1642	3742	33094	25746	12551	23949	16093	9384	5584	22978
1959	1203	25717	2274	19262	11015	5830	17821	3745	7352	15086
1960	2840	72246	24658	3779	13698	4431	6096	4379	4151	18283
1961	2129	16058	32044	5631	2034	5067	2825	1524	4947	15372
1962	772	18567	19909	48061	8075	3584	8593	3805	5322	21552
1963	297	51935	13033	4179	20694	2686	1392	2488	2787	17349
1964	7529	15058	17250	6658	1719	8716	1304	577	2193	10599
1965	57	70248	9365	15757	3399	4539	12127	1377	7493	19126
1966	7093	19559	59893	9924	13211	5602	3586	8746	3842	27030
1967	7599	39991	20062	49113	9218	9444	3939	6510	6757	27658
1968	12197	54790	39604	11544	22599	4929	4170	1310	4936	30236
1969	9472	93279	55039	33145	12217	17837	4762	2174	3469	44389
1970	1319	37260	50087	26481	18763	7853	6351	2175	3367	31727
1971	12658	23313	37563	41904	18759	10443	4276	4942	2239	31396
1972	8422	137690	17855	15842	14531	4645	3012	2374	1020	38203
1973	23547	38133	55805	7012	9651	5323	3352	2332	1209	26936
1974	5507	42808	17184	22530	4225	3737	2978	903	827	19940
1975	12768	15429	17783	7333	9006	3520	1644	1136	1194	15588
1976	13317	11113	7286	7011	2872	4785	1980	1243	1769	9771
1977	8159	12516	8610	5280	1585	1898	1043	383	470	7833
1978	2800	13385	11948	5583	1580	1476	540	858	482	7559
1979	11335	13913	12399	8636	2889	1316	1283	551	635	10321
1980	7162	30093	11726	6585	2812	2204	1184	1262	565	13130
1981	39361	21285	21861	5505	4438	3436	795	313	866	17103
1982	15339	42725	8728	4817	1497	1891	1670	335	596	13000
1983	13540	102871	26993	3225	1862	327	372	932	308	24981
1984	19517	92892	41121	16043	2450	1085	376	231	180	26779
1985	17916	57054	36258	16032	2306	228	85	173	132	20426

Year	1	2	3	4	5	6	7	8	9	Total catch
1986	4159	56747	42881	32930	8790	1127	98	29	12	25024
1987	5976	67000	43075	23014	14323	2716	1175	296	464	26200
1988	2307	82027	30962	9398	5963	3047	869	297	86	20447
1989	8260	42413	68399	19601	8205	3837	2589	767	682	23254
1990	2702	41756	24634	35258	8116	3808	1671	695	462	18404
1991	1912	63854	38342	16916	28405	4869	2588	954	593	25562
1992	10410	26752	35019	27591	10139	18061	3021	6285	689	21127
1993	1608	94061	9372	10221	4491	2790	5932	855	508	18618
1994	12130	35768	61737	3289	3025	4773	1713	1705	474	19300
1995	9450	79159	22591	36541	3686	3420	2651	1859	842	23305
1996	3476	61923	38244	7943	16114	2077	1586	1507	1025	18816
1997	3849	37440	53040	31442	8318	6142	1148	827	603	20496
1998	5818	41510	27102	28274	13178	3746	2675	597	387	18041
1999	14274	34072	36086	14642	15515	8877	1865	2012	551	18485
2000	9953	77378	18952	12060	5230	6227	2320	662	578	17191
2001	15724	62153	35816	5953	4249	1774	1145	466	386	15269
2002	3495	26472	18532	5309	1416	1269	437	154	201	7465
2003	2711	37006	24444	14763	5719	3363	2335	388	542	11536
2004	4276	9470	46243	21863	8638	1412	473	191	75	12743
2005	15419	30710	5766	18666	7349	1923	435	77	60	9494
2006	1460	33894	10914	2469	6261	2331	561	57	48	6944
2007	8043	11028	36223	5509	1365	2040	410	56	4	7636
2008	1288	12468	8144	15565	2328	518	321	58	11	5872
2009	10171	4465	12859	4887	8458	971	279	247	80	5745
2010	2468	20929	8183	15917	4846	10080	919	273	321	8370
2011	6384	17151	33453	7301	13087	5347	5165	1089	141	11470
2012	11712	62528	44819	37500	6303	11811	5549	3540	347	21820
2013	6191	30471	42133	22649	16687	3305	5463	1778	535	16247
2014	16664	24120	39102	33320	22450	11165	3047	2774	1022	19574

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	Total catch
2015	286	12247	23835	32140	27382	19861	9820	4207	3279	18355
2016	2023	9822	25030	22800	25310	22447	10484	4684	1464	16318
2017	707	14144	31912	16004	10718	8963	6722	2401	1473	10767
2018	1654	7646	20545	5974	2296	1011	264	380	188	4418
2019	14146	4371	1857	2265	612	212	88	73	33	1841
2020	213	979	242	57	70	24	12	3	1	132
2021	3	1550	3825	586	148	109	23	22	2	745

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Index selectivity inputs (2-7) to the ASAP model. Age is in winter rings.

Age (wr)	Index-1	Selectivity
2	0.8	4
3	1	-1
4	1	-1
5	1	-1
7	1	4

Table 6.6.1.2. Herring in the Celtic Sea. Survey data input to ASAP. Age is in winter rings.

year	value	CV	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Sample Size
2002	381900	0.5	185200	150600	29700	6600	7100	2700	15
2003	146400	0.5	61700	60400	17200	5400	1400	300	15
2004	-1	-1	-1	-1	-1	-1	-1	-1	0
2005	246700	0.5	137100	28200	54200	21600	4900	700	18
2006	284999	0.5	211000	48000	14000	11000	1000	-1	17
2007	346120	0.5	69800	220000	30600	8970	13100	3650	21
2008	606000	0.5	295000	111000	162000	27000	6000	5000	21
2009	519370	0.5	112040	209850	57490	124630	11710	3650	23
2010	1060760	0.5	548940	155860	193030	65240	91040	6650	18
2011	953000	0.5	479000	299000	47000	71000	24000	33000	16
2012	1995300	0.5	856000	615000	330000	48500	121000	24800	13
2013	584900	0.5	291400	197400	43700	37900	9800	4700	9
2014	349000	0.5	117300	112100	69400	19800	23600	6800	5

year	value	CV	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Sample Size
2015	179400	0.5	40100	48100	41200	37700	6800	5500	6
2016	169376	0.5	20629	42736	39835	36124	24590	5462	10
2017	-1	-1	-1	-1	-1	-1	-1	-1	0
2018	49130	0.5	16104	26831	5984	110	101	0	9
2019	8873	0.5	98229	7934	524	284	131	0	3
2020	38383	0.5	32190	4625	1348	220	0	0	4
2021	57592	0.5	17213	35326	3271	1198	0	584	12

Table 6.6.1.3. Herring in the Celtic Sea. ASAP final Run settings.

Discards Included	No
Use likelihood constant	No
Mean $\mathrm{F}\left(\mathrm{F}_{\text {bar }}\right)$ age (wr)range	2-5
Number of selectivity blocks	1
Fleet selectivity	By Age: 1-9-wr: 0.3,0.5,1,1,1,1,1,1,1 Fixed at-age 3-wr
Index units	2 (numbers)
Index month	October (10)
Index selectivity linked to fleet	-1 (not linked)
Index Years	2002-2021 (no survey in 2004 and 2017 not included)
Index age (wr)range	2-7
Index Selectivity	0.8,1,1,1,1,1 Fixed from ages 3-5-wr
Index CV	0.5 all years
Sample size	No of herring samples collected per survey
Phase for F-Mult in 1st year	1
Phase for F-Mult deviations	2
Phase for recruitment deviations	3
Phase for N in 1st Year	1
Phase for catchability in 1st Year	1
Phase for catchability deviations	-5
Phase for Stock recruit relationship	1
Phase for steepness -	-5 (Do not fit stock-recruitment curve)
Recruitment CV by year	1
Lambdas by index	1
Lambda for total catch in weight by fleet	1
Catch total CV	0.2 for all years
Catch effective sample size	No of samples from Irish sampling programme. Downweighted to 5 in 2015-2021
Lambda for F-Mult in 1st year	0 (freely estimated)
CV for F mult in the first year	0.5
Lambda for F-Mult deviations	0 (freely estimated)

CV for f mult deviations by fleet	0.5
Lambda for N in 1st year deviations	0 (freely estimated)
CV for N in the 1st year deviations	1
Lambda for recruitment deviations	1
Lambda for catchability in 1st year index	0
Lambda for catchability deviations	1
CV for catchability deviations	1
Lambda for deviation from initial steep- ness in 1st year by index	0
CV for deviation from initial steepness	1
Lambda for deviation from unexplained stock size	0
CV for deviation from unexplained stock size	1

Table 6.6.1.4. Herring in the Celtic Sea. Update assessment stock summary table. Recruitment is at 1-winter ring.

Year	Catch	SSB	TSB	$F_{\text {bar }}$ 2-5	Recruitment
1958	22978	206015	279910.7	0.130	408556
1959	15086	197957	324109.2	0.112	1577690
1960	18283	189253	255888.9	0.126	362961
1961	15372	159919	221516.5	0.119	393717
1962	21552	156601	253026.9	0.192	843980
1963	17349	145174	207444.2	0.153	402905
1964	10599	165103	288344.5	0.096	1381900
1965	19126	169927	239714.9	0.139	416515
1966	27030	165194	265757.7	0.199	735267
1967	27658	159041	260064.8	0.225	768497
1968	30236	162296	274660.7	0.243	899711
1969	44389	141929	229285.7	0.362	461941
1970	31727	107098	165717	0.331	248671
1971	31396	97961.8	192767.7	0.453	821309
1972	38203	85876.7	148540.5	0.559	279417
1973	26936	64565.1	118059.3	0.518	325406

Year	Catch	SSB	TSB	Fbar 2-5	Recruitment
1974	19940	50061.5	86055.94	0.495	160325
1975	15588	39631.1	73729.2	0.517	202064
1976	9771	36803.9	68499.4	0.388	226223
1977	7833	37415	64383.57	0.291	184803
1978	7559	36168	59015.88	0.268	145587
1979	10321	36021.9	70583.65	0.425	278555
1980	13130	33005.8	59941.31	0.544	166477
1981	17103	36516.9	86692.73	0.837	464972
1982	13000	57440	126449.6	0.458	724433
1983	24981	76388.2	158892.5	0.556	784556
1984	26779	78994.4	148574.7	0.472	666197
1985	20426	85081.3	153927	0.319	642488
1986	25024	93072.5	170578.9	0.366	654169
1987	26200	105472	211262.6	0.389	1200230
1988	20447	108978	170626	0.232	475514
1989	23254	95703.8	164342.7	0.285	575732
1990	18404	89224	147151.9	0.248	503380
1991	25562	71049.2	111654.8	0.381	207415
1992	21127	70955.4	152792.7	0.485	962480
1993	18618	73640.4	119453	0.326	359813
1994	19300	80405.3	151766.9	0.322	768796
1995	23305	81906.9	149916.5	0.388	722078
1996	18816	72427.7	116557.3	0.309	352309
1997	20496	59883.5	104813.8	0.408	372858
1998	18041	47983.6	83141.82	0.446	248780
1999	18485	41993.8	87829.46	0.624	486666
2000	17191	42058.1	87380.49	0.633	477218
2001	15269	41689.8	83394.23	0.534	493295
2002	7465	53818.3	99795.25	0.210	541125

Year	Catch	SSB	TSB	Fbar 2-5	Recruitment
2003	11536	42832.6	65097.02	0.307	141584
2004	12743	39041.1	70912.93	0.394	361343
2005	9494	54401.2	116887	0.309	1057130
2006	6944	67023.5	102609.6	0.133	355901
2007	7636	69764.4	116908.3	0.132	723893
2008	5872	82686.6	116763.7	0.079	294385
2009	5745	94170.2	160941.2	0.076	1011860
2010	8370	102117	160671.2	0.101	751592
2011	11470	110331	176543.3	0.130	956829
2012	21820	100126	155754.2	0.253	631242
2013	16247	88219.4	128422.2	0.213	365882
2014	19574	68224.7	105261.3	0.322	304081
2015	18355	44041	70638.95	0.460	175780
2016	16318	25999.6	49273.82	0.766	204642
2017	10767	11791	24166.33	1.176	60833.1
2018	4418	6081.53	13009.89	1.165	51314
2019	1841	6168	14465.95	0.725	180019
2020	132	8740.64	13607.22	0.023	108106
2021	745	15084.2	26967.53	0.069	260375

Table 6.7.1.1. Herring in the Celtic Sea. Input data for short-term forecast.

2022								
Age	N	M	Mat	PF	PM	SWt	Sel	CWt
1	197044	0.767	0.5	0.5	0.5	0.05	0.02	0.06
2	120316	0.385	1	0.5	0.5	0.09	0.21	0.09
3	32354	0.356	1	0.5	0.5	0.11	0.29	0.11
4	34559	0.339	1	0.5	0.5	0.13	0.29	0.12
5	3844	0.319	1	0.5	0.5	0.13	0.29	0.13
6	1079	0.314	1	0.5	0.5	0.14	0.29	0.15

2022	$\mathbf{N a g e}$	N	M	Mat	PF	PM	SWt	Sel
Ag	CWt							
7	774	0.307	1	0.5	0.5	0.16	0.28	0.16
8	196	0.307	1	0.5	0.5	0.17	0.28	0.16
9	2011	0.307	1	0.5	0.5	0.16	0.08	0.17

$\mathbf{2 0 2 3}$			M	Mat	PF	PM	SWt	Sel	CWt
\mathbf{A}	N	197043.9	0.767	0.5	0.5	0.5	0.05	0.02	0.06
2	-	0.385	1	0.5	0.5	0.09	0.21	0.09	
3	-	0.356	1	0.5	0.5	0.11	0.29	0.11	
4	-	0.339	1	0.5	0.5	0.13	0.29	0.12	
5	-	0.319	1	0.5	0.5	0.13	0.29	0.13	
7	-	0.307	1	0.5	0.5	0.14	0.29	0.15	
8	-	0.307	1	0.5	0.5	0.16	0.28	0.16	
9	-	0.307	0.5	0.5	0.17	0.28	0.16		

$\mathbf{2 0 2 4}$	N	M	Mat	PF	PM	SWt	Sel	CWt
1	197043.9	0.767	0.5	0.5	0.5	0.052	0.019	0.059
2	-	0.385	1	0.5	0.5	0.088	0.212	0.089
3	-	0.356	1	0.5	0.5	0.108	0.293	0.108
4	-	0.339	1	0.5	0.5	0.126	0.293	0.124
5	-	0.319	1	0.5	0.5	0.132	0.293	0.133
7	-	0.307	1	0.5	0.5	0.144	0.293	0.147
8	-	0.307	1	0.5	0.5	0.157	0.278	0.159
9	-	0.307	0.5	0.5	0.170	0.279	0.163	

Table 6.7.1.2. Herring in the Celtic Sea. Results of short-term deterministic forecast.

Rationale	$\mathrm{F}_{\mathrm{bar}}$ (2022)	$\begin{aligned} & \text { Catch } \\ & \text { (2022) } \end{aligned}$	$\begin{aligned} & \text { SSB } \\ & \text { (2022) } \end{aligned}$	Fbar (2023)	Catch (2023)	$\begin{aligned} & \text { SSB } \\ & \text { (2023) } \end{aligned}$	$\begin{aligned} & \text { SSB } \\ & \text { (2024) } \end{aligned}$
Catch(2023) = Zero	0.058	869	19348.6	0.00	0.00	22746	25875
Catch (2023) $=2022$ TAC	0.058	869	19348.6	0.046	869	22319	24746
$\operatorname{Fbar}(2023)=$ Fmsy	0.058	869	19348.6	0.260	4475	20454	20049
$\operatorname{Fbar}(2023)=\mathrm{Fpa}$	0.058	869	19348.6	0.260	4475	20454	20049
$\operatorname{Fbar}(2023)=$ Flim	0.058	869	19348.6	0.450	7150	18953	16914
Fbar(2023) $=$ F2022	0.058	869	19348.6	0.058	1091	22209	24390
Fbar(2023) $=$ Fmsy * SSB2022 /MSY Btrigger	0.058	869	19348.6	0.093	1725	21891	23546

Figure 6.1.2.1. Herring in the Celtic Sea. Total official herring catches by statistical rectangle in 2021/2022.

Figure 6.1.2.2. Herring in the Celtic Sea. Working Group estimates of herring catches per season.

Figure 6.2.1.1. Herring in the Celtic Sea. Catch numbers-at-age standardized by yearly mean. 9 -wr is the plus group. Age in winter rings.

CS herring catch numbers at age

Figure 6.2.1.1 (cont.) Herring in the Celtic Sea. Catch numbers-at-age (unstandardized). 9-wr is the plus group. Age in winter rings.

Proportions at age from the catch and acoustic survey 2002-2021

Figure 6.2.1.2. Herring in the Celtic Sea. Proportions at age in the survey (1-9 wr) and the commercial fishery (1-9 wr) by year. Age in winter rings.

Figure 6.3.1.1. Herring in the Celtic Sea. Top panel: Core replicate acoustic survey effort cruise tracks and numbered haul stations. (Pass 1: black track, Pass 2: orange track). Bottom panel: Adaptive and scouting survey effort mini surveys 1-6. Replicate coverage shown as orange track.

Figure 6.3.1.2. Herring in the Celtic Sea. NASC (Nautical area scattering coefficient) distribution plot of the distribution of herring in $\mathbf{2 0 2 1}$ from combined survey effort.

Figure 6.3.1.3. Herring in the Celtic Sea. NASC (nautical area scattering coefficient) plot of the distribution of herring in 2021 in the adaptive mini-surveys.

Figure 6.3.1.4. Herring in the Celtic Sea. Internal consistency between ages in the Celtic Sea Herring acoustic survey timeseries. Age in winter rings.

Figure 6.4.1.1. Herring in the Celtic Sea. Trends over time in mean weight-at-age in the catch from 1958-2021 for 1-9+.

Figure 6.4.1.2. Herring in the Celtic Sea. Trends over time in mean weight-at-age in the stock at spawning time from 19582021 for 1-9+. Age in winter rings.

Catch proportions-at-age residuals

Figure 6.6.1.1. Herring in the Celtic Sea. Catch proportion-at-age residuals. Age in winter rings.

Figure 6.6.1.2. Herring in the Celtic Sea. Observed catch and predicted catch for the final ASAP assessment.

Figure 6.6.1.3. Herring in the Celtic Sea. Observed and predicted catch proportions-at-age for the final ASAP assessment.

Fleet selectivty at age

Figure 6.6.1.4. Herring in the Celtic Sea. Selection pattern in the fishery from the final ASAP assessment.

Figure 6.6.1.5. Herring in the Celtic Sea. Index proportions-at-age residuals (observed-predicted). Age in winter rings.

Figure 6.6.1.6. Herring in the Celtic Sea. Index fits.

Selectivity at age 2-7

Figure 6.6.1.7. Herring in the Celtic Sea. Survey Selectivity pattern from the final assessment run.

Figure 6.6.1.8. Herring in the Celtic Sea. Retrospective plots for SSB (top), Mean F (bottom left), and Recruitment (bottom). The shaded area is the 95% confidence interval.

Uncertainty of key parameters

Figure 6.6.1.9. Herring in the Celtic Sea. Uncertainty of key parameters in the final assessment.

Figure 6.6.1.10. Herring in the Celtic Sea. Stock Summary from the final assessment run showing SSB (top), Recruitment (middle) and Mean F2-5 (bottom)

Rec at age (wr) $\mathbf{1}$ (Millions)

Figure 6.10.1. Herring in the Celtic Sea. Historical retrospectives from the final assessments 2016-2022

7 Herring (Clupea harengus) in Division 7.a North of $52^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)

Abstract

The stock was benchmarked in 2017 and a state-space assessment model, SAM, was proposed as the assessment model for the stock (WKIRISH, 2017).

The WG notes that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks such as this one, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

7.1 The Fishery

7.1.1 Current advice

ICES advised that when the MSY approach is applied, catches in 2021 should be no more than 7341 tonnes. ICES advised that when the MSY approach is applied, catches in 2022 should be no more than 8455 tonnes.

7.1.2 The fishery in 2021

The catches reported from each country for the period 1987 to 2021 are given in Table 7.1.1, and total catches from 1987 to 2021 in Figure 7.1.1. Reported international landings in 2021 for the Irish Sea amounted to 7208 t with UK vessels acquiring the majority of the quota through swaps with the Republic of Ireland. The majority of catches in 2021 were taken during the $3^{\text {rd }}$ quarter, with landings also made in quarter 4 , this is typical of the annual fishery pattern.

As in previous years, the 2021 7.a (N) herring fishery began in late August, with catches taken to the north-west of the Isle of Man, before moving to the Douglas Bank. The majority of catches were taken by Northern Irish and Irish midwater pelagic fishing vessels. In previous years an extensive 'Mourne' gillnet fishery was active, this is limited to boats under 40 ft usually in October and November, this fishery landed 55 t in 2021.

7.1.3 Regulations and their effects

Closed areas for herring fishing in the Irish Sea along the east coast of Ireland and within 12 nautical miles of the west coast of Britain were maintained throughout the year. The traditional gillnet fishery on the Mourne herring has a derogation to fish within the Irish closed box. The area to the east of the Isle of Man, encompassing the Douglas Bank spawning ground (described in ICES 2001, ACFM:10), was closed from 21 September to 15 November. Boats from the Republic of Ireland are not permitted to fish east of the Isle of Man.

The arrangement of closed areas in Division 7.a(N) prior to 1999 is discussed in detail in ICES (1996/ACFM:10) with a change to the closed area to the east of the Isle of Man being altered in

1999 (ICES 2001/ACFM:10). The closed areas consist of: all year juvenile closures along part of the east coast of Ireland, and the west coast of Scotland, England and Wales; spawning closures along the east coast of the Isle of Man from 21 September to 15 November, and along the east coast of Ireland all year-round. In 2020 theses restrictions were no longer in place due to the changes within the EU Technical Regulations (EU) 2019/1241, however, national licensing measures still restrict vessels from fishing in some areas and seasons.

7.1.4 Changes in fishing technology and fishing patterns

UK Northern Irish and Irish pelagic pair and single trawlers take the majority of catches during the $3^{\text {rd }}$ and $4^{\text {th }}$ quarters. A small local fishery continues to record landings on the traditional Mourne herring grounds during the $3^{\text {rd }}$ or $4^{\text {th }}$ quarter. This fishery resumed in 2006 and has seen increasing catches of herring since, peaking at $\sim 171 \mathrm{t}$ in 2009 , there was less than 10 t landings attributed to this fishery in 2018, no catches in 2019, 33 t in 2020 and 55 t in 2021. Recently there has been a marked increase in the landings made by Irish vessels comprising 19% of the landings in 2018, 21% in 2019 and 27% in 2020. This decreased in 2021 to be 10% but remains above the previous low levels of on average of 2\% during 2015-2017.

7.2 Biological Composition of the Catch

7.2.1 Catch in numbers

Routine sampling of the main catch component was conducted in 2021. Sampling was carried out on landings at fish processing factories for both Irish, Northern Irish vessels and UK English vessels. There was no biological sampling of the main catch component (pair trawlers) in 2009 due to a failure to acquire samples from the landings. Catches in numbers-at-age are given in Table 7.6.3.1 for the years 1972 to 2021 and a graphical representation is given in Figure 7.2.1. The catch in numbers at length is given in Table 7.2.2 for 1995 to 2021, excluding 2009.

7.2.2 Quality of catch and biological data

The number of samples acquired from the main catch component was 34 in 2021, which are similar sampling levels than has been achieved in the past. The number of measurements also remained similar to past sampling levels. At sea observer data have been collected since $2010(\sim 15 \%$ of fishing trips sampled annually) with no discards observed. In 2020 at-sea observations were not carried out due to the Covid-19'social distancing' requirements, observations were reinstated in 2021 and discarding is not thought to be a feature of this fishery. Details of sampling are given in Table 7.2.3.

As a result of quality issues identified with the ageing of herring in the Irish Sea, a larger scale otolith exchange was completed in 2015. The results indicated relatively good agreement between ages and a consistent issue with inexperience readers that can be solved through further training.

The 2017 benchmark concluded to conduct future assessments only to include data back to 1980. Data extends back to 1961 and the entire data series was included in the assessment up to 2016, but there are well documented concerns over the quality of historic landings information, especially in the 1970s (see Stock Annex). Recent landings data, particularly since the introduction of buyers and sellers regulation in 2006, are considered to be of good quality.

7.3 Fishery Independent Information

7.3.1 Acoustic surveys AC (7.aN)

The information on the time-series of acoustic surveys in the Irish Sea is given in Table 7.3.1. The SSB estimates from the survey are calculated using the (annually varying) maturity ogives from the commercial catch data.

The acoustic survey in 2021 was carried out over the period $29^{\text {th }}$ August- $12^{\text {th }}$ September. The survey conditions were good. A survey design of stratified, systematic transects was employed, as in previous years (Figure 7.3.1). There was an area reduction in the survey due to logistical issues with vessel access to the survey area. Sprat and 0-group herring were distributed around the periphery of the Irish Sea (Figure 7.3.1). Highest abundance of $1+$ herring targets in 2021 were observed on the western sides of the Isle of Man (Figure 7.3.1). Local areas of high abundance of herring were also observed on the known spawning banks toward the county Down coast. The survey followed the methods described in the ICES WGIPS International Pelagic Survey Manual. Sampling intensity was high during the 2021 survey with 31 successful trawls completed. The length frequencies generated from these trawls highlight the spatial heterogeneous nature of herring age groups in the Irish Sea (Figure 7.3.2).

The age-disaggregated acoustic estimates of the herring abundance, excluding 0-ring fish, are given in Table 7.3.2. Results of a microstructure analysis of 1-ringer+ fish (Figure 7.3.6-7) have not been updated since 2011. Winter hatched fish, of which the majority are thought to be of Celtic Sea origin, are present in the prespawning aggregations sampled in the Irish Sea during the acoustic survey. The presence of these winter hatched fish has implications for the estimates of 1-ringer+ biomass and SSB, as well as confounding traditional cohort type assessment methods. However, removal of winter hatched fish, leaving only fish of autumn spawning origin, does not change the perception of a significant increase in biomass estimates (Figures 7.3.6-7). The benchmark working group (ICES WKPELA 2012) investigated the mixing issue and its impact on the assessment. The benchmark group concluded that the data should be treated as for a mixed stock. Both the fishery and survey operate on this mixture and by using the data without adjustment for winter hatched fish, the assessment is conducted on the mixed stock. The recruitment data (1 winter rings) have the largest proportion of "alien" stock. The benchmark suggested that this is considered in the assessment model configuration and dealt with objectively within the model.

7.3.2 Spawning-stock biomass survey (7.aNSpawn)

A series of additional acoustic surveys has been conducted since 2007 by Northern Ireland, following the annual pelagic acoustic survey (conducted during the beginning of September). This enhanced survey programme was initiated to investigate the temporal and spatial variability of the population estimates from the routine acoustic survey. The purpose was to track the spawning migration entering into the Irish Sea via the North Channel on route to the main spawning grounds of the Douglas Bank. Thisinformed design of the current survey to concentrate on the spawning grounds surrounding the Isle of Man and the Scottish coastal waters (Figure 7.3.3). Herring found in this area represents $>75 \%$ of the SSB index generated from the routine survey. In 2021 the survey was conducted from the 3rd to 6th of October. The spawning stock biomass was estimated to be 57.1 kt , this is a increase from $2020(47.9 \mathrm{kt})$ but remains within the previously observed range ($28.4-114.0 \mathrm{kt}$).

The historic density distributions from the surveys highlight the temporal and spatial complexity of the herring distributions. Problems with timing of the survey are further exacerbated by the
significant interannual variation in the migration patterns, evident from the changes in density distributions. The results confirm the high estimate of abundance observed during the routine annual acoustic survey estimates. The survey results support the high abundance of herring in the Irish Sea. Since 2012 this extended survey series has been reduced to one repeat survey in late September/early October to coincide with the main spawning time. The primary aim to generate an SSB index constituted from her- ring on or around the Irish Sea spawning ground to eliminate some of the ageing and mixing issues.

The 2012 benchmark (ICES WKPELA 2012) also suggested that the survey series could be used to fine tune the main survey used as the tuning fleet in the assessment. The survey uses a stratified design similar to the $\mathrm{AC}(7 . a . N$.$) . Survey methodology, data processing and subsequent analysis$ is exactly the same as for $\mathrm{AC}(7 . a . \mathrm{N})$ and follows standard protocols for surveys coordinated by WGIPS. The survey was presented to WGIPS in 2017 prior to inclusion into the benchmark. The results of the survey are reported in the WGIPS 2018 report (ICES, 2018) and updated annually. The survey is included in the assessment as an SSB index. A comparison with the SSB estimates from this survey and the acoustic survey that is conducted earlier confirms the high abundance of herring in the Irish Sea, but with some clear year effect (Figure 7.3.5). This index is generated from a survey where the timing mostly coinciding with the spawners being present on the Douglas Bank. The survey has been conducted on a chartered commercial vessel since 2007, timing of the survey is directed by input from the commercial fishery reporting movements of fish onto the spawning grounds.

7.4 Mean weight, maturity and natural mortality-at-age

Biological sampling in 2021 was used to calculate mean weights-at-age in the catch (Table 7.6.3.2). The mean weights-at-age in the $3^{\text {rd }}$ quarter catches (for the time-series 1980 to present) are used as estimates of stock weights at spawning time (Table 7.6.3.3). Mean weights-at-age have shown a general downward trend (Figure 7.4.1). This has also been observed in other stocks. It is recommended that potential drivers for this decline is investigated to explore potential large- scale ecosystem changes. No biological sampling information was available for 2009 and the weights at age for 2009 were replaced by averaging the weight at age observed in 2008 and 2010. The final agreed model from the 2012 benchmark used the natural mortality estimates from the North Sea (Table 7.6.3.4). These were again reviewed at the 2017 benchmark and although not considered ideal it is still the best available in the absence of specific Irish Sea derived natural mortality estimates. A variable maturity ogive is used based on the corresponding annual quarter 3 biological sampling from the catch (Table 7.6.3.5).

7.5 Recruitment

An estimate of total abundance of 0-ringers and 1-ringers is provided by the $\mathrm{AC}(7 . \mathrm{aN})$ acoustic survey, with trends also provided by the groundfish surveys. There is evidence that a proportion of these are of Celtic Sea origin (e.g. Brophy and Danilowicz, 2002). Further, the SAM assessment provides estimates of the recruitment of herring in which information from the catch and from all fishery independent indices is incorporated. The recruitment trends from the assessment are dealt with in Section 7.6.

7.6 Assessment

7.6.1 Data exploration and preliminary modelling

The stock was benchmarked in 2017. The assessment model did not change and was applied without change in 2022. At the benchmark the following changes were made to the input data and model setting:

- The input data series was shortened to include data only from 1980 onwards, to remove poor quality historic data. Mohn's rho on SSB was reduced from 13.3 to 9% under shortened time-series, which will improve the basis for advice (9% in the current assessment);
- Minor changes have been made to the variance and parameter bindings, to improve the model fit (see Table 7.6.3.10);
- The random walk assumption on recruitment was removed. Recruitment patterns are now estimated from cohort back-tracking from older ages;
- Includes a new SSB survey index (derived from acoustic methods; see Section 7.3.2). The primary aim is to generate an SSB index constituting mainly herring on or around spawning ground to eliminate some of the age and mixing issues. The larval survey (also an indicator of SSB) was removed as it contributes little to the assessment model. In addition, the modelling framework did not allow from a technical perspective to include two SSB surveys;
- The SSB survey index was included in the assessment without estimating catchability, which effectively implies an assumed catchability of 1 , with variance fixed at 0.4 (this corresponded to the observation variance value when catchability was freely estimated in a trial run).

The benchmark accepted the assessment and model settings, but requested further exploration of the sensitivity to catchability assumption for the SSB survey. This was completed post benchmark, however, the reviewers could not reach consensus and proposed that HAWG is best place to propose a final assessment model.

HAWG in 2017 had discussions on the final assessment model that could form the basis for the advice. This process is described in detail in Section 1.9 in the HAWG 2017 report. Despite ongoing concerns over the catchability assumption and the mixing issues from some members, the decision was made to use the SAM assessment settings agreed at the benchmark, together with the catchability assumptions discussed at HAWG, as the final model.

The primary issue with the current perception of stock status of Irish Sea herring is trying to reconcile the SAM model estimates of stock size (primarily driven by catch data) and the much higher estimate of stock size estimates from surveys that specifically focused on the spawning population within the Irish Sea. By design, acoustic surveys are aimed to produce an absolute estimate of stock biomass (with some uncertainty). This would result in a catchability of ~ 1. The previous assessment estimates catchability to be around ~ 2.5 for the acoustic survey. The benchmark also revealed very significant issues with the catch data, on which the previous assessment and advice is based on.

The concerns from the benchmark were satisfactorily addressed and did not highlight any major issues that could not be explained. In general, the assessment model fit improved in the proposed model where the SSB survey is included at the catchability set to 1 . Given that the primary aim is to provide credible scientific advice, the best proposal on this trade-off scenario (neither of which are ideal), is to base the assessment and advice on a more balanced assessment model.

HAWG did recognize that this is not an ideal scenario and further work needs to be done in the short term to improve the assessment (see Section 1.9, HAWG 2017)

Acoustic (AC(7.a.N)) 1-8+ winter rings) and the SSB indices are available for the assessment of Irish Sea herring. 2021catch-at-age data are derived from the international landings. The SAM model fits the catch well, with the model being weighted towards the catch information. The residuals are relatively small (figures 7.6.1-17). The residuals in the numbers-at-age in the catch and acoustic survey generally appear to be independent of time, but there are still some patterns in later years. These patterns are somewhat expected and could be explained by annual changes in migration patterns, magnitude and extent of the mixed component and converging trends in the surveys in recent years. The year effect in the 2011 survey is also evident from these plots with consistent negative residuals at older (3+) ages (winter rings).
The acoustic survey fits reasonably well at all ages except for 1 winter rings, with a model overestimate of fish 5 years +. The model fit is poor for SSB survey index (Figure 7.6.17). This is expected considering the catchability assumption, but it also highlights the fact that the model can deviate from the $\mathrm{q}=1$ fit and the realized catchability for the survey deviated from one.

Model fit is poor for 1 ringers in the catch and survey, which is the age with the highest occurrence of fish mixing from different hatching seasons. The modelled acoustic survey catchability parameter and the selectivity of the fishery by pentad are illustrated in figures 7.6.18-19. The variability of fishery selection is thought to reflect variable migration patterns and the effect of the spawning closure.

A feature of the assessment model is the estimation of an observation variance parameter for each dataset (Figure 7.6.20). Overall, the catch data ($2+$ winter ring) are associated with low observation variances, where 1 ringers (from catch and survey) are perceived to be the noisiest data series. Figure 7.6 .21 shows observation variance vs. uncertainty of the data sources used in the model. Although the majority of the data sources are associated with relatively high observation variances, none of the uncertainty estimates are particularly high. The CVs do not indicate a lack of convergence of the assessment model.

7.6.2 Final assessment

The final assessment was carried out by fitting the state-space model (SAM, in the FLR environment) using the settings and data inputs in accordance to the stock annex (as decided at the 2017 benchmark and HAWG 2017). The input data and model settings are shown in Tables 7.6.3.1-11, the SAM output is presented in Tables 7.6.3.13-21, the stock summary in Table 7.6.3.12 and Figure 7.6.22, model fit and parameter estimates in Table 7.6.3.22, and negative log-likelihood for the model fit in Table 7.6.3.23.

Diagnostics and selectivity parameters for this run are presented in Figure 7.6.1-19. The stock parameters are estimated well by the model, as indicated by the relatively low uncertainty associated with the stock parameter (Figure 7.6.23), except for the most recent estimates.

The retrospective pattern shows a very similar perception in SSB, F and recruitment for the years 2016-21 (Figure 7.6.24). The retrospective bias from the model is low.

Comparison with previous assessments

A comparison of the estimates of this year's assessment with last year's is given in Figure 7.6.25. The stock was benchmarked in 2017, with updates made to the model configurations and input data sources (including a new SSB survey). The new perception of the stock provides biomass estimates more in between the acoustic survey and catch estimates. Recruitment assumptions in the assessment were changed, which resulted in higher interannual variability. While the trend in
fishing mortality is estimated to be stable, a historical comparison of the current assessment with previous assessments shows annual upward revision of fishing mortality and wide confidence intervals. The assessed historic SSB appears to be sensitive to addition of a new year of data resulting in revision during the recent time period.

7.6.3 State of the stock

Trends from the final assessment indicate an increase in SSB and recruitment since the mid-2000s, with a stabilizing trend in the most recent years (although uncertain). The associated F has decreased significantly over the last 10 years to below Fmsy. Based on the most recent estimates the stock is being harvested sustainably at, or below, FMSY.

7.7 Short-term projections

7.7.1 Deterministic short-term projections

A deterministic short-term forecast was conducted for Irish Sea herring with code in R (FLR). Population abundances, F at age and input data were taken from the final SAM assessment, 1980-2021 (Table 7.7.1). Geometric mean recruitment of 1-ringers (2010-2019) replaced recruitment for 1-ringers in 2021 and is used as the intermediate year assumption. The forecast was based on catches (2021 advice $=8455 \mathrm{t}$) assuming full uptake of the ICES fishing opportunity advice. Fishing mortality, maturity-at-age, catch weights at age and stock weights were averaged over the most recent three years. Fishing mortality was not scaled to the last year, as the terminal estimate of F was not considered more informative.

The short-term catch option table is given in Table 7.7.2. SSB is expected to be well above MSY $B_{\text {trigger }}$ in 2022-2024, but is predicted to decrease if fishing at FMSY. SSB with zero catch is forecast to increase $(+14 \%)$. This is largely in response to maturation of the 2022 and 2023 year classes, which will contribute more than 53% of the SSB in 2024.

7.7.2 Yield per recruit

Not available, previous explorations are detailed in the stock annex.

7.8 Medium term projections

No medium term stock projections of stock size were conducted by the Working Group.

7.9 Reference points

MSY evaluations

New reference points were derived using the stock-recruit pairs generated by the 2017 assessment (WKIRISH3 and HAWG 2017). Blim was set to the lowest SSB that generate above average recruitment, 8500 t . $\mathrm{B}_{\mathrm{pa}}, 11800 \mathrm{t}$ calculated from Blim with assessment error ($\sigma=0.201$, based on the average CV from the terminal assessment year) MSY $B_{\text {trigger }}$ is set to $B_{p a}$ as the stock has not been fished at or below FmSY for more than five years. FMSY median point estimates is 0.27 (0.266). The upper bound of the FMSY range giving at least 95% of the maximum yield was estimated to $0.35(0.345)$ and the lower bound at $0.20(0.198)$. Flim is estimated to be $0.40(0.397)$ as F with 50%
probability of $\mathrm{SSB}<\mathrm{B}_{\lim }$ with F_{pa} was modified to Fp_{05} as 0.309 calculated as the F that leads to $\mathrm{SSB} \geq$ Blim with 95% probability.

7.10 Quality of the assessment

The data used within the assessment, the assessment methods and settings were scrutinized during the 2017 benchmark (WKIRISH3 2017). The benchmark group performed sensitivity tests to test model configurations and optimized the model fit to the data with the least amount of parameters estimated. The Working Group checked for convergence and judged that a good model fit was found. FLSAM will not run if convergence criteria are not achieved.

The stock is very well sampled and catch information is representative of the fishery (with the exception of 2009 when no samples were provided). The current assessment, being a time-series model, can estimate the missing catch numbers in 2009.

The main issues with the stock are stock mixing (at younger ages from fish of different spawning season origin) and the different trends in mortality observed in the survey and the commercial catches. The majority of this variation may arise from the inter-annual variation in herring migration patterns and their effect on the selectivity of both the fishery and acoustic survey, but is also affected by the effect the annual closure of the Douglas Bank spawning grounds has on the fishery patterns. There are some inconsistencies between observed and modelled landings. The magnitude of these differs between years, but is on average $+/-12 \%$ over the assessment period and mostly falls within the confidence limits of the estimate. The reason behind these needs further investigation, but might be due to conflicting mortality signals from the surveys and catches and the use of a constant M throughout the time-series.

The data are treated as for a mixed stock. Both the fishery and survey operate on this mixture and by using the data without adjustment for winter hatched fish, the assessment is conducted on the mixed stock. The mixing issue was considered in detail during the 2012 benchmark, but no further analysis was performed at the 2017 benchmark given that there was no new information presented. The noise in the data due to juvenile stock mixing resulted in increased estimates of F , catchability estimates >1 across the younger ages in the survey, or most likely a combination of these. Most of the mixing occurs at younger ages, and this is objectively, but only partially, corrected for in the model through a high catchability estimated for the acoustic survey. Currently, the model doesn't have the structure to specifically deal with the contribution of small herring from other stocks.

The $F_{b a r}$ range 4-6 is considered representative of the mortality (Figure 7.6.26) on the autumn spawning stock in the Irish Sea, excluding most the ages with significant mixed components and represent the age range with highest fish mortality.

The survey data quality is good, but the survey index is linked to the migration and biological characteristics of the stock and the need to assess similar stock components which the fishery exploits to ensure the sustainable exploitation of the Irish Sea spawning stock.

No major violations of the assumptions underpinning the assessment model were found. The final assessment model is dominated by information from the catch, but with the noise being added to the survey information as age and year effects. The model does fit the catch data significantly better despite the significant quality issues with the catch data reported at the 2017 benchmark. This is not desirable. The new survey information adds more weight to the previously observed increase abundance trend observed from the main age-disaggregated acoustic survey. The 2017 assessment model attempted to provide a more balanced model, giving more weight to the SSB survey.

SAM down weights the 1 ring data and survey information in general. The uncertainty estimates of the model parameters, suggest the model is both appropriate for the available data and that the model describes these data reasonably well. Whilst, the trend in fishing mortality is estimated to be stable the historic comparison of the current assessment with previous assessments shows an annual upward revision of fishing mortality. The confidence range of Fishing mortality estimates are large and inter-annual signal difficult to observe. This should be further explored.

7.11 Management considerations

Given the historical landings from this stock and the knowledge that fishing pressure is light and mostly confined to one pair of UK vessels it can be assumed that fishing pressure and activity has not varied considerably in recent years. The catches have been close to TAC levels and the main fishing activity has not varied considerably as shown from landing data (Figure 7.1.1).

The current assessment indicates SSB in 2021 to be the highest in the time-series and fishing mortalities below Fmsy. The forecast predicts a reduction in SSB in 2022. The Working Group supports the development of a long-term management plan for this stock. Such a plan should be further developed with stakeholders and for- warded to ICES for evaluation.
Characteristically of most herring stocks, the Irish Sea herring represents a mixture and management of this stock should be considered as part of a metapopulation. The consequence of this needs to be further evaluated for management and advice.

7.12 Ecosystem Considerations

The Sixth Workshop on an Ecosystem Based Approach to Fishery Management for the Irish Sea (WKIRISH6), set out to operationalise the WKIrish regional benchmark process. WKIrish aimed to incorporate ecosystem information into the ICES single-species stock assessment process for the Irish Sea. Three independent ecosystems models have been in development for the Irish Sea. Of these, an Ecopath with Ecosim (EwE) model has been reviewed by the ICES Working Group on Multispecies Assessment Methods (WGSAM). WKIrish propose to use relevant ecosystem indicators to inform the FMSY within the established F ranges (FmsyLower to Fmsyupper). Feco uses indicaors of current ecosystem suitability for individual stocks to refine the F target values within these precautionary ranges. FIND is based on finding ecosystem indicators which are positively related to the stock development over the model tuning range, and where the likely underlying mechanisms for this link are likely to continue acting in the short to medium term. The EwE model was used to provide ecosystem indicator(s) for individual stocks (cod, whiting, haddock, sole, plaice, herring, and Nephrops) in the Irish Sea. The selection of the indicator aimed to cover a range of possible ecosystem processes on each stock. For herring, the large zooplankton index was observed to be strongly positively correlated with stock biomass and therefore selected as an appropriate indicator of favourable environmental condition for the stock.

Table 7.1.1 Herring (Clupea harengus) in Division 7.a North of $52^{\circ} \mathbf{3 0}{ }^{\prime} \mathrm{N}$ (Irish Sea)Herring in Division 7.a North (Irish Sea).Working Group catch estimates in tonnes by country, 1987-2021. The total catch does not in all cases correspond to the official statistics and cannot be used for management purposes.

Country	1987	1988	1989	1990	1991	1992	1993	1994	1995
Ireland	1200	2579	1430	1699	80	406	0	0	0
UK	3290	7593	3532	4613	4318	4864	4408	4828	5076
Unallocated	1333	5823	10172	4962	6312	4398	5270	4408	4828
Total	1996	1997	1998	1999	2000	2001	2002	2003	2004
Country	100	0	0	0	0	862	286	0	749
Ireland	5180	6651	4905	4127	2002	4599	2107	2399	1782
UK									
Unallocated	22	6651	4905	4127	2002	5461	2393	2399	2531
Total	5302								

\qquad

Country	2005	2006	2007	2008	2009	2010	2011	2012	2013
Ireland	1153	581	0	0	0	0	0	18	0
UK	3234	3821	4629	4895	4594	4894	5202	5675	4828

Unallocated

Total	4387	4402	4629	4895	4594	4894	5202	5693	4828

Country	2014	2015	2016	2017	2018	2019	2020	2021
Ireland	119	0	82	200	1299	1317	1957	753
UK	5089	4868	4245	3696	5504	5061	5969	6455
Unallocated		22						
Total	5208	4891	4327	3896	6804	6378	7927	7208

Table 7.2.2 Herring (Clupea harengus) in Division 7.a North of $5 \mathbf{2}^{\circ} \mathbf{3} 0^{\prime} \mathrm{N}$ (Irish Sea)Herring in Division 7.a North (Irish Sea).Catch at length data 1995-2021. Numbers of fish in thousands. Table amended with 1990-1994 year-classes removed (see Annex 8).

	늑	ু	국		욱	응	O-	No	Ò O	ষ্ণ	이N	O O	Ò	-	$\stackrel{*}{\circ}$	Oì	$\stackrel{\underset{N}{7}}{ }$	$\underset{\sim}{N}$	$\stackrel{m}{N}$	$\underset{\sim}{\mathbb{N}}$	$\stackrel{\sim}{\underset{N}{N}}$	$\begin{aligned} & 0 \\ & \underset{\sim}{1} \end{aligned}$	$\underset{\sim}{N}$	$\stackrel{\infty}{\sim}$		ㅇN	-
14															-					-				16			
14.5															-					-				0	11		
15															-					15				31	50	11	
15.5					10								16			93				14				54	74		
16	21	21	17		19	12	9					2			-	107	30		8	0		109		47	233		
16.5	55	51	94		53	49	27			13	1	44	33	1	-	487	165		84	14		174		176	401	106	
17	139	127	281	26	97	67	53			25	39	140	69	3	-	764	356	89	202	213	16	261	86	431	883	428	37
17.5	148	200	525	30	82	97	105			84	117	211	286	11	-	1155	851	143	470	808	32	413	62	749	1170	1250	54
18	300	173	1022	123	145	115	229			102	291	586	852	34	-	1574	1406	301	533	1644	72	326	148	594	1532	1934	124
18.5	280	415	1066	206	135	134	240	36		114	521	726	2088	64	-	1405	841	533	555	3246	64	457	148	1097	1346	2913	144
19	310	554	1720	317	234	164	385	18		203	758	895	2979	85	-	866	1029	479	588	5357	136	522	234	841	1051	2832	337
19.5	305	652	1263	277	82	97	439	0	29	269	933	1246	3527	108	-	673	1026	493	680	5371	199	718	382	928	1331	1996	368
20	326	749	1366	427	218	109	523	0	73	368	943	984	3516	100	-	787	1062	298	1041	4025	271	826	1121	1608	1585	2438	825
20.5	404	867	1029	297	242	85	608	18	215	444	923	1443	2852	133	-	888	1502	511	1419	2905	279	1087	1343	1881	2263	2857	970
21	468	886	1510	522	449	115	1086	307	272	862	1256	1521	3451	192		1470	1874	643	2364	2608	439	1783	3154	3352	2716	3624	$\begin{aligned} & 2 \\ & -18 \end{aligned}$

	슥	இঃ	숙	o̊	ু	O-	O-	No	ÒN	Oi	스N	O O	우N	ONN	围		프국	$\underset{\sim}{N}$	$\underset{\sim}{\underset{\sim}{2}}$	$\underset{\sim}{\underset{\sim}{A}}$	$\stackrel{\sim}{\circ}$	$\begin{aligned} & 0 \\ & \underset{N}{1} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$	$\underset{\sim}{\infty}$	$\underset{\sim}{7}$	Ò N	-
21.5	782	1258	1192	549	362	138	1201	433	290	1007	1380	1621	2929	217	-	1758	1396	1104	2963	2381	854	1762	3007	3838	3340	5419	$\begin{aligned} & 2 \\ & 870 \end{aligned}$
22	1509	1530	2607	1354	1261	289	1748	1750	463	1495	1361	2748	3821	271	-	2363	2372	1586	3052	2906	1896	2588	4374	5232	4676	6594	$\begin{aligned} & 5 \\ & \hline 058 \end{aligned}$
22.5	2541	2190	2482	1099	2305	418	1763	1949	600	2140	1448	3629	3503	229	-	3362	2778	2404	3599	2766	2028	2675	2711	6046	4289	7828	$\begin{aligned} & 6 \\ & 312 \end{aligned}$
23	4198	2362	3508	2493	4784	607	2670	2490	1158	2089	1035	4358	4196	322	-	4530	4100	3920	3432	2596	2470	2893	3475	7485	4476	7872	$\begin{aligned} & 7 \\ & 176 \end{aligned}$
23.5	4547	2917	3902	2041	4183	951	2254	1552	1380	2214	1256	2920	3697	264	-	5232	3394	6024	3039	1775	1977	3110	2625	6404	3745	7378	$\begin{aligned} & 6 \\ & -135 \\ & \hline \end{aligned}$
24	4416	3649	4714	3695	4165	1436	3489	1029	1273	2054	1276	3679	3178	259	-	4559	4759	8849	3882	2161	2124	2849	2649	6912	4841	6065	$\begin{aligned} & 5 \\ & 580 \end{aligned}$
24.5	3391	4077	4138	2769	3397	1783	4098	758	1249	2269	1083	2431	2136	204	-	3616	3729	7777	3985	1879	1911	2523	2144	4992	5033	5004	$\begin{aligned} & 3 \\ & 086 \\ & \hline \end{aligned}$
25	3100	4015	5031	2625	2620	2144	5566	776	1163	1749	1086	3438	1503	148	-	3083	3430	7020	3364	2282	2367	2414	2378	4462	3713	3362	$\begin{aligned} & 2 \\ & 586 \end{aligned}$
25.5	2358	3668	3971	2797	1817	1791	4785	1335	1211	1206	584	2198	952	114	-	2582	2662	5759	2693	2264	2319	2458	1824	2632	2079	3102	$\begin{aligned} & 1 \\ & 100 \\ & \hline \end{aligned}$
26	2334	2480	3871	3115	1694	1349	3814	1570	1140	823	438	1714	643	78	-	1777	2343	4835	1934	1612	1962	1936	1331	1455	1401	1945	772
26.5	1807	2177	2455	2641	1547	840	2243	1552	1573	587	203	605	330	42	-	950	1595	2664	1026	900	1016	1631	739	798	421	900	290
27	1622	1949	1711	2992	1475	616	1489	776	1607	510	165	445	147	23	-	460	1083	1716	412	498	827	826	370	458	210	342	181
27.5	990	1267	1131	1747	867	479	644	433	1189	383	60	155	72	10	-	216	472	629	179	326	252	283	123	198	41	119	76
28	834	906	638	1235	276	212	496	162	726	198	45	104	33	12	-	9	248	231	85	256	141	65	37	104	52	29	18
28.5	123	564	440	170	169	58	179	108	569	51	18	9	26	1	-		53	159	28	156	48	65	12	0	11	80	2
29	248	210	280	111	61	42	10	36	163		12	46			-	9		108		57	16	22	25	16			
29.5	56	79	59	92		12	0	36	129				7		-			54		14	8		12	0			

	늑	КЮ	-	\% ${ }_{\sim}^{\circ}$	-	응	$\stackrel{-1}{\text { O- }}$	N	웅	O	능	O O	-	Oi	웅	Oì	$\stackrel{\underset{N}{7}}{ }$	$\underset{\sim}{N}$	$\stackrel{M}{\underset{N}{N}}$	$\stackrel{-}{\text { - }}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & 0 \\ & \underset{N}{N} \end{aligned}$	$\stackrel{N}{\underset{N}{1}}$	$\stackrel{\infty}{\underset{\sim}{N}}$	$\stackrel{\rightharpoonup}{\sim}$	O	-
30	40	32	8	84		6	9		43						-			17		0	8						
30.5																											
31																											1

Table 7.2.3 Herring (Clupea harengus) in Division 7.a North of $5^{\circ}{ }^{\circ} \mathbf{3} \mathbf{0}^{\prime} \mathrm{N}$ (Irish Sea)Herring in Division 7.a North (Irish Sea).Sampling intensity of commercial landings in 2021.

Quarter	Country	Landings (t)	No. samples	No. fish measured	No. fish aged
1	Ireland	0	-	-	-
	UK (N. Ireland)	784	-	-	-
	UK (Isle of Man)	*	-	-	-
	UK (Scotland)	0	-	-	-
	UK (England \& Wales)	0	-	-	-
2	Ireland	0	-	-	-
	UK (N. Ireland)	0	-	-	-
	UK (Isle of Man)	*	-	-	-
	UK (Scotland)	0	-	-	-
	UK (England \& Wales)	0	-	-	-
3	Ireland	403	7	1840	350
	UK (N. Ireland)	5576	24	2715	1180
	UK (Isle of Man)	*	-	-	-
	UK (Scotland)	0	-	-	-
	UK (England \& Wales)	0	0	0	0
4	Ireland	350	3	789	150
	UK (N. Ireland)	95	0	0	0
	UK (Isle of Man)	*	-	-	-
	UK (Scotland)	0	-	-	-
	UK (England \& Wales)	0	-	-	-

* no information, but catch is likely to be negligible

Table 7.3.1. Herring (Clupea harengus) in Division 7.a North of $52^{\circ}{ }^{\circ} 0^{\prime} \mathrm{N}$ (Irish Sea)Herring in Division 7.a North (Irish Sea).Summary of acoustic survey AC(7.aN) information for the period 1989-2021. Small clupeoids include sprat and 0ring herring unless otherwise stated. CVs are approximate. Biomass in t . All surveys carried out at $\mathbf{3 8} \mathbf{~ k H z}$ except December 1996, which was at 120 kHz.

Year	Area	Dates	herring biomass (1+rings)	CV	herring biomass (SSB)	CV	small clupeoids (biomass)	CV
1989	Douglas Bank	$\begin{aligned} & 25 / 09- \\ & 26 / 09 \end{aligned}$			18000	-	-	-

Year	Area	Dates	herring biomass (1+rings)	CV	herring biomass (SSB)	CV	small clupeoids (biomass)	CV
1990	Douglas Bank	$\begin{aligned} & \text { 26/09- } \\ & 27 / 09 \end{aligned}$			26600	-	-	-
1991	W. Irish Sea	$\begin{aligned} & \text { 26/07- } \\ & 8 / 08 \end{aligned}$	12760	0.23			660001	0.20
1992	W. Irish Sea + IOM E. coast	$\begin{aligned} & 20 / 07- \\ & 31 / 07 \end{aligned}$	17490	0.19			43200	0.25
1994	Area 7.a(N)	$\begin{aligned} & \text { 28/08- } \\ & 8 / 09 \end{aligned}$	31400	0.36	25133	-	68600	0.10
	Douglas Bank	$\begin{aligned} & 22 / 09- \\ & 26 / 09 \end{aligned}$			28200	-	-	-
1995	Area 7.a(N)	$\begin{aligned} & \text { 11/09- } \\ & 22 / 09 \end{aligned}$	38400	0.29	20167	-	348600	0.13
	Douglas Bank	$\begin{aligned} & 10 / 10- \\ & 11 / 10 \end{aligned}$		-	9840	-	-	-
	Douglas Bank	$\begin{aligned} & 23 / 10- \\ & 24 / 10 \end{aligned}$			1750	0.51	-	-
1996	Area 7.a(N)	$\begin{aligned} & 2 / 09- \\ & 12 / 09 \end{aligned}$	24500	0.25	21426	0.25	-2	-
1997	Area 7.a(N)reduced	$\begin{aligned} & 8 / 09- \\ & 12 / 09 \end{aligned}$	20100	0.28	10702	0.35	46600	0.20
1998	Area 7.a(N)	$\begin{aligned} & 8 / 09- \\ & 14 / 09 \end{aligned}$	14500	0.20	9157	0.18	228000	0.11
1999	Area 7.a(N)	$\begin{aligned} & 6 / 09- \\ & 17 / 09 \end{aligned}$	31600	0.59	21040	0.75	272200	0.10
2000	Area 7.a(N)	$\begin{aligned} & 11 / 09- \\ & 21 / 09 \end{aligned}$	40200	0.26	33144	0.32	234700	0.11
2001	Area 7.a(N)	$\begin{aligned} & 10 / 09- \\ & 18 / 09 \end{aligned}$	35400	0.40	13647	0.42	299700	0.08
2002	Area 7.a(N)	$\begin{aligned} & \text { 9/09- } \\ & \text { 20/09 } \end{aligned}$	41400	0.56	25102	0.83	413900	0.09
2003	Area 7.a(N)	$\begin{aligned} & \text { 7/09- } \\ & \text { 20/09 } \end{aligned}$	49500	0.22	24390	0.24	265900	0.10
2004	Area 7.a(N)	$\begin{aligned} & 6 / 09- \\ & 10 / 09 \\ & 15 / 09- \\ & 16 / 09 \\ & 28 / 09- \\ & 29 / 09 \end{aligned}$	34437	0.41	21593	0.41	281000	0.07
2005	Area 7.a(N)	$\begin{aligned} & 29 / 08- \\ & 14 / 09 \end{aligned}$	36866	0.37	31445	0.42	141900	0.10

Year	Area	Dates	herring biomass (1+rings)	CV	herring biomass (SSB)	CV	small clupeoids (biomass)	CV
2006	Area 7.a(N)	$\begin{aligned} & 30 / 08- \\ & 9 / 09 \end{aligned}$	33136	0.24	16332	0.22	143200	0.09
2007	Area 7.a(N)	$\begin{aligned} & \text { 29/08- } \\ & 13 / 09 \end{aligned}$	120878	0.53	51819	0.42	204700	0.09
2008	Area 7.a(N)	$\begin{aligned} & 27 / 08- \\ & 14 / 09 \end{aligned}$	106921	0.22	77172	0.23	252300	0.12
2009	Area 7.a(N)	$\begin{aligned} & 1 / 09- \\ & 13 / 09 \end{aligned}$	95989	0.39	71180	0.47	175000	0.08
2010	Area 7.a(N)	$\begin{aligned} & 28 / 08- \\ & 11 / 09 \end{aligned}$	131849	0.22	99877	0.22	107400	0.10
2011	Area 7.a(N)	$\begin{aligned} & 27 / 08- \\ & 10 / 09 \\ & 11-12 / 10 \end{aligned}$	131527	0.36	49128	0.22	280000	0.11
2012	Area 7.a(N)	$\begin{aligned} & 29 / 08- \\ & 12 / 09 \end{aligned}$	79051	0.18	56759	0.22	171190	0.11
2013	Area 7.a(N)	$\begin{aligned} & 29 / 08- \\ & 12 / 09 \end{aligned}$	65649	0.24	55350	0.25	255268	0.09
2014	Area 7.a(N)	$\begin{aligned} & 27 / 08- \\ & 14 / 09 \end{aligned}$	79826	0.30	56629	0.33	393024	0.10
2015	Area 7.a(N)	$\begin{aligned} & \text { 29/08- } \\ & \text { 17/09 } \end{aligned}$	55773	0.24	29056	0.23	237063	0.09
2016	Area 7.a(N)	$\begin{aligned} & 31 / 08- \\ & 15 / 09 \end{aligned}$	102840	0.25	91332	0.28	240926	0.10
2017	Area 7.a(N)	$\begin{aligned} & \text { 28/08- } \\ & 09 / 09 \end{aligned}$	40974	0.21	36499	0.23	219186	0.09
2018	Area 7.a(N)	$\begin{aligned} & 29 / 08- \\ & 13 / 09 \end{aligned}$	54661	0.29	39997	0.31	196600	0.13
2019	Area 7.a(N)	$\begin{aligned} & 28 / 08- \\ & 13 / 09 \end{aligned}$	68078	0.09	39318	0.08	146140	0.08
2020	Area 7.a(N)	$\begin{aligned} & \text { 26/08- } \\ & 09 / 09 \end{aligned}$	59645	0.09	40076	0.09	110401	0.10
2021	Area 7.a(N)	$\begin{aligned} & \text { 29/08- } \\ & 12 / 09 \end{aligned}$	69432	0.09	56486	0.09	84398	0.17

${ }^{1}$ sprat only
${ }^{2}$ Data can be made available for the IoM waters only

Table 7.3.2. Herring (Clupea harengus) in Division 7.a North of $52^{\circ} \mathbf{3 0}$ 'N (Irish Sea)Herring in Division 7.a North (Irish Sea).Age-disaggregated acoustic estimates (thousands) of herring abundance from the Northern Ireland surveys in September AC(7.aN). Ages in winter rings.

AGE (RINGS)	1	2	3	4	5	6	7	8+
1994	66.8	68.3	73.5	11.9	9.3	7.6	3.9	10.1
1995	319.1	82.3	11.9	29.2	4.6	3.5	4.9	6.9
1996	11.3	42.4	67.5	9	26.5	4.2	5.9	5.8
1997	134.1	50	14.8	11	7.8	4.6	0.6	1.9
1998	110.4	27.3	8.1	9.3	6.5	1.8	2.3	0.8
1999	157.8	77.7	34	5.1	10.3	13.5	1.6	6.3
2000	78.5	103.4	105.3	27.5	8.1	5.4	4.9	2.4
2001	387.6	93.4	10.1	17.5	7.7	1.4	0.6	2.2
2002	391	71.9	31.7	24.8	31.3	14.8	2.8	4.5
2003	349.2	220	32	4.7	3.9	4.1	1	0.9
2004	241	115.5	29.6	15.4	2.1	2.3	0.2	0.2
2005	94.3	109.9	97.1	17	8	0.8	0.6	5.8
2006	374.7	96.6	15.6	10.0	0.5	0.4	0.5	0.5
2007	1316.7	251.3	46.6	21.1	20.8	1.2	0.7	0.6

AGE (RINGS)	1	2	3	4	5	6	7	8+
2008	475.7	452.4	114.2	39.1	26.4	17.1	4.3	0.6
2009	371.2	182.6	177.8	92.7	32.5	15.1	13.9	6.9
2010	580.6	561.2	117.7	120.8	34.3	16.8	4.3	6.5
2011	1927.0	330.2	43.9	15.0	21.9	6.3	2.7	2.0
2012	369.1	191.9	161.0	51.4	21.6	19.3	12.1	3.1
2013	100.0	285.2	81.6	54.3	41.2	13.4	11.1	6.8
2014	299.7	193.3	127.3	29.7	43.1	17.3	7.8	12.5
2015	491.9	141.9	25.2	17.0	10.3	9.0	1.9	4.3
2016	131.5	449.3	257.2	110.2	32.2	18.3	8.2	7.0
2017	42.2	89.7	104.1	56.5	9.0	20.3	4.4	11.8
2018	237.9	120.7	63.3	110.9	29.6	7.6	7.9	5.1
2019	148.9	247.5	44.7	21.2	14.6	9.0	1.8	0.9

AGE (RINGS)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 +}$
2020	247.4	96.7	115.6	16.2	7.8	11.7	2.7	0.9
2021	101.8	423.9	177.6	24.4	2.0	2.5	0.3	0.1

Table 7.6.3.1. Irish Sea Herring. Catch in number. Units: thousands

age/year	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	5840	5050	5100	1305	1168	2429	4491	2225	2607	1156	2313	1999	12145
2	25760	15790	16030	12162	8424	10050	15266	12981	21250	6385	12835	9754	6885
3	19510	3200	5670	5598	7237	17336	7462	6146	13343	12039	5726	6743	6744
4	8520	2790	2150	2820	3841	13287	8550	2998	7159	4708	9697	2833	6690
5	1980	2300	330	445	2221	7206	4528	4180	4610	1876	3598	5068	3256
6	910	330	1110	484	380	2651	3198	2777	5084	1255	1661	1493	5122
7	360	290	140	255	229	667	1464	2328	3232	1559	1042	719	1036
$8+$	230	240	380	59	479	724	877	1671	4213	1956	1615	815	392

age/year	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1	646	1970	3204	5335	9551	3069	1810	1221	2713	179	694	3225	8692
2	14636	7002	21330	17529	21387	11879	16929	3743	11473	9021	4694	8833	13980
3	3008	12165	3391	9761	7562	3875	5936	5873	7151	1894	3345	5405	10555
4	3017	1826	5269	1160	7341	4450	1566	2065	13050	1866	2559	2161	3287
5	2903	2566	1199	3603	1641	6674	1477	558	3386	2395	882	623	1422
6	1606	2104	1154	780	2281	1030	1989	347	936	953	2945	213	415
7	2181	1278	926	961	840	2049	444	251	650	474	872	673	292
$8+$	848	1991	1452	1364	1432	451	622	147	803	337	605	127	368

age	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
1	5669	20290	8939	NA	9588	7454	2491	3889	27377	1654	2216	2112
2	15253	18291	18974	NA	17627	17598	9664	18916	9567	15414	19064	12844
3	8198	4980	7487	NA	6679	8984	12247	6836	7917	4840	5992	12419
4	6318	1655	2696	NA	6201	3982	7944	6631	1997	7376	4677	4407
5	1325	1062	2082	NA	3200	3671	3061	2901	1759	1613	2050	609
6	605	325	1761	NA	925	1751	3158	1472	964	4276	1421	1065
7	262	122	328	NA	370	690	1591	625	409	1678	896	487
8+	246	111	216	NA	185	425	652	352	830	1112	759	623
age		2018			2019			2020		2021		
1		7991			12176			15260		5708		
2		22903			23112			29059		3533		
3		15657			11083			20869		1374		
4		12364			6776			4099		3033		
5		3240			6661			3355		1163		
6		538			1360			3200		976		
7		391			182			777		140		
8+		50			194			209		26		

Table 7.6.3.2. Irish Sea Herring. Weights-at-age in the catch. Units: kg

age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
1	0.074	0.074	0.074	0.074	0.076	0.087	0.068	0.058	0.070	0.081	0.096	0.073
2	0.155	0.155	0.155	0.155	0.142	0.125	0.143	0.130	0.124	0.128	0.140	0.123
3	0.195	0.195	0.195	0.195	0.187	0.157	0.167	0.160	0.160	0.155	0.166	0.155
4	0.219	0.219	0.219	0.219	0.213	0.186	0.188	0.175	0.170	0.174	0.175	0.171
5	0.232	0.232	0.232	0.232	0.221	0.202	0.215	0.194	0.180	0.184	0.187	0.181
6	0.251	0.251	0.251	0.251	0.243	0.209	0.228	0.210	0.198	0.195	0.195	0.190
7	0.258	0.258	0.258	0.258	0.240	0.222	0.239	0.218	0.212	0.205	0.207	0.198
$8+$	0.278	0.278	0.278	0.278	0.273	0.258	0.254	0.229	0.232	0.218	0.218	0.217

age	1992	1993	1994	1995	1996	1997	1998	1999	$\mathbf{2 0 0 0}$	2001	2002	2003
1	0.062	0.089	0.070	0.075	0.067	0.064	0.080	0.069	0.064	0.067	0.085	0.081
2	0.114	0.127	0.123	0.121	0.116	0.118	0.123	0.120	0.120	0.106	0.113	0.116
3	0.140	0.157	0.153	0.146	0.148	0.146	0.148	0.145	0.148	0.139	0.144	0.136
4	0.155	0.171	0.170	0.164	0.162	0.165	0.163	0.167	0.168	0.156	0.167	0.160
5	0.165	0.182	0.180	0.176	0.177	0.176	0.181	0.176	0.188	0.168	0.180	0.167
6	0.174	0.191	0.189	0.181	0.199	0.188	0.177	0.188	0.204	0.185	0.184	0.172
7	0.181	0.198	0.202	0.193	0.200	0.204	0.188	0.190	0.200	0.198	0.191	0.186
$8+$	0.197	0.212	0.212	0.207	0.214	0.216	0.222	0.210	0.213	0.205	0.217	0.199

age	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
1	0.073	0.067	0.064	0.067	0.071	0.0620	0.053	0.058	0.070	0.059	0.066	0.070
2	0.107	0.103	0.105	0.112	0.110	0.1080	0.106	0.106	0.120	0.100	0.110	0.106
3	0.130	0.136	0.131	0.135	0.135	0.1330	0.131	0.134	0.138	0.130	0.146	0.136
4	0.157	0.156	0.149	0.158	0.153	0.1490	0.145	0.152	0.152	0.142	0.177	0.148
5	0.165	0.166	0.164	0.173	0.156	0.1545	0.153	0.159	0.164	0.157	0.174	0.155
6	0.187	0.180	0.177	0.183	0.182	0.1730	0.164	0.175	0.174	0.165	0.176	0.157
7	0.200	0.191	0.184	0.199	0.196	0.1855	0.175	0.187	0.179	0.170	0.196	0.167
$8+$	0.205	0.209	0.211	0.227	0.206	0.1890	0.172	0.196	0.191	0.180	0.198	0.171

age	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	2020	2021
1	0.054	0.072	0.060	0.057	0.057	0.069
2	0.102	0.093	0.096	0.096	0.095	0.101
3	0.126	0.121	0.120	0.119	0.119	0.119
4	0.143	0.140	0.132	0.137	0.138	0.133
5	0.159	0.147	0.147	0.143	0.143	0.148
6	0.161	0.154	0.159	0.156	0.152	0.148
7	0.167	0.154	0.164	0.159	0.160	0.160
$8+$	0.177	0.162	0.204	0.181	0.174	0.167

Table 7.6.3.3. Irish Sea Herring. Weights-at-age in the stock. Units: kg.

age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
1	0.074	0.074	0.074	0.074	0.076	0.087	0.068	0.058	0.070	0.081	0.077	0.070
2	0.155	0.155	0.155	0.155	0.142	0.125	0.143	0.130	0.124	0.128	0.135	0.121
3	0.195	0.195	0.195	0.195	0.187	0.157	0.167	0.160	0.160	0.155	0.163	0.153
4	0.219	0.219	0.219	0.219	0.213	0.186	0.188	0.175	0.170	0.174	0.175	0.167
5	0.232	0.232	0.232	0.232	0.221	0.202	0.215	0.194	0.180	0.184	0.188	0.180
6	0.251	0.251	0.251	0.251	0.243	0.209	0.229	0.210	0.198	0.195	0.196	0.189
7	0.258	0.258	0.258	0.258	0.240	0.222	0.239	0.218	0.212	0.205	0.207	0.195
$8+$	0.278	0.278	0.278	0.278	0.273	0.258	0.254	0.229	0.232	0.218	0.217	0.214

age	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1	0.061	0.088	0.073	0.072	0.067	0.063	0.073	0.068	0.063	0.066	0.085	0.081
2	0.111	0.126	0.126	0.120	0.115	0.119	0.121	0.121	0.120	0.105	0.113	0.116
3	0.136	0.157	0.154	0.147	0.148	0.148	0.150	0.145	0.149	0.139	0.144	0.136
4	0.151	0.171	0.174	0.168	0.162	0.167	0.166	0.168	0.171	0.156	0.167	0.160
5	0.159	0.183	0.181	0.180	0.177	0.178	0.179	0.178	0.188	0.167	0.180	0.167
6	0.171	0.191	0.190	0.185	0.195	0.189	0.190	0.189	0.204	0.183	0.184	0.172
7	0.179	0.198	0.203	0.197	0.199	0.206	0.200	0.199	0.205	0.199	0.191	0.186
$8+$	0.191	0.214	0.214	0.212	0.212	0.214	0.230	0.214	0.215	0.205	0.217	0.199

age	2004	2005	2006	2007	2008		2009	2010	2011	2012	2013	2014
1	0.067	0.067	0.064	0.073	0.071	0.0660	0.060	0.057	0.059	0.057	0.069	0.070
2	0.114	0.103	0.105	0.114	0.110	0.1140	0.118	0.109	0.109	0.100	0.112	0.106
3	0.144	0.136	0.131	0.137	0.135	0.1350	0.134	0.136	0.131	0.131	0.150	0.136
4	0.161	0.156	0.149	0.158	0.153	0.1500	0.147	0.155	0.149	0.142	0.178	0.148
5	0.170	0.166	0.164	0.174	0.156	0.1550	0.153	0.162	0.153	0.157	0.174	0.155
6	0.192	0.180	0.177	0.183	0.182	0.1740	0.165	0.177	0.162	0.167	0.176	0.157
7	0.202	0.191	0.184	0.199	0.196	0.1860	0.176	0.188	0.168	0.175	0.196	0.167
$8+$	0.214	0.209	0.211	0.227	0.206	0.1895	0.173	0.197	0.190	0.180	0.202	0.171

age	2016	2017	2018	2019	2020	2021
1	0.054	0.072	0.060	0.057	0.057	0.069
2	0.102	0.093	0.096	0.096	0.095	0.101
3	0.126	0.121	0.120	0.119	0.119	0.119
4	0.143	0.140	0.132	0.137	0.138	0.133
5	0.159	0.147	0.147	0.143	0.143	0.148
6	0.161	0.154	0.159	0.156	0.152	0.148
7	0.167	0.154	0.164	0.159	0.160	0.160
8+	0.177	0.162	0.204	0.181	0.174	0.167

Table 7.6.3.4 Irish Sea Herring. Natural mortality. Units: NA

age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
1	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787
2	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380
3	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353
4	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
5	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315
6	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311
7	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304
$8+$	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304

age	1992	1993	1994	1995	1996	1997	1998	1999	$\mathbf{2 0 0 0}$	2001	2002	$\mathbf{2 0 0 3}$
1	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787
2	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380
3	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353
4	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
5	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315
6	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311
7	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304
$8+$	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304

age	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
1	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787	0.787
2	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380
3	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353	0.353
4	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335	0.335
5	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315
6	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311
7	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304
8+	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304	0.304
age		2016		2017					2020		2021	
1		0.787		0.787					0.787		0.787	
2		0.380		0.380					0.380		0.380	
3		0.353		0.353					0.353		0.353	
4		0.335		0.335					0.335		0.335	
5		0.315		0.315					0.315		0.315	
6		0.311		0.311					0.311		0.311	
7		0.304		0.304					0.304		0.304	
$8+$		0.304		0.304					0.304		0.304	

Table 7.6.3.5. Irish Sea Herring. Proportion mature. Units: NA.

age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
1	0.20	0.19	0.10	0.02	0.00	0.14	0.31	0.00	0.00	0.07	0.06	0.04	0.28	0.00
2	0.88	0.89	0.80	0.73	0.69	0.62	0.73	0.85	0.90	0.63	0.66	0.30	0.48	0.46
3	0.95	0.90	0.89	0.88	0.83	0.71	0.66	0.91	0.96	0.93	0.90	0.74	0.72	0.99
4	0.95	0.94	0.91	0.90	0.93	0.88	0.81	0.87	0.99	0.95	0.95	0.82	0.81	1.00
5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$8+$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00														

age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	7 2008	2009
1	0.10	0.02	0.04	0.30	0.02	0.14	0.15	0.02	0.11	0.114	0.20	0.19	0.16	0.16	0.13
2	0.86	0.60	0.82	0.83	0.84	0.79	0.54	0.92	0.76	1.000	0.97	0.89	0.94	0.84	0.82
3	0.94	0.96	0.95	0.97	0.95	0.99	0.88	0.95	0.95	0.970	0.99	1.00	0.98	1.00	0.97
4	0.99	0.83	1.00	0.99	0.97	1.00	0.97	0.98	0.97	1.000	1.00	1.00	1.00	1.00	0.98
5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.00	1.00
6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.00	1.00
7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.00	1.00
8+	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.00	1.00
age	2010	2011		2012	2013	2014	2015		2016	2017	2018	2019		2020	2021
1	0.11	0.08		0.10	0.06	0.16	0.11		0.07	0.10	0.08	0.16		0.04	0.12
2	0.92	0.90		0.84	0.82	0.94	0.87		0.81	0.85	0.67	0.90		0.80	0.95
3	1.00	1.00		1.00	0.99	1.00	1.00		0.99	1.00	0.97	1.00		0.97	1.00
4	0.98	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00
5	0.97	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00
6	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00
7	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00
8	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00

Table 7.6.3.6. Irish Sea Herring. Fraction of harvest before spawning. Units: NA

age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
5	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
6	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
7	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
$8+$	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
0.9														

age	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$
1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
5	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
6	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
7	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
$8+$	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
age	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021			
1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
5	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
6	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
7	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
$8+$	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			

Table 7.6.3.7. Irish Sea Herring. Fraction of natural mortality before spawning. Units: NA

age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
1	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
3	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
4	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
$\mathbf{6}$	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
7	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
$8+$	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
0.75														

age	1995	1996	1997	1998	1999	2000	2001	2002	22003	2004	2005	2006	2007	2008	2009
1	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
3	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
4	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
6	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
7	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
8+	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
age	2010	2011		2012	2013	2014	2015		2016	2017	2018	2019		2020	2021
1	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
2	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
3	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
4	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
5	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
6	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
7	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75
8+	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75		0.75	0.75

TABLE 7.6.3.9 Irish Sea Herring. STOCK OBJECT CONFIGURATION

min maxplusgroup minyear maxyear minfbar maxfbar
$\begin{array}{lllllll}1 & 8 & 8 & 1980 & 2020 & 4 & 6\end{array}$

TABLE 7.6.3.10 Irish Sea Herring. sam CONFIGURATION SETTINGS
name :

```
desc :
```

range : min maxplusgroup minyear maxyear minfbar maxfbar
$\begin{array}{lllllllll}\text { range } & : & 1 & 8 & 8 & 1980 & 2021 & 4 & 6\end{array}$
fleets : catch AC(VIIaN) VIIaNSpawn
fleets : $0 \quad 2 \quad 3$
plus.group : TRUE
states : age
states \quad fleet 12345678
states : catch 12345677
states : AC(VIIaN) NA NA NA NA NA NA NA NA
states : VIIaNSpawn NA NA NA NA NA NA NA NA
logN.vars : 11111111
catchabilities: age
catchabilities: fleet 12345678
catchabilities : catch NA NA NA NA NA NA NA NA
catchabilities: AC(VIIaN) 12344444
catchabilities: VIIaNSpawn NA NA NA NA NA NA NA NA
power.law.exps: age
power.law.exps:fleet 12345678
power.law.exps : catch NA NA NA NA NA NA NA NA
power.law.exps : AC(VIIaN) NA NA NA NA NA NA NA NA
power.law.exps: VIIaNSpawn NA NA NA NA NA NA NA NA
f.vars : age
f.vars : fleet 12345678
f.vars : catch 11222344
f.vars : AC(VIIaN) NA NA NA NA NA NA NA NA
f.vars : VIlaNSpawn NA NA NA NA NA NA NA NA
obs.vars : age
obs.vars : fleet 12345678
obs.vars : catch 12223333

```
obs.vars : AC(VIIaN) 45555666
obs.vars : VIIaNSpawn NA NA NA NA NA NA NA NA
srr :0
cor.F : FALSE
nohess : FALSE
timeout :3600
sam.binary :
```

TABLE 7.6.3.11 Irish Sea Herring. FLR, R SOFTWARE VERSIONS
FLSAM.version 1.02
FLCore.version 2.6.6
R.version $\quad R$ version 3.2.0 (2015-04-16)
platform i386-w64-mingw32
run.date 2021-03-18 19:44:30

8 Stocks with limited data

Three herring stocks have very little data associated with them and have been poorly described in recent reports. These are Clyde herring, part of Division 6aN (Section 5.11 in ICES 2005a), herring in 7.e,f and herring in the Bay of Biscay (Subarea 8). In this section, only the time-series of landings are maintained.

8.1 Clyde herring

In 2011, under the provisions of the TAC and Quota Regulations (57/2011), the European Commission delegated the function of setting the TAC for certain stocks which are only fished by one Member State, to that Member State. This provision currently applies to herring in the Firth of Clyde with TAC setting responsibility delegated to Scotland. The stock is as such not an ICES stock with limited data, but it has been decided to continue to display the updated historical landings table for reasons of continuity. Since 1998 the agreed TAC for Clyde herring has never been reached. No reported catches occurred since 2014. However, reported catches in 2021 were 180 tonnes, and the TAC was 583 t in 2021 (Table 12.1).

8.2 Division 7.e.f

Figure 12.1 shows the time-series of landings over the period 1974-2021 in Division 7.e and 7.f. Data are taken from the ICES historical and official nominal databases and adjusted, where possible, with data supplied by working group members.

Since 1999, landings in Division 27.7.e are stable and have fluctuated between 5 and 800 t except in 2008 where they reached more than 1000 t (Figure 12.1).

In Division 27.7.f, it can be seen that there was a pulse of landings in the late 1970s. Since then landings have fluctuated between 200 t and a very few tonnes in recent years, without any obvious trend. In 2021, landings amount to 85 tonnes. (Figure 12.1).

8.3 Subarea 8 (Bay of Biscay)

In the Bay of Biscay, French landings peaked at 1700 t in 1976, declining gradually to very low levels by the late 1980s. More recently there was a sudden peak pulse of Dutch landings of 8000 t in 2002, declining to low levels since (Figure 12.2, Table 12.3). Data before 2005 were taken from the FISHSTAT database, and data from Spain updated. Data for later years were adjusted, where possible, with data supplied by working group members and from ICES official and preliminary catch statistics.

8.4 Division 6.aN, spring spawners

Following the WKNSCS benchmark in 2022 (ICES, 2022), the combined assessment for herring in 6.a, 7.b-c was split into separate assessments for $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$ following the genetic splitting of the acoustic survey. These methods were only able to split out the autumn spawning component in 6.aN (Farrell, et.al., 2021), therefore the biomass estimates and assessment in place is not relevant to the spring spawning population found in the Minch. The fishery in division 6.aN is focused on the autumn spawning herring around Cape Wrath, and therefore there is no recent catch information available for the spring spawning population.

Table 12.1 Herring from the Firth of Clyde. Catch in tonnes by country, 1959-2021. Spring and autumn-spawners combined.

Year	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
All Catches																
Total	10530	15680	10848	3989	7073	14509	15096	9807	7929	9433	10594	7763	4088	4226	4715	4061
Year	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
All Catches																
Total	3664	4139	4847	3862	1951	2081	2135	4021	4361	5770	4800	4650	3612	1923	2343	2259
Year	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Scotland	713	929	852	608	392	598	371	779	16	1	78	46	88	-	-	-
Other UK	-	-	1	-	194	127	475	310	240	0	392	335	240	-	318	512
Unallocated*	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Discards	**	**	**	**	**	-	-	-	-	-	-	-	-	-	-	-
Agreed TAC	2900	2300	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Total	731	929	853	608	586	725	846	1089	256	1	480	381	328	0	318	512
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	
Scotland	163	54	266	-	90	119	21	0	0	0	0	0	0	0	180	
Other UK	458	622	488	301	111	184	-	-	-	-	-	-	-	-	-	
Unallocated*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Discards	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Agreed TAC	800	800	800	720	720	720	648	648	583	583	583	583	583	583	583	
Total	621	676	754	301	201	303	21	0	0	0	0	0	0	0	180	

[^8]**Reported to be at a low level, assumed to be zero, for 1989-1995.

Table 12.2. Stocks with limited data. Landings of herring in Divisions 7.e. Source: ICES official landings database 2009-2019, national databases and ICES preliminary catch statistics 2020 and 2021.

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
UK	0	89	57	231	32	14	3	148	69	199	162	83	151	161	69	221	206	399	294	855	430	446	471	482
Denmark	0	0	0	0	0	0	0	0	0	0	194	0	0	0	0	0	0	0	19	10	9	0	0	0
France	193	21	8	12	50	27	21	56	176	195	0	2	18	0	1	0	0	86	42	3	12	503	22	551
Germany	0	0	0	0	19	1	0	0	0	0	0	0	0	0	0	0	90	0	0	0	0	0	0	0
Netherlands	0	8	147	292	17	234	133	566	470	2110	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Poland	0	0	262	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
total	193	118	474	535	118	276	157	770	715	2504	356	85	169	161	70	221	296	485	355	868	451	949	493	1033

Country	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021*
UK	377	165	159	193	163	315	199	66	189	106	78	130	185	218	162	274	435	268	204	22	11	8	11	4
Denmark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
France	26	0	335	526	500	497	496	516	516	502	499	489	493	486	278	7	314	3	1	0	380	193	0	0
Germany	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Netherlands	0	0	0	0	0	0	0	0	0	0	433	0	2	6	0	0	4	1	0	0	0	0	0	0
Poland	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total 7.e	403	165	494	719	663	812	695	582	705	608	1010	619	680	710	440	281	753	272	205	23	391	201	12	5

*Preliminary data

Table 12.3. Stocks with limited data. Landings of herring in Divisions 7.f. Source: ICES official landings database 2009-2019, national databases and ICES preliminary catch statistics 2020 and 2021.

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Belgium	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
France	469	83	226	99	69	27	19	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Netherlands	101	1233	692	611	173	137	22	24	0	0	0	0	0	0	0	0	0	154	0	0	0	0	0	0
UK	21	1	27	1	0	1	1	1	3	1	2	1	18	1	5	2	1	1	1	3	2	3	3	8
USSR	0	2062	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Germany	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total 7.f	591	3379	1006	711	242	165	42	25	3	1	2	2	18	1	5	2	2	155	1	3	2	3	3	8

Country	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021*
Belgium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
France	0	0	150	1	0	0	0	0	0	0	0	0	0	26	0	0	0	0	0	0	0	0	0	0
Netherlands	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
UK	14	12	81	0	5	21	47	198	76	115	29	8	23	78	113	136	20	111	227	28	3	4	1	66
USSR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Germany	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19
Total 7.f	14	12	231	1	5	21	47	198	76	115	29	8	23	104	113	136	20	111	227	28	3	9	1	85

*Preliminary data

Table 12.4. Stocks with limited data. Landings of herring in Subarea 8.

Country	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020*	2021*
France	50	82	22	7	5	5	4	12	3	1	1	2
Netherlands	502	222	-	-	-	-	-	-	-	-	-	-
Portugal	-	-	-	-	-	-	-	-	-	-	-	-
Spain	38	54	2	-	-	-	-	-	-	-	-	-
UK	-	-	-	-	-	-	-	-	-	-	-	-
Ireland	-	-	-	-	-	-	-	1	1	-	-	-
Total	590	358	24	7	5	5	4	13	13	1	1	2

Figure 12.1. Stocks with limited data. Landings over time of herring in divisions 7.e (upper panel) and 7.f (lower panel).

Figure 12.2. Stocks with limited data. Landings over time of herring in Subarea 8.

9 Sandeel in Division 3.a and Subarea 4 and Division 6.a

Larval drift models and studies on recruitment and growth differences have indicated that the assumption of a single stock unit in the area is invalid. As a result, the total stock is divided in several sub-populations (ICES, 2016, Figure 9.1.1), each of which is assessed by area specific assessments. Currently fishing takes place in five out of these seven areas (sandeel area (SA) $1 \mathrm{r}, 2 \mathrm{r}$, $3 \mathrm{r}, 4$, and 6). Analytical stock assessments are currently carried out in SA $1 \mathrm{r}-3 \mathrm{r}$ and 4 , whereas SA 6 is managed under the ICES approach for data limited stocks (Category 5).
In 2010, the SMS-effort model was used for the first time to estimate fishing mortalities and stock numbers-at-age by half year, using data from 1983 to 2010. This model assumes that fishing mortality is proportional to fishing effort and is still used to assess sandeel in SAs $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}$ and 4.

Further information on the stock areas and assessment model can be found in the Stock Annex and in the benchmark report (ICES, 2016).

9.1 General

9.1.1 Ecosystem aspects

Sandeel in the North Sea can be divided into a number of more or less reproductively isolated sub-populations (see the Stock Annex). A decline in the sandeel population in several areas in recent years concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence (ICES, 2007; ICES, 2008, ICES 2016). Since 2010 this has been accounted for by dividing the North Sea and 3.a into seven management areas.

Local depletion of sandeel aggregations at a distance less than 100 km from seabird colonies may affect some species of birds, especially black-legged kittiwake and sandwich tern, whereas the more mobile marine mammals and fish are likely to be less vulnerable to local sandeel depletion.

The Stock Annex contains a comprehensive description of ecosystem aspects.

9.1.2 Fisheries

General information about the sandeel fishery can be found in the Stock Annex.
The size distribution of the Danish fleet has changed through time, with a clear tendency towards fewer and larger vessels (ICES, 2007). During the last fifteen years, the number of Danish vessels participating in the North Sea sandeel fishery has been stable with around 100 active vessels.

The same tendency has been seen for the Norwegian vessels towards fewer and larger vessels. In 2008, 42 vessels participated in the sandeel fishery, but in 2020, 27 vessels participated in the fishery. From 2011 to 2020, the average GRT per vessel in the Norwegian fleet increased from 1100 to 1540 tonnes.

The rapid changes of the structure of the fleet that have occurred in the past may introduce more uncertainty in the assessment, as the fishing pattern and efficiency of the current fleet may differ from the previous fleet and the participation of fewer vessels has limited the spatial coverage of the fishery. This is to some degree accounted for in the stock assessments through the introduction of separate catchability periods.

The sandeel fishery in 2020 was opened 1 April and continued until the end of July. In NEEZ the fishery opened 15 April and ended 23 June.

9.1.3 ICES Advice

ICES advised that the fishery in 2020 should be allowed only if the analytical stock assessment indicated that the stock would be above B_{pa} by 2021 (Escapement strategy). This approach resulted in an advised TAC for 2020 in SA 1r, SA 2r, SA 3r, and 4 of 113987 t , 62658 t , 155072 t and 39611 t, respectively. Advised catches for SA 5, SA 6, and SA 7 for 2019 and 2020 were based on data limited approaches and set at $0 \mathrm{t}, 175 \mathrm{t}$ and 0 t , respectively.

9.1.4 Norwegian advice

Based on a recommendation from the Norwegian Institute for Marine Research, an opening TAC of 70000 tonnes for 2020 was given. As the acoustic survey abundance estimate of age 1 and the total biomass estimate (659000 tonnes, $\mathrm{RSE}=0.18 \%$) was the highest observed in the time series the final TAC increased to 250000 tonnes. Fishery was allowed in the subareas 1a, 1c, 2b, 2c, $3 \mathrm{~b}, 3 \mathrm{c}$, 4a (see Stock Annex for area definitions).

9.1.5 Management

Norwegian sandeel management plan

An Area Based Sandeel Management Plan for the Norwegian EEZ was fully implemented in 2011 but was also partly used in 2010. The areas with known sandeel fishing grounds are divided into 5 areas (each divided into subareas). An area is closed for fishery unless the biomass (Age1+) is at least 20000 tonnes. If an Area is open for fishery, one of the sub-areas is closed. A preliminary TAC for all Areas combined is given in February based on a precautionary prediction of total biomass and a harvesting rate of 0.4. An updated in-season TAC is given 15 May as the 40% percentile of the survey biomass estimate and harvesting rate of 0.4 . Areas can be opened based on the updated information (Johnsen 2020).

Closed periods

From 2005 to 2007, the fishery in the Norwegian EEZ opened 1 April and closed again 23 June. In 2008, the ordinary fishery was stopped 2 June, and only a restricted fishery with five vessels continued. No fishery was allowed in 2009. From 2010 to 2014 the fishing season was 23 April23 June, and from 2015 and onwards from 15 April to 23 June in the Norwegian EEZ.
Since 2005, Danish vessels have not been allowed to fish sandeel before 31 March and after 1 August.

Closed areas

The Norwegian EEZ was only open for an exploratory fishery in 2006 based on the results of a three-week RTM fishery. In 2007, no regular fishery was allowed north of $57^{\circ} 30^{\prime} \mathrm{N}$ and in the ICES rectangles 42F4 and 42F5 after the RTM fishery ended. In 2008, the ordinary fishery was closed except in ICES rectangles 42F4 and 44F4, and for five vessels only, the ICES rectangles 44F3, 45F3, 44F2 and 45F2 were open. The Norwegian EEZ was closed to fishery in 2009. In accordance with the Norwegian sandeel management plan, many of the Norwegian management subareas have been closed each year (see Stock Annex for details).

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, there has been a moratorium on sandeel fisheries on Firth of Forth area along the U.K. coast since 2000. Note that a limited fishery for stock monitoring purposes occurs in May-June in this area.

9.1.6 Catch

Adjustment of official catches

Previously, there has been substantial misreporting of catches between areas (ICES, 2015, 2016b (HAWG)). Since 2015, the Danish regulation has not allowed fishing in several stock areas on a single fishing trip. This eliminated the misreporting issue for Danish catches. However, German and Swedish catches were still high in the four rectangles, and an analysis of Swedish VMS for the years 2012 to 2015 indicated that misreporting had also occurred of Swedish catches in 2014 and 2015 (see HAWG 2017). Because of this, the working in accordance with previous year's reallocated reported catches (14781 t) from rectangles 41F2, 41F3 and 41F4 to SA 1 in 2015. From 2016 onwards, no correction was made.

Catch and trends in catches

Catch statistics for Division 4 are given by country in Table 9.1.1. Catch statistics and effort by assessment area are given in Tables 9.1.2-9.1.7. Figure 9.1.1 shows the areas for which catches are tabulated.

The sandeel fishery developed during the 1970s, and catches peaked in 1997 and 1998 with more than 1 million t. Since 1983 the total catches have fluctuated between 1.2 million $t(1997)$ and 73420 t (2016) (Figure 9.1.3).

Spatial distribution of catches

Yearly catches for the period 2000-2020 distributed by ICES rectangle are shown in Figure 9.1.2 (with no spatial adjustment of official catches distribution in 2014 and 2015). The spatial distribution is variable from one year to the next, however with common characteristics. The Dogger Bank area includes the most important fishing banks for SA 1r sandeel. The fishery in SA 3r has varied over time, primarily as a result of changes in regulations and very low abundance of sandeel on the northern fishing grounds.

Table 9.1.2 shows catch weight by area. There are large differences in the regional patterns of the catches. SAs 1 r and 3 r have consistently been the most important with regard to sandeel catches. On average, these areas together have contributed $\sim 76 \%$ of the total sandeel catches in the period since 1983.
The third most important area for the sandeel fishery is SA 2r. In the period since 2003 catches from this area contributed $\sim 16 \%$ of the total catches on average.
SA 4 has contributed about 6% of the total catches since 1994, but there have been a few outstanding years with particular high catches (1994, 1996 and 2003 contributing 19, 17 and 20\% of the total catches, respectively). In 2017 and 2018, the first non-monitoring fishery was advised in the area since 2011 with a total TAC of 54043 t and 59345 t , respectively. In 2019, only a monitoring TAC was advised but in 2020, a TAC of 39 611t was advised
Several banks in the northern areas of Norwegian EEZ have not provided catches between 2001 and 2008. In this period, almost all catches from the Norwegian EEZ came from the Vestbank area (Norwegian management area 3 in Figure 9.1.5). From 2010, catches have been taken mainly from the Norwegian management areas 1, 2 and 3, and from area 4 from 2016.

Effect of vessel size on CPUE

In order to avoid bias in effort introduced by changes in the average size of fishing vessels over time, the CPUEs are used to estimate a vessel standardization coefficient, b. The parameter b was estimated using a mixed model for separate periods. Because the model estimates the parameter from several years of data, the time-series for the most recent period is updated for all years as
the parameter b is updated with the most recent data. More information can be found in the Stock Annex.

9.1.7 Sampling the catch

Sampling activity for commercial catches is shown in Table 9.1.8.

9.1.8 Survey indices

Abundance of sandeel is monitored by a Danish/Norwegian dredge survey (covering SA $1 \mathrm{r}-3 \mathrm{r}$) and a Scottish dredge survey (SA 4) in November/December. See the Stock Annex for more details. An acoustic survey was carried out in Norwegian EEZ in April/May following the standard procedures described in the benchmark report (ICES, 2010a).

The dredge survey in 2020 was carried out as planned in areas $1 \mathrm{r}, 2 \mathrm{r}$ and 3 r and nearly all planned positions were covered in accordance with the survey protocol. However, because of bad weather and a temporary technical obstacle, the survey was extended by 1 week and a few of the low-priority stations were not visited (all high-priority stations were visited).. The survey in area 1 r and 2 r was expanded to the south in 2017, where new positions were visited south of $54^{\circ} \mathrm{N}$. Since 2017 two vessels were used to complete the survey. This was arranged to ensure that all positions can be visited within the 3-week period of the survey (note that new positions have been included gradually over time). All available data were included in the estimated dredge index by area. In area 4, the coverage of the dredge survey was low in 2020, and only 11 stations were sampled and only two out of four main banks (compared to around 50 stations in 2019).

9.2 Sandeel in SA 1r

9.2.1 Catch data

Total catch weight by year for SA 1 is given in tables 9.1.2-9.1.4. Catch numbers-at-age by halfyear is given in Table 9.2.1.
In 2021, 1-group and 2-group were equally represented in the catches. The catches contained very few 3-group and older (Figure 9.2.1).

9.2.2 Weight-at-age

The methods applied to compile age-length-weight keys and mean weights-at-age in the catches and in the stock are described in the Stock Annex.

The mean weights-at-age observed in the catch are given in Table 9.2.2 and Figure 9.2.2 by half year. Mean weight-at-age in the first half year decreased in 2021 and is below the long term mean.

9.2.3 Maturity

Maturity estimates are obtained from the average observed in the Danish dredge survey in December as described in the Stock Annex. The values used are given in Table 9.2.3.

9.2.4 Natural mortality

In 2020, WGSAM provided updated estimates of natural mortality-at-age from multispecies modelling of southern sandeel (SMS, WGSAM 2020). Natural mortality was therefore updated. The full time-series was replaced and 3-year moving averages was used (same procedure as last time the time-series was updated). The new time-series did not affect the stock-recruitment plot to an extent that required a revision of reference points. The new time-series contains values of M that are equal to or slightly higher than the values in the old time-series, except for 2018 and onward where the new values are slightly lower in the $1^{\text {st }}$ half of the year. The values used in the 2018 and 2019 assessments were simply replicates of the 3-year average value from 2015. Natural mortalities are listed in Table 9.2.8.

9.2.5 Effort and research vessel data

Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.2.3 show the trends in the international effort over years measured as number of fishing days standardized to a 200 GRT vessel. The standardization includes just the effect of vessel size and does not take changes in efficiency into account. Total international standardized effort peaked in 2001, after which substantial effort reduction has taken place. Effort has fluctuated without a trend since 2006.

The average CPUE in the period 1994 to 2002 was around $60 t^{\text {t-day }}$. In 2003, CPUE declined to the all-time lowest at 21 t -day. Since 2004, the CPUE has increased and reached the all-time highest ($101 t^{\text {-day }}$) in 2010 followed by progressively lower CPUEs ending with CPUEs in 2013-2014 below long-term average. CPUE peaked again in 2016-2017, but have decreased to levels below average in 2018, 2019, 2020, and 2021.

Tuning series used in the assessments

A commercial tuning series (RTM) describing the average catch in numbers-at-age per fishing day of a standard vessel in April/early May is used in the assessment.
CPUE data from the dredge survey (Table 9.2.4 and Figure 9.2.5) in 2021 show indices of age 0 and 1 well below the average.
The internal consistency, i.e. the ability of the RTM to follow cohorts, (shows a good consistency correlation between the 1-group and 2-group as well as between 2 and 3-group (i.e. $\mathrm{r}^{2}=0.47$ and 0.54 , respectively on log scales).

9.2.6 Data analysis

Following the two latest Benchmark assessments (ICES, 2010, 2016) the SMS-effort model was used to estimate fishing mortalities and stock numbers-at-age by half year, using data from 1983 to 2021. In the SMS model, it is assumed that fishing mortality is proportional to fishing effort. For details about the SMS model and model settings, see the Stock Annex.

The diagnostics output from SMS are shown in Table 9.2.5. The seasonal effect on the relation between effort and F ("F, Season effect" in the table) is rather constant over the 5-year ranges used. The "age selection" ("F, age effect" in the table) shows a change in the fishery pattern where the fishery was mainly targeting the age $2+$ sandeel in the beginning of the assessment period, to a fishery targeting age $1+$ in a similar way, and then in the most recent period back to mainly targeting $2+$ sandeel.

The CV of the dredge survey ("sqrt (Survey variance) $\sim \mathrm{CV}$ " in the table) is low (0.49) for age 0 and high (0.78) for age 1 . The survey residual plot (Figure 9.2.6) shows no clear patterns.

The CV of the RTM time-series is low to moderate for ages 1,2 , and 3 ($0.53,0.43$, and 0.49). The survey residual plot (Figure 9.2.6b) shows no clear patterns.

The model CV of catch-at-age ("sqrt(catch variance) $\sim \mathrm{CV}$ ", in Table 9.2 .5 is low (0.35) for age 1 and age 2 in the first half of the year and moderate to high (>0.5) for the remaining ages and season combinations. The catch-at-age residuals (Figure 9.2.7) show a tendency for the cohorts to die out more rapidly than expected in 2019, 2020 and 2021 (negative catch residuals for all ages).

The CV of the fitted Stock recruitment relationship (Table 9.2.5) is high (0.86), which is also indicated by the stock recruitment plot (Figure 9.2.8). The high CV of recruitment is probably due to biological characteristic of the stock (i.e. weak stock-recruitment relationship) and not so much due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low (0.05 in "objective function weight" in Table 9.2.5) such that SSB-R estimates do not contribute much to the overall likelihood and model fit.

The retrospective analysis (Figure 9.2.9) shows consistent assessment results from one year to the next for F. For recruitment and SSB, there seems to have been an overestimation in the previous assessments. It is likely that this is connected to the short period used for the latest exploitation pattern, a decision made under the benchmark to accommodate an intermediate period around 2009 with a significantly different exploitation pattern. Further, the negative catch and dredge residuals observed in 2019-2021 will tend to decrease the recruitment estimate as fish of the different cohorts are observed less frequently than expected after the initial dredge index of recruitment. The stability of F estimates is partly due to the assumed robust relationship between effort and F, which is rather insensitive to removal of a few years. Recruitment and SSB estimates show a retrospective bias (5-year Mohn's Rho for R and SSB is 0.43 and 0.87 , respectively).

Uncertainties of the estimated SSB, F and recruitment (Figure 9.2.10) are in general small. The overall pattern with a lower F:effort ratio for older data indicates that the model assumption of no efficiency creeping is violated across periods but not within catchability periods.

9.2.7 Final assessment

The output from the assessment is presented in Tables 9.2 .6 (fishing mortality-at-age by year), 9.2.7 (fishing mortality-at-age by half year), 9.2.9 (stock numbers-at-age) and 9.2.10 (stock summary).

9.2.8 Historic Stock Trends

The stock summary (Figure 9.2.13 and Table 9.2.10) shows that SSB have been at or below $\mathrm{Bl}_{\mathrm{lim}}$ from 2004 to 2007 and again in 2013-2015. $\mathrm{F}_{(1-2)}$ is estimated to have been just below the long-time average since 2010. Recruitment in 2017 was estimated to be the lowest observed in the timeseries. 2018 recruitment was also low whereas 2019 shows average recruitment. In 2020 and 2021 the recruitment was below average again.

9.2.9 Short-term forecasts

Input

Input to the short-term forecast is given in Table 9.2.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2022 is the geometric mean of the
recruitment 1983-2020 (111 billion-at-age 0). The exploitation pattern and F_{sq} is taken from the assessment values in 2021. However, as the SMS-model assumes a fixed exploitation pattern since 2010, the choice of years is not critical. Mean weight-at-age in the catch and in the sea is the average value for the years 2017-2021. Natural mortality is the same as applied in the assessment in the final year. The Stock Annex gives more details about the forecast methodology.

Output

The short-term forecast (Table 9.2.12) shows that even a fishing mortality of zero will bring SSB below $B_{\text {pa. However, }}$ a monitoring TAC of 5000 t is recommended to ensure the quality of the assessment, consistent with previous year's advice (ICES, 2019).

9.2.10 Biological reference points

$B_{\text {lim }}$ is set at $110000 t$ and $B_{p a}$ at $145000 t$. MSY $B_{\text {trigger }}$ is set at $B_{p a}$.
Further information about biological reference points for sandeel in 1 can be found in the Stock Annex.

9.2.11 Quality of the assessment

The quality of the present assessment has improved compared to the combined assessment for the whole of the North Sea previously presented by ICES before 2010. This is mainly due to the fact that the present division of stock assessment areas better reflects the spatial stock structure and dynamics of sandeel. Addition of fishery independent data from the dredge survey has also improved the quality of the assessment. Together with the application of the statistical assessment model SMS-effort, this has removed the retrospective bias in F and SSB for the most recent years. The model provides rather narrow confidence limits for the model estimates of F, SSB and recruitment, but a poorer fit for the oldest data.

The model uses effort as basis for the calculation of F. The total international effort is derived from Danish CPUE and total international catches. Danish catches are by far the largest in the area, but effort data from the other countries could improve the quality of the assessment.

Abundance of the 1-group, which in most years dominates the catches, is estimated on the basis of the 0 -group index from the dredge survey in December of the preceding year. The model estimates a low variance on the survey index for age 0 . There are indications of a retrospective pattern in recent years as older fish do not seem to appear in the catches at the expected level. This pattern can be caused by uncertainty in the selection pattern when using a relatively short period to estimate this or unallocated mortality caused by e.g. overwintering mortality increasing when fish condition is low.

9.2.11.1 Status of the stock

The SSB was below $B_{\lim }$ in 2019 and 2020. In 2021, it was estimated to be above $B_{\text {lim, }}$ but below $B_{p a .}$ SSB in 2022 is similar to 2021. As noted in last year's report (ICES, 2019), the introduction of a very low recruitment in 2018 combined with a continued decrease in mean weight-at-age led to a stock below MSY Blim and $B_{\text {trigger }}$ at the beginning of 2020. The SSB in 2022 is slightly lower than expected from the forecast in 2021. There can be several reasons for that, such as reduced weight-at-age and catches exceeding the TAC advice (due to borrowing and banking).

9.2.12 Management Considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the so-called escapement strategy, i.e. to maintain SSB above MSY Btrigger after the fishery has taken place. Management strategy evaluations presented at the ICES WKMSYREF2 and WKMSYREF5 meetings (ICES, 2014a, 2017) indicated that the es-capement-strategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ($\mathrm{F}_{\text {cap }}$) on the fishing mortality. This means that if the TAC that comes out of the escapement strategy corresponds to an $F_{b a r}$ that exceeds $F_{\text {cap }}$, then the escapement strategy should be disqualified and the TAC is instead determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap. }} \mathrm{F}_{\text {cap }}$ for SA 1 r is 0.49 (ICES, 2017).

Based on the misreporting of catches as observed in 2014 and 2015, management measures to avoid area misreporting (only one fishing area per trip) have been mandatory for the Danish fishery since 2015. There are indications of area misreporting for other nations (e.g. Sweden) in 2015 but likely not in the most recent years. Similar management measures as used for the Danish fishery would reduce further the risk of misreporting for other nations as well.

Self-sampling on board the commercial vessels for biological data should be mandatory for all nations utilising a monitoring TAC. Today samples are only obtained from the Danish fishery.

9.3 Sandeel in SA 2r

9.3.1 Catch data

Total catch weight by year for SA $2 r$ is given in tables 9.1.2-9.1.4. Catch numbers-at-age by halfyear are given in Table 9.3.1.

The proportion of the 1-group in the catch was high in both 2020 and 2021, although not as high as in 2017 (98%), following the high recruitment in 2016. The 2016 year class was even seen in the 2019 catch as a high proportion of 3-group fish (52\%) (Figure 9.3.1).

9.3.2 Weight-at-age

The methods applied to compile age-length-weight keys and mean weights-at-age in the catches and in the stock are described in the Stock Annex.

The mean weights-at-age observed in the catch are given in Table 9.3 .2 by half year. It is assumed that the mean weights in the sea are the same as in the catch. The time-series of mean weight in the catch and in the stock is shown in Figure 9.3.2. Mean weight-at-age for all age groups in 2019 was above the historic average, reaching 108\% of the long-term average on average. In 2020, a slight decrease in weights was observed for the 1-group compared to 2019, whereas weight at age of older age-groups increased. In 2021, weights had declined across all age-groups compared to 2020.

9.3.3 Maturity

Maturity estimates are obtained from the average observed in the Danish dredge survey in December as described in the Stock Annex. The values used are given in Table 9.3.3.

9.3.4 Natural mortality

Long-term averages of natural mortality-at-age from multispecies modelling of southern and northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. More details are given in the Stock Annex. Natural mortalities are listed in Table 9.3.8. Mortalities were not updated in response to the new WGSAM key run (WGSAM 2020) as the update is not likely to affect long-term averages greatly.

9.3.5 Effort and research vessel data

Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.3.3 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. The standardisation includes just the effect of vessel size and does not take changes in efficiency into account.

Total international standardized effort in 2021 was the second lowest in the time-series, but also the CPUE was the second lowest, coming down from a relatively high CPUE in 2020.

Tuning series used in the assessments

No commercial tuning series are used in the present assessment.
The dredge survey in SA 2 r (Table 9.3.4 and Figure 9.3.5) increased coverage in 2010 and this is therefore used as the start year of the dredge time-series for the assessment. The coverage has however varied somewhat in this period and the time-series is still short. Details about the dredge survey are given in the Stock Annex and the benchmark report (ICES, 2016). Dredge CPUEs were high in 2021, and in particularly high in the Northern parts, resulting in the second highest age-0 index in the time-series. This year a few explorative hauls were taken close to some of the existing stations. However, catch rates in these hauls were not much different from the adjacent fixed station hauls. The explorative hauls were uploaded to the database as valid hauls, and were therefore included in the survey index.

Adjustment to standard settings to accommodate retrospective pattern in recruitment

In previous years, there has been a large overestimation of recruitment in the terminal year in cases where the dredge survey showed large abundance of age 0 . In 2020, the working group examined the relationship between dredge survey catches-at-age 0 and the number of recruits as estimated in the SPALY run and considered that the retrospective pattern could be caused by ignoring density dependence in catchability (increased catchability at high abundance). The relationship seemed to be well fitted using a power relationship between dredge index and abundance, with no indication of this given errors in estimated abundance in high or low abundance years. The use of a power model for survey catchability of the youngest age groups is routinely used for North Sea sprat (ICES 2018). It is an adjustment of the model where one additional parameter is estimated. HAWG evaluated the retrospective bias in recruitment in 2020 without density dependent catchability (Mohn's ro $=0.63$) and with density dependent catchability (Mohn's ro $=0.52$). The AIC of the model including density dependent was unchanged. Based on these considerations, HAWG 2020 decided to include density dependent catchability in the final run. HAWG 2021 re-examined the density dependent parameter and found it still to be significant.

9.3.6 Data analysis

The diagnostics output from SMS-effort are shown in Table 9.3.5.

The CV of the dredge survey (Table 9.3.5) is low (0.30 for the 0 -group) after the introduction of the density dependent catchability for age 0 , indicating a high consistency between the results from the dredge survey and the overall model results. The residual plot (Figure 9.3.6) shows no bias for this time-series.

The model CV of catch-at-age 1 and 2 is low (0.40) in the first half of the year and medium or high (>0.70) for the remaining ages and season combinations. The residual plots for catch-at-age (Figure 9.3.7) confirm that the fit is generally poor except for age 1 and 2 in the first half year. The residual plot (Figure 9.3.7) shows no long-term bias for this time-series for ages 1 and 2 in the first half year.

The CV of the fitted stock recruitment relationship (Table 9.3.5) is high (1.02 which is also indicated by the stock recruitment plot (Figure 9.3.8). The high CV of recruitment is probably due to highly variable recruitment success and less due to the quality of the assessment.
Uncertainties of the estimated SSB, F and recruitment (Figure 9.3.10) are in general low, which gives narrow confidence limits on estimated values (Figure 9.3.11).

The plot of standardized fishing effort and estimated F (Figure 9.3.12) shows a good relationship between effort and F as specified by the model. As the model assumes a different efficiency and catchability for the five periods 1983-1988, 1989-1998, 1999-2004, 2005-2009, and 2010-2020, the relation between effort and F varies between these periods. An effort unit in the early part of the time-series gives a smaller F than an effort unit in the most recent years. This indicates technical creep, i.e. a standard 200 GT vessel has become more efficient over time (see Stock Annex for further discussion, ICES 2016).

The retrospective analysis (Figure 9.3.9) shows consistent assessment estimates of F from one year to the next. There has been a systematic overestimation of SSB in most years since 2011 (with few exceptions), some times, but not always, as a result of an overestimation of recruitment (and therefore lower than expected abundance of these cohorts in the subsequent catches). This pattern was improved by the introduction of density dependent catchability in the model. The 5year Mohn's Rho values are, however, still fairly high (0.55 and 0.37 for SSB and recruitment, respectively). Reasons for the previous pattern can be connected to either overestimation of recruitment in the dredge survey lower than expected survival of the two cohorts, or lower than expected catchability of these cohorts in the fishery. Both the selectivity pattern and the dredge survey are based on a relatively short time-series, and hence variation between years is to be expected.

9.3.7 Final assessment

The output from the assessment is presented in tables 9.3.6 (fishing mortality-at-age by year), 9.3.7 (fishing mortality-at-age by half year), 9.3.9 (stock numbers-at-age) and 9.3.10 (stock summary).

9.3.8 Historic Stock Trends

The stock summary (Figure 9.3.13 and Table 9.3.10) show that recruitment has been highly variable and with a weak decreasing trend over the full time-series until the 2016 year class, which is estimated to be the $4^{\text {th }}$ strongest on record, followed by a 2017 year class which is estimated to be the lowest observed and a 2018 year class which was the fifth lowest on record. In 2019, the recruitment was average and in 2020 below average. SSB has been at or below Blim in 1989, 2002, from 2004 to 2010 and again from 2012 to 2017 and 2019 to 2022. Since 2004, SSB has been below B_{pa} in all years. F_{1-2} is estimated to have been below the long-time average since 2010 with the exception of 2013, 2017 and 2020.

9.3.9 Short-term forecasts

Input

Input to the short-term forecast is given in Table 9.3.11. Stock numbers for age 1 and older in the TAC year are taken from the assessment. Recruitment in 2022 is the geometric mean of the recruitment in 2011-2020. The exploitation pattern and F_{sq} is taken from the assessment values in 2021. As the SMS-model assumes a fixed exploitation pattern since 2010, the choice of year is not critical. Mean weight-at-age in the catch and in the sea is the average (i.e. 5-year mean) value for the years 2017-2021. Natural mortality and proportion mature are the fixed values applied in the terminal year in the assessment.

Output

The short-term forecast (Table 9.3.12) shows that a fishing mortality of 0.57 will bring SSB down to $B_{p a}$ in 2023. However, since $F_{\text {cap }}$ for this area is 0.44 , the TAC should instead be based on a fishing mortality of 0.44 , which results in a TAC of 71859 tonnes in 2022.

Blim is set at 56000 t and B_{pa} at 84000 t . MSY Btrigger is set at $\mathrm{B}_{\text {pa. }}$. $\mathrm{F}_{\text {cap }}$ is set at 0.44 (ICES, 2016). Further information about biological reference points can be found in the Stock Annex and Benchmark report from 2016 (WKSAND, 2016).

9.3.10 Quality of the assessment

This stock was benchmarked between the 2016 and 2017 assessments where the ICES statistical rectangles included in sandeel area 2 changed. The assessment now includes fisheries independent information from a dredge survey representative for the area. The assessment is considered to be of good quality but with some indications of a retrospective pattern in recent years as older fish do not seem to appear in the catches at the expected level. This pattern can be caused by uncertainty in the selection pattern when using a relatively short period to estimate this or unallocated mortality caused by e.g. overwintering mortality increasing when fish condition is low (van Deurs et al., 2011.). HAWG also highlighted that the pattern might also have a link to the possible multispecies fishery within this area (i.e. suspected to catch Ammodytes tobianus). The dredge survey time-series in SA 2 is still short (2010-2021) and the quality of the assessment will likely improve once a longer time-series becomes available. Next benchmark will take place in 2022.

9.3.11 Status of the Stock

A moderate F in most of the years from 2010 in combination with a low recruitment have given a slow increase in SSB since the historical low values in 2004 to 2010 . SSB in 2020 are estimated below $B_{\text {lim }}$ for the second year in a row. In 2021 the stock is expected to be just above $B_{l i m}$. The stock has been below $B_{\lim }$ in 17 out of the last 20 years and only at or above $B_{p a}$ in 1 out of 20 years (20 years ago)., Recruitment in 2016 is estimated to be the fourth highest on record. The 2019recruitment was estimated to be the fifth highest since 1997. Recruitment in 2017 and 2018 were extremely low. Recruitment in 2019 was average and recruitment in 2020 was low is medium. The recruitment in 2021 appears to be high. However, based on the retrospective patterns of this stock, we anticipate some down-scaling in the coming years.

9.3.12 Management considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the escapement strategy, i.e. to maintain SSB above MSY
$B_{\text {trigger }}$ after the fishery has taken place. Management strategy evaluations (ICES, 2016) established that the escapement-strategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ($\mathrm{F}_{\text {cap }}$) on the fishing mortality and estimated this $\mathrm{F}_{\text {cap }}$ for SA 2 r sandeel at 0.44. This means that if the TAC that results from the escapement strategy corresponds to an $\mathrm{Fbar}_{\mathrm{b}}$ that exceeds $\mathrm{F}_{\text {cap }}$, then the TAC is determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap }}$.

9.4 Sandeel in SA 3r

9.4.1 Catch data

Total catch weight by year for SA 3 is given in tables 9.1.2-9.1.4. Catch numbers-at-age by halfyear is given in Table 9.4.1.

In 2021, the 1-group and 2-group fish dominated the catches, but also a large proportion (second largest in the time-series) of 4-groups was observed. 3-groups were the least frequent.

9.4.2 Weight-at-age

The mean weights-at-age observed in the catch are given in Table 9.4 .2 by half year. It is assumed that the mean weights in the sea are the same as in the catch. The time-series of mean weight in the catch and in the stock is shown in Figure 9.4.2. Mean weight-at-age in the first half-year has increased for four consecutive years in all age-groups, and is now the highest ever observed for age- 1 and age- 2 .

9.4.3 Maturity

Maturity estimates are obtained from the average observed in the dredge survey in December as described in the Stock Annex. The values used are given in Table 9.4.3.

9.4.4 Natural mortality

In 2020, WGSAM provided updated estimates of natural mortality-at-age from multispecies modelling of northern sandeel (SMS, WGSAM 2020).

The effect of using 3-year averages of these new values on historical development and stock recruitment relationship of the stock was evaluated by the working group and it was decided that the new natural mortality values resulted in a substantial change in the historic perception of the stock, including possible changes to reference points. For this reason, it was decided not to use the new natural mortalities but to refer to HAWG for consideration of whether new reference points should be estimated.
3-year averages of natural mortality-at-age from the 2015 multispecies modelling of southern and northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. The last value provided was used for all years following the latest data point. More details are given in the stock annex. Natural mortalities are listed in Table 9.4.8.

9.4.5 Effort and research vessel data

Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.4.3 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. The standardisation includes just
the effect of vessel size and does not take changes in efficiency into account. Total international standardized effort peaked in 1998 and declined thereafter and has been less than 2000 days per year since 2003. The last two years, effort has increased, reaching 3492 days in 2020. In 2021, effort is down to the same level as in 2021. CPUE has been increasing for four consecutive years, and in 2021 it was the fourth highest of the time-series.

Tuning series used in the assessments

CPUE data from the dredge survey (Table 9.4.4 and Figure 9.4.5) in 2021 show average indices for both age 0 and age 1 (Table 9.4.4). The internal consistency plot (Figure 9.4.4) shows medium consistency for age 0 vs. age 1 (i.e. $\mathrm{r}^{2}=0.38$ on log scales). In 2014, 13 new positions were included in the survey in SA 3r. Only two of the new positions were taken in squares not included before (42F5 and 42F6). All the new positions have been included in the survey index since 2014 (Table 9.4.4) for assessment purposes, to obtain a better spatial coverage. Details about the dredge survey are given in the Stock Annex and the benchmark report (ICES, 2016).

The Norwegian acoustic survey (2009-2021) carried out in Norwegian EEZ is used as tuning series in the assessment in SA 3r (Table 9.4.13 and figures 9.4.14-9.4.16). The survey covers the main sandeel grounds in SA 3r. This year a few explorative hauls were taken close to one of the existing stations. However, catch rates in these hauls were not much different from the adjacent fixed station hauls. The explorative hauls were uploaded to the database as valid hauls, and were therefore included in the survey index. The acoustic estimate in number of individuals by age and survey is presented in Table 9.4.13.

Adjustment to standard settings to accommodate retrospective pattern in recruitment

In previous years, there has been a large overestimation of recruitment in the terminal year in cases where the dredge survey showed large abundance of age 0 . The working group examined the relationship between dredge survey catches-at-age 0 and the number of recruits as estimated in the SPALY run (see figure below, where I is the survey index of age-0 and N0 the number of recruits) and considered that the retrospective pattern could be caused by ignoring density dependence in catchability (increased catchability at high abundance). The relationship seemed to be well fitted using a power relationship between dredge index and abundance, with no indication of this given errors in estimated abundance in high or low abundance years. The use of a power model for survey catchability of the youngest age groups is routinely used for North Sea sprat (ICES 2018). It is an adjustment of the model where one additional parameter is estimated. HAWG evaluated the retrospective bias in recruitment without density dependent catchability (Mohn's rho $=0.57$) and with density dependent catchability (Mohn's rho $=0.13$). The AIC of the model including density dependent was unchanged. Based on these considerations, HAWG 2020 decided to include density dependent catchability in the final run. This approach was continued in 2021 and 2022.

9.4.6 Data Analysis

The diagnostics output from SMS-effort model is shown in Table 9.4.5.
The CV of the dredge survey (Table 9.4.5) is medium for age $0(0.69)$ and high for age 1 (0.79), showing an overall poor consistency between the results from the dredge survey of age 1 and the overall model results. The internal consistency of the survey seems to indicate the large and small year classes can be followed in the dredge, but the exact size of small or large cohorts cannot.

The CV of the acoustic survey (Table 9.4.5) is medium for both age 1 and age $2(0.60)$ and high for age 3 (1.08), showing an overall medium consistency between the results from the acoustic
survey and the overall model results. The residual plot shows high positive residuals in 2020, indicating that the very high acoustic indices were not confirmed by the model.

The model CV of catch-at-age is medium (0.69) for age 1 and age 2 in the first half of the year (Table 9.4.5). For the older ages and for all ages in the second half year, the CVs are high (>1.00). The catch residual plots for catch-at-age (Figure 9.4.7) confirm that the fits are generally very poor except for age 1 and 2 in the first half year. There is a tendency for clusters of negative or positive residuals for ages 1 and 2 but no trend in recent years.
The CV of the fitted stock recruitment relationship (Table 9.4.5) is high (1.07), which is also indicated by the stock recruitment plot (Figure 9.4.8). The high CV of recruitment is probably due to the biological characteristics of the stock and less due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low (0.01 in "objective function weight" in Table 9.4.5) such that SSB-R estimates do not contribute much to the overall model likelihood and fit.

There used to be a large retrospective pattern in the recruitment that consistently overestimated large recruiting year-classes. However, after implementing density dependence on the relationship between recruitment and the dredge survey in 2020 (i.e. increasing catchability with increasing densities), the retrospective bias was reduced from a Mohn's Rho >0.5 to -0.10 in the present year's assessment.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.4.10) are in general medium, which gives wide confidence limits (Figure 9.4.11) on output variables.

The plot of standardized fishing effort and estimated F (Figure 9.4.12) shows a moderate relation between effort and F as assumed by the model specification. As the model assumes a different catchability-at-age for the three periods 1986-1998, 1999-present, the relation between effort and F varies between these periods. There is a shift in the ratio between effort and F over the full time-series. In the year range 1986-1998, F is in generally lower than effort on the plot, while the opposite is the case for the remaining periods, corresponding to a technical creep over time (ICES, 2016).

9.4.7 Final assessment

The output from the final assessment is presented in Tables 9.4.6 (fishing mortality-at-age), 9.4.7 (fishing mortality-at-age by half year), 9.4.9 (stock numbers-at-age) and 9.4.10 (Stock summary).

9.4.8 Historic Stock Trends

SSB has been at or below $B_{\lim }$ from 1999 to 2006 after which SSB increased to above $B_{\text {pa }}$ in 2008. This was followed by SSB below Blim in 2013 (Figure 9.4.16 and Table 9.4.17). Above average recruitments in 2016, 2018, 2019 and 2020 together with a fishing mortality below average in most years and increased weights have resulted in SSB being above $B_{p a}$ in 2015 onwards.

9.4.9 Short-term forecasts

Input

Input to the short-term forecast is given in Table 9.4.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2022 is the geometric mean of the recruitment 1986-2020 (112 billion-at-age 0). The exploitation pattern and F_{sq} is taken from the assessment values in 2020. As the SMS-model assumes a fixed exploitation pattern since 1999, the choice of year is not critical. Mean weight-at-age in the catch and in the sea is the average value
(i.e. 5-year mean) for the years 2017-2021. Proportion mature and natural mortality are equal to the terminal assessment year.

The Stock Annex gives more details about the forecast methodology.

Output

The short-term forecast (Table 9.4.12) shows that a TAC of 85559 t in 2021 will result in a fishing mortality of 0.29 , identical to Fcap, $_{\text {, and leave SSB }} 151563 \mathrm{t}$, well above MSY B trigger 129000 t , in 2021. The TAC according to the escapement strategy is therefore 151563 t in 2021.

9.4.10 Biological reference points

$B_{\text {lim }}$ is set at $80000 t$ and $B_{p a}$ is estimated to $129000 t$. MSY $B_{\text {trigger }}$ is set at $B_{p a}$. Further information about biological reference points can be found in the Stock Annex and in the benchmark report from 2016 (WKSAND, 2016).

9.4.11 Quality of the assessment

This stock was benchmarked between the 2016 and 2017 assessment. The new sandeel area 3 r is slightly different from the previous sandeel area 3, and mainly consists of fishing grounds in Norwegian EEZ. There is a large retrospective pattern in the recruitment that overestimates high recruitments. This pattern may be caused by a variety of issues in the assessment, most likely of which are the shift in 2011 from using Danish to using Norwegian effort data and the change in the spatial coverage of the dredge survey. Even though the new assessment for SA 3r sandeel is considered uncertain, it is considered adequate as the basis for TAC advice.

9.4.12 Status of the Stock

The SSB has increased from below Blim in 2013 to above $B_{p a}$ since 2015, due to above average recruitment in 2013, 2014, 2016, 2018 to 2020 combined with a low fishing mortality. However, fishing mortality has increased since 2016, peaking in 2020. SSB decreased considerably between 2021 and 2022, due to high fishing mortality and decreasing recruitment (but SSB is still well above B_{pa}). Recruitment estimates for 2018-2020 were all above average, but declining since 2019. Recruitment in 2021 was estimated to be below average.

9.4.13 Management Considerations

Since 2011 the Norwegian sandeel fishery in the current SA3r has been managed according to an area-based management plan for the Norwegian EEZ and an advice provided by the IMR in Bergen.

9.5 Sandeel in SA 4

9.5.1 Catch data

Catch numbers-at-age by half-year from area SA 4 is given in Table 9.5.1. Total catch weight by year for SA 4 is given in tables $9.5 .2-9.5 .4$. In 2021, catch numbers were dominated by ages of 1 and 2-groups, whereas older age-groups were not common. This was also the case in 2016 (Figure 9.5.1).

9.5.2 Weight-at-age

The methods applied to compile age-length-weight keys and mean weights-at-age in the catches and in the stock are described in the Stock Annex. The mean weights-at-age observed in the catch are given in Table 9.5.2 and Figure 9.5.2 by half year. Mean weight-at-age in the first half year seems to have recovered to above average and currently stable for all ages after the very low levels in 2001 to 2005. The second half year the mean weights are affected by the very limited sampling at this time of year.

9.5.3 Maturity

Maturity estimates are obtained from the averages observed in the dredge survey (1983-2016) in December as described in the Stock Annex. Maturities are listed in Table 9.5.3.

9.5.4 Natural mortality

Long-term averages of natural mortality-at-age from multispecies modelling of northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. More details are given in the stock annex. Natural mortalities are listed in Table 9.5.8. Mortalities were not updated in response to the new WGSAM key run (WGSAM, 2020) as the update is not likely to affect long-term averages greatly.

9.5.5 Effort and research vessel data

Trends in overall effort and CPUE

Table 9.5.5-9.5.7 and Figure 9.5.3 show the trends in the international effort over years measured as number of fishing days standardized to a 200 GRT vessel. The standardization includes just the effect of vessel size and does not take changes in efficiency into account. Total international standardized effort peaked in 1994, after which substantial effort reduction has taken place. The effort in 2021 were the third highest in the time-series reflecting the high TAC given. This is in contrast to the most recent decades since 2004 with the effort reflects either a closed or very limited fishery, where only 2018 showed any evident effort that lower than average.

Tuning series used in the assessments

No commercial tuning series are used in the present assessment. CPUE data from the dredge survey (Table 9.5.4 and Figure 9.5.5) show that 2021 around average, whereas for consecutive two years prior (2019 and 2020) strong year-classes have entered.

The ability of the area 4 dredge survey to provide accurate estimates of abundance by age was discussed in detail. All of the values are estimated as stratified mean values (mean within position followed by mean within square followed by mean across squares), an approach which is known to be sensitive to skewed data at low sampling levels. Up to 2018, indices of cohorts at age 1 averaged at 1.22 times the catch of the index of the cohort at age 0 (range $0.6-2.35$). The corresponding number from age 1 to 2 was 0.46 (range $0.09-1.58$). In 2019, the index of 1 -year olds (2018 cohort) was 5.75 times the index of the cohort at age 0 . This pattern persisted in 2020 where the index of 1 -year olds (2019 cohort) was 5.10 times the index of the cohort at age 0 . The 2020 index of the 2018 cohort was 1.87 times the 2019 index of the cohort. In all cases, these values represent all time high appearance relative to earlier estimates of the cohort. In the 2021 survey index, the 2019 and the 2020 cohorts were registered as 0.24 and 0.03 times the values observed in 2020. Both of these values are the lowest relative changes observed in the time series. This led to the question of whether the 2020 should be considered a year where the survey for unknown reasons had much higher than usual catchability or the 2020 survey was accurate but a large
mortality even had eliminated the sandeel. As the decline was observed in both the fished and closed area, it was considered most likely that the large mortality was caused by factors other than fishing. A possible reason mentioned was harmful algal blooms. A first look at the sandeel dredge data at the station level indicated that internal consistency (abundance of age 0 at t and abundance of age 1 at $t+1$) was normal between 2019 (age 0) and 2020 (age 1) and followed the general relationship observed at station level between 2008 and 2021. However, between 2020 (age 0) and 2021 (age 1) the relationship showed a clear lack of age 1 fish in 2021. This suggests that catchability was not the issue as values consistent with the time-series were observed for the 2019 cohort and that the issue with the recent indices are likely related to the stratified mean approach in years with reduced sampling at the most productive stations. In addition, the lack of age 1 fish of the 2020 cohort in 2021, also apparent from the station level analysis, is consistent with a large mortality event. In the 2021 assessment, the 2020 index was downscaled to account for changes in sampling distribution as the 2020 index was considered to be likely to be too high due to differences in sampling distribution in this year. The group decided to keep the revised values from 2020 but to run an exploratory assessment excluding this survey year to investigate the impact that the 2020 survey index had on the 2022 assessment.

The internal consistency, i.e. the ability of the survey to follow cohorts, (Figure 9.5.4) shows a high correlation between the 0 -group and 1-group explaining 54% of the variation.

Relationship between index estimated for all stations (vertical axis) and index estimated for the $\mathbf{1 1}$ stations sampled in 2020 (horizontal axis).

9.5.6 Data analysis

Following the Benchmark assessment (ICES, 2016) the SMS-effort model was used to estimate fishing mortalities and stock numbers-at-age by half year, using data from 1993 to 2021. In the SMS model, it is assumed that fishing mortality is proportional to fishing effort. For details about the SMS model and model settings, see the Stock Annex.

The diagnostics output from SMS are shown in Table 9.5.5. The CV of the dredge survey ("sqrt (Survey variance) $\sim \mathrm{CV}^{\prime \prime}$ in the table) is low to moderate (<0.60) for all ages. However, the CV have increased for age 0 from 0.3 to 0.55 from the 2021 to the 2022 assessment. The survey residuals in 2020 are large and positive for both ages, indicating that the large observed indices in 2020 are not supported by other information about the abundance of these cohorts.

The model CV of catch-at-age ("sqrt(catch variance) \sim CV", in Table 9.5.5 is moderate (0.74) for age 1 and 2. The catch-at-age residuals (Figure 9.5.6) show no alarming patterns, except for a tendency to positive residuals (observed catch is higher than model catch) for age 1 in the beginning of the time-series.

The CV of the fitted Stock recruitment relationship (Table 9.5.5) is high (1.50), which is also indicated by the stock recruitment plot (Figure 9.5.7). The high CV of recruitment is probably due to biological characteristic of the stock and not so much due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low (0.05 in "objective function weight" in Table 9.5.5) such that SSB-R estimates do not contribute much to the overall likelihood and model fit.

The retrospective analysis (Figure 9.5.9) shows very consistent assessment results from one year to the next with the exception of the 2020 peel. The high recruitment in the 2019 and 2020 cohort expected from the 2020 survey was downscaled after adding the 2021 survey, leading to a very high retrospective bias in both recruitment and SSB in 2019 and 2020.

As a result of the indications that the 2020 survey may have had an abnormally high catchability, an explorative assessment was conducted removing the 2020 survey index. The results showed an assessment where the 0 -group CV of the dredge survey returned to previous levels:

Assessment	CV 0-group in the survey	CV 1-group in the survey	Recruitment 2020 $\left(\mathbf{1 0}^{9}\right)$	Recruitment 2021 $\left(10^{9}\right)$	SSB 2022 $\left(10^{\mathbf{3}} \mathbf{t}\right)$
2020	0.30	0.40			
2021	0.30	0.37	303	46.5	72.8
2022 all data	0.55	0.30	62.4	63.5	53.5
2022 without 2020 survey	0.30	0.42	36.3		

The impact on the latest two recruitments and terminal year SSB were substantial (-40 to $+37 \%$). Having considered these changes, the group decided that the survey index should be investigated in detail at the upcoming benchmark but that excluding individual years in the survey time series in an update assessment should be avoided. Therefore, the final assessment presented below includes all survey data.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.5.9) are moderate to high.

9.5.7 Final assessment

The output from the assessment is presented in tables 9.5 .6 (fishing mortality-at-age by year), 9.5.7 (fishing mortality-at-age by half year), 9.5.9 (stock numbers-at-age) and 9.5.10 (stock summary).

9.5.8 Historic Stock Trends

The stock summary (Figure 9.5.13 and Table 9.5.10) shows that SSB have been at or below $\mathrm{B}_{\mathrm{lim}}$ from 2007 to 2010. Since 2010, SSB has been above $B_{\lim }$ in 2011, 2016 and 2021, but below $B_{p a}$ in 2015 only. SSB is estimated at 72766 in 2022. $\mathrm{F}_{(1-2)}$ is estimated to have been very low since 2005 increasing in 2018 to the highest since 2004 with a decrease in 2019 and 2020, to a record-high (second) F in 2021. Recruitment has been high in 2014, 2016, 2017 and 2019. The high F in 2021 was the result of the lack of confirmation in the 2021 survey of the high survey indices in 2020. The biomass did however not decline below $\mathrm{B}_{\mathrm{lim}}$.

9.5.9 Short-term forecasts

Input

Input to the short-term forecast is given in Table 9.5.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2022 is the geometric mean of the recruitment 2011-2020 (55 billion-at-age 0). The exploitation pattern and F_{sq} is taken from the assessment values in 2021. However, as the SMS-model assumes a fixed exploitation pattern, the choice of years is not critical. Mean weight-at-age in the catch and in the sea is the average value (i.e. 5-year mean) for the years 2017-2021. Natural mortality and maturity are as applied in the assessment in final year. The Stock Annex gives more details about the forecast methodology.

Output

The short-term forecast (Table 9.3.12) shows that a SSB will be below the MSY B trigger of 102000 t and above $B_{\lim }$ of $48.000 t$ in 2022. Although, even a fishing mortality of zero will bring SSB below Bpa. The TAC is therefore $0 t$ in 2022. However, a monitoring TAC of $5000 t$ is recommended to ensure the quality of the assessment, consistent with previous year's advice (ICES, 2019).

9.5.10 Biological reference points

$B_{\lim }$ is set at 48000 t and B_{pa} at 102000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\text {pa }}$.
Further information about biological reference points for sandeel in SA 4 can be found in the Stock Annex.

9.5.10.1 Quality of the assessment

The analytical assessment of SA 4 was initiated in 2017 following the 2016 benchmark of the stock.

Abundance of the 1-group, which in most years dominates the catches in most years, is estimated on the basis of the 0 -group index from the dredge survey in December of the preceding year. The model estimates a low variance on the survey index for age 0 but the CV on SSB in 2022 is high (0.40).

9.5.10.2 Status of the Stock

Recruitment in 2014, 2016, 2017, 2019, 2020 and 2021 are all above the long-term average, while 2018 is lower. A very restrictive F since 2005 together with the return of recruitment to historic levels has resulted in SSB above $B_{p a}$ in 2016 to 2019 and in 2021. It is between $B_{l i m}$ and $B_{p a}$ in 2020 and 2022.

9.5.10.3 Management considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the escapement strategy, i.e. to maintain SSB above MSY $B_{\text {trigger }}$ after the fishery has taken place. Management strategy evaluations presented at the ICES WKMSYREF2 and WKMSYREF5 meeting (ICES, 2014a, 2017) indicated that the escapementstrategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ($\mathrm{F}_{\text {cap }}$) on the fishing mortality. This means that if the TAC that comes out of the Escapementstrategy corresponds to an $\mathrm{F}_{\text {bar }}$ that exceeds $\mathrm{F}_{\text {cap }}$, then the Escapement-strategy should be disqualified and the TAC is instead determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {capp }}$. $\mathrm{F}_{\text {cap }}$ for SA 4 (in accordance with the concepts of a conventional management strategy evaluation and a selection criterion of 0.05 probability of $\mathrm{SSB}<\mathrm{B}_{\mathrm{lim}}$) is set at 0.15 (ICES, 2016).

However, it is important to acknowledge that the assessment model does not consider that a significant part of SA 4 (East coast of Scotland, sand banks covered by the dredge survey) is closed to fishing. Accordingly, the estimated TAC would in practice be achieved in a much smaller region than the whole SA 4 which raises concerns of local depletion. Therefore, such a high TAC may not be sustainable and future work should consider how to incorporate the spatial management in place in future advice.

9.6 Sandeel in SA 5r

9.6.1 Catch data

Total catch weight by year for SA 5 is given in tables 9.1.2-9.1.4. No catches from this area have been taken since 2004. Acoustic surveys have been carried out since 2005 on Vikingbanken, which is the main sandeel ground in SA 5. The survey estimates show that the biomass of sandeel on Vikingbanken still is very low (Table 9.6.1)

9.7 Sandeel in SA 6

9.7.1 Catch data

Total catch weight by year for SA 6 is given in tables 9.1.2-9.1.4.

9.8 Sandeel in SA 7

9.8.1 Catch data

Total catch weight by year for SA 7 is given in tables 9.1.2-9.1.4 No catches from this area have been taken since 2003.

9.9 Sandeel in ICES Division 6.a

9.9.1 Catch data

Total catch weight by year for sandeel in ICES Division 6.a is given in Table 9.9.1 Catches from this area have been zero or very low since 2005.

9.10 References

ICES. 2007. Report of the Ad Hoc Group on Sandeel. ICES CM 2007/ACFM:38
ICES. 2008. Report of the Ad Hoc Group on Sandeel. ICES CM 2008/ACOM:59
ICES. 2016. Report of the Benchmark on Sandeel (WKSand 2016), 31 October - 4 November 2016, Bergen, Norway. ICES CM 2016/ACOM:33. 301pp.

ICES. 2016 - also reference to WGSAM 2015 (published in 2016?)
ICES. 2018. Benchmark Workshop on Sprat (WKSPRAT 2018). ICES WKSPRAT Report 2018, 5-9 November 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:35.60 pp.

ICES. 2019. Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG). ICES Scientific Reports. 1:2. 971 pp . http://doi.org/10.17895/ices.pub. 5460 - WD01 Marine Scotland Science sandeel dredge survey indices for SA4.

Johnsen, E. (2020). Råd for tobisfiskeriet i norsk sone for 2020 og rapport for tobistokt i Nordsjøen 23. april - 13. mai. Toktrapport/Havforskningsinstituttet/ISSN 1503 6294/Nr.9-2020. Summary in English in Vedlegg3. (https://www.hi.no/resources/publikasjoner/toktrapporter/2020/Toktrapport2020281 VersionFinal.pdf)
van Deurs, M., Hartvig, M., \& Steffensen, J. F. (2011). Critical threshold size for overwintering sandeels (Ammodytes marinus). Marine biology, 158(12), 2755-2764.

Table 9.1.1 Sandeel. Official catches ('000 t), 1952-2021 for area 27.4 and 27.3.a. Note that catches from 27.3.a are only available from 1973-2021.

Year	Area	Denmark	Germany	Faroes	Ireland	Netherlands	Norway	Sweden	UK	Lithuania	France	Total
1952	27.4	1.6	-	-	-	-	-	-	-	-	-	1.6
1953	27.4	4.5	-	-	-	-	-	-	-	-	-	4.5
1954	27.4	10.8	-	-	-	-	-	-	-	-	-	10.8
1955	27.4	37.6	-	-	-	-	-	-	-	-	-	37.6
1956	27.4	81.9	5.3	-	-	-	1.5	-	-	-	-	88.7
1957	27.4	73.3	25.5	-	-	3.7	3.2	-	-	-	-	105.7
1958	27.4	74.4	20.2	-	-	1.5	4.8	-	-	-	-	100.9
1959	27.4	77.1	17.4	-	-	5.1	8	-	-	-	-	107.6
1960	27.4	100.8	7.7	-	-	-	12.1	-	-	-	-	120.6
1961	27.4	73.6	4.5	-	-	-	5.1	-	-	-	-	83.2
1962	27.4	97.4	1.4	-	-	-	10.5	-	-	-	-	109.3
1963	27.4	134.4	16.4	-	-	-	11.5	-	-	-	-	162.3
1964	27.4	104.7	12.9	-	-	-	10.4	-	-	-	-	128.0
1965	27.4	123.6	2.1	-	-	-	4.9	-	-	-	-	130.6
1966	27.4	138.5	4.4	-	-	-	0.2	-	-	-	-	143.1
1967	27.4	187.4	0.3	-	-	-	1	-	-	-	-	188.7
1968	27.4	193.6	-	-	-	-	0.1	-	-	-	-	193.7
1969	27.4	112.8	-	-	-	-	-	-	0.5	-	-	113.3
1970	27.4	187.8	-	-	-	-	-	-	3.6	-	-	191.4
1971	27.4	371.6	0.1	-	-	-	2.1	-	8.3	-	-	382.1
1972	27.4	329.0	-	-	-	-	18.6	8.8	2.1	-	-	358.5
1973	27.3.a + 27.4	282.9	-	1.4	-	-	17.2	1.1	4.2	-	-	306.8
1974	27.3.a + 27.4	432.0	-	6.4	-	-	78.6	0.2	15.5	-	-	532.7
1975	27.3.a + 27.4	372.0	-	4.9	-	-	54	0.179	13.6	-	-	444.7

Year	Area	Denmark	Germany	Faroes	Ireland	Netherlands	Norway	Sweden	UK	Lithuania	France	Total
1976	27.3.a + 27.4	446.1	-	-	-	-	44.2	0.067	18.7	-	-	509.1
1977	27.3.a + 27.4	680.4	-	11.4	-	-	78.7	6.132	25.5	-	-	802.1
1978	27.3.a + 27.4	669.2	-	12.102	-	-	93.5	2.321	32.5	-	-	809.7
1979	27.3.a + 27.4	483.1	-	13.2	-	-	101.4	0.003	13.4	-	-	611.1
1980	27.3.a + 27.4	581.6	-	7.2	-	-	144.8	0.009	34.3	-	-	767.9
1981	27.3.a + 27.4	523.8	-	4.9	-	-	52.6	0.044	46.7	-	-	628.1
1982	27.3.a + 27.4	528.4	-	4.9	-	-	46.5	0.405	52.2	-	-	632.4
1983	27.3.a + 27.4	515.2	-	2	-	-	12.378	0.23	37	-	-	566.8
1984	27.3.a + 27.4	618.9	-	11.3	-	-	28.3	-	32.6	-	-	691.1
1985	27.3.a + 27.4	601.7	-	3.9	-	-	13.1	-	17.2	-	-	635.9
1986	27.3.a + 27.4	832.7	-	1.2	-	-	82.1	0.002	12	-	-	928.0
1987	27.3.a + 27.4	609.2	-	18.6	-	-	193.4	-	7.2	-	-	828.4
1988	27.3.a + 27.4	708.8	-	15.5	-	-	185.265	-	5.8	-	-	915.3
1989	27.3.a + 27.4	841.6	-	16.6	-	-	186.84	-	11.5	-	-	1056.3
1990	27.3.a + 27.4	512.1	-	2.2	-	0.3	88.999	-	3.9	-	-	607.5
1991	27.3.a + 27.4	726.5	-	11.2	-	-	128.8	-	1.2	-	-	867.7
1992	27.3.a + 27.4	803.7	-	9.1	-	-	89.349	0.588	4.9	-	-	907.6
1993	27.3.a + 27.4	533.4	-	0.344	-	-	95.5	-	1.5	-	-	630.8
1994	27.3.a + 27.4	688.6	-	10.3	-	-	165.8	0.02	5.9	-	-	870.7
1995	27.3.a + 27.4	672.6	-	-	-	-	263.4	0.04	6.7	-	-	942.8
1996	27.3.a + 27.4	649.5	-	5	-	-	160.7	-	9.7	-	-	824.8
1997	27.3.a + 27.4	831.8	-	11.2	-	-	350.209	0.001	24.6	-	-	1217.8
1998	27.3.a + 27.4	628.2	-	11	-	-	343.3	8.565	23.8	-	-	1014.8
1999	27.3.a + 27.4	511.3	-	13.2	0.4	-	187.6	23.21	11.5	-	-	747.1
2000	27.3.a + 27.4	557.3	-	-	-	-	119	28.643	10.8	-	-	715.7

Year	Area	Denmark	Germany	Faroes	Ireland	Netherlands	Norway	Sweden	UK	Lithuania	France	Total
2001	27.3.a + 27.4	650.0	-	-	-	-	183	49.979	1.3	-	-	884.3
2002	27.3.a + 27.4	659.5	-	0.025	-	-	176	19.211	4.9	-	-	859.6
2003	27.3.a + 27.4	282.8	-	-	-	-	29.6	21.822	0.5	-	-	334.7
2004	27.3.a + 27.4	288.8	2.7	-	-	-	48.5	33.331	-	-	-	373.3
2005	27.3.a + 27.4	158.9	-	-	-	-	17.3	0.472	-	-	-	176.6
2006	27.3.a + 27.4	255.4	3.2	-	-	-	5.6	27.858	-	-	-	292.8
2007	27.3.a + 27.4	166.9	1	2	-	-	51.1	7.875	1	-	-	229.9
2008	27.3.a + 27.4	246.9	4.4	2.4	-	-	81.6	12.51	-	-	-	347.8
2009	27.3.a + 27.4	293.0	12.2	2.5	-	1.8	27.4	12.4	3.6	-	-	352.9
2010	27.3.a + 27.4	285.9	13	-	-	-	78	32.72	4	0.6	-	414.2
2011	27.3.a + 27.4	278.5	9.8	-	-	-	109	32.717	6.1	1.65	-	437.8
2012	27.3.a + 27.4	51.8	1.70844	-	-	0.317	42.4804	5.652	-	-	0.00328	101.9
2013	27.3.a + 27.4	208.7	7.89833	-	-	0.387	30.44615	26.811	2.436	1.32035	0.00387	278.0
2014	27.3.a + 27.4	156.5	5.05196	-	-	-	82.49885	18.815	0.03	0.82463	0.00262	263.8
2015	27.3.a + 27.4	166.5	9.09745	-	-	-	100.85862	33.43879	2.00003	-	$4 \mathrm{e}-05$	311.9
2016	27.3.a + 27.4	28.4	-	-	-	-	40.86736	4.2595	-	-	-	73.5
2017	27.3.a + 27.4	353.9	5.7985	-	-	-	120.20534	42.33624	3.32389	-	-	525.5
2018	27.3.a + 27.4	175.6	5.937	-	-	-	69.53076	16.655512	1.848779	-	-	269.6
2019	27.3.a + 27.4	93.7	3.95	-	-	$1.2 \mathrm{e}-05$	124.7855	11.54334	1.05792	-	-	235.1
2020	27.3.a + 27.4	169.2	3.81522	-	-	-	244.37908	25.5189974	3.89595	-	$2 \mathrm{e}-05$	446.8
2021	27.3.a + 27.4	69.9	1.8223	-	-	-	146.442119	14.977623	-	-	-	233.2

Table 9.1.2 Sandeel. Total catch (tonnes) by area as estimated by ICES.

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
1983	382629	156208	24828	2782	0	364	0	566810
1984	498671	133398	49111	2563	5821	791	744	691098
1985	460057	111889	20859	38122	3004	1927	0	635858
1986	382844	225581	282334	12718	628	13219	10650	927973
1987	373021	49067	395298	8154	1713	1163	0	828417
1988	422805	151543	336919	1338	0	2726	0	915330
1989	446129	227292	374252	4384	2903	909	450	1056318
1990	306302	133796	163224	3314	374	499	0	607508
1991	332204	215565	274839	41372	1168	17	2529	867694
1992	558602	184241	87022	68905	1099	4277	3455	907600
1993	144389	147964	200123	133136	586	4490	80	630768
1994	193241	244944	267281	158690	2757	3748	4	870666
1995	400759	122155	213168	52591	152274	1830	0	942776
1996	291709	186460	159304	158490	27570	1263	1	824796
1997	426414	242680	474093	58446	10772	2372	3061	1217839
1998	372604	99305	474843	58911	3010	941	5228	1014841
1999	425478	70085	193621	53338	145	0	4415	747083
2000	374724	101952	196525	37792	303	0	4371	715667
2001	540248	97210	196209	47918	1678	26	971	884260
2002	610161	120520	115207	12762	8	493	453	859604
2003	178642	56248	35365	64049	44	111	260	334718
2004	215352	116837	33658	6882	0	573	0	373302
2005	126261	34569	13994	1557	0	259	0	176640
2006	247510	37952	7094	86	0	161	0	292802
2007	110395	44069	75376	11	4	0	0	229855
2008	236069	35655	74943	1168	0	0	0	347836
2009	309712	37049	6161	0	0	0	0	352922
2010	300896	52470	60542	275	0	0	0	414183
2011	320241	24310	92450	270	0	489	0	437761
2012	45954	12672	40141	2618	0	214	0	101599
2013	214787	48172	9838	5119	0	72	0	277989
2014	99059	64707	95426	4505	0	65	0	263762
2015	162861	39492	104607	4736	0	198	0	311894
2016	15407	9569	44074	6232	0	123	0	75405
2017	242069	141314	115642	18474	0	0	0	517499
2018	131898	20240	75143	42298	0	0	0	269579

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
2019	86723	5151	136901	6666	0	96	0	235537
2020	108944	70198	247411	20116	0	97	0	446765
2021	16944	4980	157752	53370	0	133	0	233178
arith. mean	284941	99423	151938	30619	5535	1119	940	574516

Table 9.1.3 Sandeel. Total catch (tonnes) by area, first half year as estimated by ICES.

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
1983	314744	92566	21008	2782	0	364	0	431465
1984	419640	86141	43578	2563	5821	735	744	559223
1985	377702	76422	17131	37900	3004	973	0	513132
1986	346053	181733	138020	12539	108	12020	7832	698305
1987	307194	36400	394339	7833	1713	1091	0	748570
1988	395186	107289	288174	1257	0	2114	0	794020
1989	435721	173510	371557	4382	1587	897	450	988104
1990	285321	101899	105554	2926	0	485	0	496185
1991	257591	153869	215770	17140	1168	17	2529	648083
1992	521575	135823	83068	67068	1099	4270	3455	816357
1993	129403	86179	155984	123143	250	4393	3	499354
1994	177685	184792	242027	147019	2754	3222	4	757503
1995	365681	70518	203151	52497	152269	1829	0	845945
1996	257507	63193	110862	48496	14551	1168	0	495777
1997	345199	178735	394181	47668	8615	2194	2448	979040
1998	352275	70075	354639	57373	2907	939	4565	842773
1999	395813	27461	94655	51183	145	0	2152	571409
2000	333044	82405	192474	37792	288	0	3808	649812
2001	368782	49319	59951	47492	1678	26	735	527983
2002	604584	105397	114646	12762	8	493	101	837991
2003	155006	25111	22803	62580	44	111	187	265841
2004	199483	91405	21632	6860	0	571	0	319951
2005	121795	24841	13982	1557	0	259	0	162434
2006	241345	23497	6959	55	0	160	0	272015
2007	110389	44069	75376	11	4	0	0	229849
2008	232249	32602	74943	1168	0	0	0	340963
2009	293529	25399	6024	0	0	0	0	324952
2010	293359	44910	60251	275	0	0	0	398796
2011	316351	24045	92450	270	0	489	0	433605
2012	45946	11520	40141	2618	0	213	0	100438
2013	207886	43818	9838	5119	0	72	0	266733
2014	94278	62110	95426	4505	0	65	0	256383
2015	162860	38723	104607	4736	0	197	0	311123

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
2016	15407	9519	44074	6232	0	123	0	75354
2017	239742	130640	115642	18474	0	0	0	504498
2018	125303	19957	74567	42298	0	0	0	262126
2019	71590	5148	136896	6666	0	96	0	220396
2020	107762	69894	247411	19896	0	97	0	445060
2021	16481	4978	157627	51075	0	133	0	230293
arith. mean	257473	71690	128242	26057	5077	1021	744	490304

Table 9.1.4 Sandeel. Total catch (tonnes) by area, second half year as estimated by ICES.

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
1983	67885	63641	3820	0	0	0	0	135345
1984	79031	47257	5532	0	0	55	0	131875
1985	82355	35468	3728	222	0	953	0	122726
1986	36791	43848	144314	179	519	1199	2818	229668
1987	65828	12667	959	321	0	72	0	79847
1988	27619	44254	48744	81	0	612	0	121310
1989	10407	53782	2694	2	1316	12	0	68214
1990	20981	31896	57670	388	374	14	0	111323
1991	74613	61697	59069	24232	0	0	0	219611
1992	37027	48418	3954	1837	0	6	0	91243
1993	14986	61785	44138	9993	336	97	78	131414
1994	15557	60152	25254	11671	3	526	0	113163
1995	35078	51637	10017	94	5	1	0	96831
1996	34202	123267	48441	109994	13020	95	1	329019
1997	81215	63945	79912	10779	2157	179	613	238799
1998	20329	29230	120203	1538	103	1	663	172068
1999	29666	42624	98967	2155	0	0	2263	175674
2000	41680	19547	4051	0	15	0	562	65855
2001	171466	47891	136258	426	0	0	236	356277
2002	5577	15123	561	0	0	0	352	21613
2003	23636	31137	12562	1469	0	0	73	68877
2004	15869	25432	12026	22	0	2	0	53351
2005	4466	9728	11	0	0	0	0	14206
2006	6165	14455	136	30	0	0	0	20787
2007	6	0	0	0	0	0	0	6
2008	3821	3053	0	0	0	0	0	6873
2009	16183	11650	137	0	0	0	0	27970
2010	7537	7560	291	0	0	0	0	15387
2011	3891	265	0	0	0	0	0	4156
2012	8	1153	0	0	0	0	0	1161

| | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2013 | 6902 | 4354 | 0 | 0 | 0 | 0 | 0 | 11256 |
| 2014 | 4781 | 2598 | 0 | 0 | 0 | 0 | 0 | 7379 |
| 2015 | 1 | 769 | 0 | 0 | 0 | 0 | 0 | 771 |
| 2016 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 51 |
| 2017 | 2327 | 10673 | 0 | 0 | 0 | 0 | 0 | 13000 |
| 2018 | 6595 | 283 | 576 | 0 | 0 | 0 | 0 | 7453 |
| 2019 | 15133 | 3 | 5 | 0 | 0 | 0 | 0 | 15141 |
| 2020 | 1182 | 304 | 0 | 220 | 0 | 0 | 0 | 1705 |
| 2021 | 463 | 3 | 125 | 2295 | 0 | 0 | 0 | 2885 |
| arith. mean | 27468 | 27733 | 23696 | 4563 | 458 | 98 | 196 | 84213 |

Table 9.1.5 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, as estimated by ICES.

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
1983	8992	4719	864	63	0	9	0	14649
1984	10166	4009	1378	48	212	50	37	15901
1985	10876	3570	619	655	139	65	0	15923
1986	7372	5038	4641	284	12	469	145	17962
1987	5680	1153	5094	177	64	45	0	12213
1988	7980	3876	7472	42	0	90	0	19460
1989	8553	6552	7677	57	31	44	0	22914
1990	8529	4209	5143	55	0	24	0	17960
1991	5991	5117	5864	338	19	1	0	17330
1992	8805	4944	2383	571	0	197	0	16900
1993	3893	4396	5124	1387	29	265	0	15093
1994	3149	4230	4854	1588	0	114	0	13934
1995	5899	2497	3791	437	1915	50	0	14589
1996	5497	4608	4352	1464	605	48	0	16573
1997	5366	5308	7749	622	0	60	6	19111
1998	6580	2743	11062	611	96	26	0	21118
1999	8900	1975	6179	850	0	0	0	17904
2000	7141	2597	4117	421	5	0	149	14429
2001	11021	2505	4726	669	0	1	0	18921
2002	8162	3162	2491	140	1	13	0	13968
2003	6805	2351	1634	1098	19	6	0	11913
2004	7057	4208	1264	203	0	27	0	12758
2005	3412	1131	468	88	0	10	0	5109
2006	4160	1235	205	1	0	5	0	5606
2007	1560	874	1214	1	0	0	0	3650
2008	2878	906	1344	7	0	0	0	5136
2009	3551	802	111	0	0	0	0	4464

	Area 1r	Area 2 r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
2010	2859	1136	1446	4	0	0	0	5444
2011	3195	677	924	7	0	18	0	4821
2012	585	472	561	68	0	13	0	1699
2013	3876	1799	273	37	0	8	0	5992
2014	2270	1416	1072	51	0	4	0	4812
2015	2073	1233	1412	43	0	5	0	4767
2016	146	429	561	79	0	6	0	1220
2017	2711	2082	1198	166	0	0	0	6157
2018	3126	563	1437	524	0	0	0	5651
2019	2823	136	1957	203	0	3	0	5121
2020	2696	1384	3392	165	0	5	0	7642
2021	418	336	2049	1378	0	4	0	4185
arith. mean	5250	2574	3028	374	81	43	9	11359

Table 9.1.6 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, first half year as estimated by ICES.

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
1983	6926	3032	739	63	0	9	0	10770
1984	7910	2471	1172	48	212	46	37	11896
1985	8449	2564	508	652	139	29	0	12341
1986	6568	3884	2508	281	4	437	81	13763
1987	4287	779	5063	161	64	42	0	10395
1988	7172	2660	6030	40	0	69	0	15970
1989	8240	4852	7586	56	31	42	0	20808
1990	8008	3380	3738	49	0	24	0	15201
1991	4588	3538	4750	111	19	1	0	13008
1992	7926	3793	2290	309	0	197	0	14514
1993	3496	2597	3950	1200	29	256	0	11527
1994	2852	3097	4411	1410	0	98	0	11867
1995	5298	1527	3589	436	1915	50	0	12815
1996	4805	1627	3147	519	441	48	0	10587
1997	3997	3440	5895	490	0	52	0	13874
1998	6011	1707	7059	576	93	26	0	15473
1999	7875	772	3204	850	0	0	0	12702
2000	6181	1991	4040	421	5	0	149	12786
2001	8041	1362	1681	656	0	1	0	11741
2002	7942	2489	2491	140	1	13	0	13076
2003	5907	1034	1246	1027	19	6	0	9239
2004	6601	3179	862	201	0	27	0	10870
2005	3288	816	468	88	0	10	0	4670
2006	3982	858	200	1	0	5	0	5046

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
2007	1560	874	1214	1	0	0	0	3650
2008	2793	797	1344	7	0	0	0	4942
2009	3377	608	110	0	0	0	0	4094
2010	2725	948	1436	4	0	0	0	5113
2011	3070	665	924	7	0	18	0	4684
2012	585	447	561	68	0	13	0	1674
2013	3704	1618	273	37	0	8	0	5639
2014	2174	1344	1072	51	0	4	0	4645
2015	2073	1214	1412	43	0	5	0	4748
2016	146	413	561	79	0	6	0	1205
2017	2661	1827	1198	166	0	0	0	5852
2018	2817	558	1425	524	0	0	0	5324
2019	2489	136	1957	203	0	3	0	4788
2020	2656	1304	3392	165	0	5	0	7522
2021	389	259	2041	1266	0	4	0	3959
arith. mean	4604	1807	2450	318	76	40	7	9302

Table 9.1.7 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, second half year as estimated by ICES.

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
1983	2066	1687	126	0	0	0	0	3879
1984	2256	1538	207	0	0	4	0	4005
1985	2427	1005	110	3	0	35	0	3582
1986	804	1154	2133	3	8	32	64	4199
1987	1393	374	31	16	0	3	0	1817
1988	809	1215	1442	2	0	22	0	3490
1989	313	1700	92	0	0	1	0	2106
1990	520	828	1405	5	0	0	0	2759
1991	1403	1579	1113	227	0	0	0	4322
1992	879	1151	93	262	0	0	0	2385
1993	398	1799	1174	187	0	10	0	3567
1994	297	1133	443	178	0	16	0	2067
1995	601	970	201	1	0	0	0	1774
1996	691	2981	1205	945	163	0	0	5986
1997	1369	1868	1854	132	0	7	6	5237
1998	568	1036	4003	35	3	0	0	5645
1999	1024	1203	2975	0	0	0	0	5202
2000	960	606	78	0	0	0	0	1643
2001	2979	1143	3044	13	0	0	0	7180
2002	220	672	0	0	0	0	0	892
2003	898	1316	388	71	0	0	0	2673

	Area 1r	Area 2r	Area 3r	Area 4	Area 5r	Area 6	Area 7r	All
2004	456	1028	402	2	0	0	0	1888
2005	124	316	0	0	0	0	0	439
2006	178	377	5	0	0	0	0	560
2007	0	0	0	0	0	0	0	0
2008	85	109	0	0	0	0	0	194
2009	174	194	2	0	0	0	0	370
2010	134	187	10	0	0	0	0	331
2011	126	11	0	0	0	0	0	137
2012	0	25	0	0	0	0	0	25
2013	172	181	0	0	0	0	0	353
2014	96	71	0	0	0	0	0	167
2015	0	19	0	0	0	0	0	19
2016	0	15	0	0	0	0	0	15
2017	50	255	0	0	0	0	0	305
2018	309	6	12	0	0	0	0	327
2019	334	0	0	0	0	0	0	334
2020	40	80	0	0	0	0	0	120
2021	29	76	8	112	0	0	0	225
arith. mean	646	767	578	56	4	3	2	2057

Table 9.1.8 Sandeel. Number of samples from commercial catches by year and area.

	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7	All
1983	79	49	0	0	0	0	0	128
1984	116	46	13	0	2	3	0	180
1985	101	32	1	19	2	3	0	158
1986	26	17	27	1	0	1	0	72
1987	62	12	60	1	0	1	0	136
1988	42	15	67	0	0	1	0	125
1989	40	9	43	0	0	1	0	93
1990	1	4	37	0	0	2	0	44
1991	25	32	30	1	0	0	0	88
1992	56	42	24	4	0	7	0	133
1993	23	63	64	15	0	7	0	172
1994	20	38	50	15	0	4	0	127
1995	41	32	58	7	7	2	0	147
1996	43	62	113	27	19	1	0	265
1997	41	84	116	25	8	3	0	277
1998	53	30	145	7	0	2	0	237
1999	263	42	40	44	0	0	0	389
2000	102	34	47	59	0	0	0	242

	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7	All
2001	213	39	32	90	1	0	0	375
2002	288	97	50	62	0	0	0	497
2003	281	75	30	160	0	1	0	547
2004	451	217	26	47	0	1	0	742
2005	320	42	34	30	0	1	0	427
2006	550	56	72	2	0	2	0	682
2007	295	79	95	0	0	0	0	469
2008	290	100	45	1	0	0	0	436
2009	302	102	3	0	0	0	0	407
2010	169	194	30	1	0	0	0	394
2011	167	54	17	4	0	4	0	246
2012	220	112	31	21	0	12	0	396
2013	292	220	41	5	0	3	0	561
2014	143	133	29	18	0	5	0	328
2015	308	117	48	38	0	4	0	515
2016	154	159	42	35	0	0	0	390
2017	279	204	50	40	0	0	0	573
2018	350	136	162	71	0	0	0	719
2019	282	81	140	32	0	0	0	535
2020	241	182	184	36	0	1	0	644
Sum	6729	3042	2096	918	39	72	0	12896

Table 9.2.1 Sandeel Area-1r. Catch at age numbers (million) by half year.

| | Age 0,
 2nd half | Age 1, 1st
 half | Age 1,
 2nd half | Age 2, 1st
 half | Age 2,
 2nd half | Age 3, 1st
 half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 10223 | 1846 | 264 | 28971 | 3085 | 772 | 564 | 320 | 2 |
| 1984 | 0 | 47117 | 9241 | 1701 | 90 | 10002 | 566 | 333 | 43 |
| 1985 | 8524 | 6217 | 1354 | 31364 | 2305 | 1987 | 1595 | 211 | 213 |
| 1986 | 87 | 44940 | 4163 | 7553 | 228 | 1652 | 188 | 31 | 14 |
| 1987 | 187 | 4504 | 1938 | 23572 | 4173 | 1199 | 123 | 171 | 32 |
| 1988 | 0 | 1997 | 0 | 8564 | 162 | 15229 | 1439 | 2354 | 47 |
| 1989 | 0 | 62503 | 757 | 6364 | 77 | 1346 | 16 | 4736 | 58 |
| 1990 | 522 | 16846 | 1257 | 13917 | 417 | 2060 | 62 | 622 | 18 |
| 1991 | 7344 | 14939 | 6917 | 6870 | 209 | 983 | 67 | 338 | 0 |
| 1992 | 104 | 50883 | 3041 | 8451 | 298 | 845 | 122 | 524 | 26 |
| 1993 | 1624 | 2181 | 362 | 5882 | 271 | 1638 | 156 | 491 | 43 |
| 1994 | 0 | 22172 | 1533 | 2669 | 126 | 1195 | 55 | 882 | 78 |
| 1995 | 76 | 36677 | 3440 | 6236 | 940 | 737 | 109 | 289 | 28 |
| 1996 | 6470 | 10402 | 1064 | 12301 | 1027 | 4527 | 211 | 860 | 65 |
| 1997 | 19 | 38667 | 8899 | 2332 | 177 | 3522 | 164 | 713 | 56 |

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	$\begin{gathered} \text { Age 2, 1st } \\ \text { half } \end{gathered}$	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1998	211	9387	438	28364	1384	2164	136	1505	90
1999	440	44621	2498	5433	205	10158	717	699	149
2000	7887	32625	2760	3355	170	630	84	1076	122
2001	47080	56780	3127	8549	474	1098	49	972	98
2002	16	84878	605	10772	108	1212	15	225	6
2003	2474	3843	386	13302	4390	1117	141	302	31
2004	566	30654	2479	786	110	2364	230	480	47
2005	44	11106	383	4435	211	263	14	435	27
2006	37	33600	800	2590	94	817	43	163	19
2007	0	10581	0	4674	0	315	0	172	0
2008	6	26735	281	4009	75	1205	33	214	6
2009	979	18898	2254	14265	278	1556	12	392	3
2010	10	39951	1184	2130	35	942	16	108	2
2011	5	1894	39	32692	325	1305	14	266	1
2012	0	383	0	419	0	3354	0	129	0
2013	3	18090	598	7916	131	2182	100	4301	49
2014	925	8930	131	3354	98	401	23	360	25
2015	0	25326	0	1918	0	579	0	172	0
2016	0	208	0	1193	0	97	0	17	0
2017	3	33038	253	3015	40	4604	38	103	7
2018	91	1699	158	14468	792	971	44	331	10
2019	5947	4703	96	830	18	1885	19	101	0
2020	54	11911	80	1098	12	270	2	457	5
2021	4	1069	41	940	25	50	1	31	1
arith. mean	2614	22380	1611	8648	578	2237	184	664	36

Table 9.2.2 Sandeel Area-1r. Individual mean weight (gram) at age in the catch and in the sea.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1983	3.3	4.9	4.0	9.7	8.3	17.2	13.2	20.5	11.6
1984	3.7	5.5	7.3	10.1	12.8	14.1	16.8	13.4	15.8
1985	3.0	5.1	5.8	9.2	10.7	16.4	12.9	17.9	16.6
1986	3.0	5.3	7.5	11.7	12.7	11.7	12.8	13.6	14.7
1987	4.0	7.2	7.8	10.6	11.2	18.5	20.2	14.7	16.1
1988	3.9	6.1	6.8	10.4	12.0	16.0	17.0	17.8	24.4
1989	6.2	5.0	9.6	8.6	15.5	9.1	17.2	12.0	28.3
1990	5.0	6.6	9.0	9.6	13.1	14.2	19.3	17.0	23.1
1991	3.8	7.8	6.1	14.2	11.8	37.8	32.0	19.6	17.2
1992	4.9	7.8	9.5	11.9	15.3	17.7	19.7	19.0	21.2

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1993	4.0	7.3	7.5	11.5	10.5	14.4	13.6	20.2	18.2
1994	4.4	5.5	7.6	8.7	12.3	12.7	16.3	19.8	18.8
1995	3.8	7.6	6.8	11.3	9.9	14.1	14.1	19.0	19.0
1996	2.9	5.6	4.6	8.4	7.6	12.2	9.5	17.7	14.2
1997	3.7	7.3	8.5	8.3	14.2	9.9	15.5	14.4	16.1
1998	3.2	6.3	6.7	8.9	10.0	11.5	11.9	13.5	14.5
1999	3.4	5.3	5.9	7.5	9.6	10.3	12.8	13.1	14.7
2000	3.1	6.3	4.8	8.7	7.9	11.9	10.6	14.5	12.2
2001	3.1	4.5	5.0	8.7	12.1	11.5	16.5	16.6	23.6
2002	3.8	6.0	6.7	7.4	10.8	9.8	14.4	13.8	16.5
2003	2.2	3.6	2.7	7.2	3.6	9.5	8.4	12.8	9.1
2004	3.5	5.1	4.5	8.3	6.6	9.0	6.7	10.4	8.8
2005	3.0	6.5	5.3	8.7	8.5	10.3	11.3	12.1	13.0
2006	3.2	5.9	5.5	9.7	8.9	11.6	11.9	13.0	13.7
2007	4.1	5.6	7.0	9.4	11.3	13.5	15.1	14.7	17.3
2008	4.5	6.3	7.8	10.9	12.6	13.3	16.8	15.8	19.3
2009	2.8	6.2	4.9	9.4	7.9	12.1	10.5	13.2	12.1
2010	3.4	6.3	5.9	12.4	9.5	13.9	12.6	17.2	14.5
2011	2.8	5.3	4.9	8.7	7.8	12.7	10.4	14.8	12.0
2012	3.8	6.4	6.6	9.5	10.6	11.3	14.1	14.5	16.2
2013	3.8	4.7	6.5	6.5	10.5	10.1	14.0	11.3	16.1
2014	3.0	4.7	5.2	7.1	8.5	9.5	11.3	11.7	13.0
2015	4.0	5.5	6.9	8.3	11.1	10.6	14.8	14.0	17.0
2016	3.2	5.2	5.4	10.1	8.7	12.5	11.6	14.7	13.3
2017	2.9	5.3	6.0	7.1	8.2	9.2	10.5	10.7	12.4
2018	3.3	4.7	8.2	7.0	10.6	9.5	13.9	11.5	15.5
2019	3.3	4.7	8.2	7.7	10.6	8.4	13.9	10.7	15.5
2020	3.3	7.1	8.2	9.6	10.6	12.3	13.9	13.8	15.5
2021	3.3	5.9	8.2	9.7	10.6	11.4	13.9	12.8	15.5
arith. mean	3.6	5.8	6.6	9.3	10.4	12.9	14.2	14.8	16.1

Table 9.2.3 Sandeel Area-1r. Proportion mature.

	Age 1	Age 2	Age 3	Age 4
$1983-2016$	0.02	0.8	0.99	1

Table 9.2.4. Sandeel Area-1r. Dredge survey indices.

Year	Age 0	Age 1
2004	140061.87	7077.655
2005	277241.20	3288.987
2006	117233.03	12244.596
2007	402355.16	5326.731
2008	35633.70	13619.791
2009	474590.87	9040.642
2010	49722.00	125308.581
2011	77113.07	27178.527
2012	136586.42	3922.222
2013	80356.85	13156.382
2014	235943.73	3413.488
2015	23030.02	13597.662
2016	304655.46	7277.881
2017	32663.00	38561.000
2018	165064.00	11168.000
2019	199148.10	18720.400
2020	71890.40	7497.200
2021	65614.29	8315.977

Table 9.2.5 Sandeel Area-1r. SMS settings and statistics.
Date: 01/26/22 Start time:09:46:31 run time:1 seconds
objective function (negative log likelihood): 17.8446
Number of parameters: 80
Maximum gradient: 0.000100632
Akaike information criterion (AIC): 195.689
Number of observations used in the likelihood:

Catch	CPUE	S/R Stomach	Sum	
351	75	39	0	465

objective function weight:

$$
\begin{array}{lll}
\text { Catch } & \text { CPUE } & \text { S/R } \\
1.00 & 1.00 & 0.05
\end{array}
$$

unweighted objective function contributions (total):

Catch	CPUE	S/R	Stom.	Stom N. Penalty	Sum	
25.4	-8.2	13.5	0.0	0.0	0.00	31

unweighted objective function contributions (per observation):

Catch	CPUE	S/R	Stomachs
0.07	-0.11	0.35	0.00

contribution by fleet:

Dredge survey 2004-2021
RTM 2007-2021

total:	0.941	mean:	0.026
total:	-9.122	mean:	-0.234

```
F, season effect:
age: 0
    1983-1988: 0.000 1.000
    1989-1998: 0.000 1.000
    1999-2004: 0.000 1.000
    2005-2009: 0.000 1.000
    2010-2021: 0.000 1.000
age: 1 - 4
    1983-1988: 0.457 0.500
    1989-1998: 0.466 0.500
    1999-2004: 0.374 0.500
    2005-2009: 0.254 0.500
    2010-2021: 0.573 0.500
F, age effect:
\begin{tabular}{lrrrrr}
------------- & & & & & 4 \\
\(1983-1988:\) & 0.025 & 0.259 & 0.959 & 1.423 & 1.423 \\
\(1989-1998:\) & 0.011 & 0.539 & 0.722 & 0.732 & 0.732 \\
\(1999-2004:\) & 0.067 & 1.027 & 1.142 & 1.135 & 1.135 \\
\(2005-2009:\) & 0.007 & 1.436 & 2.177 & 2.240 & 2.240 \\
\(2010-2021:\) & 0.016 & 0.252 & 0.596 & 1.004 & 1.004
\end{tabular}
```

Exploitation pattern (scaled to mean $\mathrm{F}=1$)

		0	1	2	3	4
1983-1988	season 1:	0	0.320	1.188	1.762	1.762
	season 2:	0.020	0.105	0.388	0.575	0.575
1989-1998	season 1:	0	0.821	1.100	1.116	1.116
	season 2:	0.001	0.033	0.045	0.045	0.045
1999-2004	season 1:	0	0.807	0.897	0.892	0.892
	season 2:	0.018	0.140	0.156	0.155	0.155
2005-2009	season 1:	0	0.740	1.122	1.154	1.154
	season 2:	0.001	0.055	0.083	0.086	0.086
2010-2021	season 1:	0	0.570	1.347	2.269	2.269
	season 2:	0.003	0.025	0.058	0.097	0.097

```
sqrt(catch variance) ~ CV:
```

season

age	1	2
0		1.655
1	0.343	0.581
2	0.343	0.581
3	0.657	1.024
4	0.657	1.024

Survey catchability:

Dredge survey 2004-2021 RTM 2007-2021
age 0 age 1 age 2 age 3
$2.646 \quad 1.089$ $0.861 \quad 1.820 \quad 2.810$
sqrt(Survey variance) ~ CV:

Table 9.2.6 Sandeel Area-1r. Annual fishing mortality (F) at age.

	Age 0	Age 1	Age 2	Age 3	Age 4	Avg. 1-2
1983	0.012	0.286	1.029	1.511	1.519	0.657
1984	0.013	0.324	1.163	1.706	1.715	0.743
1985	0.014	0.347	1.244	1.833	1.828	0.796
1986	0.005	0.245	0.875	1.277	1.272	0.560
1987	0.008	0.182	0.661	0.970	0.969	0.421
1988	0.005	0.266	0.950	1.376	1.370	0.608
1989	0.001	0.818	1.064	1.068	1.061	0.941
1990	0.002	0.815	1.059	1.062	1.058	0.937
1991	0.005	0.548	0.721	0.730	0.730	0.634
1992	0.003	0.823	1.079	1.084	1.084	0.951
1993	0.001	0.363	0.474	0.481	0.480	0.418
1994	0.001	0.300	0.389	0.392	0.390	0.345
1995	0.002	0.562	0.727	0.732	0.729	0.645
1996	0.003	0.527	0.680	0.683	0.682	0.603
1997	0.005	0.497	0.644	0.649	0.652	0.571
1998	0.002	0.652	0.826	0.828	0.828	0.739
1999	0.017	1.024	1.083	1.064	1.066	1.053
2000	0.016	0.819	0.861	0.852	0.850	0.840
2001	0.049	1.239	1.323	1.315	1.318	1.281
2002	0.004	0.949	1.013	0.975	0.968	0.981
2003	0.015	0.789	0.846	0.819	0.822	0.818
2004	0.007	0.833	0.880	0.848	0.849	0.857
2005	0.000	0.895	1.281	1.308	1.305	1.088
2006	0.001	1.094	1.566	1.590	1.586	1.330
2007	0.000	0.413	0.594	0.604	0.600	0.504
2008	0.000	0.771	1.104	1.114	1.111	0.938
2009	0.001	0.952	1.369	1.391	1.383	1.161
2010	0.002	0.418	0.932	1.496	1.487	0.675
2011	0.001	0.476	1.037	1.674	1.658	0.756
2012	0.000	0.090	0.199	0.324	0.321	0.145
2013	0.000	0.544	1.165	1.913	1.904	0.855
2014	0.001	0.316	0.683	1.133	1.131	0.500

	Age 0	Age 1	Age 2	Age 3	Age 4	Avg. 1-2
2015	0.000	0.304	0.652	1.086	1.077	0.478
2016	0.000	0.022	0.047	0.078	0.077	0.034
2017	0.001	0.405	0.896	1.461	1.446	0.650
2018	0.004	0.400	0.906	1.468	1.463	0.653
2019	0.004	0.391	0.885	1.437	1.433	0.638
2020	0.001	0.382	0.860	1.385	1.380	0.621
2021	0.000	0.058	0.133	0.216	0.216	0.096
arith. mean	0.005	0.542	0.869	1.075	1.072	0.706

Table 9.2.7 Sandeel Area-1r. Fishing mortality (F) at age.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1983	0.012	0.193	0.063	0.714	0.233	1.059	0.345	1.059	0.345
1984	0.013	0.220	0.069	0.815	0.254	1.209	0.377	1.209	0.377
1985	0.014	0.235	0.074	0.870	0.273	1.290	0.405	1.290	0.405
1986	0.005	0.183	0.024	0.677	0.091	1.004	0.135	1.004	0.135
1987	0.008	0.119	0.042	0.442	0.157	0.655	0.233	0.655	0.233
1988	0.005	0.199	0.025	0.739	0.091	1.096	0.135	1.096	0.135
1989	0.001	0.664	0.027	0.889	0.036	0.902	0.037	0.902	0.037
1990	0.002	0.645	0.045	0.864	0.060	0.876	0.061	0.876	0.061
1991	0.005	0.370	0.121	0.495	0.162	0.502	0.165	0.502	0.165
1992	0.003	0.639	0.076	0.855	0.102	0.868	0.103	0.868	0.103
1993	0.001	0.282	0.034	0.377	0.046	0.383	0.047	0.383	0.047
1994	0.001	0.230	0.026	0.308	0.034	0.312	0.035	0.312	0.035
1995	0.002	0.427	0.052	0.572	0.070	0.580	0.071	0.580	0.071
1996	0.003	0.387	0.060	0.519	0.080	0.526	0.081	0.526	0.081
1997	0.005	0.322	0.118	0.431	0.158	0.437	0.161	0.437	0.161
1998	0.002	0.491	0.049	0.658	0.066	0.667	0.067	0.667	0.067
1999	0.017	0.740	0.129	0.823	0.143	0.818	0.142	0.818	0.142
2000	0.016	0.581	0.121	0.646	0.134	0.642	0.133	0.642	0.133
2001	0.049	0.756	0.374	0.840	0.416	0.836	0.414	0.836	0.414
2002	0.004	0.747	0.028	0.830	0.031	0.826	0.031	0.826	0.031
2003	0.015	0.555	0.113	0.617	0.125	0.614	0.125	0.614	0.125
2004	0.007	0.620	0.057	0.689	0.064	0.686	0.063	0.686	0.063
2005	0.000	0.693	0.052	1.051	0.078	1.081	0.080	1.081	0.080
2006	0.001	0.838	0.074	1.271	0.112	1.308	0.115	1.308	0.115
2007	0.000	0.329	0.000	0.498	0.000	0.513	0.000	0.513	0.000
2008	0.000	0.588	0.035	0.892	0.054	0.918	0.055	0.918	0.055
2009	0.001	0.711	0.072	1.078	0.110	1.109	0.113	1.109	0.113
2010	0.002	0.310	0.013	0.733	0.031	1.234	0.053	1.234	0.053

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
2011	0.001	0.350	0.009	0.827	0.022	1.392	0.037	1.392	0.037
2012	0.000	0.067	0.000	0.158	0.000	0.266	0.000	0.266	0.000
2013	0.000	0.421	0.000	0.995	0.000	1.675	0.000	1.675	0.000
2014	0.001	0.242	0.008	0.571	0.019	0.961	0.033	0.961	0.033
2015	0.000	0.236	0.000	0.557	0.000	0.938	0.000	0.938	0.000
2016	0.000	0.017	0.000	0.039	0.000	0.066	0.000	0.066	0.000
2017	0.001	0.314	0.005	0.743	0.012	1.251	0.020	1.251	0.020
2018	0.004	0.301	0.029	0.712	0.068	1.198	0.115	1.198	0.115
2019	0.004	0.290	0.034	0.686	0.079	1.156	0.134	1.156	0.134
2020	0.001	0.302	0.004	0.715	0.009	1.203	0.016	1.203	0.016
2021	0.000	0.044	0.003	0.105	0.007	0.176	0.012	0.176	0.012
arith.	0.005	0.401	0.053	0.674	0.088	0.852	0.106	0.852	0.106
mean									

Table 9.2.8 Sandeel Area-1r. Natural mortality (M) at age.

| | Age 0,
 2nd half | Age 1,
 1st half | Age 1,
 2nd half | Age 2,
 1st half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.499 | 0.400 | 0.462 | 0.357 | 0.378 | 0.261 | 0.326 | 0.243 | 0.337 |
| 1984 | 0.499 | 0.400 | 0.462 | 0.357 | 0.378 | 0.261 | 0.326 | 0.243 | 0.337 |
| 1985 | 0.519 | 0.385 | 0.468 | 0.345 | 0.382 | 0.281 | 0.358 | 0.253 | 0.337 |
| 1986 | 0.534 | 0.376 | 0.475 | 0.342 | 0.409 | 0.270 | 0.368 | 0.249 | 0.353 |
| 1987 | 0.550 | 0.387 | 0.490 | 0.344 | 0.422 | 0.269 | 0.371 | 0.252 | 0.358 |
| 1988 | 0.553 | 0.396 | 0.484 | 0.357 | 0.418 | 0.282 | 0.358 | 0.270 | 0.344 |
| 1989 | 0.532 | 0.415 | 0.460 | 0.377 | 0.392 | 0.303 | 0.356 | 0.271 | 0.333 |
| 1990 | 0.544 | 0.403 | 0.471 | 0.341 | 0.395 | 0.282 | 0.355 | 0.267 | 0.343 |
| 1991 | 0.560 | 0.394 | 0.457 | 0.326 | 0.384 | 0.230 | 0.344 | 0.227 | 0.344 |
| 1992 | 0.549 | 0.397 | 0.434 | 0.311 | 0.371 | 0.218 | 0.328 | 0.221 | 0.331 |
| 1993 | 0.530 | 0.407 | 0.404 | 0.343 | 0.331 | 0.240 | 0.318 | 0.221 | 0.309 |
| 1994 | 0.530 | 0.386 | 0.447 | 0.327 | 0.362 | 0.243 | 0.329 | 0.217 | 0.315 |
| 1995 | 0.521 | 0.380 | 0.470 | 0.337 | 0.376 | 0.247 | 0.339 | 0.217 | 0.324 |
| 1996 | 0.552 | 0.340 | 0.492 | 0.304 | 0.391 | 0.244 | 0.351 | 0.211 | 0.341 |
| 1997 | 0.567 | 0.372 | 0.508 | 0.323 | 0.389 | 0.271 | 0.349 | 0.224 | 0.341 |
| 1998 | 0.615 | 0.416 | 0.546 | 0.350 | 0.392 | 0.305 | 0.352 | 0.237 | 0.343 |
| 1999 | 0.620 | 0.456 | 0.566 | 0.379 | 0.401 | 0.315 | 0.350 | 0.249 | 0.340 |
| 2000 | 0.608 | 0.469 | 0.551 | 0.391 | 0.369 | 0.322 | 0.334 | 0.243 | 0.309 |
| 2001 | 0.614 | 0.410 | 0.528 | 0.366 | 0.366 | 0.297 | 0.326 | 0.227 | 0.297 |
| 2002 | 0.671 | 0.454 | 0.566 | 0.424 | 0.456 | 0.354 | 0.357 | 0.272 | 0.329 |
| 2003 | 0.690 | 0.475 | 0.585 | 0.442 | 0.472 | 0.388 | 0.377 | 0.320 | 0.368 |
| 2004 | 0.709 | 0.544 | 0.629 | 0.473 | 0.476 | 0.417 | 0.375 | 0.356 | 0.368 |
| 2005 | 0.695 | 0.542 | 0.554 | 0.426 | 0.396 | 0.395 | 0.371 | 0.318 | 0.354 |
| | | | | | | | | 0 | |
| 102 | | | | | | | | | |

| | Age 0,
 2nd half | Age 1,
 1st half | Age 1,
 2nd half | Age 2,
 1st half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 0.729 | 0.571 | 0.580 | 0.441 | 0.417 | 0.346 | 0.365 | 0.288 | 0.348 |
| 2007 | 0.769 | 0.549 | 0.566 | 0.405 | 0.433 | 0.312 | 0.396 | 0.270 | 0.376 |
| 2008 | 0.725 | 0.541 | 0.610 | 0.414 | 0.456 | 0.300 | 0.385 | 0.268 | 0.375 |
| 2009 | 0.704 | 0.460 | 0.597 | 0.346 | 0.452 | 0.282 | 0.406 | 0.250 | 0.383 |
| 2010 | 0.715 | 0.475 | 0.667 | 0.366 | 0.540 | 0.299 | 0.443 | 0.256 | 0.419 |
| 2011 | 0.787 | 0.528 | 0.731 | 0.367 | 0.544 | 0.321 | 0.472 | 0.273 | 0.437 |
| 2012 | 0.787 | 0.593 | 0.710 | 0.454 | 0.541 | 0.368 | 0.455 | 0.321 | 0.433 |
| 2013 | 0.732 | 0.591 | 0.655 | 0.495 | 0.435 | 0.369 | 0.407 | 0.324 | 0.388 |
| 2014 | 0.723 | 0.522 | 0.605 | 0.481 | 0.390 | 0.324 | 0.364 | 0.302 | 0.357 |
| 2015 | 0.718 | 0.578 | 0.622 | 0.442 | 0.391 | 0.299 | 0.380 | 0.276 | 0.356 |
| 2016 | 0.725 | 0.526 | 0.617 | 0.394 | 0.396 | 0.288 | 0.384 | 0.268 | 0.354 |
| 2017 | 0.673 | 0.534 | 0.600 | 0.425 | 0.454 | 0.307 | 0.394 | 0.286 | 0.363 |
| 2018 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| 2019 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| 2020 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| 2021 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| arith. | 0.629 | 0.457 | 0.544 | 0.387 | 0.420 | 0.303 | 0.367 | 0.266 | 0.352 |
| mean | | | | | | | | | |

Table 9.2.9 Sandeel Area-1r. Stock numbers (millions). Age 0 at start of 2 nd half-year, age 1+ at start of the year.

Age 0		Age 1	Age 2	Age 3	Age 4
1983	299015	13260	52130	2841	242
1984	75976	179350	4339	9694	422
1985	512274	45519	56771	714	1152
1986	77581	300596	14239	8751	186
1987	47398	45284	104383	3122	1514
1988	206586	27125	16027	26651	1015
1989	92629	118264	8995	3220	4263
1990	131123	54377	24694	1653	1563
1991	163993	75981	11376	4692	675
1992	37010	93162	19867	2898	1553
1993	155890	21312	19849	3854	975
1994	223917	91585	6904	6624	1810
1995	56134	131647	30831	2461	3394
1996	403422	33277	34864	7956	1746
1997	63130	231744	9261	9566	2939
1998	121133	35632	61895	2518	3749
1999	159266	65331	7933	14295	1636
2000	252679	84243	9865	1385	3158
2001	418211	135479	15068	2117	1168

Age 0		Age 1	Age 2	Age 3	Age 4
2002	26725	215558	17118	2064	524
2003	160692	13616	35820	3000	552
2004	67979	79446	2418	6836	800
2005	163089	33196	12486	441	1647
2006	79307	81351	5268	1774	327
2007	194907	38213	10326	560	252
2008	77150	90322	9021	2714	244
2009	560359	37363	15321	1469	566
2010	34547	277020	5933	2103	306
2011	42280	16878	63962	1116	320
2012	103313	19221	3346	11004	158
2013	60111	47021	4888	1056	3760
2014	214166	28923	8874	713	437
2015	36587	103861	7304	2057	216
2016	272957	17842	24718	1819	453
2017	19491	132257	5594	10792	1098
2018	31171	9935	30909	1092	1661
2019	95467	16729	2686	5876	384
2020	52902	51206	4550	518	870
2021	39617	28483	14177	915	213
2022		21333	10218	5259	475

Table 9.2.10 Sandeel Area-1r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

	Recruits (thousands)	TSB (tonnes)	SSB (tonnes)	Yield (tonnes)	Mean F $_{1-2}$
1983	299013715	625840	460929	378795	0.601
1984	75981466	1165290	196025	498626	0.679
1985	512084393	783157	453160	437114	0.725
1986	77593949	1862800	270493	382844	0.487
1987	47393706	1512290	973838	373021	0.380
1988	206539038	775842	574928	413646	0.527
1989	92618550	747470	154662	446028	0.808
1990	131169377	647380	247707	306240	0.807
1991	163938186	944290	330050	332204	0.574
1992	37021153	1042320	284361	558599	0.836
1993	155942826	459344	260407	132024	0.370
1994	223964922	683504	177726	193241	0.299
1995	56119842	1449690	399113	400588	0.560
1996	403222872	605958	364762	265869	0.523
1997	63148522	1894180	232815	426089	0.515

	Recruits (thousands)	TSB (tonnes)	SSB (tonnes)	Yield (tonnes)	Mean F_{1-2}
1998	121084596	854977	524919	377073	0.632
1999	159252253	577355	222348	422718	0.917
2000	252772391	677968	142059	299167	0.741
2001	418003348	787195	161297	531265	1.193
2002	26722060	1439260	156217	606466	0.818
2003	160691992	343463	243045	148039	0.705
2004	67998758	491587	93246	203646	0.715
2005	163120541	349493	116425	123422	0.937
2006	79319932	554785	75508	240646	1.148
2007	194900553	320875	93620	109624	0.413
2008	77129779	704471	129832	234447	0.784
2009	560309574	399923	145365	290995	0.985
2010	34552829	1852980	129573	300508	0.544
2011	42287412	666689	467895	318840	0.604
2012	103284720	281048	152970	46117	0.112
2013	60128831	305106	83200	214359	0.708
2014	214109902	211344	64861	78830	0.420
2015	36579554	655139	85221	163381	0.396
2016	273004818	372064	231422	14613	0.028
2017	19481970	849954	156530	241916	0.537
2018	31171039	293905	204843	133659	0.555
2019	95439204	153229	71254	66444	0.545
2020	52904555	426837	60901	106100	0.515
2021	39626157	318828	126880	17064	0.079
2022			128284		
arith. mean	149491895	745842	236222	277802	0.608
geo. mean	106856781				
arith. mean for the period 1983-2021 geo. mean for the period 1983-2020					

Table 9.2.11 Sandeel Area-1r. Input to forecast.

| | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| Stock numbers(2022) | 106885.513 | 21333 | 10218.5 | 5258.51 | 474.614 |
| Exploitation pattern 1st half | | 0.044 | 0.105 | 0.176 | 0.176 |
| Exploitation pattern 2nd half | 0.000 | 0.003 | 0.007 | 0.012 | 0.012 |
| Weight in the stock 1st half | | 5.544 | 8.217 | 10.190 | 11.888 |
| Weight in the catch 1st half | 3.221 | 7.739 | 10.099 | 13.239 | 14.905 |
| weight in the catch 2nd half | 0.000 | 0.021 | 0.801 | 0.988 | 1.000 |
| Proportion mature(2022) | 0.000 | 0.021 | 0.801 | 0.988 | 1.000 |
| Proportion mature(2023) | | 0.440 | 0.427 | 0.328 | 0.293 |
| Natural mortality 1st half | 0.619 | 0.538 | 0.454 | 0.360 | 0.345 |
| Natural mortality 2nd half | | | 8.217 | 10.190 | 11.888 |

Table 9.2.12 Sandeel Area-1r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.0794$; Yield(2021)=17.064; Recruitment(2021)=39.626157; Recruitment(2022)=geometric mean (GM 1983-2020)=106.885513 billion; SSB(2022)=128.284

F multiplier	Basis	F(2022)	Catch(2022)	SSB(2023)	$\begin{gathered} \text { \%SSB } \\ \text { change* } \end{gathered}$	\%TAC change**
0	$\mathrm{F}=0$	0.000	0.001	136.622	7 \%	-100 \%
0.99	Fsq*0.99	0.079	20.173	123.863	-3 \%	18 \%
1	Fsq*1	0.079	20.290	123.790	-4\%	19 \%
2	Fsq*2	0.159	38.323	112.532	-12 \%	125 \%
1	Fsq*1	0.079	20.290	123.790	-4\%	19 \%
0.08	Fsq*0.08	0.006	1.734	135.520	6 \%	-90\%
1.8	Fsq*1.8	0.143	34.856	114.684	-11\%	104 \%
2.2	Fsq*2.2	0.175	41.642	110.477	-14\%	144 \%
0.11	Fsq*0.11	0.009	2.359	135.123	5 \%	-86\%
No conversion for calculation of MSY catch		NA	NA	NA		
*SSB in 2023 relative to SSB in 2022 **TAC in 2022 relative to catches in 2021						

Table 9.3.1 Sandeel Area-2r. Catch at age numbers (million) by half year.

| | Age 0,
 2nd half | Age 1, 1st
 half | Age 1,
 2nd half | Age 2,
 1st half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 12882 | 4162 | 476 | 6190 | 877 | 203 | 104 | 67 | 0 |
| 1984 | 0 | 10284 | 3846 | 912 | 186 | 1154 | 193 | 38 | 10 |
| 1985 | 1827 | 1411 | 392 | 5501 | 768 | 473 | 387 | 109 | 50 |
| 1986 | 1443 | 24479 | 3495 | 3144 | 208 | 436 | 95 | 6 | 7 |
| 1987 | 45 | 831 | 512 | 2621 | 591 | 131 | 17 | 20 | 4 |
| 1988 | 5602 | 1030 | 545 | 3379 | 226 | 3163 | 775 | 478 | 31 |
| 1989 | 2819 | 23364 | 3809 | 1666 | 273 | 938 | 10 | 909 | 34 |

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1990	5046	7332	854	3967	196	587	29	177	9
1991	10053	14203	3628	2099	110	451	35	156	1
1992	6830	12016	886	4066	85	475	34	298	7
1993	14083	4814	873	1294	660	642	226	475	56
1994	0	25596	4477	3619	919	341	275	199	118
1995	1798	4897	1316	1598	1777	209	211	88	159
1996	26463	2472	7161	1573	475	905	278	260	186
1997	284	29071	8330	1640	193	628	83	207	47
1998	1070	645	106	4749	1424	437	136	348	144
1999	4130	841	1113	177	102	855	501	186	149
2000	519	8160	1066	566	164	217	98	518	134
2001	5767	2625	2414	1010	563	129	73	367	228
2002	4	15855	1379	891	185	393	35	85	28
2003	3711	267	79	1723	453	136	43	67	17
2004	755	10761	2034	711	212	537	297	174	55
2005	15	2171	490	513	336	48	32	116	91
2006	8	2441	1030	276	125	100	64	27	39
2007	0	6431	0	240	0	32	0	5	0
2008	1	4621	187	434	64	90	36	15	5
2009	103	2817	1867	671	145	42	25	4	1
2010	2	6490	1308	193	35	374	27	60	4
2011	0	404	19	1474	91	236	17	59	3
2012	0	168	6	194	51	293	6	60	10
2013	0	4824	431	1158	47	296	16	99	5
2014	301	2987	141	2371	28	340	3	119	5
2015	0	2275	42	772	9	561	2	197	2
2016	4	272	1	136	3	108	0	66	0
2017	0	23040	1325	243	5	51	25	20	2
2018	0	50	0	1949	22	63	2	11	0
2019	0	226	0	52	0	172	0	4	0
2020	4	8068	16	433	1	173	1	356	3
2021	0	746	0	128	0	2	0	3	0
arith. mean	2707	7004	1427	1650	298	421	107	165	42

Table 9.3.2 Sandeel Area-2r. Individual mean weight (gram) at age in the catch and in the sea.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1983	3.3	5.2	9.9	10.8	16.5	12.8	22.9	15.0	27.3
1984	5.9	5.6	10.2	11.1	14.1	15.6	25.8	18.8	30.1
1985	4.5	6.7	10.7	9.9	16.8	17.5	23.3	24.1	27.5
1986	3.2	5.9	9.8	10.3	15.8	12.7	15.0	15.0	17.0
1987	2.8	5.8	8.7	11.1	12.9	16.4	21.1	14.6	19.4
1988	3.5	5.5	7.2	11.1	15.3	16.1	21.0	23.1	30.6
1989	4.8	5.7	9.4	9.1	13.4	10.1	14.4	12.1	18.0
1990	4.4	7.1	8.1	9.7	11.8	14.4	17.4	17.3	20.8
1991	3.8	7.7	5.7	12.1	11.0	35.8	32.6	21.2	20.1
1992	4.7	6.9	15.0	9.9	20.6	13.5	29.3	17.9	29.2
1993	2.8	7.7	9.3	15.1	14.8	16.9	17.5	22.3	22.0
1994	3.6	5.4	7.6	10.5	18.8	15.3	23.0	19.5	20.7
1995	5.2	7.6	8.9	12.4	13.2	16.0	17.6	19.2	21.1
1996	2.7	7.0	4.9	12.4	13.2	17.0	15.8	27.9	24.5
1997	3.2	5.3	7.1	8.0	11.2	13.1	13.8	15.9	14.9
1998	3.4	6.2	6.7	11.4	14.0	14.7	16.5	17.4	18.3
1999	5.3	8.1	9.1	11.8	12.8	15.4	15.3	19.1	19.6
2000	3.1	6.8	10.2	10.0	13.0	15.2	17.9	18.1	19.5
2001	4.0	6.0	5.0	12.9	16.1	16.6	21.7	20.4	26.2
2002	3.2	5.7	8.3	8.4	13.2	9.6	15.3	17.3	17.7
2003	5.4	6.0	8.1	11.3	16.0	15.1	21.4	18.2	27.2
2004	4.8	6.5	7.4	9.4	10.9	12.4	12.2	13.1	13.7
2005	3.4	7.5	7.4	11.8	11.9	14.4	15.4	14.8	17.5
2006	4.6	7.6	9.9	11.5	15.9	13.9	20.6	14.8	23.4
2007	5.8	6.2	6.2	12.4	12.4	15.4	15.4	17.8	17.8
2008	3.4	5.5	7.5	12.5	12.0	16.1	15.6	18.0	17.7
2009	6.0	6.1	5.0	8.7	10.9	16.5	18.6	12.2	11.0
2010	2.5	5.7	5.3	10.3	8.4	11.5	11.0	13.2	12.5
2011	3.6	6.9	7.6	11.1	12.2	13.8	15.8	14.6	18.0
2012	4.4	8.2	9.4	12.4	15.1	14.8	19.6	21.8	22.3
2013	3.9	5.9	8.8	7.9	11.5	14.2	14.4	14.1	16.5
2014	3.3	5.3	7.0	9.9	11.2	12.0	14.6	18.6	16.6
2015	5.3	6.8	11.4	12.4	18.4	15.3	23.9	17.3	27.1
2016	2.6	3.3	5.5	12.2	8.9	14.6	11.5	16.0	13.1
2017	2.9	5.5	7.8	7.8	10.7	13.1	10.8	14.8	15.5
2018	3.8	4.6	8.2	9.6	13.9	12.4	18.6	14.0	20.7

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
2019	3.8	7.7	8.2	12.4	13.9	15.4	18.6	18.7	20.7
2020	3.8	6.6	8.2	12.8	13.9	16.2	18.6	20.4	20.7
2021	3.8	5.0	8.2	9.3	13.9	13.0	18.6	16.3	20.7
arith. mean	4.0	6.3	8.2	10.9	13.6	15.0	18.3	17.6	20.4

Table 9.3.3 Sandeel Area-2r. Proportion mature.

	Age 1	Age 2	Age 3	Age 4
$1983-2016$	0.02	0.83	1	1

Table 9.3.4. Sandeel Area-2r. Dredge survey indices.

Year	Age 0	Age 1
2010	938.752	1482.382
2011	2290.448	259.021
2012	11342.580	94.156
2013	7546.966	2103.482
2014	5760.235	810.806
2015	706.350	106.920
2016	53839.804	113.297
2017	899.000	2976.000
2018	2326.000	372.000
2019	26129.000	522.000
2020	7662.000	665.000
2021	45488.020	499.877

Table 9.3.5 Sandeel Area-2r. SMS settings and statistics.
Date: 01/26/22 Start time:09:45:41 run time:0 seconds
objective function (negative log likelihood): 86.0187
Number of parameters: 75
Maximum gradient: 9.66494e-005
Akaike information criterion (AIC): 322.037
Number of observations used in the likelihood:

Catch	CPUE	S/R	Stomach	Sum
351	24	39	0	414

objective function weight:

$$
\begin{array}{llr}
\text { Catch } & \text { CPUE } & \text { S/R } \\
1.00 & 1.00 & 0.10
\end{array}
$$

unweighted objective function contributions (total):

Catch	CPUE	S/R	Stom.	Stom N.	Penalty	Sum
90.2	-6.2	20.2	0.0	0.0	0.00	104

```
unweighted objective function contributions (per observation):
\begin{tabular}{llll} 
Catch & CPUE & \multicolumn{1}{r}{ S/R } & Stomachs \\
0.26 & -0.26 & 0.52 & 0.00
\end{tabular}
```

contribution by fleet:
Dredge survey 2010-2021 total: -6.243 mean: -0.260

```
F, season effect:
----------------
age: 0
    1983-1988: 0.000 1.000
    1989-1998: 0.000 1.000
    1999-2004: 0.000 1.000
    2005-2009: 0.000 1.000
    2010-2021: 0.000 1.000
age: 1 - 4
    1983-1988: 0.475 0.500
    1989-1998: 0.685 0.500
    1999-2004: 0.421 0.500
    2005-2009: 0.191 0.500
    2010-2021: 0.571 0.500
```

F, age effect:

1983-1988:	0.041	0.280	0.901	1.490	1.490
1989-1998:	0.099	0.337	0.403	0.476	0.476
1999-2004:	0.041	0.598	0.717	0.721	0.721
$2005-2009:$	0.001	1.960	1.647	1.731	1.731
$2010-2021:$	0.001	0.270	0.440	0.555	0.555

Exploitation pattern (scaled to mean $\mathrm{F}=1$)

		0	1	2	3	4
1983-1988	season 1:	0	0.299	0.962	1.592	1.592
	season 2:	0.051	0.175	0.564	0.932	0.932
1989-1998	season 1:	0	0.725	0.868	1.025	1.025
	season 2:	0.109	0.185	0.222	0.262	0.262
1999-2004	season 1:	0	0.310	0.371	0.373	0.373
	season 2:	0.082	0.600	0.719	0.723	0.723
2005-2009	season 1:	0	0.540	0.454	0.477	0.477
	season 2:	0.001	0.546	0.459	0.482	0.482
2010-2021	season 1:	0	0.638	1.038	1.310	1.310
	season 2:	0.001	0.123	0.201	0.254	0.254

sqrt(catch variance) ~ CV:
season

	season	
age	1	2
0		1.641
1	0.404	0.825
2	0.404	0.825
3	0.880	1.082

$4 \quad 0.880 \quad 1.082$

Survey catchability:

Dredge survey 2010-2021	age 0 age 1
$0.356 \quad 23.650$	

Stock size dependent catchability (power model)		
---1.32	1.00	age 0

sqrt(Survey variance) ~ CV:
Dredge survey 2010-2021 age $0 \quad$ age 1

| Recruit-SSB | alfa | beta | recruit s2 | recruit s |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Area-2r | 1093.169 | $5.600 \mathrm{e}+004$ | 1.038 | 1.019 |

Table 9.3.6 Sandeel Area-2r. Annual fishing mortality (F) at age.

	Age 0	Age 1	Age 2	Age 3	Age 4	Avg. 1-2
1983	0.037	0.369	1.175	1.936	1.935	0.772
1984	0.034	0.310	0.990	1.638	1.637	0.650
1985	0.022	0.290	0.916	1.500	1.497	0.603
1986	0.025	0.416	1.302	2.115	2.111	0.859
1987	0.008	0.092	0.292	0.482	0.481	0.192
1988	0.027	0.309	0.980	1.610	1.608	0.645
1989	0.076	0.728	0.854	0.996	0.994	0.791
1990	0.037	0.489	0.572	0.664	0.662	0.531
1991	0.070	0.552	0.650	0.760	0.759	0.601
1992	0.051	0.561	0.657	0.765	0.763	0.609
1993	0.080	0.442	0.524	0.618	0.617	0.483
1994	0.050	0.470	0.551	0.643	0.642	0.510
1995	0.043	0.255	0.302	0.356	0.355	0.279
1996	0.132	0.379	0.460	0.554	0.555	0.420
1997	0.083	0.555	0.656	0.770	0.768	0.606
1998	0.046	0.286	0.339	0.398	0.397	0.312
1999	0.036	0.370	0.456	0.471	0.472	0.413
2000	0.017	0.550	0.649	0.648	0.647	0.599
2001	0.036	0.479	0.581	0.594	0.595	0.530
2002	0.020	0.665	0.784	0.782	0.780	0.724
2003	0.037	0.441	0.538	0.552	0.552	0.489
2004	0.030	0.897	1.060	1.060	1.059	0.978
2005	0.001	1.177	0.996	1.060	1.060	1.086
2006	0.001	1.229	1.046	1.119	1.119	1.138
2007	0.000	0.752	0.615	0.631	0.628	0.684

	Age 0	Age 1	Age 2	Age 3	Age 4	Avg. 1-2
2008	0.000	0.808	0.671	0.700	0.699	0.740
2009	0.000	0.773	0.653	0.695	0.695	0.713
2010	0.000	0.393	0.622	0.773	0.771	0.508
2011	0.000	0.254	0.400	0.495	0.493	0.327
2012	0.000	0.145	0.228	0.282	0.281	0.187
2013	0.000	0.628	0.988	1.221	1.217	0.808
2014	0.000	0.476	0.747	0.920	0.917	0.612
2015	0.000	0.419	0.656	0.806	0.804	0.538
2017	0.000	0.181	0.284	0.350	0.349	0.233
2018	0.001	0.815	1.280	1.581	1.577	1.047
2019	0.000	0.245	0.383	0.471	0.469	0.314
2020	0.000	0.057	0.089	0.110	0.110	0.073
2021	0.000	0.560	0.877	1.080	1.077	0.718
arith. mean	0.000	0.110	0.172	0.211	0.211	0.141
	0.026	0.485	0.667	0.831	0.830	0.576

Table 9.3.7 Sandeel Area-2r. Fishing mortality (F) at age.

| | Age 0,
 2nd half | Age 1,
 1st half | Age 1,
 2nd half | Age 2,
 1st half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.037 | 0.216 | 0.127 | 0.696 | 0.408 | 1.151 | 0.674 | 1.151 | 0.674 |
| 1984 | 0.034 | 0.176 | 0.115 | 0.567 | 0.371 | 0.938 | 0.614 | 0.938 | 0.614 |
| 1985 | 0.022 | 0.183 | 0.076 | 0.590 | 0.244 | 0.976 | 0.404 | 0.976 | 0.404 |
| 1986 | 0.025 | 0.277 | 0.087 | 0.891 | 0.279 | 1.474 | 0.461 | 1.474 | 0.461 |
| 1987 | 0.008 | 0.056 | 0.028 | 0.179 | 0.090 | 0.296 | 0.150 | 0.296 | 0.150 |
| 1988 | 0.027 | 0.190 | 0.091 | 0.610 | 0.294 | 1.010 | 0.486 | 1.010 | 0.486 |
| 1989 | 0.076 | 0.501 | 0.128 | 0.600 | 0.153 | 0.709 | 0.181 | 0.709 | 0.181 |
| 1990 | 0.037 | 0.349 | 0.062 | 0.418 | 0.075 | 0.494 | 0.088 | 0.494 | 0.088 |
| 1991 | 0.070 | 0.365 | 0.119 | 0.438 | 0.143 | 0.517 | 0.168 | 0.517 | 0.168 |
| 1992 | 0.051 | 0.392 | 0.087 | 0.469 | 0.104 | 0.554 | 0.123 | 0.554 | 0.123 |
| 1993 | 0.080 | 0.268 | 0.136 | 0.321 | 0.162 | 0.379 | 0.192 | 0.379 | 0.192 |
| 1994 | 0.050 | 0.320 | 0.085 | 0.383 | 0.102 | 0.452 | 0.121 | 0.452 | 0.121 |
| 1995 | 0.043 | 0.158 | 0.073 | 0.189 | 0.088 | 0.223 | 0.103 | 0.223 | 0.103 |
| 1996 | 0.132 | 0.168 | 0.225 | 0.201 | 0.269 | 0.238 | 0.318 | 0.238 | 0.318 |
| 1997 | 0.083 | 0.355 | 0.141 | 0.425 | 0.169 | 0.502 | 0.199 | 0.502 | 0.199 |
| 1998 | 0.046 | 0.179 | 0.078 | 0.214 | 0.093 | 0.253 | 0.110 | 0.253 | 0.110 |
| 1999 | 0.036 | 0.138 | 0.267 | 0.165 | 0.320 | 0.166 | 0.322 | 0.166 | 0.322 |
| 2000 | 0.017 | 0.359 | 0.127 | 0.430 | 0.152 | 0.433 | 0.153 | 0.433 | 0.153 |
| 2001 | 0.036 | 0.222 | 0.267 | 0.266 | 0.321 | 0.268 | 0.322 | 0.268 | 0.322 |
| 2002 | 0.020 | 0.441 | 0.144 | 0.529 | 0.172 | 0.532 | 0.173 | 0.532 | 0.173 |
| 2003 | 0.037 | 0.192 | 0.269 | 0.230 | 0.322 | 0.231 | 0.324 | 0.231 | 0.324 |

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
2004	0.030	0.580	0.222	0.695	0.267	0.699	0.268	0.699	0.268
2005	0.001	0.583	0.590	0.490	0.495	0.515	0.521	0.515	0.521
2006	0.001	0.558	0.704	0.469	0.592	0.493	0.622	0.493	0.622
2007	0.000	0.600	0.000	0.505	0.000	0.530	0.000	0.530	0.000
2008	0.000	0.529	0.189	0.444	0.159	0.467	0.167	0.467	0.167
2009	0.000	0.390	0.375	0.328	0.315	0.344	0.331	0.344	0.331
2010	0.000	0.278	0.054	0.452	0.087	0.570	0.110	0.570	0.110
2011	0.000	0.187	0.020	0.305	0.032	0.385	0.040	0.385	0.040
2012	0.000	0.109	0.007	0.178	0.012	0.224	0.015	0.224	0.015
2013	0.000	0.465	0.056	0.756	0.090	0.955	0.114	0.955	0.114
2014	0.000	0.364	0.021	0.592	0.034	0.748	0.043	0.748	0.043
2015	0.000	0.327	0.006	0.533	0.009	0.673	0.011	0.673	0.011
2016	0.000	0.139	0.004	0.226	0.007	0.285	0.009	0.285	0.009
2017	0.001	0.605	0.073	0.985	0.120	1.244	0.151	1.244	0.151
2018	0.000	0.191	0.002	0.310	0.003	0.392	0.003	0.392	0.003
2019	0.000	0.044	0.000	0.072	0.000	0.091	0.000	0.091	0.000
2020	0.000	0.430	0.023	0.699	0.038	0.883	0.048	0.883	0.048
2021	0.000	0.085	0.000	0.139	0.000	0.176	0.000	0.176	0.000
arith. mean	0.026	0.307	0.130	0.436	0.169	0.550	0.209	0.550	0.209

Table 9.3.8 Sandeel Area-2r. Natural mortality (M) at age.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1983	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1984	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1985	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1986	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1987	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1988	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1989	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1990	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1991	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1992	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1993	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1994	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1995	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1996	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1997	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
1998	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1999	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2000	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2001	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2002	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2003	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2004	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2005	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2006	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2007	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2008	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2009	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2010	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2011	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2012	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2013	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2014	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2015	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2016	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2017	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2018	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2019	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2020	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
2021	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41
arith. mean	0.92	0.57	0.59	0.44	0.49	0.32	0.42	0.31	0.41

Table 9.3.9 Sandeel Area-2r. Stock numbers (millions). Age 0 at start of 2 nd half-year, age $\mathbf{1 +}$ at start of the year.

	Age 0	Age 1	Age 2	Age 3	Age 4
1983	158917	16431	14521	729	27
1984	47208	61033	3656	1901	58
1985	280397	18190	14296	564	198
1986	60449	109293	4400	2449	92
1987	35468	23489	23822	539	175
1988	174767	14019	6773	7181	219
1989	87304	67817	3319	1082	792
1990	158712	32262	11328	616	370
1991	113021	60965	6701	2730	265
1992	117418	41991	11773	1480	722
1993	231610	44462	8156	2619	538
1994	108224	85213	9306	1984	854

Age 0		Age 1	Age 2	Age 3	Age 4
1995	77846	41013	17812	2260	768
1996	418473	29716	10206	5331	1048
1997	16077	146094	6290	2516	1752
1998	26957	5897	27887	1370	1018
1999	75193	10260	1429	8087	799
2000	43989	28897	2146	347	2607
2001	133274	17230	5572	473	798
2002	10281	51217	3312	1223	340
2003	47588	4018	8950	648	370
2004	19118	18285	795	2033	281
2005	19287	7392	2570	120	421
2006	27034	7681	717	378	93
2007	40603	10764	681	98	74
2008	25407	16181	1851	162	49
2009	78639	10123	2475	400	54
2010	8418	31324	1476	513	110
2011	11325	3353	7051	340	151
2012	45359	4513	855	1986	154
2013	25698	18075	1259	279	805
2014	17956	10236	3368	213	180
2015	4966	7154	2185	711	86
2016	122957	1979	1608	501	192
2017	3783	48999	538	502	248
2018	9563	1507	7791	70	89
2019	45903	3811	390	2248	52
2020	26409	18293	1143	143	1002
2021	100926	10522	3647	216	219
2022		40221	3028	1252	176

Table 9.3.10 Sandeel Area-2r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

	Recruits (thousands)	TSB (tonnes)	SSB (tonnes)	Yield (tonnes)	Mean F $_{1-2}$
1983	158934067	251523	141775	155664	0.723
1984	47204510	410875	71396	133343	0.615
1985	280476360	277668	134592	110546	0.547
1986	60430228	718573	83200	225470	0.767
1987	35462984	413235	233748	49070	0.176
1988	174773254	273465	184795	149466	0.593
1989	87312134	439951	53316	223507	0.692
1990	158775212	353697	111190	133874	0.452

	Recruits (thousands)	TSB (tonnes)	SSB (tonnes)	Yield (tonnes)	Mean F_{1-2}
1991	113011484	652157	180052	215508	0.532
1992	117388558	441433	135944	184033	0.526
1993	231710661	521263	165215	139826	0.444
1994	108254988	603092	137173	244939	0.445
1995	77827080	584986	240386	113899	0.254
1996	418421560	454272	228891	182562	0.431
1997	16078604	882459	117948	242094	0.545
1998	26963644	392074	302247	99814	0.282
1999	75225438	240168	155749	69427	0.445
2000	43969202	270755	74013	92908	0.534
2001	133284967	198800	85905	90200	0.538
2002	10282973	335242	46444	117388	0.643
2003	47583661	141597	100912	53710	0.506
2004	19115307	154485	37459	110546	0.882
2005	19288122	93467	34269	34396	1.079
2006	27044656	72874	14644	37860	1.162
2007	40588689	77448	11142	43090	0.552
2008	25418810	116369	24441	35604	0.660
2009	78609255	90010	26265	35687	0.704
2010	8418986	201457	23576	51670	0.435
2011	11330401	108620	72475	24896	0.272
2012	45353595	80403	42319	10594	0.153
2013	25699960	131764	25745	47814	0.683
2014	17948193	93429	34787	48033	0.505
2015	4965378	88355	35846	37902	0.437
2016	122914555	36435	26796	5230	0.188
2017	3782894	286154	19141	141314	0.892
2018	9559060	84166	64602	20307	0.253
2019	45901117	69640	40175	5091	0.058
2020	26403312	157776	37235	68932	0.595
2021	100936282	92452	35490	4979	0.112
2022			51277		
arith. mean	78372459	279297	91067	97210	0.521
geo. mean	44633712				

arith. mean for the period 1983-2021
geo. mean for the period 1983-2020

Table 9.3.11 Sandeel Area-2r. Input to forecast.

	Age 0	Age 1	Age 2	Age 3	Age 4
Stock numbers(2022)	19066.388	40221.1	3028.4	1251.88	175.923

Exploitation pattern 1st half		0.085	0.139	0.176	0.176
Exploitation pattern 2nd half	0.000	0.000	0.000	0.000	0.000
Weight in the stock 1st half		5.873	10.367	13.999	16.826
Weight in the catch 1st half	3.621	8.133	13.271	17.076	19.689
weight in the catch 2nd half	0.000	0.020	0.830	1.000	1.000
Proportion mature(2022)	0.000	0.020	0.830	1.000	1.000
Proportion mature(2023)		0.570	0.440	0.320	0.310
Natural mortality 1st half	0.920	0.590	0.490	0.420	0.410
Natural mortality 2nd half				13.999	16.826

Table 9.3.12 Sandeel Area-2r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.1123$; Yield(2021)=4.979; Recruitment(2021)=100.936282; Recruitment(2022)=geometric mean (GM 2011-2020)=19.066388 billion; SSB(2022)=51.277

F multiplier	Basis	F(2022)	Catch(2022)	SSB(2023)	\%SSB change*	\%TAC change**
0.000	$\mathrm{F}=0$	0.000	0.001	137.618	168 \%	-100 \%
3.920	Fsq*3.92	0.440	71.859	93.977	83 \%	1343 \%
1.000	Fsq*1	0.112	20.970	124.704	143 \%	321 \%
3.040	Fsq*3.04	0.341	57.941	102.283	99 \%	1064 \%
0.080	Fsq*0.08	0.009	1.700	136.567	166 \%	-66\%
7.000	Fsq*7	0.786	112.558	70.216	37 \%	2161 \%
9.000	Fsq*9	1.011	133.602	58.313	14 \%	2583 \%
11.000	Fsq*11	1.235	151.324	48.551	-5 \%	2939 \%
13.000	Fsq*13	1.460	166.321	40.520	-21\%	3241 \%
5.097	MSY	0.572	88.771	84.000	64 \%	1683 \%

*SSB in 2023 relative to SSB in 2022
**TAC in 2022 relative to catches in 2021

Table 9.4.1 Sandeel Area-3r. Catch at age numbers (million) by half year.

| | Age 0,
 2nd half | Age 1, 1st
 half | Age 1,
 2nd half | Age 2, 1st
 half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 7965 | 18939 | 7987 | 2063 | 533 | 161 | 2 | 0 | 0 |
| 1987 | 5 | 33760 | 65 | 14020 | 4 | 453 | 0 | 200 | 0 |
| 1988 | 8769 | 6584 | 853 | 17321 | 233 | 893 | 144 | 19 | 13 |
| 1989 | 159 | 47004 | 190 | 1844 | 13 | 2806 | 0 | 4 | 0 |
| 1990 | 9793 | 9302 | 1377 | 2791 | 286 | 413 | 43 | 125 | 13 |
| 1991 | 14442 | 24009 | 942 | 1391 | 30 | 526 | 9 | 184 | 3 |
| 1992 | 525 | 7100 | 87 | 2862 | 8 | 342 | 3 | 215 | 1 |
| 1993 | 9663 | 15164 | 851 | 558 | 155 | 211 | 71 | 1336 | 12 |
| 1994 | 0 | 23742 | 615 | 4818 | 684 | 938 | 78 | 386 | 10 |
| 1995 | 1020 | 25037 | 484 | 1894 | 78 | 238 | 13 | 156 | 17 |
| 1996 | 6263 | 4319 | 3111 | 3394 | 97 | 465 | 33 | 399 | 248 |

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	$\begin{gathered} \text { Age 2, 1st } \\ \text { half } \end{gathered}$	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1997	2975	66856	10388	2912	134	607	13	194	9
1998	30136	3954	992	28137	740	2553	192	290	32
1999	6444	5182	1835	1554	118	1979	401	421	169
2000	0	18793	344	3286	4	541	1	533	9
2001	18263	5327	3968	992	9	163	2	160	6
2002	0	9075	21	2680	3	387	1	135	0
2003	2755	939	61	808	53	130	2	78	1
2004	1091	1976	737	256	16	74	6	92	1
2005	0	1404	1	146	0	21	0	12	0
2006	0	769	3	47	1	27	0	4	0
2007	0	8600	0	571	0	86	0	19	0
2008	0	4077	0	2012	0	460	0	73	0
2009	1	827	12	69	2	8	0	0	0
2010	0	3042	51	740	1	1006	1	173	0
2011	0	1304	0	5224	0	825	0	24	0
2012	0	32	0	186	0	1157	0	356	0
2013	0	648	0	211	0	55	0	42	0
2014	0	5384	0	2373	0	643	0	319	0
2015	0	6451	0	2340	0	956	0	99	0
2016	0	156	0	2006	0	415	0	284	0
2017	0	11734	0	671	0	434	0	409	0
2018	0	413	6	6631	48	40	1	305	1
2019	0	7105	0	716	0	4241	0	131	0
2020	0	21133	0	1981	0	391	0	1249	0
2021	11	3211	6	2768	1	530	0	1378	0
arith. mean	3341	11204	972	3396	90	699	28	272	15

Table 9.4.2 Sandeel Area-3r. Individual mean weight (gram) at age in the catch and in the sea.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1986	4.0	6.1	12.7	9.7	21.0	12.4	18.9	15.9	20.4
1987	6.9	6.4	12.8	11.7	20.4	20.5	31.6	22.5	29.6
1988	4.1	5.1	6.4	13.1	16.1	23.0	22.5	36.2	31.5
1989	4.8	6.1	9.3	10.5	12.7	14.3	14.0	18.8	17.5
1990	4.4	7.5	7.7	9.8	11.2	15.2	16.5	20.2	19.8
1991	3.7	7.3	5.7	11.4	13.8	36.4	27.5	26.3	16.3
1992	4.6	6.1	13.4	10.3	26.7	14.7	28.7	23.0	30.9
1993	3.5	5.8	7.3	16.4	16.7	17.9	20.8	23.3	22.4
1994	3.6	6.1	13.0	14.6	20.8	20.6	35.2	21.1	27.1

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1995	4.7	5.6	8.2	9.7	10.2	13.8	13.7	16.5	16.1
1996	2.5	8.8	8.0	13.3	14.0	26.1	15.7	38.5	24.0
1997	2.9	5.2	6.7	10.1	10.2	13.7	14.2	18.3	14.4
1998	3.2	5.0	7.0	10.1	15.2	13.7	17.3	20.3	20.7
1999	8.7	7.4	14.5	10.1	19.4	14.1	21.1	26.3	30.7
2000	5.2	6.9	10.8	10.5	17.4	15.3	23.7	20.5	25.6
2001	5.6	6.8	8.9	13.7	16.0	17.8	15.9	23.2	25.5
2002	9.4	8.1	19.7	12.7	31.6	14.6	43.2	19.2	46.7
2003	4.3	5.3	5.4	14.6	15.3	20.3	24.1	26.9	26.7
2004	5.8	7.3	7.3	9.5	14.1	14.5	18.4	15.1	12.7
2005	3.4	7.8	7.0	16.5	11.2	19.9	15.3	22.6	16.6
2006	11.0	7.5	23.1	13.5	36.9	17.1	50.5	26.9	54.5
2007	4.1	7.5	8.6	15.1	13.9	21.7	18.9	14.6	20.5
2008	4.1	8.0	8.6	15.0	13.9	22.0	18.9	25.8	20.5
2009	4.2	6.3	8.8	10.4	14.1	19.9	19.2	12.1	20.8
2010	2.5	7.5	5.2	17.7	8.3	20.7	11.4	24.3	12.3
2011	4.1	7.7	8.6	12.6	13.9	19.4	18.9	36.2	20.5
2012	4.1	9.9	8.6	15.2	13.9	22.7	18.9	30.0	20.5
2013	4.1	9.1	8.6	11.6	13.9	14.3	18.9	16.2	20.5
2014	4.1	8.6	8.6	12.7	13.9	13.9	18.9	18.3	20.5
2015	3.8	8.3	8.4	12.7	15.4	19.3	20.2	30.1	21.9
2016	3.8	4.0	8.4	12.4	15.4	19.8	20.2	32.1	21.9
2017	3.8	7.7	8.4	11.9	15.4	17.7	20.2	24.2	21.9
2018	3.8	5.8	8.4	9.9	15.4	13.5	20.2	20.6	21.9
2019	3.8	8.5	8.4	11.6	15.4	15.2	20.2	20.2	21.9
2020	3.8	8.8	8.4	14.6	15.4	17.2	20.2	19.3	21.9
2021	3.8	12.8	8.4	19.8	15.4	27.8	20.2	34.0	21.9
arith. mean	4.6	7.2	9.4	12.6	16.2	18.4	21.5	23.3	23.3

Table 9.4.3 Sandeel Area-3r. Proportion mature.

	Age 1	Age 2	Age 3	Age 4
$1983-2016$	0.04	0.77	1	1

Table 9.4.4. Sandeel Area-3r. Dredge survey indices.

Year	Age 0	Age 1
2005	68667.988	
2006	55709.239	1225.934
2007	10611.085	3717.149
2008	16658.095	1521.160
2009	37088.951	16328.039
2010	1844.740	5076.749
2011	973.111	1961.856
2012	47713.266	767.514
2013	174467.733	790.887
2016	92703.238	5349.152
2017	2667.397	11100.794
2018	6359.000	322.967
2019	82359.000	15640.000
2020	112538.400	5980.000
2021	69976.000	20816.000
	23486.023	6259.908

Table 9.4.5 Sandeel Area-3r. SMS settings and statistics.
Date: 01/26/22 Start time:09:44:46 run time:1 seconds
objective function (negative log likelihood): 124.547
Number of parameters: 61
Maximum gradient: 4.83144e-005
Akaike information criterion (AIC): 371.094
Number of observations used in the likelihood:

Catch	CPUE	S/R		Stomach
324	85	36	0	445

objective function weight:

$$
\begin{array}{llr}
\text { Catch } & \text { CPUE } & \text { S/R } \\
1.00 & 1.00 & 0.01
\end{array}
$$

unweighted objective function contributions (total):

Catch	CPUE	S/R	Stom.	Stom N.	Penalty	Sum
102.4	22.0	17.9	0.0	0.0	0.00	142

unweighted objective function contributions (per observation):

$$
\begin{array}{cccc}
\text { Catch } & \text { CPUE } & \text { S/R } & \text { Stomachs } \\
0.32 & 0.26 & 0.50 & 0.00
\end{array}
$$

contribution by fleet:

Dredge survey 2004-2021
Acoustic survey

total:	4.217	mean:	0.128
total:	17.760	mean:	0.342

F, season effect:

```
age: 0
    1986-1998: 0.000 1.000
    1999-2021: 0.000 1.000
age: 1-4
    1986-1998: 0.883 0.500
    1999-2021: 1.021 0.500
F, age effect:
```

1986-1998:	0.103	0.372	0.413	0.333	0.333
1999-2021:	0.056	0.169	0.254	0.243	0.243

			0	1	2	3	4
1986-1998	season		0	0.640	0.710	0.574	0.574
	season		0.170	0.308	0.342	0.276	0.276
1999-2021	season		0	0.551	0.827	0.790	0.790
	season		0.164	0.249	0.373	0.357	0.357

sqrt(catch variance) ~ CV:
season

$0 \quad 1.132$
$1 \quad 0.673 \quad 1.038$
$2 \quad 0.6731 .038$
$31.021 \quad 1.232$
41.0211 .232

Survey catchability:

| | age $0 \quad$ age 1 | age 2 | age 3 | age 4 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Dredge survey 2004-2021 | 0.509 | 0.509 | | | |
| Acoustic survey | | 3.011 | 4.839 | 4.611 | 4.611 |

Stock size dependent catchability (power model)

Table 9.4.6 Sandeel Area-3r. Annual fishing mortality (F) at age.

	Age 0	Age 1	Age 2	Age 3	Age 4	Avg. 1-2
1986	0.076	0.453	0.495	0.399	0.401	0.474
1987	0.001	0.713	0.758	0.598	0.596	0.736
1988	0.051	0.915	0.975	0.778	0.778	0.945
1989	0.003	1.033	1.097	0.885	0.882	1.065
1990	0.050	0.580	0.623	0.502	0.502	0.602
1991	0.040	0.701	0.753	0.603	0.602	0.727
1992	0.003	0.326	0.346	0.270	0.270	0.336
1993	0.042	0.604	0.651	0.519	0.518	0.628
1994	0.016	0.646	0.692	0.540	0.537	0.669
1995	0.007	0.514	0.553	0.434	0.433	0.534
1996	0.043	0.504	0.547	0.432	0.431	0.525
1997	0.066	0.906	0.982	0.790	0.786	0.944
1998	0.140	1.149	1.255	1.014	1.007	1.202
1999	0.140	0.733	1.091	1.028	1.023	0.912
2000	0.004	0.754	1.089	0.993	0.987	0.922
2001	0.145	0.473	0.714	0.682	0.685	0.594
2002	0.000	0.496	0.709	0.673	0.670	0.602
2003	0.019	0.265	0.383	0.368	0.367	0.324
2004	0.019	0.184	0.268	0.259	0.258	0.226
2005	0.000	0.089	0.128	0.120	0.119	0.108
2006	0.000	0.038	0.054	0.051	0.051	0.046
2007	0.000	0.224	0.323	0.302	0.301	0.274
2008	0.000	0.242	0.349	0.332	0.331	0.295
2009	0.000	0.020	0.030	0.028	0.028	0.025
2010	0.000	0.262	0.382	0.359	0.356	0.322
2011	0.000	0.170	0.246	0.233	0.230	0.208
2012	0.000	0.103	0.149	0.143	0.142	0.126
2013	0.000	0.050	0.073	0.070	0.069	0.061
2014	0.000	0.200	0.290	0.277	0.275	0.245
2015	0.000	0.262	0.381	0.364	0.362	0.322
2016	0.000	0.103	0.149	0.143	0.142	0.126
2017	0.000	0.227	0.330	0.316	0.313	0.279
2018	0.000	0.243	0.352	0.337	0.335	0.297
2019	0.000	0.364	0.528	0.506	0.502	0.446
2020	0.000	0.610	0.883	0.846	0.840	0.747
2021	0.000	0.370	0.537	0.514	0.510	0.453
arith. mean	0.024	0.431	0.532	0.464	0.462	0.482

Table 9.4.7 Sandeel Area-3r. Fishing mortality (F) at age.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1986	0.076	0.285	0.137	0.317	0.152	0.256	0.123	0.256	0.123
1987	0.001	0.576	0.002	0.639	0.002	0.516	0.002	0.516	0.002
1988	0.051	0.686	0.093	0.761	0.103	0.615	0.083	0.615	0.083
1989	0.003	0.863	0.006	0.957	0.007	0.774	0.005	0.774	0.005
1990	0.050	0.425	0.090	0.472	0.100	0.381	0.081	0.381	0.081
1991	0.040	0.540	0.072	0.600	0.080	0.484	0.064	0.484	0.064
1992	0.003	0.261	0.006	0.289	0.007	0.234	0.005	0.234	0.005
1993	0.042	0.449	0.076	0.498	0.084	0.403	0.068	0.403	0.068
1994	0.016	0.502	0.029	0.557	0.032	0.450	0.026	0.450	0.026
1995	0.007	0.408	0.013	0.453	0.014	0.366	0.012	0.366	0.012
1996	0.043	0.358	0.078	0.397	0.086	0.321	0.070	0.321	0.070
1997	0.066	0.670	0.119	0.744	0.133	0.601	0.107	0.601	0.107
1998	0.140	0.794	0.254	0.881	0.282	0.712	0.228	0.712	0.228
1999	0.140	0.470	0.212	0.705	0.318	0.674	0.304	0.674	0.304
2000	0.004	0.592	0.006	0.889	0.008	0.850	0.008	0.850	0.008
2001	0.145	0.247	0.220	0.371	0.330	0.354	0.315	0.354	0.315
2002	0.000	0.368	0.000	0.553	0.000	0.528	0.000	0.528	0.000
2003	0.019	0.183	0.029	0.274	0.044	0.262	0.042	0.262	0.042
2004	0.019	0.126	0.029	0.190	0.043	0.181	0.041	0.181	0.041
2005	0.000	0.069	0.000	0.103	0.000	0.098	0.000	0.098	0.000
2006	0.000	0.029	0.000	0.044	0.001	0.042	0.001	0.042	0.001
2007	0.000	0.178	0.000	0.267	0.000	0.255	0.000	0.255	0.000
2008	0.000	0.197	0.000	0.295	0.000	0.282	0.000	0.282	0.000
2009	0.000	0.017	0.000	0.025	0.000	0.024	0.000	0.024	0.000
2010	0.000	0.213	0.001	0.319	0.001	0.305	0.001	0.305	0.001
2011	0.000	0.135	0.000	0.203	0.000	0.194	0.000	0.194	0.000
2012	0.000	0.082	0.000	0.123	0.000	0.118	0.000	0.118	0.000
2013	0.000	0.040	0.000	0.060	0.000	0.057	0.000	0.057	0.000
2014	0.000	0.160	0.000	0.240	0.000	0.230	0.000	0.230	0.000
2015	0.000	0.211	0.000	0.316	0.000	0.303	0.000	0.303	0.000
2016	0.000	0.082	0.000	0.123	0.000	0.118	0.000	0.118	0.000
2017	0.000	0.183	0.000	0.274	0.000	0.262	0.000	0.262	0.000
2018	0.000	0.195	0.000	0.292	0.000	0.280	0.000	0.280	0.000
2019	0.000	0.294	0.000	0.441	0.000	0.422	0.000	0.422	0.000
2020	0.000	0.497	0.000	0.745	0.000	0.712	0.000	0.712	0.000
2021	0.000	0.299	0.000	0.448	0.000	0.428	0.000	0.428	0.000
arith. mean	0.024	0.325	0.041	0.413	0.051	0.364	0.044	0.364	0.044

Table 9.4.8 Sandeel Area-3r. Natural mortality (M) at age.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1986	1.340	0.760	0.60	0.600	0.470	0.420	0.370	0.360	0.350
1987	1.430	0.750	0.57	0.600	0.440	0.420	0.350	0.360	0.340
1988	1.540	0.710	0.58	0.570	0.430	0.390	0.350	0.350	0.340
1989	1.330	0.680	0.49	0.550	0.360	0.390	0.330	0.360	0.320
1990	1.280	0.630	0.48	0.490	0.350	0.340	0.300	0.310	0.290
1991	1.220	0.630	0.47	0.490	0.350	0.330	0.290	0.300	0.280
1992	1.190	0.650	0.52	0.490	0.390	0.330	0.290	0.300	0.290
1993	1.140	0.670	0.52	0.510	0.400	0.350	0.320	0.330	0.310
1994	1.110	0.690	0.58	0.530	0.460	0.360	0.340	0.340	0.320
1995	1.010	0.710	0.55	0.560	0.450	0.410	0.350	0.380	0.340
1996	0.990	0.660	0.57	0.530	0.470	0.390	0.360	0.360	0.350
1997	0.900	0.640	0.53	0.520	0.430	0.400	0.380	0.380	0.360
1998	0.970	0.630	0.51	0.490	0.410	0.380	0.360	0.350	0.330
1999	1.040	0.730	0.58	0.540	0.470	0.360	0.330	0.330	0.300
2000	1.120	0.800	0.65	0.610	0.550	0.420	0.390	0.390	0.370
2001	1.190	0.820	0.78	0.660	0.670	0.490	0.510	0.450	0.490
2002	1.220	0.840	0.80	0.720	0.670	0.580	0.630	0.540	0.610
2003	1.220	0.830	0.77	0.720	0.640	0.580	0.620	0.540	0.600
2004	1.210	0.850	0.70	0.710	0.570	0.560	0.550	0.510	0.530
2005	1.150	0.840	0.65	0.690	0.530	0.500	0.470	0.470	0.450
2006	1.120	0.820	0.61	0.660	0.490	0.480	0.420	0.440	0.410
2007	1.050	0.770	0.58	0.610	0.470	0.450	0.400	0.420	0.390
2008	0.990	0.680	0.50	0.550	0.400	0.430	0.380	0.400	0.370
2009	0.990	0.590	0.47	0.480	0.390	0.370	0.340	0.340	0.330
2010	1.110	0.590	0.50	0.450	0.420	0.360	0.370	0.330	0.350
2011	1.210	0.660	0.55	0.510	0.460	0.390	0.420	0.350	0.390
2012	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2013	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2014	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2015	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2016	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2017	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2018	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2019	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2020	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
2021	1.190	0.700	0.54	0.550	0.450	0.420	0.440	0.390	0.420
arith. mean	1.166	0.712	0.57	0.565	0.462	0.419	0.406	0.386	0.389

Table 9.4.9 Sandeel Area-3r. Stock numbers (millions). Age 0 at start of 2 nd half-year, age $\mathbf{1 +}$ at start of the year.

Age 0		Age 1	Age 2	Age 3	Age 4
1986	510341	81391	5618	276	690
1987	116127	123867	13687	1206	318
1988	360728	27760	18563	2547	426
1989	107678	73467	3507	2877	711
1990	198082	28385	9565	538	808
1991	124100	52392	5586	2330	458
1992	257964	35216	9456	1223	872
1993	190940	78219	8373	2918	899
1994	180436	58569	14079	1883	1229
1995	153307	58535	9679	2905	976
1996	742461	55439	10896	2209	1257
1997	63923	264307	10483	2472	1124
1998	93207	24330	37233	1688	822
1999	121485	30713	2729	4733	478
2000	133994	37321	4190	357	988
2001	127087	43558	4814	536	264
2002	31976	33433	5513	632	154
2003	72768	9440	4487	790	140
2004	47107	21074	1542	838	209
2005	80268	13782	3830	340	280
2006	114995	25416	2900	1020	218
2007	58672	37512	5905	878	487
2008	89724	20532	8141	1536	459
2009	137164	33339	5181	2343	675
2010	15674	50962	11359	2117	1462
2011	11102	5163	13841	3455	1297
2012	84278	3310	1345	4283	1775
2013	207141	25639	882	437	2313
2014	223070	63017	7129	306	1146
2015	8121	67853	15536	2062	508
2016	705102	2471	15900	4165	812
2017	32491	214507	659	5171	1888
2018	223823	9884	51718	184	2331
2019	303286	68092	2354	14201	843
2020	160646	92266	14685	557	4188
2021	77181	48872	16249	2565	1030
2022		23480	10490	3818	1005

Table 9.4.10 Sandeel Area-3r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

	Recruits (thousands)	TSB (tonnes)	SSB (tonnes)	Yield (tonnes)	Mean F_{1-2}
1986	510550442	567338	74236	282315	0.446
1987	116104360	987817	182773	395296	0.610
1988	360859773	458951	265136	330358	0.822
1989	107715064	541626	98913	350409	0.916
1990	198044042	330066	104089	163224	0.544
1991	124149867	544535	159692	274839	0.646
1992	257878732	350577	120451	86788	0.281
1993	190850317	662154	194464	175786	0.554
1994	180456444	625916	234685	267281	0.559
1995	153314205	476147	140225	173607	0.444
1996	742104035	738395	234451	159024	0.459
1997	63910869	1541930	185350	470670	0.833
1998	93175931	535338	331373	462081	1.105
1999	121448395	332708	108662	191253	0.852
2000	133953060	326032	68665	186837	0.748
2001	127038405	378300	76726	193684	0.584
2002	31960138	352699	75660	116298	0.461
2003	72783512	135401	71754	34673	0.265
2004	47110195	183270	32048	31285	0.194
2005	80277505	183214	65382	13991	0.086
2006	114949102	252982	60114	7094	0.037
2007	58644245	395299	104402	74972	0.222
2008	89701675	332573	145365	74933	0.246
2009	137206823	319880	103570	6261	0.021
2010	15665948	662839	247459	61241	0.267
2011	11106044	327267	248451	92452	0.169
2012	84309069	203662	167376	40116	0.103
2013	207159586	287986	59934	9844	0.050
2014	223070852	654582	113777	90876	0.200
2015	8121294	815063	226160	104631	0.264
2016	705205636	315656	260146	42845	0.103
2017	32475613	1791780	202400	115642	0.228
2018	223741069	617770	442856	75388	0.244
2019	303229348	838505	275130	135899	0.368
2020	160691992	1118810	284077	246139	0.621

	Recruits (thousands)	TSB (tonnes)	SSB (tonnes)	Yield (tonnes)	Mean F $_{1-2}$
2021	77206947	1051620	375120	157472	0.373
2022			210029		
arith. mean	171290233	562186	171661	158208	0.415
geo. mean	112898529				

arith. mean for the period 1986-2021
geo. mean for the period 1986-2020

Table 9.4.11 Sandeel Area-3r. Input to forecast.

	Age 0	Age 1	Age 2	Age 3	Age 4	
Stock numbers(2022)	112945.768	23480.1	10489.9	3818.36	1005.44	
Exploitation pattern 1st half		0.299	0.448	0.428	0.428	
Exploitation pattern 2nd half	0.000	0.000	0.000	0.000	0.000	
Weight in the stock 1st half		8.716	13.566	18.282	23.645	
Weight in the catch 1st half		8.782	8.413	15.411	20.172	21.859
weight in the catch 2nd half	0.000	0.036	0.766	1.000	1.000	
Proportion mature(2022)	0.000	0.036	0.766	1.000	1.000	
Proportion mature(2023)		0.700	0.550	0.420	0.390	
Natural mortality 1st half	1.190	0.540	0.450	0.440	0.420	
Natural mortality 2nd half			13.566	18.282	23.645	

Table 9.4.12 Sandeel Area-3r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.3735$; Yield(2021)=157.472; Recruitment(2021)=77.206947; Recruitment(2022)=geometric mean (GM 1986-2020)=112.945768 billion; SSB(2022)=210.029

F multiplier	Basis	F(2022)	Catch(2022)	SSB(2023)	\%SSB change*	\%TAC change**
0.000	$\mathrm{F}=0$	0.000	0.001	200.747	-4\%	-100\%
0.780	Fsq*0.78	0.290	85.559	151.563	-28\%	-46\%
1.000	Fsq*1	0.373	106.151	140.019	-33 \%	-33\%
0.400	Fsq**.4	0.149	46.963	173.527	-17\%	-70\%
0.600	Fsq*0.6	0.224	68.080	161.460	-23 \%	-57\%
0.800	Fsq**0.8	0.299	87.775	150.315	-28\%	-44\%
0.100	Fsq*0.1	0.037	12.371	193.529	-8\%	-92 \%
0.120	Fsq*0.12	0.045	14.793	192.120	-9 \%	-91\%
0.140	Fsq*0.14	0.052	17.198	190.722	-9 \%	-89\%
1.233	MSY	0.461	126.038	129.000	-39 \%	-20\%

*SSB in 2023 relative to SSB in 2022
**TAC in 2022 relative to catches in 2021

Table 9.4.13. Sandeel Area-3r. Acoustic survey indices (millions of individuals).

Year	Age 1	Age 2	Age 3	Age 4
2009	$7709.06(\mathrm{CV}=0.29)$	$4923.33(\mathrm{CV}=0.34)$	$945.29(\mathrm{CV}=0.3)$	$64.03(\mathrm{CV}=0.47)$
2010	$16852.06(\mathrm{CV}=0.19)$	$6133.6(\mathrm{CV}=0.18)$	$1123.19(\mathrm{CV}=0.38)$	$608.57(\mathrm{CV}=0.4)$
2011	$816.16(\mathrm{CV}=0.73)$	$8622.2(\mathrm{CV}=0.19)$	$855.81(\mathrm{CV}=0.33)$	$192.37(\mathrm{CV}=0.49)$
2012	$846.68(\mathrm{CV}=0.81)$	$211.31(\mathrm{CV}=0.67)$	$3226.29(\mathrm{CV}=0.25)$	$368.16(\mathrm{CV}=0.24)$
2013	$2154.47(\mathrm{CV}=0.2)$	$258.25(\mathrm{CV}=0.36)$	$72.62(\mathrm{CV}=0.41)$	$554.48(\mathrm{CV}=0.43)$
2014	$21889.62(\mathrm{CV}=0.23)$	$1711.1(\mathrm{CV}=0.36)$	$170.41(\mathrm{CV}=0.64)$	$80.34(\mathrm{CV}=0.85)$
2015	$9466.6(\mathrm{CV}=0.12)$	$2254.92(\mathrm{CV}=0.27)$	$686.55(\mathrm{CV}=0.29)$	$7.03(\mathrm{CV}=1.18)$
2016	$79.55(\mathrm{CV}=1)$	$6317.38(\mathrm{CV}=0.29)$	$679.13(\mathrm{CV}=0.25)$	$259.1(\mathrm{CV}=0.37)$
2017	$35267.58(\mathrm{CV}=0.16)$	$131.65(\mathrm{CV}=0.77)$	$3465.88(\mathrm{CV}=0.27)$	$631.09(\mathrm{CV}=0.27)$
2018	$1544.39(\mathrm{CV}=0.31)$	$16989.62(\mathrm{CV}=0.1)$	$79.82(\mathrm{CV}=0.34)$	$440.33(\mathrm{CV}=0.31)$
2019	$9564.52(\mathrm{CV}=0.16)$	$464.24(\mathrm{CV}=0.25)$	$15573.73(\mathrm{CV}=0.12)$	$214.53(\mathrm{CV}=0.33)$
2020	$42141.65(\mathrm{CV}=0.27)$	$10064.47(\mathrm{CV}=0.27)$	$535.24(\mathrm{CV}=0.42)$	$9944.09(\mathrm{CV}=0.2)$
2021	$14564.25(\mathrm{CV}=0.19)$	$12971.11(\mathrm{CV}=0.17)$	$2770.14(\mathrm{CV}=0.2)$	$285.07(\mathrm{CV}=0.33)$

Table 9.5.1 Sandeel Area-4. Catch at age numbers (million) by half year.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1993	674	1235	149	6337	381	1861	122	534	39
1994	0	1070	256	1522	62	5144	257	2092	159
1995	4	2690	4	1229	1	529	0	30	0
1996	2666	754	2584	2536	3461	476	227	130	1110
1997	0	2879	1369	291	35	1683	43	413	10
1998	0	2159	61	3766	97	235	6	130	3
1999	0	1472	86	1137	46	1543	47	252	11
2000	0	6537	0	376	0	323	0	297	0
2001	0	2048	64	4961	20	601	1	377	0
2002	0	337	0	807	0	511	0	101	0
2003	145	4322	148	1002	10	2721	5	1253	1
2004	0	920	4	220	1	45	0	82	0
2005	0	49	0	145	0	32	0	17	0
2006	0	0	0	0	0	0	0	0	0
2007	0	0	0	0	0	0	0	0	0
2008	0	0	0	0	0	0	0	0	0
2009	0	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0	0
2011	0	0	0	0	0	0	0	0	0
2012	0	83	0	40	0	196	0	3	0
2013	0	182	0	100	0	71	0	133	0
2014	0	346	0	54	0	15	0	47	0

| | Age 0,
 2nd half | Age 1,
 1st half | Age 1,
 2nd half | Age 2,
 1st half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2015 | 0 | 866 | 0 | 29 | 0 | 9 | 0 | 14 | 0 |
| 2016 | 0 | 181 | 0 | 406 | 0 | 20 | 0 | 36 | 0 |
| 2017 | 0 | 719 | 0 | 468 | 0 | 578 | 0 | 30 | 0 |
| 2018 | 0 | 874 | 0 | 1259 | 0 | 355 | 0 | 1133 | 0 |
| 2019 | 0 | 314 | 0 | 159 | 0 | 143 | 0 | 60 | 0 |
| 2020 | 33 | 2363 | 17 | 256 | 0 | 72 | 0 | 82 | 0 |
| 2021 | 2 | 3323 | 16 | 2196 | 83 | 354 | 11 | 383 | 42 |
| arith.
 mean | 122 | 1232 | 164 | 1010 | 145 | 604 | 25 | 263 | 47 |

Table 9.5.2 Sandeel Area-4. Individual mean weight (gram) at age in the catch and in the sea.

	Age 0, 2nd half	Age 1, 1st half	Age 1, 2nd half	Age 2, 1st half	Age 2, 2nd half	Age 3, 1st half	Age 3, 2nd half	Age 4+, 1st half	Age 4+, 2nd half
1993	3.0	7.4	6.7	11.9	12.0	14.9	14.0	20.1	18.9
1994	3.8	10.9	8.6	11.1	15.5	14.7	18.0	20.5	24.4
1995	4.4	8.4	10.1	15.7	18.0	19.1	21.0	15.5	28.5
1996	6.3	5.3	7.3	12.9	13.1	18.6	18.0	23.0	22.3
1997	3.1	6.7	7.0	7.5	12.4	11.2	14.5	18.1	19.6
1998	2.6	6.1	6.0	10.4	10.7	13.6	12.5	14.6	16.9
1999	3.2	6.1	7.2	10.8	12.9	16.1	15.1	20.2	20.4
2000	4.0	3.9	9.0	8.0	16.2	13.2	18.8	17.3	25.5
2001	1.8	3.4	4.2	6.0	7.5	9.0	8.7	14.2	11.8
2002	4.0	3.8	9.0	5.9	16.2	9.5	18.8	17.9	25.5
2003	3.6	4.6	5.6	6.6	6.2	8.1	7.8	10.9	10.1
2004	1.4	4.0	3.3	7.4	5.8	9.3	6.8	13.8	9.2
2005	4.0	4.2	9.0	6.1	16.2	8.6	18.8	11.0	25.5
2006	4.0	5.5	9.0	10.0	16.2	14.3	18.8	18.1	25.5
2007	4.0	4.8	9.0	8.8	16.2	12.6	18.8	16.0	25.5
2008	4.0	4.8	9.0	8.7	16.2	12.4	18.8	15.7	25.5
2009	4.0	5.8	9.0	10.7	16.2	15.2	18.8	19.3	25.5
2010	4.0	5.1	9.0	9.4	16.2	13.4	18.8	17.0	25.5
2011	4.0	4.9	9.0	8.9	16.2	12.7	18.8	16.1	25.5
2012	4.0	4.0	9.0	8.2	16.2	9.6	18.8	12.2	25.5
2013	4.0	5.3	9.0	9.3	16.2	14.7	18.8	17.1	25.5
2014	4.0	7.1	9.0	12.4	16.2	17.2	18.8	20.0	25.5
2015	4.4	4.4	7.7	9.5	10.7	11.4	14.6	16.2	17.6
2016	4.4	5.0	7.7	9.9	10.7	18.1	14.6	24.7	17.6
2017	4.4	7.5	7.7	10.2	10.7	13.4	14.6	18.5	17.6
2018	4.4	5.7	7.7	9.4	10.7	13.1	14.6	18.3	17.6
2019	4.4	5.9	7.7	10.2	10.7	13.7	14.6	20.2	17.6

| | Age 0,
 2nd half | Age 1,
 1st half | Age 1,
 2nd half | Age 2,
 1st half | Age 2,
 2nd half | Age 3,
 1st half | Age 3,
 2nd half | Age 4+,
 1st half | Age 4+,
 2nd half |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2020 | 4.4 | 6.7 | 7.7 | 8.6 | 10.7 | 11.9 | 14.6 | 12.4 | 17.6 |
| 2021 | 4.4 | 5.6 | 7.7 | 9.2 | 10.7 | 11.9 | 14.6 | 17.8 | 17.6 |
| arith.
 mean | 3.9 | 5.6 | 7.9 | 9.4 | 13.2 | 13.2 | 16.0 | 17.1 | 21.1 |

Table 9.5.3 Sandeel Area-4. Proportion mature.

	Age 1	Age 2	Age 3	Age 4
$1983-2016$	0	0.79	0.98	1

Table 9.5.4. Sandeel Area-4. Dredge survey indices.

Year	Age 0	Age 1
1999	615	494
2000	586	3170
2001	48	2656
2002	243	404
2003	580	
2004		
2005		
2006		
2007		
2008	52	24
2009	832	87
2010	147	1032
2011	89	165
2012	95	135
2013	62	85
2014	445	43
2015	136	1044
2016	300	81
2017	346	223
2018	16	461
2019	371	92
2020	585	1010
2021	160	194

Table 9.5.5 Sandeel Area-4. SMS settings and statistics.

```
Date: 01/26/22 Start time:09:43:34 run time:1 seconds
objective function (negative log likelihood): 14.7669
Number of parameters: 48
Maximum gradient: 2.44224e-005
Akaike information criterion (AIC): 125.534
Number of observations used in the likelihood:
    Catch CPUE S/R Stomach Sum
    261 37 29 0 327
objective function weight:
Catch CPUE S/R
1.00 1.00 0.05
unweighted objective function contributions (total):
\begin{tabular}{ccccccc} 
Catch & CPUE & S/R & Stom. & Stom N. & Penalty & Sum \\
36.9 & -23.1 & 20.4 & 0.0 & 0.0 & 0.00 & 34
\end{tabular}
unweighted objective function contributions (per observation):
\begin{tabular}{llll} 
Catch & CPUE & \multicolumn{1}{c}{ S/R } & Stomachs \\
0.14 & -0.63 & 0.70 & 0.00
\end{tabular}
contribution by fleet:
New Dredge survey 2008-2021 total: -13.592 mean: -0.485
Old Dredge survey 1999-2003 total: -9.555 mean: -1.062
F, season effect:
*
age: 0
        1993-2021: 0.000 1.000
age: 1 - 4
        1993-2021: 0.724 0.500
F, age effect:
\begin{tabular}{rrrrrr} 
& 0 & 1 & 2 & 3 & 4
\end{tabular}
Exploitation pattern (scaled to mean F=1)
\begin{tabular}{llrrrrr} 
& & 0 & 1 & 2 & 3 & 4 \\
\(1993-2021\) & season 1: & 0 & 0.601 & 1.205 & 1.704 & 1.704 \\
& season 2: & 0.003 & 0.065 & 0.129 & 0.183 & 0.183
\end{tabular}
```

```
sqrt(catch variance) ~ CV:
```

sqrt(catch variance) ~ CV:
season
age 1 2
0 2.102
1 0.736 0.587
2 0.736 0.587
3 0.679 1.240
4 0.679 1.240

```

Survey catchability:
\begin{tabular}{llllr} 
& age 0 & age 1 & \\
New Dredge survey & \(2008-2021\) & 0.790 & 4.221 \\
Old Dredge survey & \(1999-2003\) & 0.784 & 18.050
\end{tabular}
sqrt(Survey variance) ~ CV:
\begin{tabular}{lllll} 
& age 0 & age 1 & \\
New Dredge survey \(2008-2021\) & 0.55 & 0.30 \\
Old Dredge survey 1999-2003 & 0.30 & 0.30
\end{tabular}
\begin{tabular}{lccccc} 
Recruit-SSB & alfa & beta & recruit s2 & recruit s \\
Area-4 & 1250.432 & \(4.800 \mathrm{e}+004\) & 1.500 & 1.225
\end{tabular}

Table 9.5.6 Sandeel Area-4. Annual fishing mortality (F) at age.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Age 0 & Age 1 & Age 2 & Age 3 & Age 4 & Avg. 1-2 \\
\hline 1993 & 0.001 & 0.346 & 0.671 & 0.923 & 0.921 & 0.509 \\
\hline 1994 & 0.001 & 0.402 & 0.778 & 1.067 & 1.064 & 0.590 \\
\hline 1995 & 0.000 & 0.120 & 0.232 & 0.316 & 0.315 & 0.176 \\
\hline 1996 & 0.006 & 0.234 & 0.479 & 0.696 & 0.700 & 0.357 \\
\hline 1997 & 0.001 & 0.148 & 0.289 & 0.400 & 0.399 & 0.218 \\
\hline 1998 & 0.000 & 0.161 & 0.312 & 0.427 & 0.426 & 0.237 \\
\hline 1999 & 0.000 & 0.234 & 0.450 & 0.613 & 0.610 & 0.342 \\
\hline 2000 & 0.000 & 0.116 & 0.224 & 0.306 & 0.304 & 0.170 \\
\hline 2001 & 0.000 & 0.182 & 0.351 & 0.479 & 0.477 & 0.266 \\
\hline 2002 & 0.000 & 0.039 & 0.075 & 0.102 & 0.102 & 0.057 \\
\hline 2003 & 0.000 & 0.289 & 0.558 & 0.763 & 0.760 & 0.423 \\
\hline 2004 & 0.000 & 0.056 & 0.108 & 0.147 & 0.147 & 0.082 \\
\hline 2005 & 0.000 & 0.024 & 0.047 & 0.065 & 0.064 & 0.036 \\
\hline 2006 & 0.000 & 0.000 & 0.001 & 0.001 & 0.001 & 0.001 \\
\hline 2007 & 0.000 & 0.000 & 0.001 & 0.001 & 0.001 & 0.000 \\
\hline 2008 & 0.000 & 0.002 & 0.004 & 0.005 & 0.005 & 0.003 \\
\hline 2009 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2010 & 0.000 & 0.001 & 0.002 & 0.003 & 0.003 & 0.002 \\
\hline 2011 & 0.000 & 0.002 & 0.004 & 0.005 & 0.005 & 0.003 \\
\hline 2012 & 0.000 & 0.019 & 0.036 & 0.049 & 0.049 & 0.027 \\
\hline 2013 & 0.000 & 0.010 & 0.020 & 0.027 & 0.027 & 0.015 \\
\hline 2014 & 0.000 & 0.014 & 0.027 & 0.036 & 0.036 & 0.020 \\
\hline 2015 & 0.000 & 0.011 & 0.021 & 0.029 & 0.029 & 0.016 \\
\hline 2016 & 0.000 & 0.022 & 0.042 & 0.057 & 0.057 & 0.032 \\
\hline 2017 & 0.000 & 0.047 & 0.092 & 0.125 & 0.125 & 0.070 \\
\hline 2018 & 0.000 & 0.135 & 0.261 & 0.356 & 0.354 & 0.198 \\
\hline 2019 & 0.000 & 0.058 & 0.111 & 0.152 & 0.151 & 0.084 \\
\hline 2020 & 0.000 & 0.046 & 0.088 & 0.120 & 0.120 & 0.067 \\
\hline
\end{tabular}
\begin{tabular}{crrrrrr}
\hline & \multicolumn{1}{l}{ Age 0 } & \multicolumn{1}{c}{ Age 1 } & Age 2 & Age 3 & Age 4 & Avg. 1-2 \\
\hline 2021 & 0.001 & 0.357 & 0.689 & 0.943 & 0.940 & 0.523 \\
\hline arith. mean & 0.000 & 0.106 & 0.206 & 0.283 & 0.282 & 0.156 \\
\hline
\end{tabular}

Table 9.5.7 Sandeel Area-4. Fishing mortality (F) at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Age 0, 2nd half & Age 1, 1st half & Age 1, 2nd half & Age 2, 1st half & Age 2, 2nd half & Age 3, 1st half & Age 3, 2nd half & Age 4+, 1st half & Age 4+, 2nd half \\
\hline 1993 & 0.001 & 0.260 & 0.028 & 0.521 & 0.056 & 0.736 & 0.079 & 0.736 & 0.079 \\
\hline 1994 & 0.001 & 0.305 & 0.027 & 0.612 & 0.053 & 0.865 & 0.075 & 0.865 & 0.075 \\
\hline 1995 & 0.000 & 0.094 & 0.000 & 0.189 & 0.000 & 0.267 & 0.001 & 0.267 & 0.001 \\
\hline 1996 & 0.006 & 0.112 & 0.141 & 0.225 & 0.283 & 0.318 & 0.401 & 0.318 & 0.401 \\
\hline 1997 & 0.001 & 0.106 & 0.020 & 0.212 & 0.039 & 0.300 & 0.056 & 0.300 & 0.056 \\
\hline 1998 & 0.000 & 0.124 & 0.005 & 0.249 & 0.010 & 0.352 & 0.015 & 0.352 & 0.015 \\
\hline 1999 & 0.000 & 0.185 & 0.000 & 0.370 & 0.000 & 0.523 & 0.000 & 0.523 & 0.000 \\
\hline 2000 & 0.000 & 0.091 & 0.000 & 0.183 & 0.000 & 0.259 & 0.000 & 0.259 & 0.000 \\
\hline 2001 & 0.000 & 0.142 & 0.002 & 0.285 & 0.004 & 0.403 & 0.006 & 0.403 & 0.006 \\
\hline 2002 & 0.000 & 0.030 & 0.000 & 0.061 & 0.000 & 0.086 & 0.000 & 0.086 & 0.000 \\
\hline 2003 & 0.000 & 0.223 & 0.011 & 0.447 & 0.021 & 0.632 & 0.030 & 0.632 & 0.030 \\
\hline 2004 & 0.000 & 0.044 & 0.000 & 0.087 & 0.001 & 0.124 & 0.001 & 0.124 & 0.001 \\
\hline 2005 & 0.000 & 0.019 & 0.000 & 0.038 & 0.000 & 0.054 & 0.000 & 0.054 & 0.000 \\
\hline 2006 & 0.000 & 0.000 & 0.000 & 0.001 & 0.000 & 0.001 & 0.000 & 0.001 & 0.000 \\
\hline 2007 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.001 & 0.000 & 0.001 & 0.000 \\
\hline 2008 & 0.000 & 0.002 & 0.000 & 0.003 & 0.000 & 0.004 & 0.000 & 0.004 & 0.000 \\
\hline 2009 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2010 & 0.000 & 0.001 & 0.000 & 0.002 & 0.000 & 0.002 & 0.000 & 0.002 & 0.000 \\
\hline 2011 & 0.000 & 0.001 & 0.000 & 0.003 & 0.000 & 0.004 & 0.000 & 0.004 & 0.000 \\
\hline 2012 & 0.000 & 0.015 & 0.000 & 0.029 & 0.000 & 0.041 & 0.000 & 0.041 & 0.000 \\
\hline 2013 & 0.000 & 0.008 & 0.000 & 0.016 & 0.000 & 0.023 & 0.000 & 0.023 & 0.000 \\
\hline 2014 & 0.000 & 0.011 & 0.000 & 0.022 & 0.000 & 0.030 & 0.000 & 0.030 & 0.000 \\
\hline 2015 & 0.000 & 0.009 & 0.000 & 0.017 & 0.000 & 0.025 & 0.000 & 0.025 & 0.000 \\
\hline 2016 & 0.000 & 0.017 & 0.000 & 0.034 & 0.000 & 0.048 & 0.000 & 0.048 & 0.000 \\
\hline 2017 & 0.000 & 0.037 & 0.000 & 0.075 & 0.000 & 0.105 & 0.000 & 0.105 & 0.000 \\
\hline 2018 & 0.000 & 0.106 & 0.000 & 0.213 & 0.000 & 0.302 & 0.000 & 0.302 & 0.000 \\
\hline 2019 & 0.000 & 0.045 & 0.000 & 0.090 & 0.000 & 0.128 & 0.000 & 0.128 & 0.000 \\
\hline 2020 & 0.000 & 0.036 & 0.000 & 0.072 & 0.000 & 0.101 & 0.000 & 0.101 & 0.000 \\
\hline 2021 & 0.001 & 0.274 & 0.017 & 0.549 & 0.034 & 0.777 & 0.047 & 0.777 & 0.047 \\
\hline \begin{tabular}{l}
arith. \\
mean
\end{tabular} & 0.000 & 0.079 & 0.009 & 0.159 & 0.017 & 0.225 & 0.024 & 0.225 & 0.024 \\
\hline
\end{tabular}

Table 9.5.8 Sandeel Area-4. Natural mortality (M) at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Age 0, 2nd half & Age 1, 1st half & Age 1, 2nd half & Age 2, 1st half & Age 2, 2nd half & Age 3, 1st half & Age 3, 2nd half & Age 4+, 1st half & Age 4+, 2nd half \\
\hline 1993 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 1994 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 1995 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 1996 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 1997 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 1998 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 1999 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2000 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2001 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2002 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2003 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2004 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2005 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2006 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2007 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2008 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2009 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2010 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2011 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2012 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2013 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2014 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2015 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2016 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2017 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2018 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2019 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2020 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline 2021 & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline \begin{tabular}{l}
arith. \\
mean
\end{tabular} & 1.14 & 0.767 & 0.592 & 0.602 & 0.488 & 0.431 & 0.392 & 0.398 & 0.378 \\
\hline
\end{tabular}

Table 9.5.9 Sandeel Area-4. Stock numbers (millions). Age 0 at start of 2 nd half-year, age \(1+\) at start of the year.
\begin{tabular}{rrrrrr}
\hline & \multicolumn{1}{l}{ Age 0 } & \multicolumn{1}{l}{ Age 1 } & Age 2 & Age 3 & \multicolumn{1}{c}{ Age 4 } \\
\hline 1993 & 118989 & 25765 & 23897 & 7791 & 1483 \\
\hline 1994 & 233754 & 38010 & 4965 & 4515 & 1816 \\
\hline 1995 & 62359 & 74674 & 7008 & 858 & 1100 \\
\hline 1996 & 329020 & 19943 & 17455 & 1950 & 676 \\
\hline 1997 & 93616 & 104596 & 3976 & 3531 & 569 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Age 0} & Age 1 & Age 2 & Age 3 & Age 4 \\
\hline 1998 & 42109 & 29915 & 23698 & 1039 & 1269 \\
\hline 1999 & 225520 & 13464 & 6752 & 6146 & 721 \\
\hline 2000 & 182791 & 72126 & 2876 & 1568 & 1796 \\
\hline 2001 & 23268 & 58460 & 16913 & 805 & 1170 \\
\hline 2002 & 79947 & 7441 & 13001 & 4259 & 593 \\
\hline 2003 & 154617 & 25568 & 1854 & 4113 & 1966 \\
\hline 2004 & 11572 & 49427 & 5200 & 390 & 1398 \\
\hline 2005 & 6949 & 3701 & 12154 & 1601 & 720 \\
\hline 2006 & 4248 & 2222 & 933 & 3932 & 980 \\
\hline 2007 & 6307 & 1359 & 571 & 313 & 2176 \\
\hline 2008 & 19031 & 2017 & 349 & 192 & 1138 \\
\hline 2009 & 276709 & 6086 & 517 & 117 & 605 \\
\hline 2010 & 47595 & 88497 & 1564 & 174 & 330 \\
\hline 2011 & 35026 & 15222 & 22718 & 525 & 228 \\
\hline 2012 & 27988 & 11202 & 3905 & 7616 & 334 \\
\hline 2013 & 18201 & 8951 & 2836 & 1275 & 3357 \\
\hline 2014 & 254612 & 5821 & 2281 & 938 & 2057 \\
\hline 2015 & 34055 & 81430 & 1479 & 751 & 1318 \\
\hline 2016 & 73102 & 10892 & 20740 & 489 & 913 \\
\hline 2017 & 90992 & 23379 & 2751 & 6741 & 605 \\
\hline 2018 & 23107 & 29101 & 5787 & 859 & 2915 \\
\hline 2019 & 200668 & 7390 & 6722 & 1572 & 1271 \\
\hline 2020 & 62418 & 64177 & 1815 & 2064 & 1122 \\
\hline 2021 & 46546 & 19962 & 15909 & 568 & 1286 \\
\hline 2022 & & 14876 & 3834 & 2987 & 369 \\
\hline
\end{tabular}

Table 9.5.10 Sandeel Area-4. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.
\begin{tabular}{rrrrrr}
\hline & Recruits (thousands) & TSB (tonnes) & SSB (tonnes) & Yield (tonnes) & Mean F \(_{1-2}\) \\
\hline 1993 & 119043556 & 618393 & 366957 & 132599 & 0.432 \\
\hline 1994 & 233805469 & 571687 & 145801 & 158690 & 0.498 \\
\hline 1995 & 62332904 & 772094 & 120090 & 52591 & 0.142 \\
\hline 1996 & 329142057 & 382202 & 228662 & 158490 & 0.381 \\
\hline 1997 & 93642978 & 779492 & 72330 & 58446 & 0.189 \\
\hline 1998 & 42118600 & 459550 & 226387 & 58746 & 0.195 \\
\hline 1999 & 225538177 & 268367 & 169397 & 53334 & 0.277 \\
\hline 2000 & 182817693 & 354099 & 69564 & 37714 & 0.137 \\
\hline 2001 & 23277552 & 323825 & 103881 & 47902 & 0.217 \\
\hline 2002 & 79957036 & 156276 & 111302 & 12736 & 0.046 \\
\hline 2003 & 154545638 & 184694 & 63831 & 63731 & 0.351 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Recruits (thousands)} & TSB (tonnes) & SSB (tonnes) & Yield (tonnes) & Mean \(\mathrm{F}_{1-2}\) \\
\hline 2004 & 11570855 & 259656 & 53210 & 6882 & 0.066 \\
\hline 2005 & 6948247 & 111495 & 79937 & 1557 & 0.029 \\
\hline 2006 & 4248175 & 95431 & 80178 & 0 & 0.000 \\
\hline 2007 & 6305924 & 50393 & 42702 & 0 & 0.000 \\
\hline 2008 & 19038999 & 32923 & 22652 & 0 & 0.002 \\
\hline 2009 & 276577049 & 54412 & 17771 & 0 & 0.000 \\
\hline 2010 & 47583661 & 475943 & 19456 & 0 & 0.001 \\
\hline 2011 & 35039971 & 286284 & 169736 & 0 & 0.002 \\
\hline 2012 & 27979985 & 154307 & 101114 & 2585 & 0.022 \\
\hline 2013 & 18201235 & 149987 & 96761 & 5225 & 0.012 \\
\hline 2014 & 254548005 & 126895 & 79301 & 4314 & 0.016 \\
\hline 2015 & 34038405 & 399110 & 40905 & 4392 & 0.013 \\
\hline 2016 & 73075229 & 291562 & 193881 & 6188 & 0.025 \\
\hline 2017 & 90966330 & 305129 & 121905 & 18474 & 0.056 \\
\hline 2018 & 23115178 & 285935 & 107474 & 42296 & 0.160 \\
\hline 2019 & 200635422 & 159464 & 100811 & 6651 & 0.068 \\
\hline 2020 & 62395268 & 481854 & 50312 & 20101 & 0.054 \\
\hline 2021 & 46548252 & 288685 & 145656 & 51882 & 0.437 \\
\hline 2022 & & & 72766 & & \\
\hline arith. mean & 96038438 & 306212 & 109151 & 34673 & 0.132 \\
\hline geo. mean & 54570282 & & & & \\
\hline \begin{tabular}{l}
th. mean for \\
o. mean for
\end{tabular} & 2021 & & & & \\
\hline
\end{tabular}

Table 9.5.11 Sandeel Area-4. Input to forecast.
\begin{tabular}{llllrr}
\hline & Age 0 & Age 1 & Age 2 & Age 3 & Age 4 \\
\hline Stock numbers(2022) & 55898.143 & 14875.6 & 3834.27 & 2986.51 & 368.905 \\
\hline Exploitation pattern 1st half & & 0.274 & 0.549 & 0.777 & 0.777 \\
\hline Exploitation pattern 2nd half & 0.001 & 0.017 & 0.034 & 0.047 & 0.047 \\
\hline Weight in the stock 1st half & & 6.292 & 9.522 & 12.802 & 17.445 \\
\hline Weight in the catch 1st half & & 6.292 & 9.522 & 12.802 & 17.445 \\
\hline weight in the catch 2nd half & 0.408 & 7.693 & 10.738 & 14.556 & 17.601 \\
\hline Proportion mature(2022) & 0.000 & 0.000 & 0.790 & 0.980 & 1.000 \\
\hline Proportion mature(2023) & 0.000 & 0.000 & 0.790 & 0.980 & 1.000 \\
\hline Natural mortality 1st half & & 0.767 & 0.602 & 0.431 & 0.398 \\
\hline Natural mortality 2nd half & 1.140 & 0.592 & 0.488 & 0.392 & 0.378 \\
\hline
\end{tabular}

Table 9.5.12 Sandeel Area-4. Short term forecast (000 tonnes).
Basis: \(\mathrm{Fsq}=\mathrm{F}(2021)=0.4368\); Yield(2021)=51.883; Recruitment(2021)=46.548252; Recruitment(2022)=geometric mean (GM 2011-2020)=55.898143 billion; SSB(2022)=72.766
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline F multiplier & Basis & F(2022) & Catch(2022) & SSB(2023) & \[
\begin{aligned}
& \text { \%SSB } \\
& \text { change* }
\end{aligned}
\] & \%TAC change** \\
\hline 0 & \(\mathrm{F}=0\) & 0.000 & 0.001 & 70.783 & -3 \% & -100 \% \\
\hline 3.25 & Fsq*3.25 & 1.418 & 103.545 & 15.406 & -79\% & 100 \% \\
\hline 1 & Fsq*1 & 0.437 & 49.577 & 41.872 & -42\% & -4\% \\
\hline 2 & Fsq*2 & 0.874 & 79.937 & 26.093 & -64\% & 54 \% \\
\hline 3 & Fsq*3 & 1.310 & 99.723 & 17.017 & -77\% & 92 \% \\
\hline 4 & Fsq*4 & 1.747 & 113.364 & 11.516 & -84\% & 119 \% \\
\hline 5 & Fsq*5 & 2.184 & 123.223 & 8.016 & -89\% & 138 \% \\
\hline 6 & Fsq* 6 & 2.621 & 130.628 & 5.697 & -92\% & 152 \% \\
\hline 7 & Fsq*7 & 3.058 & 136.362 & 4.110 & -94\% & 163 \% \\
\hline No conversion for calculation of MSY catch & & NA & NA & NA & & \\
\hline
\end{tabular}
*SSB in \(\mathbf{2 0 2 3}\) relative to SSB in 2022
**TAC in 2022 relative to catches in 2021


Figure 9.1.1 Sandeel in ICES Subarea 4 and Div. 3.a. Sandeel management areas.



Figure 9.1.2 Sandeel in ICES Subarea 4 and Div. 3.a. Catch by ICES rectangles 2006-2021 (upper, red circles). Number of samples per ICES square in commercial catches (lower, blue circles). Area of the circles is proportional to catch by rectangle.


Figure 9.1.3 Sandeel in ICES Subarea 4 and Div. 3.a. Total catches by year and area.


Figure 9.1.4 Sandeel in ICES Subarea 4 and Div. 3.a. Danish survey catches by haul for 0 -group. Area of the circles is proportional to catch number.


Figure 9.1.5 Sandeel in ICES Subarea 4 and Div. 3.a. Danish survey catches by haul for 1-group. Area of the circles is proportional to catch number.


Figure 9.1.6 Sandeel in ICES Subarea 4 and Div. 3.a. Norwegian sandeel management areas. There are 6 main areas consisting of subareas \(a\) and \(b\). Sub Area3 consist of three subareas \(a, b\), and \(c\).


Figure 9.2.1 Sandeel Area-1r. Catch numbers, proportion at age.


Figure 9.2.2 Sandeel Area-1r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.2.3 Sandeel Area-1r. CPUE and effort.


Figure 9.2.4 Sandeel Area-1r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.2.5 Sandeel Area-1r. Dredge survey index timeline.


Figure 9.2.6 Sandeel Area-1r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE). "Red" dots show a positive residual.


Area-1r S:2

 residual.

Area-1r: Hockey stick, 1983:2021


Figure 9.2.8 Sandeel Area-1r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines \(\mathbf{=} \mathbf{2}\) standard deviations. The area within the light blue lines can be seen as the \(95 \%\) confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.2.9 Sandeel Area-1r. Retrospective analysis.


Figure 9.2.10 Sandeel Area-1r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.2.11 Sandeel Area-1r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.2.12 Sandeel Area-1r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.





RTM 2007-2021


Figure 9.2.14 Sandeel Area-1r. RTM survey. Survey CPUE at age residuals ( \(\log\) (observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Figure 9.3.1 Sandeel Area-2r. Catch numbers, proportion at age.

Age_0 Age_1 Age_2 Age_3 Age_4

Figure 9.3.2 Sandeel Area-2r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.3.3 Sandeel Area-2r. CPUE and effort.


Figure 9.3.4 Sandeel Area-2r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.3.5 Sandeel Area-2r. Dredge survey index timeline.

Dredge survey 2010-2021


Figure 9.3.6 Sandeel Area-2r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Area-2r S:2


Figure 9.3.7 Sandeel Area-2r. Catch at age residuals (log(observed CPUE)- \(\log (e x p e c t e d ~ C P U E)) . ~ " R e d " ~ d o t s ~ s h o w ~ a ~ p o s i-~\) tive residual.

Area-2r: Hockey stick, 1983:2021


Figure 9.3.8 Sandeel Area-2r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines \(\mathbf{=} \mathbf{2}\) standard deviations. The area within the light blue lines can be seen as the \(95 \%\) confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.3.9 Sandeel Area-2r. Retrospective analysis.


Figure 9.3.10 Sandeel Area-2r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.3.11 Sandeel Area-2r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.3.12 Sandeel Area-2r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.



Figure 9.4.1 Sandeel Area-3r. Catch numbers, proportion at age.


Figure 9.4.2 Sandeel Area-3r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.4.3 Sandeel Area-3r. CPUE and effort.


Figure 9.4.4 Sandeel Area-3r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.4.5 Sandeel Area-3r. Dredge survey index timeline.


Figure 9.4.6 Sandeel Area-3r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Area-3r S:2


Figure 9.4.7 Sandeel Area-3r. Catch at age residuals (log(observed CPUE)- \(\log (e x p e c t e d ~ C P U E)) . ~ " R e d " ~ d o t s ~ s h o w ~ a ~ p o s i-~\) tive residual.

Area-3r: Hockey stick, 1986:2021


Figure 9.4.8 Sandeel Area-3r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines \(\mathbf{=} \mathbf{2}\) standard deviations. The area within the light blue lines can be seen as the \(95 \%\) confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.4.9 Sandeel Area-3r. Retrospective analysis.


Figure 9.4.10 Sandeel Area-3r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.4.11 Sandeel Area-3r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.4.12 Sandeel Area-3r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 9.4.13 Sandeel Area-3r. Stock summary.


Figure 9.4.14 Sandeel Area-3r. Acoustic survey index timeline.


Figure 9.4.15 Sandeel Area-3r. Norwegian acoustic survey. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Figure 9.4.16 Sandeel Area-3r. Internal consistency by age of the acoustic survey. Red dot indicates the most recent data point.


Figure 9.5.1 Sandeel Area-4. Catch numbers, proportion at age.


Figure 9.5.2 Sandeel Area-4. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).

Area-4 Sandeel


Figure 9.5.3 Sandeel Area-4. CPUE and effort.


Figure 9.5.4 Sandeel Area-4. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.5.5 Sandeel Area-4. Dredge survey index timeline.


Figure 9.5.6 Sandeel Area-4. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Figure 9.5.7 Sandeel Area-4. Catch at age residuals (log(observed CPUE)- \(\log (\) expected CPUE)). "Red" dots show a positive residual.

Area-4: Hockey stick, 1993:2021


Figure 9.5.8 Sandeel Area-4. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines \(\mathbf{=} \mathbf{2}\) standard deviations. The area within the light blue lines can be seen as the \(95 \%\) confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.5.9 Sandeel Area-4. Retrospective analysis.


Figure 9.5.10 Sandeel Area-4. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.5.11 Sandeel Area-4. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.5.12 Sandeel Area-4. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 9.5.13 Sandeel Area-4. Stock summary.

Old Dredge survey 1999-2003

9.5.1 Sandeel Area-4. Old dredge survey. Survey CPUE at age residuals ( \(\log (\) observed CPUE)- \(\log (e x p e c t e d ~ C P U E)) . ~ " R e d " ~\) dots show a positive residual.

\section*{10 Sprat in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea)}

\subsection*{10.1 The Fishery}

\subsection*{10.1.1 ACOM advice applicable to 2020 and 2021}

There have never been any explicit management objectives for this stock. Last year, the advised TAC (July 2021 to June 2022) was set to 106715 t for sprat in Subarea 4 and Division 3.a. The 2021 herring bycatch quotas were 7750 t for the North Sea and 6659 t for Division 3.a. During the WKSPRAT benchmark meeting in 2018, sprat in Subarea 4 and Division 3.a were merged into one stock assessment model. Also, several other modifications were made to the configurations of the assessment model (see (WKSPRAT: ICES, 2018) for further details).

\subsection*{10.1.2 Catches in 2021}

Catch statistics for 1997-2021 for sprat in the North Sea by area and country are presented in Table 10.1.1. Catch data prior to 1996 are considered less reliable due to uncertainty of potential bycatches of North Sea herring (see Stock Annex). The small catches of sprat from the fjords of Norway are not included in the catch tables (Table 10.1.1-10.1.2). The WG estimate of total catches for the North Sea and Division 3.a in 2021 were 80 761t (total official catches amounted to 81807 t ). This is a \(56 \%\) decrease compared to 2020 . The Danish catches represent \(86 \%\) of the total catches.

The spatial distribution of landings was similar to 2020, although smaller catches were seen (Figure 10.1.1). A very low percentage \((\sim 1 \%\) in 2021) of the catches were landed in the first and second quarter of 2021 (Table 10.1.2).

\subsection*{10.1.3 Regulations and their effects}

Most sprat catches are taken in an industrial fishery where catches are limited by herring bycatch quantities. Bycatches of herring are practically unavoidable except in years with high sprat abundance or low herring recruitment. Bycatch is especially considered to be a problem in area 4.c. This led to the introduction of a closed area (sprat box) to ensure that sprat catches were not taken close to the Danish west coast where large bycatches were expected.

ICES evaluated the effectiveness of the sprat box in 2017 (ICES, 2017). The evaluation showed that fishing inside the sprat box would be expected to reduce unwanted catches of herring by weight but not in number and concluded that other management measures are sufficient to control herring bycatch. The sprat box was removed in 2017.

The Norwegian vessels have a maximum vessel quota of \(550 t\) when fishing in the North Sea. A herring bycatch of up to \(10 \%\) in biomass is allowed in Norwegian sprat catches.

\subsection*{10.1.4 Changes in fishing technology and fishing patterns}

No major changes in fishing technology and fishing patterns for the sprat fisheries in the North Sea have been reported. From about 2000, Norwegian pelagic trawlers were licensed to take part in the sprat fishery in the North Sea. In the first years, the Norwegian catches were mainly taken by purse-seine, and the catches taken by trawl were low. In recent years, the share of the total Norwegian catches taken by trawl has increased (2020: 92\% taken by trawl).

\subsection*{10.2 Biological composition of the catch}

Only data on bycatch from the Danish fishery were available to the Working Group (Table 10.2.1). The Danish sprat fishery was conducted with a \(7.2 \%\) and \(10.7 \%\) bycatch of herring in 2021 in the North Sea and Division 3.a, respectively. The total amount of herring caught as bycatch in the sprat fishery has mostly been less than \(10 \%\). From 1 \({ }^{\text {st }}\) of April 2020 the Danish methodology behind the by-catch estimation in the fisheries for reduction changed. Before, the Danish fishery control regularly sampled the landings for reduction, and afterwards a species composition was estimated per month, square and fishery. Now, each and every landing for reduction into Denmark is subsampled by the buyer and the estimated species composition is reported directly in the sale slips. Many of the buyers use independent companies, \(3^{\text {rd }}\) party, for sampling.

The estimated quarterly landings at age in numbers for the period 1974-2021 are presented in Table 10.2.2. In the model year 2021 (1 July 2021-30 June 2022), one-year old sprat contributed \(68 \%\) of the total landings, which is close to the 1990-2020 average ( \(66 \%\) ). 2-year-olds contributed \(20 \%\) in 2021 (model year), which is above the 1990-2020 average ( \(15 \%\) ). 0-year-olds contributed \(8 \%\) of the total landings, which is lower than the 1990-2020 average ( \(16 \%\) ).

Denmark and Sweden provided age data of commercial landings in 2021 (Table 10.2.4). Quarter 1,3 and 4 were covered. Quarter 1 in 2021 had very low catches and low number of samples. The sample data were used to raise the landings data from the North Sea, Skagerrak, and Kattegat. The landings by Germany (3572t), the Netherlands (139 t), UK-Scotland ( 105 t ), UK-England and Wales ( 33 t ) and Belgium ( \(<1 \mathrm{t}\) ) were unsampled and Norway didn't catch the stock in 2021. The sampling level has been greatly improved since 2014 because of the implementation of a sampling programme for collecting haul-based samples from the Danish sprat fishery. However, the sampling level in 2020 (model year) was substantially reduced with only 0.6 samples taken per 2000 t . The low level of sampling in 2020 was caused by a not fully implemented change in the Danish sampling program. Since the introduction of the new by-catch estimation method in 2020, mentioned above, the Danish institute has been able to get samples from most of the buyers / \(3^{\text {rd }}\) party companies. Therefore, the Danish institute introduced a new sampling strategy in 2020, where vessels above 24 meters are sampled with a higher frequency than smaller vessels. Vessels above 24 meters are still being encouraged to deliver self-samples, but if not, a \(3^{\text {rd }}\) party sample is used as a substitute. All samples from vessels below 24 meters comes from the \(3^{\text {rd }}\) party companies. The new sampling strategy has secured a high level of sampling in 2021.

The number of samples used for the assessment, both length and age-length samples, is shown in Table 10.2.4-5 and Figure 10.2.1.

\subsection*{10.3 Fishery Independent Information}

\subsection*{10.3.1 IBTS Q1 and Q3}

Table 10.3.1 and Figure 10.3.1 and 10.3.2 give the time-series of IBTS indices by age (calculated using a delta-GAM model formulation; see WKSPRAT report (2018) for further details). The data
source is the IBTS Q1 data from 1983-2022. The index for IBTS Q1 1-year old in 2021 (age-0 in the model and the table, serving as a recruitment index) was \(35 \%\) below average and \(45 \%\) lower than last year's index. There has been a tendency for an increase in the IBTS age 0 in the time-series since 1990. Furthermore, older age-groups (i.e. age-1 and age-2) decreased by \(>45 \%\) compared to the year before. Note that due to both rough weather and outbreaks of Covid-19, IBTS Q1 survey was limited, which affected the sampling coverage. Thus, the coverage was reduced drastically for some parts of the North Sea. Although, it is not expected to have any significant effect for the sprat assessment, a \(15 \%\) increase in CV for the index is reported compared to last year. Spatial pattern in residuals was checked and did not raise any concerns. Furthermore, the model is designed to handle such issues to some extent. IBTS Q3 survey indices were also used in the assessment for older age-groups, and the 2021 values for all age-groups (i.e. age-1, age-2 and age-3+) were more than \(50 \%\) lower compared to 2020.

\subsection*{10.3.2 Acoustic Survey (HERAS)}

Abundance indices were provided by WGIPS (ICES, 2022) (see Section 1.4.2). The abundance indices for Subarea 4 and Division 3.a were summed (Table 10.3.2 and Figure 10.3.2b). The 2021 values were \(22 \%\) higher, \(61 \%\) lower, and \(27 \%\) lower (age- 1 , age- 2 , and age- 3 , respectively) compared to the 2020-values.

\subsection*{10.4 Mean weights-at-age and maturity-at-age}

Mean weights-at-age in catches are given in Table 10.2.3 and Figure 10.4.1. Mean weights in model season 1 and 2 (S1 and S2; quarter 3 and 4), where most of the catches are taken, show a declining trend over the past decade. In 2019, the mean weights of age-1 and age-3 fish in S1 were the lowest observed for nearly two decades but since 2020 this decline was arrested. Weights were almost identical for all age-groups S1 compared to 2020. In contrast weights for all age-groups declined in S2 (Figure 10.4.1).

Proportion of mature fish was derived from IBTSQ1, following the benchmark procedure. Longterm average maturity ogives were used in the assessment model ( \(0.0,0.41,0.87\), and 0.95 for age-0 to age-3+). More details about the maturity staging are given in Section 4.5.3.2 in the WKSPRAT 2013 report (ICES, 2013).

\subsection*{10.5 Recruitment}

The IBTS Q1 age-1 index (age-0 in the model) (Table 10.3.1) is used as a recruitment index for this stock. The 2022 value, indicative of the 2021 recruitment, was \(35 \%\) below average, corresponding to a \(45 \%\) decrease of the recruitment index in the previous year. The recruitment estimated by the model for 2021 is \(19 \%\) lower than the recruitment in 2020 and \(43 \%\) below the 20112020 geometric mean (Table 10.6.4). At the most recent benchmark, it was decided to implement a power model (directly within the assessment model) to the age-0 IBTS Q1 index to dampen the effect of very high index values. This was done to reduce the retrospective bias on recruitment (see WKSPRAT 2018 for further details).

\subsection*{10.6 Stock Assessment}

The stock assessment was benchmarked in November 2018 (WKSPRAT: ICES, 2018). During the WKSPRAT benchmark meeting in 2018, sprat in Subarea 4 and Division 3.a were merged into one stock assessment model. Also, several other modifications were made to the configuration of the assessment model (see WKSPRAT report (ICES, 2018) for further details).

In-year advice is the only possible type of advice for this short-lived species with catches dominated by 1- and 2-year-old fish. This, however, requires information about incoming 1-year old fish. To meet this requirement and to come up with a model that logically matches the natural life cycle of sprat, the annual time-step in the model was shifted, relative to the calendar year, to a time-step going from July to June (see text table below). SSB and recruitment was estimated at 1 July. In figures and tables with assessment output and input, the years refer to the shifted model year (July to June) and in each figure and table it is noted whether model year or calendar year apply (when the model year is given the year refers to the year at the beginning of the model year; for example: 2000 refers to the model year 1 July 2000 to 30 June 2001). The following schematic illustrates the shifted model year relative to the calendar year and provides an overview of the timing of surveys etc.
\begin{tabular}{cccc}
\hline Model year & Calendar year & \\
\hline 2000 & Season 1 & 2000 & Quarter 3 \\
\hline 2000 & Season 2 & Season 3 & Quarter 4 \\
\hline 2000 & Season 4 & 2000 & Quarter 1 \\
\hline 2000 & & 2001 & Quarter 2 \\
\hline
\end{tabular}


\subsection*{10.6.1 Input data}

\subsection*{10.6.1.1 Catch data}

Information on catch data are provided in Tables 10.1.1-2 and in Figures 10.1.1 and 10.6.1. Sampling effort is presented in Table 10.2.5 and Figure 10.2.1.

Since catches in quarter 2 (season 4 in the model) are often less than 5000 tonnes, these are poorly estimated by the model and the number of samples from these catches are low (sometimes no samples). Furthermore, at the time of the assessment working group, S 4 catches are unknown. Therefore, during the latest benchmark it was decided to move S 4 catches into S 1 in the following model year. In 2022, only 478 t were taken in quarter 1 and no age samples taken. To avoid the resulting high uncertainty in the age distribution of these catches, they were transferred to 2021 quarter 4, leading to a total catch of 15617 t in this quarter.

\subsection*{10.6.1.2 Weight-at-age}

The mean weights at age observed in the catch are given in Table 10.2.3 and Figure 10.4.1 by season. It is assumed that the mean weights in the stock are the same as in the catch. The mean weight at age of S1 that is used to calculated SSB.

\subsection*{10.6.1.3 Surveys}

Three surveys were included (Tables 10.3.1-3), IBTS Q1 (1975-present), IBTS Q3 (1991-present) and HERAS (Q3) (2003-present). 0-group (young-of-the-year) sprat is unlikely to be fully recruited by the time of IBTS Q3 and HERAS, and for this reason these age indices were excluded from the model.

\subsection*{10.6.1.4 Natural mortality}

New natural mortalities were available from the 2020 North Sea key run from WGSAM (ICES, 2017). The major changes were changes to mean weight of whiting leading to lower mortalities particularly in the early part of the time series. HAWG reviewed stock assessments based on the old and new M's. The new mortalities reduced AIC of the model from 865 to 859 , indicating a substantially improved fit. CVs for the catches decreased by up to \(3 \%\) while survey CVs changed by -4 to \(+5 \%\) (average \(+0.2 \%\) ). The CV on the terminal SSB increased by \(9 \%\). For comparison, the change from the 2019 to the 2020 assessment, both using old mortalities, was an increase in CVs for the catches of up to \(4 \%\) while survey CVs changed by -5 to \(+20 \%\) (average \(+6 \%\) ). The CV on the terminal SSB decreased by \(20 \%\) ). In summary, the AIC of the assessment using new mortalities was substantially improved and changes to estimated parameters were within the range observed in annual updates. The change in average recruitment, SSB and F over the past 20 years were \(2 \%,-4 \%\) and \(+1 \%\) (new compared to old). The change to selection pattern was between -2 and \(5 \%\) for age groups 1 and 2 (the F-bar ages). The group inspected the stock-recruitment plot and found no substantial changes. According to benchmark guidelines, no substantial changes in stock parameters or stock-recruitment plot would lead to the adoption of new mortalities in the assessment. However, the recent guidance from ACOM LS requires that reference points are re-estimated and an inter-benchmark process conducted when new M's are introduced. Given the strict time schedule for advice on this stock and the fact that the reference points according to the benchmark are estimated in a full (time consuming) MSE model, the group did not consider it feasible to conduct an inter-benchmark in time for the 2021 advice. Further, the group felt that they could not guarantee that using new mortalities would not lead to changes in reference points if these were re-estimated. Therefore, the old mortalities were used in the assessments from 2021 and onwards. Variable mortality is applied as three-year averages up till 2015, and after this the average mortality for 2013-2015 is used. Natural mortalities used in the model are given in Table 10.6.1.

\subsection*{10.6.1.5 Proportion mature}

Proportion of mature fish was derived from IBTSQ1, following the benchmark procedure. Longterm average maturity ogives were used in the assessment model ( \(0.0,0.41,0.87\), and 0.95 for age-0 to age-3+). More details about the maturity staging are given in Section 4.5.3.2 in the WKSPRAT 2013 report (ICES, 2013).

\subsection*{10.6.2 Stock assessment model}

The assessment was made using SMS (Lewy and Vinther, 2004) with quarterly time-steps (referred to as season S1-S4). Three surveys were included, IBTS Q1 ages \(1-4+\), IBTS Q3 ages \(1-3\) and HERAS (Q3) ages 1-3. 0-group sprat is unlikely to be fully recruited to the IBTSQ3 or HERAS in Q3 and these age indices were excluded from runs. External consistency between IBTS Q1, IBTS Q3 and HERAS can be found in the benchmark report (WKSPRAT2018: ICES, 2018).

The model converged and fitted the catches of the main ages caught in the main seasons reasonably (ages 1-2, seasons 1 and 2, Table 10.6.2). All surveys had low CVs (Table 10.6.2). There were no patterns in the residuals raising concern. Although, there appears to be a periodic cycling (on a decadal time-scale) between positive and negative residuals in the IBTS Q3 survey and the catches (Figures 10.6.2-3). Common CVs were estimated for the groups: 1 to 3-year olds in IBTS Q1 and 2 and 3-year olds in IBTS Q3 and HERAS.

The retrospective analyses showed a tendency to overestimate recruitment ( 5 years Mohn's rho \(=0.27\) ) (Figure 10.6.5). As \(41 \%\) (see 10.6.1.5) of the recruiting year class mature in their first year and thus contributes to the SSB at the end of the year, there is a similar large retrospective pattern in SSB (5-year Mohn's rho \(=0.25\) ). The assessment model was improved with this respect during the last benchmark and Mohn's rho was reduced by roughly a factor of 3 due to the improvement.

The final outputs detailing trends in mean F, SSB and recruitment are given in Figures 10.6.4-7 and Tables 10.6.3-4.

\subsection*{10.7 Reference points}

A Blim of 94000 t (Figure 10.7.1) and \(\mathrm{B}_{\mathrm{pa}}\) of 125000 t were agreed at the most recent benchmark. \(B_{p a}\) is defined as the upper \(90 \%\) confidence interval of \(B_{\lim }\) and calculated based on a terminal SSB CV of 0.173.

\subsection*{10.8 State of the stock}

The sprat stock has a decreasing trend during the last couple of years judging by all the surveys and by the assessment output. The stock has been well above \(B_{p a}\) since 2013 and above Blim since 1991 but is now estimated to be below \(\mathrm{B}_{\mathrm{pa}}\) for the first time in nine years. The current SSB is \(20 \%\) below \(B_{\text {pa }}\). Fishing mortality has fluctuated without a trend, but the F of 2.169 in 2021 was the third highest in the time-series. The advised TAC was based on the predicted catch at F equal to \(\mathrm{F}_{\text {cap }}\) (0.69). A large overshoot of \(\mathrm{F}_{\text {cap }}\) is seen in simulations applying the escapement strategy on very large incoming year classes, and this is the rationale for implementing an \(\mathrm{F}_{\text {cap }}\) as otherwise, the escapement strategy is not precautionary at large stock sizes.

A stock summary from the assessment output can be found in Table 10.6.4 and Figure 10.6.7.

\subsection*{10.9 Short-term projections}

Management strategy evaluations for this stock were made in December 2018 (WKSPRATMSE: ICES, 2018). These evaluations clearly show that the current management strategy (Bescapement) is not precautionary unless an additional constraint is imposed on the fishing mortality (referred to as \(\mathrm{F}_{\text {cap }}\) ). During the WKSPRATMSE (ICES, 2018) 0.69 was found to be the optimal \(\mathrm{F}_{\text {cap }}\) value (from both a full MSE and a shortcut MSE, see the WKSPRATMSE report (WKSPRATMSE: ICES, 2018) for further details), which is a revision of the previous value of 0.7. This means, that the fishing mortality ( \(\mathrm{Fbar}_{\mathrm{b}}(1-2)\) ) derived from the Bescapement strategy, should not exceed 0.69.

SSB in 2023 is expected to be higher than in 2022 and above the long-term average, and well above \(\mathrm{B}_{\mathrm{pa}}(+45 \%)\). Using the input and assumptions detailed above, the projection for an \(\mathrm{F}=0\) is an SSB in July 2023 of 222210 t (Table 10.9.2). The Fmsy approach prescribes the use of an F value of 0.69 (Fcap, see explanation above) and results in a TAC advice of 69690 t (July 2022-June 2023), which is expected to result in an SSB of 181215 t in July 2023, well above Bpa.

\subsection*{10.10 Quality of the assessment}

The data used within the assessment, the assessment methods and settings were carefully scrutinized during the 2018 benchmark (ICES, 2018). A complete overview of the choices made during the benchmark can be found in the WKSPRAT report (ICES, 2018) and these are also described in the Stock Annex for sprat in Division 3.a and Subarea 4.

The assessment shows medium to high CVs for the catches but low CVs for surveys. The CVs of F, SSB and recruitment are generally low (see Table 10.6.2 and Figure 10.6.4). The model converged and fitted the catches of the main ages caught in the main seasons (the periods with most samples) reasonably well (ages \(1-2\), season 2, Table 10.6.2). The retrospective pattern in SSB and recruitment (5-years Mohn's rho of 0.25 and 0.27 , respectively) is below the advised limit of 0.3 discussed in WKFORBIAS (2019).

There appears to be a systematic pattern in the catch residuals of model season 1 (quarter 3), which remains unexplained.

\subsection*{10.11 Management Considerations}

A management plan needs to be developed for this stock. Sprat is an important forage fish; thus, also multispecies considerations should be made.

The sprat stock in the North Sea is dominated by young fish. The stock size is mostly driven by the recruiting year class. Thus, the fishery in a given year will be dependent on that year's incoming year class.

Industrial fisheries are allocated a bycatch of 8174 t and 6659 t of juvenile herring in 2022 in the North Sea and Division 3.a, respectively. It is important to continue monitoring bycatch of juvenile herring to ensure compliance with this allocation.

\subsection*{10.11.1 Stock units}

After the latest benchmark, sprat in the Subarea 4 and Division 3. a is considered to be one cohesive stock. This is documented in the WKSPRAT report (ICES, 2018). In addition, there are several peripheral areas of the North Sea and Division 3.a where there may be populations of sprat that behave as separate stocks from the main stock. Local depletion of sprat in such areas can be an issue of ecological concern.

\subsection*{10.12 Ecosystem Considerations}

Sprat is an important prey species in the North Sea ecosystem. The influence of the sprat fishery on other fish species and seabirds are at present not documented to be substantial.

In the North Sea, the key predators consuming sprats are included in the stock assessment, using SMS estimates of sprat consumption for each predatory fish stock, and estimates for seabirds though this information is as described under natural mortality not up to date. Impacts of changes in zooplankton communities and consequent changes in food densities for sprats are not included in the assessment, but it may be useful to explore the possibility of including this, or a similar proxy bottom-up driver, in future assessments. However, the effect of changes in productivity is included in the observed quarterly weight-at-age and in the estimated recruitment, as a decline in e.g. available food can lead to lower observed weights and lower estimated recruitment even in the absence of a causal link in the model.

\subsection*{10.13 Changes in the environment}

Temperatures in this area have been increasing over the last few decades. This may have implications for sprat, although the correlation between temperature and recruitment from the model has been found to be low (see WKSPRAT2018: ICES, 2018).

Table 10.1.1. North Sea \& 3.a sprat. Landings (' \(\mathbf{0 0 0} \mathbf{t}\) ) 1998-2021. See ICES CM 2006/ACFM:20 for earlier data. Catch in coastal areas of Norway excluded. Data provided by Working Group members. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 \\
\hline \multicolumn{25}{|l|}{Division 27.4.a} \\
\hline Denmark & & 0.7 & & 0.1 & 1.1 & & * & & * & 0.8 & * & * & & & & & * & * & 0.1 & 0.1 & & * & 0.5 & * \\
\hline Norway & & & & & & & & & & & & * & & * & & & & & & & & 0.1 & * & \\
\hline Sweden & & & & 0.1 & & & & & & & & & & & & & & & & & & & & \\
\hline UK (Scotland) & & & & & & & & & & & & & & 0.5 & & & & & & * & * & & & \\
\hline Germany & & & & & & & & & & & & & & & & & & * & * & & & & & \\
\hline Netherlands & & & & & & & & & & & & & & & & & & * & & & & & & \\
\hline Total & & 0.7 & & 0.2 & 1.1 & & * & & * & 0.8 & * & * & & 0.5 & & & * & * & 0.1 & 0.1 & * & 0.1 & 0.5 & * \\
\hline \multicolumn{25}{|l|}{Division 27.4.b} \\
\hline Denmark & 119.3 & 160.3 & 162.9 & 143.9 & 126.1 & 152.9 & 175.9 & 204.0 & 79.5 & 55.5 & 51.4 & 115.6 & 80.8 & 90.9 & 65.7 & 44.7 & 121.3 & 234.4 & 177.6 & 100.6 & 156.5 & 110.3 & 138.4 & 66.0 \\
\hline Norway & 15.3 & 13.1 & 0.9 & 5.9 & * & & 0.1 & & 0.8 & 3.7 & 1.3 & 4.0 & 8.0 & 0.1 & 6.2 & * & 8.9 & 0.3 & 19.6 & 9.7 & 9.3 & 10.0 & 9.3 & \\
\hline Sweden & 1.7 & 2.1 & & 1.4 & & & & * & & & & 0.3 & 0.6 & 1.1 & 1.8 & 0.1 & 3.9 & 5.5 & 11.7 & 8.1 & 7.6 & 7.5 & 3.5 & 5.9 \\
\hline UK (Scotland) & & 1.4 & & & & & & & & 0.1 & & 2.5 & 1.1 & 1.9 & 0.7 & & & & & & * & 1.3 & 1.7 & * \\
\hline UK (Engl. \& Wales) & & & & & & & & & & & & * & & & & & & & & * & * & & 0.1 & \\
\hline Germany & & & & & & & & & & & & & & 3.3 & 0.5 & 0.6 & 1.5 & 3.1 & 5.4 & 6.0 & 3.7 & 3.4 & 10 & 3.6 \\
\hline Netherlands & & & & & & & & & & & & & & 1.1 & 2.7 & 0.4 & 2.4 & 1.2 & 1.0 & 1.6 & 1.6 & & 0.5 & \\
\hline Faroe Islands & & & & & & & & & & & & & & & & & & & 4.7 & 1.0 & 1.0 & & 1 & \\
\hline Total & 136.3 & 176.9 & 163.8 & 151.2 & 126.1 & 152.9 & 176.0 & 204.1 & 80.3 & 59.3 & 52.7 & 122.4 & 90.4 & 98.4 & 77.5 & 45.8 & 138.0 & 244.6 & 220.0 & 127.0 & 179.7 & 132.6 & 164.7 & 75.5 \\
\hline \multicolumn{25}{|l|}{Division 27.4.c} \\
\hline Denmark & 11.8 & 3.3 & 28.2 & 13.1 & 14.8 & 22.3 & 16.8 & 2.0 & 23.8 & 20.6 & 8.1 & 8.2 & 48.5 & 20.0 & 3.2 & 15.4 & 2.2 & 34.0 & 18.7 & 1.5 & 6.2 & 8.9 & 2.4 & 2.7 \\
\hline Norway & 16.0 & 5.7 & 1.8 & 3.6 & & & & & 9.0 & 2.9 & & 1.8 & 3.2 & 9.9 & 3.0 & 1.7 & 0.1 & 8.8 & 0.6 & & 0.5 & 0.6 & 0.7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 \\
\hline Sweden & & & & & & & & & & & & 0.6 & 0.6 & 0.2 & 0.4 & 1.3 & & 1.2 & 0.4 & & & & & 1.1 \\
\hline UK (Scotland) & & & & & & & & & & & 0.2 & & & 0.4 & & & & & * & & & & 0.7 & 0.1 \\
\hline UK (Engl. \& Wales) & 0.2 & 1.6 & 2.0 & 2.0 & 1.6 & 1.3 & 1.5 & 1.6 & 0.5 & 0.3 & * & * & 0.8 & 0.6 & 0.5 & * & * & * & * & * & 0.1 & 0.2 & 0.1 & * \\
\hline Germany & & & & & & & & & & & & & & * & * & 1.0 & & 0.6 & 0.2 & & & & 0.1 & \\
\hline Netherlands & & 0.2 & & & & & & & & & & & & 4.2 & 1.0 & 0.7 & * & 1.2 & 0.8 & * & 0.7 & & 1.6 & 0.1 \\
\hline Belgium & & & & & & & & & & & & & & * & & * & * & * & * & * & & * & * & * \\
\hline France & & & & & & & & & & & & & & & & & & * & & * & & & & \\
\hline Total & 28.0 & 10.8 & 32.0 & 18.7 & 16.4 & 23.6 & 18.3 & 3.6 & 33.4 & 23.8 & 8.4 & 10.6 & 53.0 & 35.2 & 8.0 & 20.1 & 2.3 & 45.8 & 20.6 & 1.6 & 7.5 & 9.6 & 5.6 & 4.0 \\
\hline \multicolumn{25}{|l|}{Division 27.3.a} \\
\hline Denmark & 11.2 & 17.2 & 12.8 & 20.2 & 13.4 & 10.2 & 14.4 & 31.9 & 7.8 & 9.9 & 5.8 & 6.9 & 8.4 & 8.0 & 8.4 & 1.9 & 16.7 & 11.7 & 6.7 & 1.0 & 2.9 & 3.9 & 9.5 & 0.6 \\
\hline Sweden & 6.2 & 9.3 & 6.4 & 7.6 & 4.3 & 5.5 & 6.5 & 7.7 & 4.4 & 4.2 & 2.4 & 1.6 & 1.4 & 2.0 & 1.5 & 1.1 & 1.5 & 1.3 & 1.1 & 0.2 & 1.1 & 1.7 & 2.4 & 0.7 \\
\hline Germany & & & & & & & & & & & & & & & & & * & & & & * & & & \\
\hline Faroe Islands & & & & & & & & & & & & & & & & & & & * & & & & & \\
\hline Total & 17.4 & 26.5 & 19.2 & 27.7 & 17.7 & 15.7 & 20.9 & 39.6 & 12.2 & 14.1 & 8.2 & 8.5 & 9.8 & 10.0 & 9.9 & 3.0 & 18.3 & 13.0 & 7.9 & 1.2 & 4.0 & 5.6 & 11.9 & 1.3 \\
\hline \multicolumn{25}{|l|}{Total North Sea and Skagerrak-Kattegat} \\
\hline Denmark & 142.3 & 181.5 & 203.9 & 177.3 & 155.4 & 185.4 & 207.1 & 237.9 & 111.2 & 86.7 & 65.4 & 130.7 & 137.7 & 119.0 & 77.4 & 62.1 & 140.2 & 280.1 & 203.1 & 103.3 & 165.6 & 123.1 & 150.9 & 69.3 \\
\hline Norway & 31.3 & 18.8 & 2.7 & 9.5 & * & & 0.1 & & 9.8 & 6.7 & 1.3 & 5.8 & 11.1 & 10.0 & 9.1 & 1.7 & 9.0 & 9.1 & 20.2 & 9.7 & 9.8 & 10.6 & 10 & \\
\hline Sweden & 7.9 & 11.4 & 6.4 & 9.1 & 4.3 & 5.5 & 6.5 & 7.8 & 4.4 & 4.2 & 2.4 & 2.5 & 2.6 & 3.3 & 3.7 & 2.5 & 5.4 & 8.1 & 13.2 & 8.3 & 8.7 & 9.2 & 5.9 & 7.6 \\
\hline UK (Scotland) & & 1.4 & & & & & & & & 0.1 & 0.2 & 2.5 & 1.1 & 2.8 & 0.7 & & & & * & * & * & 1.3 & 2.5 & 0.1 \\
\hline UK (Engl. \& Wales) & 0.2 & 1.6 & 2.0 & 2.0 & 1.6 & 1.3 & 1.5 & 1.6 & 0.5 & 0.3 & * & * & 0.8 & 0.6 & 0.5 & * & * & * & * & * & * & 0.2 & 0.2 & * \\
\hline Germany & & & & & & & & & & & & & & 3.3 & 0.5 & 1.6 & 1.6 & 3.7 & 5.6 & 6.0 & 3.7 & 3.4 & 10.1 & 3.6 \\
\hline Netherlands & & 0.2 & & & & & & & & & & & & 5.3 & 3.7 & 1.1 & 2.4 & 2.4 & 1.8 & 1.6 & 2.3 & & 2.1 & 0.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 \\
\hline Faroe Islands & & & & & & & & & & & & & & & & & & & 4.7 & 1.0 & 1.0 & & 1 & \\
\hline Belgium & & & & & & & & & & & & & & * & & * & * & * & * & * & & * & * & * \\
\hline France & & & & & & & & & & & & & & & & & & * & & * & & & & \\
\hline Total & 181.7 & 214.9 & 215.1 & 197.9 & 161.3 & 192.2 & 215.2 & 247.3 & 125.9 & 97.9 & 69.3 & 141.6 & 153.3 & 144.1 & 95.5 & 68.9 & 158.7 & 303.3 & 248.5 & 129.9 & 191.2 & 147.8 & 182.7 & 80.8 \\
\hline
\end{tabular}

Table 10.1.2. North Sea \& 3.a sprat. Catches (tonnes) by quarter. Catches in coastal areas of Norway excluded. Data for 1996-1999 in ICES CM 2007/ACFM:11.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Quarter & Division 27.4.a & 27.4.b & 27.4.c & 27.3.a & Total \\
\hline \multirow[t]{5}{*}{2000} & 1 & & 18126 & 28063 & & 46189 \\
\hline & 2 & & 1722 & 45 & & 1767 \\
\hline & 3 & & 131306 & 1216 & & 132522 \\
\hline & 4 & & 12680 & 2718 & & 15398 \\
\hline & Total & & 163834 & 32042 & & 195876 \\
\hline \multirow[t]{5}{*}{2001} & 1 & 115 & 40903 & 9716 & & 50734 \\
\hline & 2 & & 1071 & & & 1071 \\
\hline & 3 & & 44174 & 481 & & 44655 \\
\hline & 4 & 79 & 65102 & 8538 & & 73719 \\
\hline & Total & 194 & 151249 & 18735 & & 170177 \\
\hline \multirow[t]{5}{*}{2002} & 1 & 1136 & 2182 & 2790 & & 6108 \\
\hline & 2 & & 435 & 93 & & 528 \\
\hline & 3 & & 70504 & 647 & & 71151 \\
\hline & 4 & & 52942 & 12911 & & 65853 \\
\hline & Total & 1136 & 126063 & 16441 & & 143640 \\
\hline \multirow[t]{2}{*}{2003} & 1 & & 11458 & 7727 & 5217 & 24402 \\
\hline & 2 & & 625 & \[
26
\] & 1397 & 2049 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Quarter & Division 27.4.a & 27.4.b & 27.4.c & 27.3.a & Total \\
\hline \multirow[t]{5}{*}{2012} & 1 & & 81 & 1649 & 4668 & 6399 \\
\hline & 2 & & 2924 & 0 & 909 & 3832 \\
\hline & 3 & & 26779 & 307 & 1631 & 28717 \\
\hline & 4 & & 47765 & 6060 & 2728 & 56553 \\
\hline & Total & & 77549 & 8016 & 9936 & 95501 \\
\hline \multirow[t]{5}{*}{2013} & 1 & & 1281 & 3158 & 1296 & 5734 \\
\hline & 2 & & 32 & 0 & 443 & 474 \\
\hline & 3 & & 25577 & 720 & 211 & 26509 \\
\hline & 4 & & 18892 & 16276 & 943 & 36110 \\
\hline & Total & & 45781 & 20154 & 2893 & 68827 \\
\hline \multirow[t]{5}{*}{2014} & 1 & & 59 & 125 & 384 & 568 \\
\hline & 2 & & 11631 & 3 & 1415 & 13050 \\
\hline & 3 & 1 & 88457 & 1428 & 9622 & 99507 \\
\hline & 4 & 7 & 37851 & 822 & 6905 & 45586 \\
\hline & Total & 8 & 137999 & 2378 & 18327 & 158711 \\
\hline \multirow[t]{2}{*}{2015} & 1 & * & 14816 & 16972 & 1442 & 33230 \\
\hline & 2 & & 16843 & 107 & 619 & 17568 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Quarter & Division 27.4.a & 27.4.b & 27.4.c & 27.3.a & Total \\
\hline & 3 & & 56207 & 165 & 1720 & 58092 \\
\hline & 4 & & 84629 & 15651 & 7349 & 107629 \\
\hline & Total & & 152919 & 23570 & 15683 & 192172 \\
\hline \multirow[t]{5}{*}{2004} & 1 & & 827 & 1831 & 4456 & 7113 \\
\hline & 2 & 7 & 260 & 16 & 1510 & 1793 \\
\hline & 3 & & 54161 & 496 & 4138 & 58794 \\
\hline & 4 & & 120685 & 15937 & 10775 & 147397 \\
\hline & Total & 7 & 175932 & 18280 & 20879 & 215097 \\
\hline \multirow[t]{5}{*}{2005} & 1 & & 11538 & 2457 & 8148 & 22143 \\
\hline & 2 & & 2515 & 123 & 4722 & 7360 \\
\hline & 3 & & 107530 & & 19418 & 126948 \\
\hline & 4 & & 82474 & 1033 & 7296 & 90803 \\
\hline & Total & & 204057 & 3613 & 39584 & 247254 \\
\hline \multirow[t]{5}{*}{2006} & 1 & 47 & 13713 & 33534 & 8105 & 55399 \\
\hline & 2 & & 190 & 8 & 324 & 522 \\
\hline & 3 & & 40051 & 8 & 1440 & 41499 \\
\hline & 4 & 2 & 26579 & 77 & 2335 & 28993 \\
\hline & Total & 49 & 80533 & 33627 & 12204 & 126413 \\
\hline \multirow[t]{5}{*}{2007} & 1 & & 582 & 247 & 2646 & 3475 \\
\hline & 2 & & 241 & 3 & 1291 & 1535 \\
\hline & 3 & & 16603 & & 5357 & 21960 \\
\hline & 4 & 769 & 41850 & 23531 & 4761 & 70911 \\
\hline & Total & 769 & 59276 & 23781 & 14055 & 97881 \\
\hline \multirow[t]{3}{*}{2008} & 1 & & 2872 & 43 & 2890 & 5805 \\
\hline & 2 & & 52 & * & 1017 & 1069 \\
\hline & 3 & & 21787 & & 636 & 22423 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Quarter & Division 27.4.a & 27.4.b & 27.4.c & 27.3.a & Total \\
\hline & 3 & & 124512 & 335 & 6528 & 131375 \\
\hline & 4 & 25 & 88395 & 28375 & 4389 & 121184 \\
\hline & Total & 25 & 244566 & 45789 & 12978 & 303358 \\
\hline \multirow[t]{5}{*}{2016} & 1 & 68 & 18487 & 5969 & 746 & 25250 \\
\hline & 2 & & 8927 & 51 & 669 & 9647 \\
\hline & 3 & * & 158522 & 111 & 4664 & 163297 \\
\hline & 4 & 2 & 34070 & 14466 & 1764 & 50301 \\
\hline & Total & 70 & 220007 & 20596 & 7843 & 248516 \\
\hline \multirow[t]{5}{*}{2017} & 1 & 1 & 3432 & 1220 & 92 & 4745 \\
\hline & 2 & & 1327 & 0 & 33 & 1360 \\
\hline & 3 & * & 92885 & 217 & 227 & 93329 \\
\hline & 4 & 94 & 29310 & 174 & 849 & 30426 \\
\hline & Total & 95 & 126954 & 1611 & 1200 & 129860 \\
\hline \multirow[t]{5}{*}{2018} & 1 & * & 8994 & 1628 & 168 & 10790 \\
\hline & 2 & & 11898 & 0 & 224 & 12122 \\
\hline & 3 & & 112361 & 1 & 1328 & 113690 \\
\hline & 4 & & 46411 & 5922 & 2249 & 54582 \\
\hline & Total & * & 179664 & 7551 & 3969 & 191184 \\
\hline \multirow[t]{5}{*}{2019} & 1 & & 389 & 9592 & 627 & 10609 \\
\hline & 2 & 2 & 3606 & 11 & 379 & 3999 \\
\hline & 3 & 2 & 95829 & 7 & 2249 & 98087 \\
\hline & 4 & 49 & 32750 & 3 & 2296 & 35098 \\
\hline & Total & 53 & 132574 & 9614 & 5551 & 147793 \\
\hline \multirow[t]{3}{*}{2020} & 1 & 3 & 298 & 1076 & 378 & 1746 \\
\hline & 2 & & 19430 & * & 173 & 19603 \\
\hline & 3 & 2 & 120890 & * & 4268 & 125160 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Quarter & Division 27.4.a & 27.4.b & 27.4.c & 27.3.a & Total \\
\hline & 4 & 520 & 24049 & 4489 & 7087 & 36145 \\
\hline & Total & 526 & 164667 & 5566 & 11896 & 182654 \\
\hline 2021 & 1 & 0 & 137 & 236 & 445 & 818 \\
\hline & 2 & * & 326 & 1 & 11 & 338 \\
\hline & 3 & 1 & 63401 & 902 & 57 & 64361 \\
\hline & 4 & 1 & 11601 & 2850 & 791 & 15244 \\
\hline & Total & 2 & 75464 & 3989 & 1305 & 80761 \\
\hline 2022 & 1** & & 81 & & 330 & 412 \\
\hline & & & & & & \\
\hline
\end{tabular}
* \(<0.5\) t
** Until the 1 st of March

Table 10.2.1. North Sea \& 3.a sprat. Species composition in Danish sprat fishery in tonnes and percentage of the total catch. Left: North Sea, right: Division 3.a.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Year & Sprat & Herring & Horse mack & Whiting & Haddock & Mackerel & Cod & Sandeel & Other & Total & & Year & Sprat & Herring & Horse mack & Whiting & Haddock & Mackerel & Cod & Sandeel & Other & Total \\
\hline t & 1998 & 129315 & 11817 & 573 & 673 & 6 & 220 & 11 & 2174 & 1187 & 145978 & t & 1998 & 9143 & 3385 & 230 & 467 & 54 & 0 & 49 & 7 & 2866 & 16202 \\
\hline t & 1999 & 157003 & 7256 & 413 & 1088 & 62 & 321 & 7 & 4972 & 635 & 171757 & t & 1999 & 16603 & 8470 & 138 & 1026 & 210 & 5 & 75 & 3337 & 2896 & 32760 \\
\hline t & 2000 & 188463 & 11662 & 3239 & 2107 & 66 & 766 & 4 & 423 & 1911 & 208641 & t & 2000 & 12578 & 8034 & 5 & 1062 & 308 & 8 & 52 & 13 & 3556 & 25617 \\
\hline t & 2001 & 136443 & 13953 & 67 & 1700 & 223 & 312 & 4 & 17020 & 1141 & 170862 & t & 2001 & 18236 & 8196 & 75 & 1266 & 50 & 13 & 35 & 4281 & 1271 & 33423 \\
\hline t & 2002 & 140568 & 16644 & 2078 & 2537 & 27 & 715 & 0 & 4102 & 801 & 167471 & t & 2002 & 11451 & 12982 & 21 & 1164 & 3 & 6 & 30 & 606 & 2280 & 28541 \\
\hline t & 2003 & 172456 & 10244 & 718 & 1106 & 15 & 799 & 11 & 5357 & 3504 & 194210 & t & 2003 & 8182 & 4928 & 340 & 252 & 4 & 4 & 4 & 1 & 56714 & 14282 \\
\hline t & 2004 & 179944 & 10144 & 474 & 334 & 0 & 4351 & 3 & 3836 & 1821 & 200906 & t & 2004 & 13374 & 4620 & 97 & 976 & 18 & 24 & 27 & 116 & 2155 & 21408 \\
\hline t & 2005 & 201331 & 21035 & 2477 & 545 & 4 & 1009 & 16 & 6859 & 974 & 234251 & t & 2005 & 30157 & 6171 & 244 & 871 & 63 & 18 & 20 & 746 & 1758 & 40047 \\
\hline t & 2006 & 103236 & 8983 & 577 & 343 & 25 & 905 & 4 & 5384 & 576 & 120033 & t & 2006 & 6814 & 2852 & 215 & 276 & 13 & 3 & 45 & 1 & 23210 & 10451 \\
\hline t & 2007 & 74734 & 6596 & 168 & 900 & 6 & 126 & 18 & 6 & 253 & 82807 & t & 2007 & 7116 & 2043 & 34 & 190 & 31 & 8 & 4 & 1 & 4699 & 9896 \\
\hline t & 2008 & 61093 & 7928 & 26 & 380 & 10 & 367 & 0 & 23 & 1735 & 71563 & t & 2008 & 4805 & 1948 & 14 & 285 & 0 & 0 & 11 & 462 & 397 & 7563 \\
\hline t & 2009 & 112721 & 7222 & 44 & 307 & 3 & 116 & 1 & 1526 & 407 & 122345 & t & 2009 & 4839 & 3016 & 37 & 169 & 15 & 0 & 1 & 53 & 478 & 8177 \\
\hline t & 2010 & 112395 & 4410 & 11 & 119 & 2 & 18 & 0 & 1236 & 577 & 118769 & t & 2010 & 2851 & 2134 & 25 & 142 & 6 & 1 & 2 & 135 & 1715 & 5466 \\
\hline t & 2011 & 109376 & 8073 & 35 & 191 & 0 & 127 & 0 & 1881 & 345 & 120026 & t & 2011 & 4754 & 2461 & 0 & 43 & 0 & 7 & 1 & 141 & 407 & 7447 \\
\hline t & 2012 & 67263 & 8573 & 2 & 354 & 0 & 246 & 0 & 93 & 411 & 76943 & t & 2012 & 5707 & 5495 & 9 & 149 & 7 & 10 & 5 & 0 & 22811 & 11610 \\
\hline t & 2013 & 55792 & 5176 & 47 & 445 & 0 & 277 & 2 & 1 & 369 & 62109 & t & 2013 & 1143 & 1751 & 2 & 46 & 0 & 0 & 1 & 1 & 272 & 2971 \\
\hline t & 2014 & 123180 & 11402 & 0 & 897 & 0 & 70 & 16 & 16 & 1700 & 137280 & t & 2014 & 16751 & 3777 & 5 & 343 & 1 & 20 & 5 & 12 & 88821 & 21801 \\
\hline t & 2015 & 265356 & 4568 & 5 & 1809 & 0 & 527 & 0 & 147 & 3311 & 275723 & t & 2015 & 11448 & 5831 & 0 & 565 & 0 & 29 & 8 & 1 & 15418 & 18036 \\
\hline t & 2016 & 192718 & 11107 & 18 & 4223 & 0 & 439 & 0 & 46 & 2093 & 210643 & t & 2016 & 7001 & 2140 & 0 & 335 & 1 & 19 & 3 & 0 & 789 & 9579 \\
\hline t & 2017 & 100833 & 5130 & 1 & 1344 & 0 & 197 & 0 & 503 & 12386 & 120394 & t & 2017 & 963 & 328 & 0 & 172 & 0 & 19 & 1 & 0 & 321 & 1515 \\
\hline t & 2018 & 161536 & 7528 & 174 & 716 & 0 & 366 & 0 & 24 & 344 & 170687 & t & 2018 & 2872 & 257 & 2 & 150 & 1 & 11 & 0 & 0 & 123 & 3304 \\
\hline t & 2019 & 118302 & 2757 & 1 & 897 & 1 & 176 & 0 & 3 & 503 & 122639 & t & 2019 & 3429 & 351 & 0 & 59 & 0 & 2 & 0 & 0 & 83 & 3850 \\
\hline t & 2020 & 140954 & 6227 & 19 & 898 & 93 & 1188 & 0 & 11 & 724 & 150114 & t & 2020 & 9494 & 551 & 4 & 249 & 5 & 41 & 1 & 0 & 2710 & 10372 \\
\hline t & 2021 & 68492 & 5518 & 39 & 1064 & 345 & 747 & 0 & 3 & 602 & 76809 & t & 2021 & 638 & 82 & 0 & 13 & 1 & 1 & 0 & 0 & 32 & 767 \\
\hline \% & 1998 & 88.6 & 8.1 & 0.4 & 0.5 & 0 & 0.2 & 0 & 1.5 & 0.8 & 100 & \% & 1998 & 56.4 & 20.9 & 1.4 & 2.9 & 0.3 & 0 & 0.3 & 0 & 17.7 & 100 \\
\hline \% & 1999 & 91.4 & 4.2 & 0.2 & 0.6 & 0 & 0.2 & 0 & 2.9 & 0.4 & 100 & \% & 1999 & 50.7 & 25.9 & 0.4 & 3.1 & 0.6 & 0 & 0.2 & 10.2 & 8.8 & 100 \\
\hline \% & 2000 & 90.3 & 5.6 & 1.6 & 1 & 0 & 0.4 & 0 & 0.2 & 0.9 & 100 & \% & 2000 & 49.1 & 31.4 & 0 & 4.1 & 1.2 & 0 & 0.2 & 0.1 & 13.9 & 100 \\
\hline \% & 2001 & 79.9 & 8.2 & 0 & 1 & 0.1 & 0.2 & 0 & 10 & 0.7 & 100 & \% & 2001 & 54.6 & 24.5 & 0.2 & 3.8 & 0.2 & 0 & 0.1 & 12.8 & 3.8 & 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Year & Sprat & Herring & Horse mack & Whiting & Haddock & Mackerel & Cod & Sandeel & Other & Total & & Year & Sprat & Herring & Horse mack & Whiting & Haddock & Mackerel & Cod & Sandeel & Other & Total \\
\hline \% & 2002 & 83.9 & 9.9 & 1.2 & 1.5 & 0 & 0.4 & 0 & 2.4 & 0.5 & 100 & \% & 2002 & 40.1 & 45.5 & 0.1 & 4.1 & 0 & 0 & 0.1 & 2.1 & 8 & 100 \\
\hline \% & 2003 & 88.8 & 5.3 & 0.4 & 0.6 & 0 & 0.4 & 0 & 2.8 & 1.8 & 100 & \% & 2003 & 57.3 & 34.5 & 2.4 & 1.8 & 0 & 0 & 0 & 0 & 4 & 100 \\
\hline \% & 2004 & 89.6 & 5 & 0.2 & 0.2 & 0 & 2.2 & 0 & 1.9 & 0.9 & 100 & \% & 2004 & 62.5 & 21.6 & 0.5 & 4.6 & 0.1 & 0.1 & 0.1 & 0.5 & 10.1 & 100 \\
\hline \% & 2005 & 85.9 & 9 & 1.1 & 0.2 & 0 & 0.4 & 0 & 2.9 & 0.4 & 100 & \% & 2005 & 75.3 & 15.4 & 0.6 & 2.2 & 0.2 & 0 & 0 & 1.9 & 4.4 & 100 \\
\hline \% & 2006 & 86 & 7.5 & 0.5 & 0.3 & 0 & 0.8 & 0 & 4.5 & 0.5 & 100 & \% & 2006 & 65.2 & 27.3 & 2.1 & 2.6 & 0.1 & 0 & 0.4 & 0 & 2.2 & 100 \\
\hline \% & 2007 & 90.3 & 8 & 0.2 & 1.1 & 0 & 0.2 & 0 & 0 & 0.3 & 100 & \% & 2007 & 71.9 & 20.6 & 0.3 & 1.9 & 0.3 & 0.1 & 0 & 0 & 4.7 & 100 \\
\hline \% & 2008 & 85.4 & 11.1 & 0 & 0.5 & 0 & 0.5 & 0 & 0 & 2.4 & 100 & \% & 2008 & 63.5 & 25.8 & 0.2 & 3.8 & 0 & 0 & 0.1 & 6.1 & 0.5 & 100 \\
\hline \% & 2009 & 92.1 & 5.9 & 0 & 0.3 & 0 & 0.1 & 0 & 1.2 & 0.3 & 100 & \% & 2009 & 59.2 & 36.9 & 0.5 & 2.1 & 0.2 & 0 & 0 & 0.6 & 0.6 & 100 \\
\hline \% & 2010 & 94.6 & 3.7 & 0 & 0.1 & 0 & 0 & 0 & 1 & 0.5 & 100 & \% & 2010 & 52.2 & 39 & 0.5 & 2.6 & 0.1 & 0 & 0 & 2.5 & 3.1 & 100 \\
\hline \% & 2011 & 91.1 & 6.7 & 0 & 0.2 & 0 & 0.1 & 0 & 1.6 & 0.3 & 100 & \% & 2011 & 63.8 & 33 & 0 & 0.6 & 0 & 0.1 & 0 & 1.9 & 0.5 & 100 \\
\hline \% & 2012 & 87.4 & 11.1 & 0 & 0.5 & 0 & 0.3 & 0 & 0.1 & 0.5 & 100 & \% & 2012 & 49.2 & 47.3 & 0.1 & 1.3 & 0.1 & 0.1 & 0 & 0 & 2 & 100 \\
\hline \% & 2013 & 89.8 & 8.3 & 0.1 & 0.7 & 0 & 0.4 & 0 & 0 & 0.6 & 100 & \% & 2013 & 38.5 & 58.9 & 0.1 & 1.6 & 0 & 0 & 0 & 0 & 0.9 & 100 \\
\hline \% & 2014 & 89.7 & 8.3 & 0 & 0.7 & 0 & 0.1 & 0 & 0 & 1.2 & 100 & \% & 2014 & 76.8 & 17.3 & 0 & 1.6 & 0 & 0.1 & 0 & 0.1 & 4.1 & 100 \\
\hline \% & 2015 & 96.2 & 1.7 & 0 & 0.7 & 0 & 0.2 & 0 & 0.1 & 1.2 & 100 & \% & 2015 & 63.5 & 32.3 & 0 & 3.1 & 0 & 0.2 & 0 & 0 & 0.9 & 100 \\
\hline \% & 2016 & 91.5 & 5.3 & 0 & 2 & 0 & 0.2 & 0 & 0 & 1 & 100 & \% & 2016 & 73.1 & 22.3 & 0 & 3.5 & 0 & 0.2 & 0 & 0 & 0.8 & 100 \\
\hline \% & 2017 & 83.8 & 4.3 & 0 & 1.1 & 0 & 0.2 & 0 & 0.4 & 10.3 & 100 & \% & 2017 & 63.6 & 21.6 & 0 & 11.4 & 0 & 1.2 & 0.1 & 0 & 2.1 & 100 \\
\hline \% & 2018 & 94.6 & 4.4 & 0.1 & 0.4 & 0 & 0.2 & 0 & 0 & 0.2 & 100 & \% & 2018 & 86.9 & 7.8 & 0.1 & 4.5 & 0 & 0.3 & 0 & 0 & 0.4 & 100 \\
\hline \% & 2019 & 96.5 & 2.2 & 0 & 0.7 & 0 & 0.1 & 0 & 0 & 0.4 & 100 & \% & 2019 & 89.1 & 9.1 & 0 & 1.5 & 0 & 0.1 & 0 & 0 & 0.2 & 100 \\
\hline \% & 2020 & 93.9 & 4.1 & 0 & 0.6 & 0.1 & 0.8 & 0 & 0 & 0.5 & 100 & \% & 2020 & 91.5 & 5.3 & 0 & 2.4 & 0 & 0.4 & 0 & 0 & 0.3 & 100 \\
\hline \% & 2021 & 89.2 & 7.2 & 0.1 & 1.4 & 0.4 & 1.0 & 0.0 & 0.0 & 0.8 & 100.0 & \% & 2021 & 83.1 & 10.7 & 0.0 & 1.6 & 0.2 & 0.1 & 0.0 & 0.0 & 4.2 & 100.0 \\
\hline
\end{tabular}

Table 10.2.2. North Sea \& 3.a sprat. Catch in numbers by age (1000's) by season and year. (Model year, e.g., 2021 = July 2021-June 2022)

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1974 & 1 & 0 & 16101061 & 2155723 & 475613 \\
\hline 1974 & 2 & 1884146 & 11544114 & 866399 & 48228 \\
\hline 1974 & 3 & 2842702 & 11091303 & 1336036 & 34534 \\
\hline 1974 & 4 & 1302331 & 2511315 & 359117 & 14822 \\
\hline 1975 & 1 & 250931 & 27723510 & 10052550 & 260182 \\
\hline 1975 & 2 & 1179567 & 14541887 & 4378415 & 166807 \\
\hline 1975 & 3 & 5240024 & 4755878 & 2206781 & 66186 \\
\hline 1975 & 4 & 0 & 0 & 0 & 0 \\
\hline 1976 & 1 & 2143211 & 42209830 & 2888653 & 180913 \\
\hline 1976 & 2 & 7439656 & 18762732 & 1613139 & 88604 \\
\hline 1976 & 3 & 7703416 & 6925346 & 267638 & 8289 \\
\hline 1976 & 4 & 0 & 0 & 0 & 0 \\
\hline 1977 & 1 & 2690194 & 12786056 & 5181867 & 109712 \\
\hline 1977 & 2 & 2520082 & 4904593 & 3679153 & 67688 \\
\hline 1977 & 3 & 15857197 & 1843468 & 2200876 & 37836 \\
\hline 1977 & 4 & 0 & 0 & 0 & 0 \\
\hline 1978 & 1 & 454090 & 32184524 & 427473 & 96435 \\
\hline 1978 & 2 & 5517665 & 10344970 & 1209584 & 116695 \\
\hline 1978 & 3 & 6154606 & 4973568 & 1119045 & 29941 \\
\hline 1978 & 4 & 0 & 0 & 0 & 0 \\
\hline 1979 & 1 & 3579389 & 36866800 & 644042 & 117139 \\
\hline 1979 & 2 & 1052920 & 11355949 & 2152261 & 63386 \\
\hline 1979 & 3 & 3882781 & 6399259 & 332781 & 25964 \\
\hline 1979 & 4 & 0 & 0 & 0 & 0 \\
\hline 1980 & 1 & 0 & 14237558 & 17421360 & 1481066 \\
\hline 1980 & 2 & 0 & 9415158 & 11520576 & 979415 \\
\hline 1980 & 3 & 2536060 & 3866612 & 389674 & 8724 \\
\hline 1980 & 4 & 0 & 0 & 0 & 0 \\
\hline 1981 & 1 & 428776 & 12322431 & 1483241 & 130805 \\
\hline 1981 & 2 & 40632 & 3540737 & 3025289 & 202048 \\
\hline 1981 & 3 & 374254 & 3854059 & 319763 & 9835 \\
\hline 1981 & 4 & 0 & 0 & 0 & 0 \\
\hline 1982 & 1 & 545769 & 6350511 & 601581 & 64879 \\
\hline 1982 & 2 & 818525 & 5021082 & 1070960 & 55333 \\
\hline 1982 & 3 & 2530673 & 401839 & 46913 & 3525 \\
\hline 1982 & 4 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1983 & 1 & 5613728 & 2819244 & 969599 & 155653 \\
\hline 1983 & 2 & 2375763 & 1334333 & 588678 & 91112 \\
\hline 1983 & 3 & 1697718 & 596857 & 7271 & 0 \\
\hline 1983 & 4 & 0 & 0 & 0 & 0 \\
\hline 1984 & 1 & 954757 & 6475021 & 417235 & 2532 \\
\hline 1984 & 2 & 521866 & 2535354 & 247654 & 4803 \\
\hline 1984 & 3 & 405095 & 612407 & 10648 & 1053 \\
\hline 1984 & 4 & 0 & 0 & 0 & 0 \\
\hline 1985 & 1 & 0 & 1304457 & 1972027 & 37680 \\
\hline 1985 & 2 & 0 & 576004 & 870780 & 16638 \\
\hline 1985 & 3 & 84760 & 215856 & 150819 & 14916 \\
\hline 1985 & 4 & 0 & 0 & 0 & 0 \\
\hline 1986 & 1 & 0 & 177780 & 452745 & 347620 \\
\hline 1986 & 2 & 0 & 156913 & 399604 & 306818 \\
\hline 1986 & 3 & 580936 & 58710 & 740 & 0 \\
\hline 1986 & 4 & 0 & 0 & 0 & 0 \\
\hline 1987 & 1 & 2236 & 2250587 & 128512 & 2525 \\
\hline 1987 & 2 & 49451 & 1790264 & 267597 & 978 \\
\hline 1987 & 3 & 209788 & 826994 & 34626 & 32980 \\
\hline 1987 & 4 & 0 & 0 & 0 & 0 \\
\hline 1988 & 1 & 4082942 & 2096911 & 2830054 & 42364 \\
\hline 1988 & 2 & 1163964 & 314106 & 527986 & 11526 \\
\hline 1988 & 3 & 1817700 & 637489 & 129384 & 5491 \\
\hline 1988 & 4 & 0 & 0 & 0 & 0 \\
\hline 1989 & 1 & 12451 & 1706824 & 3613841 & 5716 \\
\hline 1989 & 2 & 783 & 76415 & 88925 & 342 \\
\hline 1989 & 3 & 469458 & 416920 & 34789 & 12751 \\
\hline 1989 & 4 & 0 & 0 & 0 & 0 \\
\hline 1990 & 1 & 1568 & 2633068 & 2234213 & 342514 \\
\hline 1990 & 2 & 1225 & 2058041 & 1746290 & 267714 \\
\hline 1990 & 3 & 291837 & 62050 & 1941 & 429 \\
\hline 1990 & 4 & 0 & 0 & 0 & 0 \\
\hline 1991 & 1 & 40504 & 1684266 & 2416750 & 8159 \\
\hline 1991 & 2 & 1552315 & 2936717 & 614233 & 9587 \\
\hline 1991 & 3 & 208352 & 64565 & 1036 & 99 \\
\hline 1991 & 4 & 0 & 0 & 0 & 0 \\
\hline 1992 & 1 & 18948 & 9695465 & 1315325 & 177584 \\
\hline 1992 & 2 & 222991 & 1185132 & 132166 & 16491 \\
\hline
\end{tabular}

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1992 & 3 & 1279875 & 1583952 & 259251 & 5821 \\
\hline 1992 & 4 & 0 & 0 & 0 & 0 \\
\hline 1993 & 1 & 264173 & 3026867 & 5339043 & 247839 \\
\hline 1993 & 2 & 1441317 & 4911453 & 1324444 & 31435 \\
\hline 1993 & 3 & 1867838 & 1819506 & 338969 & 43965 \\
\hline 1993 & 4 & 0 & 0 & 0 & 0 \\
\hline 1994 & 1 & 445326 & 40720484 & 516854 & 100737 \\
\hline 1994 & 2 & 1856101 & 7146622 & 1455656 & 142774 \\
\hline 1994 & 3 & 818875 & 2936362 & 559871 & 22813 \\
\hline 1994 & 4 & 0 & 0 & 0 & 0 \\
\hline 1995 & 1 & 170693 & 24466578 & 3192395 & 371759 \\
\hline 1995 & 2 & 612010 & 8620522 & 2863267 & 505875 \\
\hline 1995 & 3 & 1797666 & 4488224 & 533786 & 128194 \\
\hline 1995 & 4 & 0 & 0 & 0 & 0 \\
\hline 1996 & 1 & 299367 & 233497 & 816511 & 286503 \\
\hline 1996 & 2 & 1083655 & 776795 & 2208631 & 911256 \\
\hline 1996 & 3 & 1670742 & 289815 & 113580 & 49534 \\
\hline 1996 & 4 & 0 & 0 & 0 & 0 \\
\hline 1997 & 1 & 6447 & 2286585 & 130593 & 202822 \\
\hline 1997 & 2 & 148657 & 4395265 & 1078225 & 277615 \\
\hline 1997 & 3 & 596223 & 728240 & 181187 & 46667 \\
\hline 1997 & 4 & 0 & 0 & 0 & 0 \\
\hline 1998 & 1 & 86124 & 3567341 & 1498339 & 258993 \\
\hline 1998 & 2 & 5465889 & 2665032 & 1451844 & 326463 \\
\hline 1998 & 3 & 1615982 & 1096547 & 489541 & 241493 \\
\hline 1998 & 4 & 0 & 0 & 0 & 0 \\
\hline 1999 & 1 & 830 & 15939248 & 477815 & 69219 \\
\hline 1999 & 2 & 90557 & 2456063 & 254931 & 44836 \\
\hline 1999 & 3 & 1967130 & 3351942 & 641059 & 183015 \\
\hline 1999 & 4 & 0 & 0 & 0 & 0 \\
\hline 2000 & 1 & 6101 & 9822669 & 1767256 & 70160 \\
\hline 2000 & 2 & 81906 & 801375 & 384854 & 49827 \\
\hline 2000 & 3 & 1093613 & 2807143 & 1310052 & 176418 \\
\hline 2000 & 4 & 0 & 0 & 0 & 0 \\
\hline 2001 & 1 & 13056 & 5767627 & 315550 & 7694 \\
\hline 2001 & 2 & 550512 & 3967343 & 1528712 & 498496 \\
\hline 2001 & 3 & 143017 & 531588 & 59709 & 13418 \\
\hline 2001 & 4 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2002 & 1 & 63416 & 6586442 & 594557 & 108679 \\
\hline 2002 & 2 & 927294 & 4326530 & 661656 & 59022 \\
\hline 2002 & 3 & 1182692 & 1199165 & 296900 & 65718 \\
\hline 2002 & 4 & 0 & 0 & 0 & 0 \\
\hline 2003 & 1 & 197639 & 4003316 & 594498 & 68144 \\
\hline 2003 & 2 & 2785630 & 6826281 & 1115905 & 218400 \\
\hline 2003 & 3 & 713229 & 39824 & 29774 & 26427 \\
\hline 2003 & 4 & 0 & 0 & 0 & 0 \\
\hline 2004 & 1 & 229309 & 4217281 & 731500 & 78913 \\
\hline 2004 & 2 & 24806798 & 4735686 & 264373 & 53425 \\
\hline 2004 & 3 & 5233945 & 309955 & 44145 & 15707 \\
\hline 2004 & 4 & 0 & 0 & 0 & 0 \\
\hline 2005 & 1 & 97602 & 13409729 & 479222 & 88858 \\
\hline 2005 & 2 & 839944 & 7903545 & 228337 & 22051 \\
\hline 2005 & 3 & 1089274 & 5408581 & 230703 & 38557 \\
\hline 2005 & 4 & 0 & 0 & 0 & 0 \\
\hline 2006 & 1 & 0 & 1987696 & 1401797 & 295158 \\
\hline 2006 & 2 & 319709 & 493221 & 1003837 & 235542 \\
\hline 2006 & 3 & 176742 & 129541 & 176585 & 10933 \\
\hline 2006 & 4 & 0 & 0 & 0 & 0 \\
\hline 2007 & 1 & 0 & 1693273 & 189551 & 67672 \\
\hline 2007 & 2 & 609939 & 4186796 & 1681648 & 254768 \\
\hline 2007 & 3 & 404452 & 329724 & 19675 & 20964 \\
\hline 2007 & 4 & 0 & 0 & 0 & 0 \\
\hline 2008 & 1 & 11590 & 422430 & 1447939 & 329770 \\
\hline 2008 & 2 & 2087187 & 1901763 & 1006626 & 260966 \\
\hline 2008 & 3 & 893785 & 131774 & 41692 & 21858 \\
\hline 2008 & 4 & 0 & 0 & 0 & 0 \\
\hline 2009 & 1 & 0 & 4776947 & 219922 & 39037 \\
\hline 2009 & 2 & 231412 & 8163927 & 554425 & 137328 \\
\hline 2009 & 3 & 168362 & 3385107 & 519516 & 88967 \\
\hline 2009 & 4 & 0 & 0 & 0 & 0 \\
\hline 2010 & 1 & 12414 & 1732171 & 689166 & 90040 \\
\hline 2010 & 2 & 349703 & 3105417 & 3011291 & 2157387 \\
\hline 2010 & 3 & 298472 & 2412405 & 683264 & 90603 \\
\hline 2010 & 4 & 0 & 0 & 0 & 0 \\
\hline 2011 & 1 & 2469 & 1847215 & 1105017 & 281708 \\
\hline 2011 & 2 & 420004 & 4234059 & 2917969 & 999295 \\
\hline
\end{tabular}

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2011 & 3 & 57320 & 250247 & 95834 & 42266 \\
\hline 2011 & 4 & 0 & 0 & 0 & 0 \\
\hline 2012 & 1 & 147896 & 2527701 & 729427 & 121665 \\
\hline 2012 & 2 & 187098 & 3756225 & 1690250 & 281071 \\
\hline 2012 & 3 & 78240 & 463743 & 86910 & 30157 \\
\hline 2012 & 4 & 0 & 0 & 0 & 0 \\
\hline 2013 & 1 & 10002 & 1973364 & 411558 & 72705 \\
\hline 2013 & 2 & 462029 & 2176971 & 745578 & 144434 \\
\hline 2013 & 3 & 193678 & 1554 & 2447 & 4794 \\
\hline 2013 & 4 & 0 & 0 & 0 & 0 \\
\hline 2014 & 1 & 2640874 & 9499013 & 627237 & 105519 \\
\hline 2014 & 2 & 1215080 & 4046244 & 323320 & 92685 \\
\hline 2014 & 3 & 1755944 & 2496884 & 177328 & 21685 \\
\hline 2014 & 4 & 0 & 0 & 0 & 0 \\
\hline 2015 & 1 & 1682642 & 12947813 & 2926867 & 161595 \\
\hline 2015 & 2 & 615375 & 10862082 & 1632428 & 226924 \\
\hline 2015 & 3 & 374504 & 1926029 & 733105 & 90223 \\
\hline 2015 & 4 & 0 & 0 & 0 & 0 \\
\hline 2016 & 1 & 4450616 & 12775033 & 4537366 & 439570 \\
\hline 2016 & 2 & 3593237 & 1451842 & 1251213 & 301252 \\
\hline 2016 & 3 & 533954 & 47715 & 7358 & 2718 \\
\hline 2016 & 4 & 0 & 0 & 0 & 0 \\
\hline 2017 & 1 & 1767809 & 9076648 & 738627 & 88295 \\
\hline 2017 & 2 & 1302514 & 2796713 & 182538 & 82806 \\
\hline 2017 & 3 & 658881 & 807010 & 184005 & 68052 \\
\hline 2017 & 4 & 0 & 0 & 0 & 0 \\
\hline 2018 & 1 & 4548741 & 11562002 & 2878462 & 310552 \\
\hline 2018 & 2 & 2090509 & 2888456 & 1516387 & 534059 \\
\hline 2018 & 3 & 157673 & 1090798 & 254223 & 15776 \\
\hline 2018 & 4 & 0 & 0 & 0 & 0 \\
\hline 2019 & 1 & 2420231 & 9775216 & 3342785 & 163696 \\
\hline 2019 & 2 & 799272 & 2399200 & 1041391 & 139590 \\
\hline 2019 & 3 & 211007 & 34475 & 3918 & 413 \\
\hline 2019 & 4 & 0 & 0 & 0 & 0 \\
\hline 2020 & 1 & 207574 & 10153348 & 3429492 & 429318 \\
\hline 2020 & 2 & 69142 & 2695178 & 385767 & 137741 \\
\hline 2020 & 3 & 28346 & 78759 & 8459 & 1779 \\
\hline 2020 & 4 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year
\begin{tabular}{ccrrrr}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2021 & 1 & 539434 & 5840604 & 1505982 & 255540 \\
\hline 2021 & 2 & 254055 & 814057 & 395606 & 139605 \\
\hline 2021 & 3 & 0 & 0 & 0 & 0 \\
\hline 2021 & 4 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 10.2.3. North Sea \& 3.a sprat. Mean weight at age (kg) in catches by season and year. (Model year, e.g., 2021 = July 2021-June 2022)

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1974 & 1 & 0.0063 & 0.0083 & 0.0135 & 0.0184 \\
\hline 1974 & 2 & 0.0058 & 0.0089 & 0.0150 & 0.0197 \\
\hline 1974 & 3 & 0.0050 & 0.0077 & 0.0150 & 0.0197 \\
\hline 1974 & 4 & 0.0066 & 0.0107 & 0.0183 & 0.0163 \\
\hline 1975 & 1 & 0.0048 & 0.0086 & 0.0129 & 0.0172 \\
\hline 1975 & 2 & 0.0075 & 0.0111 & 0.0168 & 0.0216 \\
\hline 1975 & 3 & 0.0048 & 0.0106 & 0.0154 & 0.0192 \\
\hline 1975 & 4 & 0.0062 & 0.0116 & 0.0170 & 0.0171 \\
\hline 1976 & 1 & 0.0049 & 0.0070 & 0.0113 & 0.0134 \\
\hline 1976 & 2 & 0.0043 & 0.0090 & 0.0153 & 0.0190 \\
\hline 1976 & 3 & 0.0022 & 0.0059 & 0.0104 & 0.0126 \\
\hline 1976 & 4 & 0.0034 & 0.0057 & 0.0085 & 0.0106 \\
\hline 1977 & 1 & 0.0054 & 0.0082 & 0.0126 & 0.0180 \\
\hline 1977 & 2 & 0.0059 & 0.0110 & 0.0146 & 0.0196 \\
\hline 1977 & 3 & 0.0023 & 0.0080 & 0.0106 & 0.0138 \\
\hline 1977 & 4 & 0.0025 & 0.0063 & 0.0083 & 0.0122 \\
\hline 1978 & 1 & 0.0038 & 0.0069 & 0.0122 & 0.0146 \\
\hline 1978 & 2 & 0.0044 & 0.0103 & 0.0155 & 0.0196 \\
\hline 1978 & 3 & 0.0031 & 0.0089 & 0.0123 & 0.0166 \\
\hline 1978 & 4 & 0.0020 & 0.0052 & 0.0087 & 0.0094 \\
\hline 1979 & 1 & 0.0050 & 0.0058 & 0.0087 & 0.0113 \\
\hline 1979 & 2 & 0.0057 & 0.0105 & 0.0150 & 0.0173 \\
\hline 1979 & 3 & 0.0032 & 0.0077 & 0.0129 & 0.0165 \\
\hline 1979 & 4 & 0.0029 & 0.0106 & 0.0121 & 0.0153 \\
\hline 1980 & 1 & 0.0063 & 0.0052 & 0.0068 & 0.0083 \\
\hline 1980 & 2 & 0.0051 & 0.0052 & 0.0069 & 0.0083 \\
\hline 1980 & 3 & 0.0032 & 0.0086 & 0.0131 & 0.0168 \\
\hline 1980 & 4 & 0.0046 & 0.0073 & 0.0105 & 0.0101 \\
\hline 1981 & 1 & 0.0038 & 0.0099 & 0.0129 & 0.0156 \\
\hline
\end{tabular}

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1981 & 2 & 0.0082 & 0.0126 & 0.0153 & 0.0194 \\
\hline 1981 & 3 & 0.0049 & 0.0089 & 0.0157 & 0.0194 \\
\hline 1981 & 4 & 0.0060 & 0.0139 & 0.0191 & 0.0192 \\
\hline 1982 & 1 & 0.0085 & 0.0089 & 0.0171 & 0.0155 \\
\hline 1982 & 2 & 0.0071 & 0.0110 & 0.0160 & 0.0219 \\
\hline 1982 & 3 & 0.0029 & 0.0075 & 0.0115 & 0.0174 \\
\hline 1982 & 4 & 0.0044 & 0.0078 & 0.0114 & 0.0160 \\
\hline 1983 & 1 & 0.0044 & 0.0092 & 0.0128 & 0.0152 \\
\hline 1983 & 2 & 0.0042 & 0.0124 & 0.0169 & 0.0211 \\
\hline 1983 & 3 & 0.0034 & 0.0094 & 0.0174 & 0.0163 \\
\hline 1983 & 4 & 0.0038 & 0.0093 & 0.0127 & 0.0156 \\
\hline 1984 & 1 & 0.0060 & 0.0081 & 0.0121 & 0.0166 \\
\hline 1984 & 2 & 0.0053 & 0.0122 & 0.0168 & 0.0164 \\
\hline 1984 & 3 & 0.0093 & 0.0135 & 0.0197 & 0.0197 \\
\hline 1984 & 4 & 0.0093 & 0.0135 & 0.0197 & 0.0197 \\
\hline 1985 & 1 & 0.0063 & 0.0093 & 0.0135 & 0.0197 \\
\hline 1985 & 2 & 0.0051 & 0.0093 & 0.0135 & 0.0197 \\
\hline 1985 & 3 & 0.0073 & 0.0099 & 0.0166 & 0.0166 \\
\hline 1985 & 4 & 0.0073 & 0.0099 & 0.0166 & 0.0166 \\
\hline 1986 & 1 & 0.0063 & 0.0073 & 0.0099 & 0.0166 \\
\hline 1986 & 2 & 0.0051 & 0.0073 & 0.0099 & 0.0166 \\
\hline 1986 & 3 & 0.0083 & 0.0164 & 0.0228 & 0.0163 \\
\hline 1986 & 4 & 0.0084 & 0.0156 & 0.0208 & 0.0156 \\
\hline 1987 & 1 & 0.0066 & 0.0086 & 0.0117 & 0.0153 \\
\hline 1987 & 2 & 0.0060 & 0.0093 & 0.0112 & 0.0165 \\
\hline 1987 & 3 & 0.0064 & 0.0125 & 0.0175 & 0.0206 \\
\hline 1987 & 4 & 0.0068 & 0.0125 & 0.0167 & 0.0189 \\
\hline 1988 & 1 & 0.0042 & 0.0088 & 0.0115 & 0.0138 \\
\hline 1988 & 2 & 0.0046 & 0.0085 & 0.0113 & 0.0137 \\
\hline 1988 & 3 & 0.0052 & 0.0132 & 0.0208 & 0.0158 \\
\hline 1988 & 4 & 0.0063 & 0.0117 & 0.0155 & 0.0175 \\
\hline 1989 & 1 & 0.0054 & 0.0086 & 0.0099 & 0.0170 \\
\hline 1989 & 2 & 0.0044 & 0.0082 & 0.0109 & 0.0130 \\
\hline 1989 & 3 & 0.0048 & 0.0077 & 0.0125 & 0.0155 \\
\hline 1989 & 4 & 0.0046 & 0.0086 & 0.0115 & 0.0129 \\
\hline 1990 & 1 & 0.0046 & 0.0070 & 0.0092 & 0.0115 \\
\hline 1990 & 2 & 0.0038 & 0.0069 & 0.0092 & 0.0113 \\
\hline 1990 & 3 & 0.0044 & 0.0099 & 0.0133 & 0.0156 \\
\hline
\end{tabular}

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1990 & 4 & 0.0048 & 0.0089 & 0.0119 & 0.0135 \\
\hline 1991 & 1 & 0.0128 & 0.0143 & 0.0154 & 0.0168 \\
\hline 1991 & 2 & 0.0048 & 0.0146 & 0.0189 & 0.0168 \\
\hline 1991 & 3 & 0.0052 & 0.0101 & 0.0147 & 0.0172 \\
\hline 1991 & 4 & 0.0062 & 0.0118 & 0.0152 & 0.0186 \\
\hline 1992 & 1 & 0.0081 & 0.0099 & 0.0124 & 0.0148 \\
\hline 1992 & 2 & 0.0058 & 0.0121 & 0.0153 & 0.0178 \\
\hline 1992 & 3 & 0.0035 & 0.0096 & 0.0141 & 0.0179 \\
\hline 1992 & 4 & 0.0042 & 0.0078 & 0.0104 & 0.0118 \\
\hline 1993 & 1 & 0.0065 & 0.0109 & 0.0123 & 0.0138 \\
\hline 1993 & 2 & 0.0075 & 0.0107 & 0.0135 & 0.0164 \\
\hline 1993 & 3 & 0.0022 & 0.0080 & 0.0116 & 0.0152 \\
\hline 1993 & 4 & 0.0023 & 0.0128 & 0.0154 & 0.0134 \\
\hline 1994 & 1 & 0.0068 & 0.0067 & 0.0095 & 0.0129 \\
\hline 1994 & 2 & 0.0087 & 0.0104 & 0.0125 & 0.0151 \\
\hline 1994 & 3 & 0.0030 & 0.0082 & 0.0097 & 0.0140 \\
\hline 1994 & 4 & 0.0038 & 0.0068 & 0.0090 & 0.0131 \\
\hline 1995 & 1 & 0.0032 & 0.0082 & 0.0117 & 0.0121 \\
\hline 1995 & 2 & 0.0051 & 0.0101 & 0.0133 & 0.0155 \\
\hline 1995 & 3 & 0.0084 & 0.0096 & 0.0129 & 0.0158 \\
\hline 1995 & 4 & 0.0058 & 0.0107 & 0.0142 & 0.0161 \\
\hline 1996 & 1 & 0.0071 & 0.0108 & 0.0142 & 0.0175 \\
\hline 1996 & 2 & 0.0079 & 0.0115 & 0.0150 & 0.0169 \\
\hline 1996 & 3 & 0.0029 & 0.0062 & 0.0087 & 0.0103 \\
\hline 1996 & 4 & 0.0031 & 0.0057 & 0.0077 & 0.0086 \\
\hline 1997 & 1 & 0.0071 & 0.0128 & 0.0148 & 0.0163 \\
\hline 1997 & 2 & 0.0058 & 0.0120 & 0.0161 & 0.0199 \\
\hline 1997 & 3 & 0.0071 & 0.0097 & 0.0122 & 0.0147 \\
\hline 1997 & 4 & 0.0052 & 0.0095 & 0.0127 & 0.0144 \\
\hline 1998 & 1 & 0.0056 & 0.0139 & 0.0166 & 0.0186 \\
\hline 1998 & 2 & 0.0050 & 0.0124 & 0.0153 & 0.0177 \\
\hline 1998 & 3 & 0.0043 & 0.0061 & 0.0095 & 0.0094 \\
\hline 1998 & 4 & 0.0039 & 0.0073 & 0.0097 & 0.0110 \\
\hline 1999 & 1 & 0.0053 & 0.0097 & 0.0115 & 0.0121 \\
\hline 1999 & 2 & 0.0046 & 0.0116 & 0.0135 & 0.0164 \\
\hline 1999 & 3 & 0.0036 & 0.0094 & 0.0118 & 0.0138 \\
\hline 1999 & 4 & 0.0052 & 0.0097 & 0.0129 & 0.0146 \\
\hline 2000 & 1 & 0.0067 & 0.0122 & 0.0148 & 0.0185 \\
\hline
\end{tabular}

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2000 & 2 & 0.0062 & 0.0149 & 0.0174 & 0.0183 \\
\hline 2000 & 3 & 0.0051 & 0.0105 & 0.0131 & 0.0150 \\
\hline 2000 & 4 & 0.0036 & 0.0046 & 0.0080 & 0.0135 \\
\hline 2001 & 1 & 0.0078 & 0.0109 & 0.0118 & 0.0159 \\
\hline 2001 & 2 & 0.0048 & 0.0116 & 0.0136 & 0.0166 \\
\hline 2001 & 3 & 0.0062 & 0.0127 & 0.0150 & 0.0162 \\
\hline 2001 & 4 & 0.0065 & 0.0120 & 0.0161 & 0.0181 \\
\hline 2002 & 1 & 0.0073 & 0.0109 & 0.0141 & 0.0154 \\
\hline 2002 & 2 & 0.0077 & 0.0122 & 0.0142 & 0.0158 \\
\hline 2002 & 3 & 0.0047 & 0.0101 & 0.0133 & 0.0145 \\
\hline 2002 & 4 & 0.0060 & 0.0116 & 0.0129 & 0.0155 \\
\hline 2003 & 1 & 0.0042 & 0.0125 & 0.0146 & 0.0228 \\
\hline 2003 & 2 & 0.0058 & 0.0108 & 0.0145 & 0.0167 \\
\hline 2003 & 3 & 0.0049 & 0.0115 & 0.0135 & 0.0141 \\
\hline 2003 & 4 & 0.0050 & 0.0092 & 0.0123 & 0.0139 \\
\hline 2004 & 1 & 0.0088 & 0.0116 & 0.0139 & 0.0154 \\
\hline 2004 & 2 & 0.0041 & 0.0094 & 0.0126 & 0.0153 \\
\hline 2004 & 3 & 0.0030 & 0.0097 & 0.0112 & 0.0130 \\
\hline 2004 & 4 & 0.0044 & 0.0093 & 0.0115 & 0.0129 \\
\hline 2005 & 1 & 0.0076 & 0.0097 & 0.0130 & 0.0154 \\
\hline 2005 & 2 & 0.0066 & 0.0103 & 0.0115 & 0.0141 \\
\hline 2005 & 3 & 0.0055 & 0.0080 & 0.0114 & 0.0138 \\
\hline 2005 & 4 & 0.0047 & 0.0087 & 0.0115 & 0.0130 \\
\hline 2006 & 1 & 0.0063 & 0.0108 & 0.0133 & 0.0152 \\
\hline 2006 & 2 & 0.0055 & 0.0143 & 0.0158 & 0.0180 \\
\hline 2006 & 3 & 0.0041 & 0.0095 & 0.0129 & 0.0134 \\
\hline 2006 & 4 & 0.0050 & 0.0093 & 0.0124 & 0.0139 \\
\hline 2007 & 1 & 0.0063 & 0.0119 & 0.0131 & 0.0149 \\
\hline 2007 & 2 & 0.0065 & 0.0101 & 0.0127 & 0.0151 \\
\hline 2007 & 3 & 0.0045 & 0.0075 & 0.0106 & 0.0126 \\
\hline 2007 & 4 & 0.0048 & 0.0089 & 0.0118 & 0.0133 \\
\hline 2008 & 1 & 0.0088 & 0.0103 & 0.0114 & 0.0131 \\
\hline 2008 & 2 & 0.0044 & 0.0076 & 0.0126 & 0.0142 \\
\hline 2008 & 3 & 0.0034 & 0.0076 & 0.0082 & 0.0085 \\
\hline 2008 & 4 & 0.0044 & 0.0068 & 0.0090 & 0.0081 \\
\hline 2009 & 1 & 0.0063 & 0.0096 & 0.0123 & 0.0142 \\
\hline 2009 & 2 & 0.0046 & 0.0095 & 0.0130 & 0.0160 \\
\hline 2009 & 3 & 0.0043 & 0.0077 & 0.0103 & 0.0135 \\
\hline
\end{tabular}

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2009 & 4 & 0.0087 & 0.0096 & 0.0105 & 0.0141 \\
\hline 2010 & 1 & 0.0066 & 0.0080 & 0.0097 & 0.0137 \\
\hline 2010 & 2 & 0.0047 & 0.0094 & 0.0114 & 0.0148 \\
\hline 2010 & 3 & 0.0050 & 0.0072 & 0.0094 & 0.0130 \\
\hline 2010 & 4 & 0.0038 & 0.0071 & 0.0095 & 0.0107 \\
\hline 2011 & 1 & 0.0052 & 0.0085 & 0.0101 & 0.0134 \\
\hline 2011 & 2 & 0.0044 & 0.0089 & 0.0114 & 0.0145 \\
\hline 2011 & 3 & 0.0042 & 0.0102 & 0.0128 & 0.0171 \\
\hline 2011 & 4 & 0.0050 & 0.0092 & 0.0123 & 0.0139 \\
\hline 2012 & 1 & 0.0085 & 0.0087 & 0.0106 & 0.0150 \\
\hline 2012 & 2 & 0.0072 & 0.0087 & 0.0119 & 0.0152 \\
\hline 2012 & 3 & 0.0040 & 0.0069 & 0.0113 & 0.0146 \\
\hline 2012 & 4 & 0.0047 & 0.0087 & 0.0117 & 0.0132 \\
\hline 2013 & 1 & 0.0061 & 0.0096 & 0.0120 & 0.0150 \\
\hline 2013 & 2 & 0.0043 & 0.0097 & 0.0124 & 0.0156 \\
\hline 2013 & 3 & 0.0026 & 0.0051 & 0.0071 & 0.0084 \\
\hline 2013 & 4 & 0.0022 & 0.0094 & 0.0128 & 0.0153 \\
\hline 2014 & 1 & 0.0086 & 0.0086 & 0.0104 & 0.0168 \\
\hline 2014 & 2 & 0.0070 & 0.0079 & 0.0116 & 0.0139 \\
\hline 2014 & 3 & 0.0053 & 0.0083 & 0.0116 & 0.0119 \\
\hline 2014 & 4 & 0.0065 & 0.0099 & 0.0101 & 0.0115 \\
\hline 2015 & 1 & 0.0076 & 0.0082 & 0.0104 & 0.0150 \\
\hline 2015 & 2 & 0.0072 & 0.0088 & 0.0109 & 0.0155 \\
\hline 2015 & 3 & 0.0038 & 0.0078 & 0.0107 & 0.0153 \\
\hline 2015 & 4 & 0.0044 & 0.0082 & 0.0109 & 0.0123 \\
\hline 2016 & 1 & 0.0041 & 0.0077 & 0.0112 & 0.0145 \\
\hline 2016 & 2 & 0.0051 & 0.0074 & 0.0118 & 0.0145 \\
\hline 2016 & 3 & 0.0073 & 0.0143 & 0.0199 & 0.0235 \\
\hline 2016 & 4 & 0.0076 & 0.0141 & 0.0188 & 0.0212 \\
\hline 2017 & 1 & 0.0064 & 0.0083 & 0.0103 & 0.0139 \\
\hline 2017 & 2 & 0.0038 & 0.0078 & 0.0099 & 0.0162 \\
\hline 2017 & 3 & 0.0042 & 0.0064 & 0.0098 & 0.0130 \\
\hline 2017 & 4 & 0.0076 & 0.0141 & 0.0188 & 0.0212 \\
\hline 2018 & 1 & 0.0046 & 0.00664 & 0.0086 & 0.0126 \\
\hline 2018 & 2 & 0.0053 & 0.0074 & 0.0097 & 0.0134 \\
\hline 2018 & 3 & 0.0041 & 0.0067 & 0.0095 & 0.0136 \\
\hline 2018 & 4 & 0.0057 & 0.0065 & 0.00762 & 0.0129 \\
\hline 2019 & 1 & 0.0034 & 0.0063 & 0.0088 & 0.0116 \\
\hline
\end{tabular}

\section*{Weight-at-age used as input for the assessment model (years refer to the model years)}

Note that weights in S4 are not used since there are no catches in S4
\begin{tabular}{cccccc}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2019 & 2 & 0.0041 & 0.0076 & 0.0098 & 0.0141 \\
\hline 2019 & 3 & 0.0058 & 0.0010 & 0.0130 & 0.0165 \\
\hline 2019 & 4 & 0.0064 & 0.0078 & 0.0105 & 0.0157 \\
\hline 2020 & 1 & 0.0049 & 0.0093 & 0.0122 & 0.0162 \\
\hline 2020 & 2 & 0.0071 & 0.0108 & 0.0144 & 0.0172 \\
\hline 2020 & 4 & 0.0057 & 0.0100 & 0.0143 & 0.0165 \\
\hline 2020 & 2 & 0.0065 & 0.0103 & 0.0134 & 0.0161 \\
\hline 2021 & 3 & 0.0061 & 0.0071 & 0.0110 & 0.0131 \\
\hline 2021 & 4 & 0.0101 & 0.0087 & 0.0117 & 0.0158 \\
\hline 2021 & 0.0064 & 0.0102 & 0.0170 & 0.0197 \\
\hline 2021 & & & 0.0133 & 0.0160 \\
\hline
\end{tabular}

Table 10.2.4. North Sea and Division 3.a sprat. Sampling for biological parameters in 2021. This table only shows agelength samples, and therefore the number of samples may differ from Table 10.2.5.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & Quarter & Landings ('000 tonnes) & No. samples & No. measured & No. aged \\
\hline \multirow[t]{5}{*}{Denmark} & 1 & 0.4 & 2 & 202 & 99 \\
\hline & 2 & 0.2 & 0 & 0 & 0 \\
\hline & 3 & 59.1 & 84 & 9086 & 3979 \\
\hline & 4 & 9.6 & 14 & 1350 & 594 \\
\hline & & 69.3 & 100 & 10638 & 4672 \\
\hline \multirow[t]{5}{*}{Norway} & 1 & 0.0 & 0 & 0 & 0 \\
\hline & 2 & 0.0 & 0 & 0 & 0 \\
\hline & 3 & 0.0 & 0 & 0 & 0 \\
\hline & 4 & 0.0 & 0 & 0 & 0 \\
\hline & & 0.0 & 0 & 0 & 0 \\
\hline \multirow[t]{5}{*}{Sweden} & 1 & 0.4 & 9 & 237 & 236 \\
\hline & 2 & 0.0 & 0 & 0 & 0 \\
\hline & 3 & 3.6 & 0 & 0 & 0 \\
\hline & 4 & 3.6 & 8 & 489 & 489 \\
\hline & & 7.6 & 17 & 726 & 725 \\
\hline \multirow[t]{4}{*}{All countries} & 1 & 0.8 & 11 & 439 & 335 \\
\hline & 2 & 0.2 & 0 & 0 & 0 \\
\hline & 3 & 62.7 & 84 & 9086 & 3979 \\
\hline & 4 & 13.2 & 22 & 1839 & 1083 \\
\hline Total & & 76.9 & 117 & 11364 & 5397 \\
\hline
\end{tabular}

Table 10.2.5. North Sea and Division 3.a sprat. Number of biological samples taken from 1974 and onward. The number of samples may differ from Table 10.2.4, since this table shows both length and age-length samples. These are the samples used to generate the catch-at-age matrix for the assessment model (Model year, e.g., 2021 = July 2021-June 2022).
\begin{tabular}{|c|c|c|c|c|}
\hline Year & S1 & S2 & S3 & S4 \\
\hline 1974 & 15 & 31 & 102 & 25 \\
\hline 1975 & 67 & 46 & 40 & 11 \\
\hline 1976 & 54 & 70 & 53 & 16 \\
\hline 1977 & 37 & 51 & 32 & 18 \\
\hline 1978 & 52 & 78 & 47 & 22 \\
\hline 1979 & 86 & 55 & 90 & 9 \\
\hline 1980 & 0 & 0 & 49 & 28 \\
\hline 1981 & 61 & 32 & 29 & 14 \\
\hline 1982 & 27 & 48 & 13 & 16 \\
\hline 1983 & 11 & 44 & 27 & 8 \\
\hline 1984 & 9 & 23 & 29 & 7 \\
\hline 1985 & 4 & 4 & 0 & 4 \\
\hline 1986 & 4 & 1 & 0 & 1 \\
\hline 1987 & 16 & 15 & 4 & 3 \\
\hline 1988 & 8 & 4 & 9 & 1 \\
\hline 1989 & 13 & 0 & 7 & 2 \\
\hline 1990 & 4 & 0 & 13 & 1 \\
\hline 1991 & 6 & 56 & 15 & 8 \\
\hline 1992 & 42 & 35 & 24 & 4 \\
\hline 1993 & 21 & 30 & 24 & 7 \\
\hline 1994 & 42 & 50 & 32 & 5 \\
\hline 1995 & 40 & 47 & 41 & 4 \\
\hline 1996 & 2 & 12 & 8 & 3 \\
\hline 1997 & 9 & 34 & 12 & 1 \\
\hline 1998 & 25 & 38 & 16 & 3 \\
\hline 1999 & 41 & 25 & 25 & 1 \\
\hline 2000 & 29 & 23 & 22 & 14 \\
\hline 2001 & 23 & 9 & 17 & 4 \\
\hline 2002 & 26 & 37 & 28 & 7 \\
\hline 2003 & 12 & 60 & 17 & 2 \\
\hline 2004 & 26 & 43 & 24 & 15 \\
\hline 2005 & 77 & 56 & 56 & 2 \\
\hline 2006 & 23 & 7 & 13 & 0 \\
\hline 2007 & 34 & 40 & 13 & 4 \\
\hline 2008 & 10 & 9 & 14 & 5 \\
\hline 2009 & 33 & 36 & 18 & 5 \\
\hline 2010 & 35 & 28 & 15 & 3 \\
\hline 2011 & 28 & 57 & 20 & 3 \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\hline Year & S1 & S2 & S3 & S4 \\
\hline 2012 & 37 & 88 & 15 & 3 \\
\hline 2013 & 31 & 23 & 2 & 10 \\
\hline 2014 & 116 & 19 & 19 & 13 \\
\hline 2015 & 165 & 47 & 21 & 2 \\
\hline 2016 & 90 & 30 & 21 & 0 \\
\hline 2017 & 69 & 65 & 45 & 2 \\
\hline 2018 & 65 & 30 & 6 & 5 \\
\hline 2020 & 27 & 22 & 0 & 12 \\
\hline 2021 & & & 20 & \(N A\) \\
\hline
\end{tabular}

Table 10.3.1. North Sea sprat. Abundance indices by age from IBTS Q1
IBTS Q1 survey index (area 4 and 3a combined; years apply to the calendar year and ages the model year)
Index is calculated using a delta GAM model formulation (see Stock Annex)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Age 0 & Age 1 & Age 2 & Age 3 \\
\hline 1983 & 252619 & 551262 & 574173 & 47111 \\
\hline 1984 & 619180 & 553686 & 100186 & 25687 \\
\hline 1985 & 374594 & 292408 & 75083 & 19254 \\
\hline 1986 & 116338 & 137304 & 39250 & 9993 \\
\hline 1987 & 503284 & 86061 & 25143 & 9769 \\
\hline 1988 & 248663 & 789924 & 77117 & 15148 \\
\hline 1989 & 744970 & 154929 & 114877 & 11326 \\
\hline 1990 & 360108 & 185946 & 47580 & 21180 \\
\hline 1991 & 1412224 & 176334 & 33438 & 7582 \\
\hline 1992 & 1882139 & 281520 & 36961 & 9645 \\
\hline 1993 & 1863182 & 1224852 & 103248 & 10709 \\
\hline 1994 & 1195289 & 887347 & 132008 & 8288 \\
\hline 1995 & 2258852 & 2257140 & 263386 & 10391 \\
\hline 1996 & 604673 & 967027 & 199658 & 28253 \\
\hline 1997 & 599335 & 270098 & 168138 & 27513 \\
\hline 1998 & 1072937 & 1104108 & 180777 & 16056 \\
\hline 1999 & 5183400 & 583736 & 73757 & 5308 \\
\hline 2000 & 2017439 & 1164352 & 150449 & 25036 \\
\hline 2001 & 1997862 & 1309083 & 239142 & 13995 \\
\hline 2002 & 1191954 & 968965 & 87712 & 10393 \\
\hline 2003 & 2493114 & 589410 & 66441 & 5540 \\
\hline 2004 & 4084377 & 685280 & 106637 & 9076 \\
\hline 2005 & 8918279 & 675529 & 29062 & 2718 \\
\hline 2006 & 1230441 & 1416990 & 58676 & 7654 \\
\hline 2007 & 1917763 & 1035569 & 162880 & 12506 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{IBTS Q1 survey index (area 4 and 3a combined; years apply to the calendar year and ages the model year)} \\
\hline \multicolumn{5}{|l|}{Index is calculated using a delta GAM model formulation (see Stock Annex)} \\
\hline Year & Age 0 & Age 1 & Age 2 & Age 3 \\
\hline 2008 & 1526985 & 803061 & 47400 & 8526 \\
\hline 2009 & 4133598 & 312030 & 34043 & 3833 \\
\hline 2010 & 3288300 & 2489705 & 118665 & 17586 \\
\hline 2011 & 1078333 & 926246 & 206207 & 47562 \\
\hline 2012 & 3356603 & 3143308 & 245116 & 36666 \\
\hline 2013 & 1137772 & 1116849 & 203191 & 29306 \\
\hline 2014 & 3886605 & 443621 & 50655 & 9871 \\
\hline 2015 & 7727188 & 3460669 & 317090 & 26651 \\
\hline 2016 & 2112309 & 3409890 & 675849 & 37763 \\
\hline 2017 & 10317128 & 1707447 & 128002 & 15146 \\
\hline 2018 & 10440866 & 1547476 & 94598 & 11384 \\
\hline 2019 & 6097175 & 2511994 & 226057 & 9585 \\
\hline 2020 & 7316245 & 2219294 & 421523 & 40023 \\
\hline 2021 & 3308192 & 1977916 & 196830 & 16693 \\
\hline 2022 & 1810546 & 769303 & 57700 & 6537 \\
\hline
\end{tabular}

Table 10.3.1. North Sea sprat. Abundance indices by age from IBTS Q3
IBTS Q3 survey index (area 4 and 3a combined; years and ages apply to both the model year and calendar year)
Index is calculated using a delta GAM model formulation (see Stock Annex)
\begin{tabular}{|c|c|c|c|}
\hline Year & Age 1 & Age 2 & Age 3 \\
\hline 1992 & 14555861 & 2633020 & 104865 \\
\hline 1993 & 5767651 & 3015219 & 217792 \\
\hline 1994 & 16468664 & 1326478 & 95089 \\
\hline 1995 & 30622687 & 7433288 & 454582 \\
\hline 1996 & 2317117 & 2219591 & 215543 \\
\hline 1997 & 13080865 & 1171944 & 200385 \\
\hline 1998 & 2676263 & 1107920 & 117795 \\
\hline 1999 & 13792780 & 1719505 & 82599 \\
\hline 2000 & 8212868 & 3228536 & 133847 \\
\hline 2001 & 8998081 & 2277278 & 187452 \\
\hline 2002 & 10011480 & 1319291 & 102476 \\
\hline 2003 & 11610320 & 1272970 & 66231 \\
\hline 2004 & 14371331 & 1945227 & 122791 \\
\hline 2005 & 52835449 & 2266372 & 102272 \\
\hline 2006 & 9340785 & 5459057 & 155440 \\
\hline 2007 & 10549586 & 1552282 & 184767 \\
\hline 2008 & 7894186 & 2085499 & 130785 \\
\hline 2009 & 35252950 & 3032568 & 337850 \\
\hline 2010 & 35355908 & 9422666 & 428224 \\
\hline 2011 & 16742275 & 8341042 & 1191533 \\
\hline 2012 & 11469646 & 5231406 & 575643 \\
\hline 2013 & 9052264 & 3060010 & 414534 \\
\hline 2014 & 63182232 & 3573736 & 215965 \\
\hline 2015 & 59775893 & 18619852 & 653613 \\
\hline 2016 & 27891385 & 4266699 & 482295 \\
\hline 2017 & 27754797 & 2886164 & 173266 \\
\hline 2018 & 18709889 & 3123833 & 200733 \\
\hline 2019 & 40210818 & 8468920 & 521293 \\
\hline 2020 & 53930015 & 16906066 & 1479519 \\
\hline 2021 & 21858420 & 5602150 & 519985 \\
\hline
\end{tabular}

Table 10.3.2. North Sea and Division 3.a sprat. HERAS survey index.
HERAS abundance index (area 4 and 3.a summed), data are from WGIPS (2019)
Years and ages apply to both the model year and calendar year
\begin{tabular}{|c|c|c|c|}
\hline Year & Age 1 & Age 2 & Age 3 \\
\hline 2006 & 21923 & 21368 & 1413 \\
\hline 2007 & 42862 & 5837 & 2252 \\
\hline 2008 & 17188 & 7868 & 840 \\
\hline 2009 & 47690 & 16920 & 2815 \\
\hline 2010 & 20328 & 14087 & 1174 \\
\hline 2011 & 26581 & 14207 & 3412 \\
\hline 2012 & 22036 & 12831 & 4693 \\
\hline 2013 & 9347 & 6342 & 2049 \\
\hline 2014 & 59020 & 20274 & 3982 \\
\hline 2015 & 27082 & 22676 & 10142 \\
\hline 2016 & 58604 & 33989 & 8160 \\
\hline 2017 & 38135 & 3664 & 1465 \\
\hline 2018 & 109180 & 10113 & 779 \\
\hline 2019 & 93775 & 28020 & 5275 \\
\hline 2020 & 38415 & 17993 & 2055 \\
\hline 2021 & 46918 & 7051 & 1509 \\
\hline
\end{tabular}

Table 10.6.1. North Sea and Division 3.a sprat. Natural mortality input (Model year, e.g. 2021 = July 2021-June 2022). From multispecies SMS (WKSAM: ICES, 2017) 2017 key run.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1974 & 1 & 0.483 & 0.456 & 0.402 & 0.280 \\
\hline 1974 & 2 & 0.327 & 0.235 & 0.217 & 0.188 \\
\hline 1974 & 3 & 0.297 & 0.275 & 0.175 & 0.175 \\
\hline 1974 & 4 & 0.445 & 0.409 & 0.318 & 0.318 \\
\hline 1975 & 1 & 0.518 & 0.492 & 0.422 & 0.237 \\
\hline 1975 & 2 & 0.289 & 0.220 & 0.200 & 0.169 \\
\hline 1975 & 3 & 0.329 & 0.299 & 0.218 & 0.218 \\
\hline 1975 & 4 & 0.474 & 0.442 & 0.423 & 0.423 \\
\hline 1976 & 1 & 0.490 & 0.466 & 0.415 & 0.290 \\
\hline 1976 & 2 & 0.318 & 0.242 & 0.225 & 0.195 \\
\hline 1976 & 3 & 0.364 & 0.332 & 0.240 & 0.240 \\
\hline 1976 & 4 & 0.485 & 0.443 & 0.421 & 0.421 \\
\hline 1977 & 1 & 0.441 & 0.411 & 0.368 & 0.312 \\
\hline 1977 & 2 & 0.373 & 0.245 & 0.227 & 0.199 \\
\hline 1977 & 3 & 0.380 & 0.351 & 0.248 & 0.248 \\
\hline 1977 & 4 & 0.490 & 0.440 & 0.432 & 0.432 \\
\hline 1978 & 1 & 0.411 & 0.398 & 0.385 & 0.330 \\
\hline 1978 & 2 & 0.347 & 0.230 & 0.218 & 0.192 \\
\hline 1978 & 3 & 0.382 & 0.356 & 0.208 & 0.208 \\
\hline 1978 & 4 & 0.445 & 0.396 & 0.374 & 0.374 \\
\hline 1979 & 1 & 0.436 & 0.424 & 0.419 & 0.405 \\
\hline 1979 & 2 & 0.416 & 0.252 & 0.245 & 0.227 \\
\hline 1979 & 3 & 0.393 & 0.366 & 0.232 & 0.232 \\
\hline 1979 & 4 & 0.444 & 0.389 & 0.377 & 0.377 \\
\hline 1980 & 1 & 0.470 & 0.464 & 0.444 & 0.415 \\
\hline 1980 & 2 & 0.447 & 0.261 & 0.257 & 0.230 \\
\hline 1980 & 3 & 0.388 & 0.355 & 0.232 & 0.232 \\
\hline 1980 & 4 & 0.419 & 0.372 & 0.336 & 0.336 \\
\hline 1981 & 1 & 0.501 & 0.486 & 0.448 & 0.360 \\
\hline 1981 & 2 & 0.409 & 0.271 & 0.267 & 0.232 \\
\hline 1981 & 3 & 0.361 & 0.314 & 0.222 & 0.222 \\
\hline 1981 & 4 & 0.376 & 0.330 & 0.267 & 0.267 \\
\hline 1982 & 1 & 0.511 & 0.431 & 0.377 & 0.245 \\
\hline 1982 & 2 & 0.331 & 0.231 & 0.217 & 0.177 \\
\hline 1982 & 3 & 0.305 & 0.231 & 0.182 & 0.182 \\
\hline 1982 & 4 & 0.318 & 0.277 & 0.205 & 0.205 \\
\hline 1983 & 1 & 0.532 & 0.429 & 0.349 & 0.224 \\
\hline 1983 & 2 & 0.336 & 0.235 & 0.217 & 0.194 \\
\hline 1983 & 3 & 0.296 & 0.207 & 0.173 & 0.173 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1983 & 4 & 0.312 & 0.259 & 0.168 & 0.168 \\
\hline 1984 & 1 & 0.539 & 0.425 & 0.287 & 0.182 \\
\hline 1984 & 2 & 0.397 & 0.236 & 0.209 & 0.189 \\
\hline 1984 & 3 & 0.309 & 0.239 & 0.177 & 0.177 \\
\hline 1984 & 4 & 0.321 & 0.274 & 0.197 & 0.197 \\
\hline 1985 & 1 & 0.549 & 0.502 & 0.373 & 0.198 \\
\hline 1985 & 2 & 0.482 & 0.277 & 0.251 & 0.210 \\
\hline 1985 & 3 & 0.323 & 0.249 & 0.178 & 0.178 \\
\hline 1985 & 4 & 0.318 & 0.269 & 0.165 & 0.165 \\
\hline 1986 & 1 & 0.590 & 0.534 & 0.422 & 0.254 \\
\hline 1986 & 2 & 0.452 & 0.313 & 0.288 & 0.227 \\
\hline 1986 & 3 & 0.346 & 0.258 & 0.188 & 0.188 \\
\hline 1986 & 4 & 0.335 & 0.284 & 0.169 & 0.169 \\
\hline 1987 & 1 & 0.596 & 0.484 & 0.443 & 0.256 \\
\hline 1987 & 2 & 0.470 & 0.315 & 0.299 & 0.232 \\
\hline 1987 & 3 & 0.356 & 0.217 & 0.190 & 0.190 \\
\hline 1987 & 4 & 0.338 & 0.281 & 0.185 & 0.185 \\
\hline 1988 & 1 & 0.622 & 0.502 & 0.455 & 0.258 \\
\hline 1988 & 2 & 0.493 & 0.342 & 0.316 & 0.270 \\
\hline 1988 & 3 & 0.371 & 0.238 & 0.220 & 0.220 \\
\hline 1988 & 4 & 0.361 & 0.301 & 0.233 & 0.233 \\
\hline 1989 & 1 & 0.603 & 0.509 & 0.433 & 0.214 \\
\hline 1989 & 2 & 0.525 & 0.332 & 0.294 & 0.261 \\
\hline 1989 & 3 & 0.356 & 0.228 & 0.221 & 0.221 \\
\hline 1989 & 4 & 0.374 & 0.312 & 0.281 & 0.281 \\
\hline 1990 & 1 & 0.518 & 0.489 & 0.402 & 0.244 \\
\hline 1990 & 2 & 0.496 & 0.331 & 0.283 & 0.261 \\
\hline 1990 & 3 & 0.337 & 0.260 & 0.249 & 0.249 \\
\hline 1990 & 4 & 0.387 & 0.319 & 0.287 & 0.287 \\
\hline 1991 & 1 & 0.462 & 0.423 & 0.320 & 0.263 \\
\hline 1991 & 2 & 0.396 & 0.269 & 0.232 & 0.211 \\
\hline 1991 & 3 & 0.310 & 0.264 & 0.223 & 0.223 \\
\hline 1991 & 4 & 0.389 & 0.320 & 0.287 & 0.287 \\
\hline 1992 & 1 & 0.410 & 0.360 & 0.281 & 0.255 \\
\hline 1992 & 2 & 0.312 & 0.227 & 0.204 & 0.180 \\
\hline 1992 & 3 & 0.294 & 0.275 & 0.212 & 0.212 \\
\hline 1992 & 4 & 0.371 & 0.299 & 0.270 & 0.270 \\
\hline 1993 & 1 & 0.456 & 0.414 & 0.340 & 0.303 \\
\hline 1993 & 2 & 0.238 & 0.209 & 0.190 & 0.173 \\
\hline 1993 & 3 & 0.272 & 0.253 & 0.192 & 0.192 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 1993 & 4 & 0.347 & 0.274 & 0.244 & 0.244 \\
\hline 1994 & 1 & 0.502 & 0.446 & 0.348 & 0.337 \\
\hline 1994 & 2 & 0.292 & 0.223 & 0.197 & 0.182 \\
\hline 1994 & 3 & 0.258 & 0.219 & 0.190 & 0.190 \\
\hline 1994 & 4 & 0.318 & 0.248 & 0.223 & 0.223 \\
\hline 1995 & 1 & 0.512 & 0.460 & 0.338 & 0.308 \\
\hline 1995 & 2 & 0.290 & 0.223 & 0.195 & 0.182 \\
\hline 1995 & 3 & 0.222 & 0.191 & 0.178 & 0.178 \\
\hline 1995 & 4 & 0.265 & 0.211 & 0.190 & 0.190 \\
\hline 1996 & 1 & 0.504 & 0.395 & 0.263 & 0.214 \\
\hline 1996 & 2 & 0.363 & 0.227 & 0.202 & 0.177 \\
\hline 1996 & 3 & 0.215 & 0.171 & 0.151 & 0.151 \\
\hline 1996 & 4 & 0.238 & 0.195 & 0.156 & 0.156 \\
\hline 1997 & 1 & 0.451 & 0.293 & 0.210 & 0.155 \\
\hline 1997 & 2 & 0.298 & 0.204 & 0.187 & 0.154 \\
\hline 1997 & 3 & 0.227 & 0.193 & 0.171 & 0.171 \\
\hline 1997 & 4 & 0.269 & 0.214 & 0.171 & 0.171 \\
\hline 1998 & 1 & 0.430 & 0.283 & 0.226 & 0.190 \\
\hline 1998 & 2 & 0.362 & 0.197 & 0.176 & 0.145 \\
\hline 1998 & 3 & 0.252 & 0.209 & 0.173 & 0.173 \\
\hline 1998 & 4 & 0.318 & 0.245 & 0.197 & 0.197 \\
\hline 1999 & 1 & 0.421 & 0.287 & 0.232 & 0.214 \\
\hline 1999 & 2 & 0.291 & 0.191 & 0.169 & 0.152 \\
\hline 1999 & 3 & 0.275 & 0.241 & 0.191 & 0.191 \\
\hline 1999 & 4 & 0.335 & 0.267 & 0.242 & 0.242 \\
\hline 2000 & 1 & 0.406 & 0.342 & 0.253 & 0.219 \\
\hline 2000 & 2 & 0.355 & 0.199 & 0.180 & 0.170 \\
\hline 2000 & 3 & 0.254 & 0.213 & 0.157 & 0.157 \\
\hline 2000 & 4 & 0.279 & 0.236 & 0.192 & 0.192 \\
\hline 2001 & 1 & 0.409 & 0.328 & 0.233 & 0.190 \\
\hline 2001 & 2 & 0.299 & 0.213 & 0.202 & 0.195 \\
\hline 2001 & 3 & 0.266 & 0.225 & 0.191 & 0.191 \\
\hline 2001 & 4 & 0.306 & 0.258 & 0.213 & 0.213 \\
\hline 2002 & 1 & 0.434 & 0.321 & 0.240 & 0.171 \\
\hline 2002 & 2 & 0.315 & 0.223 & 0.214 & 0.206 \\
\hline 2002 & 3 & 0.252 & 0.206 & 0.194 & 0.194 \\
\hline 2002 & 4 & 0.323 & 0.262 & 0.218 & 0.218 \\
\hline 2003 & 1 & 0.419 & 0.269 & 0.215 & 0.168 \\
\hline 2003 & 2 & 0.295 & 0.229 & 0.208 & 0.204 \\
\hline 2003 & 3 & 0.259 & 0.229 & 0.226 & 0.226 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2003 & 4 & 0.383 & 0.308 & 0.286 & 0.286 \\
\hline 2004 & 1 & 0.436 & 0.276 & 0.231 & 0.192 \\
\hline 2004 & 2 & 0.278 & 0.216 & 0.193 & 0.185 \\
\hline 2004 & 3 & 0.231 & 0.212 & 0.208 & 0.208 \\
\hline 2004 & 4 & 0.376 & 0.302 & 0.278 & 0.278 \\
\hline 2005 & 1 & 0.442 & 0.321 & 0.227 & 0.216 \\
\hline 2005 & 2 & 0.309 & 0.219 & 0.181 & 0.174 \\
\hline 2005 & 3 & 0.220 & 0.201 & 0.179 & 0.179 \\
\hline 2005 & 4 & 0.367 & 0.291 & 0.225 & 0.225 \\
\hline 2006 & 1 & 0.504 & 0.315 & 0.226 & 0.215 \\
\hline 2006 & 2 & 0.265 & 0.212 & 0.172 & 0.166 \\
\hline 2006 & 3 & 0.217 & 0.197 & 0.172 & 0.172 \\
\hline 2006 & 4 & 0.364 & 0.277 & 0.202 & 0.202 \\
\hline 2007 & 1 & 0.480 & 0.312 & 0.204 & 0.184 \\
\hline 2007 & 2 & 0.287 & 0.222 & 0.170 & 0.166 \\
\hline 2007 & 3 & 0.210 & 0.175 & 0.152 & 0.152 \\
\hline 2007 & 4 & 0.312 & 0.237 & 0.175 & 0.175 \\
\hline 2008 & 1 & 0.478 & 0.307 & 0.187 & 0.166 \\
\hline 2008 & 2 & 0.269 & 0.203 & 0.157 & 0.151 \\
\hline 2008 & 3 & 0.200 & 0.173 & 0.167 & 0.167 \\
\hline 2008 & 4 & 0.304 & 0.225 & 0.197 & 0.197 \\
\hline 2009 & 1 & 0.444 & 0.362 & 0.233 & 0.162 \\
\hline 2009 & 2 & 0.327 & 0.200 & 0.158 & 0.150 \\
\hline 2009 & 3 & 0.190 & 0.170 & 0.163 & 0.163 \\
\hline 2009 & 4 & 0.293 & 0.215 & 0.190 & 0.190 \\
\hline 2010 & 1 & 0.527 & 0.412 & 0.312 & 0.170 \\
\hline 2010 & 2 & 0.395 & 0.217 & 0.179 & 0.164 \\
\hline 2010 & 3 & 0.207 & 0.182 & 0.159 & 0.159 \\
\hline 2010 & 4 & 0.309 & 0.226 & 0.197 & 0.197 \\
\hline 2011 & 1 & 0.511 & 0.437 & 0.386 & 0.182 \\
\hline 2011 & 2 & 0.381 & 0.239 & 0.193 & 0.179 \\
\hline 2011 & 3 & 0.229 & 0.202 & 0.179 & 0.179 \\
\hline 2011 & 4 & 0.338 & 0.254 & 0.224 & 0.224 \\
\hline 2012 & 1 & 0.509 & 0.432 & 0.344 & 0.176 \\
\hline 2012 & 2 & 0.368 & 0.238 & 0.191 & 0.178 \\
\hline 2012 & 3 & 0.219 & 0.176 & 0.145 & 0.145 \\
\hline 2012 & 4 & 0.292 & 0.225 & 0.180 & 0.180 \\
\hline 2013 & 1 & 0.399 & 0.367 & 0.285 & 0.150 \\
\hline 2013 & 2 & 0.271 & 0.209 & 0.164 & 0.158 \\
\hline 2013 & 3 & 0.206 & 0.175 & 0.148 & 0.148 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Season & age 0 & age 1 & age 2 & age 3 \\
\hline 2013 & 4 & 0.270 & 0.221 & 0.178 & 0.178 \\
\hline 2014 & 1 & 0.367 & 0.335 & 0.245 & 0.140 \\
\hline 2014 & 2 & 0.257 & 0.198 & 0.167 & 0.154 \\
\hline 2014 & 3 & 0.211 & 0.181 & 0.153 & 0.153 \\
\hline 2014 & 4 & 0.272 & 0.227 & 0.184 & 0.184 \\
\hline 2015 & 1 & 0.365 & 0.339 & 0.249 & 0.139 \\
\hline 2015 & 2 & 0.237 & 0.194 & 0.164 & 0.149 \\
\hline 2015 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2015 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline 2016 & 1 & 0.377 & 0.347 & 0.260 & 0.143 \\
\hline 2016 & 2 & 0.255 & 0.200 & 0.165 & 0.153 \\
\hline 2016 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2016 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline 2017 & 1 & 0.377 & 0.347 & 0.260 & 0.143 \\
\hline 2017 & 2 & 0.255 & 0.200 & 0.165 & 0.153 \\
\hline 2017 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2017 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline 2018 & 1 & 0.377 & 0.347 & 0.260 & 0.143 \\
\hline 2018 & 2 & 0.255 & 0.200 & 0.165 & 0.153 \\
\hline 2018 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2018 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline 2019 & 1 & 0.377 & 0.347 & 0.260 & 0.143 \\
\hline 2019 & 2 & 0.255 & 0.200 & 0.165 & 0.153 \\
\hline 2019 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2019 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline 2020 & 1 & 0.377 & 0.347 & 0.260 & 0.143 \\
\hline 2020 & 2 & 0.255 & 0.200 & 0.165 & 0.153 \\
\hline 2020 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2020 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline 2021 & 1 & 0.377 & 0.347 & 0.260 & 0.143 \\
\hline 2021 & 2 & 0.255 & 0.200 & 0.165 & 0.153 \\
\hline 2021 & 3 & 0.212 & 0.177 & 0.149 & 0.149 \\
\hline 2021 & 4 & 0.278 & 0.224 & 0.181 & 0.181 \\
\hline
\end{tabular}

\section*{Table 10.6.2. North Sea sprat. Assessment diagnostics.}
ate: 03/23/22 Start time:17:06:28 run time:1 seconds
objective function (negative log likelihood): 299.074
Number of parameters: 143
Maximum gradient: 0.239804
Akaike information criterion (AIC): 884.147
Number of observations used in the likelihood:
Catch CPUE S/R Stomach Sum
\(\begin{array}{lllll}768 & 298 & 48 & 0 & 1114\end{array}\)
objective function weight:
Catch CPUE S/R
1.001 .000 .10
unweighted objective function contributions (total):
Catch CPUE S/R Stom. Stom N. Penalty Sum
412.8 -114.9 11.8
unweighted objective function contributions (per observation):
Catch CPUE S/R Stomachs
\(\begin{array}{llll}0.54 & -0.39 & 0.25 & 0.00\end{array}\)
contribution by fleet:
\begin{tabular}{lll} 
IBTS Q1 & total: -74.980 mean: & -0.469 \\
IBTS Q3 & total: -31.619 mean: & -0.351 \\
Acoustic & total: & -8.283 mean: \\
-0.173
\end{tabular}

F, Year effect:

1974: 1.000
1975: 1.802
1976: 1.884
1977: 1.624
1978: 1.073
1979: 0.684
1980: 2.495
1981: 1.247
1982: 1.080
1983: 1.772
1984: 1.057
1985: 1.458
1986: 1.248
1987: 0.397
1988: 1.388
1989: 0.448
1990: 1.602
1991: 0.876
1992: 0.941
1993: 1.726
1994: 0.871
1995: 1.495
\begin{tabular}{ll} 
1996: & 1.539 \\
1997: & 1.112 \\
1998: & 1.885 \\
1999: & 0.964 \\
2000: & 1.605 \\
2001: & 1.740 \\
2002: & 1.776 \\
2003: & 1.387 \\
2004: & 2.176 \\
2005: & 1.423 \\
2006: & 1.766 \\
\(2007:\) & 1.853 \\
\(2008:\) & 1.678 \\
\(2009:\) & 0.948 \\
\(2010:\) & 1.178 \\
\(2011:\) & 1.067 \\
\(2012:\) & 1.500 \\
\(2013:\) & 1.569 \\
\(2014:\) & 0.680 \\
\(2015:\) & 1.428 \\
\(2016:\) & 2.494 \\
\(2017:\) & 1.595 \\
\(2018:\) & 1.583 \\
\(2019:\) & 1.325 \\
\(2020:\) & 2.010 \\
\(2021:\) & 2.730
\end{tabular}

F, season effect:
age: 0
1974-2021: 0.0370 .2010 .3620 .250
age: 1
1974-2021: 0.5410 .5270 .1960 .250
age: 2
1974-2021: 0.2400 .4740 .1140 .250
age: 3
1974-2021: 0.2190 .5490 .3510 .250
\(F\), age effect:
\(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\)
1974-2021: 0.0370 .3991 .5201 .520

Exploitation pattern (scaled to mean \(\mathrm{F}=1\) )
\(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\)
1974-2021 season 1: 0.0010 .1920 .3260 .297
season 2: 0.0070 .1880 .6420 .744
season 3: 0.0120 .0700 .1540 .476
season 4: \(0.008 \quad 0.089 \quad 0.3390 .339\)
sqrt(catch variance) \(\sim \mathrm{CV}\) :
```

age 1 1 2 3 4
0
1
2
3

```

Survey catchability:
\begin{tabular}{lccccc} 
& age 0 & age 1 & age 2 & age 3 \\
IBTS Q1 & 0.000 & 1.590 & 3.153 & 6.540 \\
IBTS Q3 & & 0.870 & 1.126 & 1.140 \\
Acoustic & & 1.172 & 2.362 & 6.561
\end{tabular}

Stock size dependent catchability (power model)
\begin{tabular}{|c|c|c|c|c|}
\hline IBTS Q1 & 1.65 & 1.00 & 1.00 & 1.00 \\
\hline IBTS Q3 & & 1.00 & 1.00 & 1.00 \\
\hline Acoustic & & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
sqrt(Survey variance) ~ CV:
\begin{tabular}{lccccc} 
& age 0 & age 1 & age 2 & age 3 \\
IBTS Q1 & & 0.43 & 0.37 & 0.37 & 0.37 \\
IBTS Q3 & & & 0.48 & 0.40 & 0.40 \\
Acoustic & & & 0.44 & 0.55 & 0.55
\end{tabular}

Average F:
sp. 1
1974: 1.109
1975: 1.705
1976: 1.802
1977: 1.602
1978: 1.049
1979: 0.676
1980: 2.299
1981: 1.152
1982: 0.986
1983: 1.589
1984: 0.987
1985: 1.308
1986: 1.117
1987: 0.361
1988: 1.259
1989: 0.423
1990: 1.494
1991: 0.848
1992: 0.916
1993: 1.587
1994: 0.804
1995: 1.342
1996: 1.395
1997: 1.049
1998: 1.765
```

1999: 0.936
2000: 1.485
2001: 1.644
2002: 1.676
2003: 1.372
2004: 2.085
2005: 1.356
2006: 1.659
2007: 1.722
2008: 1.578
2009: 0.886
2010: 1.072
2011: 0.969
2012: 1.336
2013: 1.422
2014: 0.638
2015: }1.31
2016: 2.253
2017: 1.459
2018: 1.448
2019: 1.217
2020: 1.827
2021: 2.169

```
Recruit-SSB alfa beta recruit s2 recruit s
Sprat Hockey stick -break.: \(1316.549 \quad 9.000 \mathrm{e}+04 \quad 0.601 \quad 0.776\)

Table 10.6.3. North Sea and Division 3.a Sprat. Assessment output: Stock numbers (thousands) (years, seasons (S1-S4), and age (A0-A3+) refer to the model year, e.g., 2021 = July 2021-
June 2022)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year/Age Quarter & A0_S1 & AO_S2 & A0_S3 & A0_S4 & A1_S1 & A1_S2 & A1_S3 & A1_S4 & A2_S1 & A2_S2 & A2_S3 & A2_S4 & A3+_S1 & A3+_S2 & A3+_S3 & A3+_S4 \\
\hline 1974 & 543036000 & 334604000 & 239556000 & 175705000 & 139916000 & 71456700 & 45757200 & 32147400 & 10206300 & 4740150 & 1856610 & 1311090 & 564485 & 306102 & 110129 & 54212 \\
\hline 1975 & 709595000 & 421523000 & 311385000 & 218722000 & 111574000 & 46246900 & 25400300 & 16362000 & 19327000 & 6562280 & 1467900 & 864143 & 679416 & 294583 & 55264 & 16978 \\
\hline 1976 & 327714000 & 200305000 & 143739000 & 97395300 & 136215000 & 56933800 & 30088300 & 18618100 & 10520700 & 3492490 & 718691 & 408031 & 577268 & 230920 & 39462 & 11353 \\
\hline 1977 & 630579000 & 405010000 & 275610000 & 184507000 & 59943200 & 28014100 & 15589700 & 9660700 & 11954300 & 4571630 & 1131060 & 666272 & 275344 & 117455 & 24819 & 8136 \\
\hline 1978 & 1071680000 & 709383000 & 497293000 & 334648000 & 113084000 & 60277900 & 38202800 & 24590400 & 6223900 & 2862460 & 1062380 & 717015 & 437888 & 220394 & 74254 & 34022 \\
\hline 1979 & 539449000 & 348437000 & 228676000 & 152913000 & 214500000 & 121129000 & 81524400 & 53582800 & 16543100 & 8477520 & 4053540 & 2856720 & 516645 & 274597 & 123664 & 68080 \\
\hline 1980 & 334838000 & 208560000 & 130888000 & 85906800 & 98051400 & 36021800 & 16412600 & 9464200 & 36302200 & 9368020 & 1201790 & 618695 & 2006250 & 577864 & 57232 & 11974 \\
\hline 1981 & 87282900 & 52813800 & 34749200 & 23829500 & 56502300 & 26570100 & 15585600 & 10329200 & 6522900 & 2644320 & 824742 & 532257 & 450514 & 207577 & 58145 & 23924 \\
\hline 1982 & 45555800 & 27300800 & 19447700 & 14127300 & 16355000 & 8419360 & 5327480 & 3884760 & 7423910 & 3432010 & 1269890 & 878234 & 425886 & 232756 & 79136 & 37065 \\
\hline 1983 & 58821600 & 34454900 & 24295000 & 17645200 & 10279300 & 4569930 & 2488660 & 1761840 & 2945250 & 1088410 & 244596 & 151429 & 745375 & 330588 & 62084 & 20282 \\
\hline 1984 & 31588200 & 18407300 & 12284500 & 8893450 & 12912600 & 6719240 & 4250850 & 3082660 & 1359230 & 693448 & 262874 & 183354 & 145108 & 85103 & 29152 & 13886 \\
\hline 1985 & 23019800 & 13264800 & 8102330 & 5754980 & 6448840 & 2852700 & 1591720 & 1107200 & 2343350 & 947696 & 258165 & 168002 & 161927 & 81829 & 19657 & 7560 \\
\hline 1986 & 70963900 & 39277900 & 24758600 & 17228700 & 4186070 & 1876160 & 1055200 & 739060 & 845766 & 351832 & 107452 & 71770 & 148853 & 76240 & 21440 & 9129 \\
\hline 1987 & 38488000 & 21196500 & 13203800 & 9196920 & 12322200 & 6971920 & 4678720 & 3652010 & 556102 & 308891 & 172070 & 132845 & 68300 & 46320 & 26377 & 17645 \\
\hline 1988 & 55817100 & 29924200 & 18094000 & 12251500 & 6559980 & 2945170 & 1562910 & 1104490 & 2757330 & 1053900 & 283000 & 178650 & 125118 & 60921 & 14603 & 5587 \\
\hline 1989 & 48771900 & 26657400 & 15711900 & 10939400 & 8536000 & 4657730 & 3040950 & 2336520 & 817077 & 449786 & 242811 & 180096 & 146005 & 101554 & 53824 & 33961 \\
\hline 1990 & 67307700 & 40016200 & 24089900 & 16834900 & 7524810 & 3267040 & 1675650 & 1139490 & 1710590 & 637302 & 151469 & 89498 & 161558 & 74287 & 15031 & 4981 \\
\hline 1991 & 103265000 & 64967900 & 43460400 & 31493600 & 11432900 & 6200460 & 3939730 & 2825750 & 828606 & 436979 & 184461 & 126784 & 70924 & 40750 & 15885 & 7960 \\
\hline 1992 & 98542600 & 65307900 & 47469400 & 34938400 & 21346600 & 12158200 & 7950910 & 5609240 & 2051690 & 1098170 & 454928 & 312678 & 101110 & 57313 & 21822 & 10679 \\
\hline 1993 & 129113000 & 81680600 & 63540700 & 47296400 & 24116200 & 10990800 & 6205100 & 4208490 & 4159450 & 1576050 & 376218 & 230322 & 246785 & 102653 & 20436 & 6710 \\
\hline 1994 & 113155000 & 68384200 & 50722500 & 38749000 & 33413800 & 17722600 & 11803700 & 8852710 & 3198710 & 1643500 & 721318 & 513028 & 185724 & 99320 & 40055 & 20808 \\
\hline 1995 & 35487900 & 21223000 & 15701900 & 12328100 & 28200700 & 12905300 & 7538890 & 5541070 & 6909940 & 2854090 & 800120 & 517089 & 427172 & 191081 & 45770 & 17247 \\
\hline 1996 & 59588600 & 35915800 & 24695800 & 19517200 & 9461590 & 4574380 & 2637400 & 1969810 & 4487250 & 1966670 & 530904 & 349843 & 442030 & 213995 & 49667 & 18785 \\
\hline 1997 & 46909200 & 29830500 & 21972400 & 17247600 & 15384400 & 9032030 & 5829660 & 4405610 & 1621100 & 875433 & 326079 & 226809 & 315342 & 186651 & 63298 & 29481 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year/Age Quarter & A0_S1 & A0_S2 & A0_S3 & A0_S4 & A1_S1 & A1_S2 & A1_S3 & A1_S4 & A2_S1 & A2_S2 & A2_S3 & A2_S4 & A3+_S1 & A3+_S2 & A3+_S3 & A3+_S4 \\
\hline 1998 & 105848000 & 68705600 & 47185300 & 35779000 & 13178700 & 6617570 & 3655170 & 2559150 & 3555840 & 1424570 & 307293 & 186608 & 216003 & 95415 & 17109 & 5262 \\
\hline 1999 & 75667400 & 49581800 & 36815200 & 27619900 & 26037400 & 15871400 & 10710000 & 7806430 & 2002530 & 1116250 & 470693 & 329117 & 157605 & 92331 & 35463 & 17511 \\
\hline 2000 & 72250500 & 48034400 & 33277400 & 25274800 & 19765200 & 9939310 & 5813380 & 4142640 & 5976400 & 2582580 & 679193 & 439846 & 272028 & 128241 & 28364 & 10294 \\
\hline 2001 & 58320100 & 38658700 & 28297200 & 21180500 & 19128800 & 9471370 & 5307730 & 3696480 & 3272880 & 1373460 & 320622 & 195989 & 371477 & 172239 & 33179 & 10824 \\
\hline 2002 & 77193400 & 49869200 & 35902200 & 27255600 & 15592300 & 7710180 & 4248190 & 3007840 & 2854650 & 1173930 & 263910 & 159833 & 167104 & 78070 & 14439 & 4607 \\
\hline 2003 & 98936600 & 64923600 & 47852100 & 36257500 & 19739000 & 11186500 & 6648750 & 4742960 & 2315440 & 1125270 & 336658 & 211375 & 132257 & 70488 & 18072 & 6880 \\
\hline 2004 & 166990000 & 107622000 & 80201400 & 61834900 & 24730700 & 11740100 & 5984970 & 4083420 & 3485160 & 1250330 & 215256 & 120043 & 163976 & 65654 & 8877 & 2257 \\
\hline 2005 & 63546300 & 40780100 & 29619800 & 23312100 & 42466000 & 22680000 & 13511500 & 9887520 & 3017980 & 1430700 & 428579 & 280082 & 92584 & 46486 & 11917 & 4660 \\
\hline 2006 & 80677800 & 48624200 & 36830800 & 28953900 & 16154400 & 8061150 & 4500040 & 3218460 & 7388710 & 3094690 & 730428 & 452924 & 227374 & 102001 & 19789 & 6488 \\
\hline 2007 & 56916600 & 35127100 & 25990800 & 20548200 & 20114100 & 9873790 & 5357310 & 3890690 & 2439230 & 1011160 & 224692 & 140075 & 375259 & 168619 & 30422 & 9719 \\
\hline 2008 & 124143000 & 76807100 & 57979500 & 46400900 & 15035700 & 7707420 & 4419340 & 3259170 & 3068290 & 1378780 & 352157 & 223023 & 125743 & 60963 & 12924 & 4468 \\
\hline 2009 & 104609000 & 67004900 & 47975700 & 39157400 & 34238000 & 19432600 & 13031200 & 10210100 & 2601340 & 1457570 & 629108 & 453453 & 186832 & 115897 & 45212 & 23146 \\
\hline 2010 & 109958000 & 64799600 & 43261800 & 34634500 & 29225800 & 15010200 & 9430000 & 7166920 & 8232240 & 3919490 & 1402810 & 975767 & 394248 & 224740 & 71364 & 32451 \\
\hline 2011 & 89088900 & 53381500 & 36186600 & 28382500 & 25428900 & 13053500 & 8216910 & 6175170 & 5714940 & 2632520 & 1006520 & 699597 & 828122 & 484339 & 166193 & 78607 \\
\hline 2012 & 67893400 & 40718700 & 27860800 & 21938900 & 20241300 & 9515820 & 5469660 & 4079530 & 4791890 & 1964890 & 551427 & 367917 & 621832 & 316709 & 75810 & 29442 \\
\hline 2013 & 151849000 & 101659000 & 76624500 & 61038400 & 16386900 & 8094030 & 4723490 & 3506530 & 3257200 & 1380800 & 378710 & 248903 & 332029 & 169702 & 39123 & 14596 \\
\hline 2014 & 171345000 & 118599000 & 91223000 & 73167400 & 46597100 & 28788900 & 20463600 & 16192200 & 2811660 & 1716910 & 890556 & 679152 & 220470 & 152916 & 74360 & 44370 \\
\hline 2015 & 95014500 & 65823400 & 51382800 & 40770100 & 55746600 & 29190300 & 17814700 & 13342900 & 12902800 & 5972630 & 1814030 & 1220960 & 602108 & 325834 & 85265 & 34283 \\
\hline 2016 & 136982000 & 93631400 & 71213800 & 55706300 & 30878400 & 12747800 & 6175880 & 4254930 & 10661400 & 3307910 & 465689 & 260642 & 1047910 & 396437 & 42419 & 9652 \\
\hline 2017 & 168157000 & 115082000 & 88114100 & 69758900 & 42190700 & 21142500 & 12375000 & 9147960 & 3399830 & 1464670 & 393931 & 257575 & 225649 & 115102 & 26081 & 9591 \\
\hline 2018 & 163028000 & 111574000 & 85435800 & 67649600 & 52833800 & 26546400 & 15578300 & 11527100 & 7309530 & 3163210 & 858347 & 562436 & 223037 & 114237 & 26153 & 9680 \\
\hline 2019 & 139860000 & 95751900 & 73460700 & 58368200 & 51236300 & 27215200 & 16861000 & 12730800 & 9210530 & 4379360 & 1430820 & 980317 & 477617 & 266526 & 75670 & 32143 \\
\hline 2020 & 85515000 & 58490800 & 44646600 & 35150700 & 44206700 & 20256400 & 10864900 & 7774630 & 10172300 & 3765950 & 751141 & 457106 & 845227 & 375561 & 60179 & 17729 \\
\hline 2021 & 69413200 & 47430600 & 36011600 & 29123700 & 26622400 & 10446200 & 4816020 & 4033920 & 6212200 & 1768500 & 210101 & 181019 & 396405 & 138661 & 12187 & 10500 \\
\hline 2022 & 0 & & & & 22057600 & & & & 3223240 & & & & 159885 & & & \\
\hline
\end{tabular}

Table 10.6.4. North Sea \& 3.a Sprat. Assessment output: Estimated recruitment, spawning-stock biomass (SSB), average fishing mortality (F), and landings weight (Yield). All estimates refer to the model year, e.g., 2021 = July 2021-June 2022.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Recruitment & High & Low & SSB & High & Low & Catches & F ages 1-2 & High & Low \\
\hline & (thousands) & & & (tonnes) & & & (tonnes) & (per year) & & \\
\hline 1974 & 543036000 & 974148742 & 302713625 & 607031 & 989431 & 372423 & 463344 & 1.109 & 1.745 & 0.705 \\
\hline 1975 & 709595000 & 1246579022 & 403925507 & 622040 & 1003062 & 385752 & 732312 & 1.705 & 2.538 & 1.145 \\
\hline 1976 & 327714000 & 568380217 & 188951801 & 501939 & 813172 & 309827 & 628598 & 1.802 & 2.602 & 1.247 \\
\hline 1977 & 630579000 & 1072938408 & 370598976 & 338439 & 521324 & 219712 & 385257 & 1.602 & 2.337 & 1.098 \\
\hline 1978 & 1071680000 & 2020964214 & 568292112 & 389956 & 614573 & 247433 & 458804 & 1.049 & 1.768 & 0.623 \\
\hline 1979 & 539449000 & 951361745 & 305882831 & 641332 & 1100917 & 373604 & 463638 & 0.676 & 1.302 & 0.351 \\
\hline 1980 & 334838000 & 523306464 & 214246324 & 440425 & 747259 & 259581 & 387434 & 2.299 & 3.174 & 1.666 \\
\hline 1981 & 87282900 & 128749607 & 59171479 & 307740 & 455678 & 207831 & 280582 & 1.152 & 1.754 & 0.757 \\
\hline 1982 & 45555800 & 66143585 & 31376148 & 176147 & 263737 & 117646 & 162357 & 0.986 & 1.419 & 0.685 \\
\hline 1983 & 58821600 & 79197337 & 43688093 & 82240 & 111675 & 60563 & 115440 & 1.589 & 1.941 & 1.300 \\
\hline 1984 & 31588200 & 46065568 & 21660742 & 59357 & 76799 & 45877 & 113444 & 0.987 & 1.369 & 0.712 \\
\hline 1985 & 23019800 & 31533307 & 16804808 & 55195 & 72629 & 41947 & 62514 & 1.308 & 1.657 & 1.033 \\
\hline 1986 & 70963900 & 98483537 & 51134182 & 22058 & 29283 & 16616 & 27520 & 1.117 & 1.486 & 0.839 \\
\hline 1987 & 38488000 & 52243884 & 28354059 & 50112 & 67314 & 37307 & 53942 & 0.361 & 0.549 & 0.238 \\
\hline 1988 & 55817100 & 81761291 & 38105424 & 52957 & 67389 & 41616 & 103652 & 1.259 & 1.572 & 1.008 \\
\hline 1989 & 48771900 & 67851635 & 35057346 & 39506 & 53836 & 28990 & 58420 & 0.423 & 0.804 & 0.222 \\
\hline 1990 & 67307700 & 92743440 & 48847946 & 36902 & 50947 & 26728 & 78180 & 1.494 & 1.890 & 1.181 \\
\hline 1991 & 103265000 & 134841771 & 79082766 & 79217 & 105401 & 59537 & 125815 & 0.848 & 1.175 & 0.613 \\
\hline 1992 & 98542600 & 132518416 & 73277694 & 110149 & 138739 & 87450 & 156471 & 0.916 & 1.229 & 0.682 \\
\hline 1993 & 129113000 & 203275378 & 82007801 & 155391 & 200600 & 120370 & 208848 & 1.587 & 1.894 & 1.330 \\
\hline 1994 & 113155000 & 150994478 & 84798161 & 120194 & 177863 & 81223 & 424206 & 0.804 & 1.085 & 0.596 \\
\hline 1995 & 35487900 & 47272692 & 26640984 & 169861 & 229949 & 125474 & 446555 & 1.342 & 1.679 & 1.072 \\
\hline 1996 & 59588600 & 78950898 & 44974805 & 104983 & 130860 & 84223 & 95496 & 1.395 & 1.705 & 1.141 \\
\hline 1997 & 46909200 & 62490879 & 35212707 & 106236 & 134353 & 84003 & 125174 & 1.049 & 1.354 & 0.813 \\
\hline 1998 & 105848000 & 142504252 & 78620805 & 130525 & 162642 & 104750 & 188907 & 1.765 & 2.072 & 1.504 \\
\hline 1999 & 75667400 & 98896332 & 57894517 & 125568 & 164272 & 95983 & 243158 & 0.936 & 1.248 & 0.702 \\
\hline 2000 & 72250500 & 94446022 & 55271092 & 180665 & 227382 & 143546 & 222027 & 1.485 & 1.826 & 1.208 \\
\hline 2001 & 58320100 & 75670180 & 44948143 & 124318 & 156010 & 99064 & 153321 & 1.644 & 1.981 & 1.364 \\
\hline 2002 & 77193400 & 102094534 & 58365720 & 106899 & 133428 & 85644 & 174713 & 1.676 & 1.992 & 1.411 \\
\hline 2003 & 98936600 & 131377949 & 74506041 & 132982 & 168882 & 104713 & 174988 & 1.372 & 1.700 & 1.108 \\
\hline 2004 & 166990000 & 218038501 & 127893285 & 161765 & 206207 & 126901 & 231352 & 2.085 & 2.414 & 1.801 \\
\hline 2005 & 63546300 & 81669576 & 49444756 & 203907 & 260209 & 159787 & 280275 & 1.356 & 1.666 & 1.104 \\
\hline 2006 & 80677800 & 103508005 & 62883131 & 160733 & 200768 & 128681 & 78028 & 1.659 & 1.987 & 1.384 \\
\hline 2007 & 56916600 & 74132739 & 43698633 & 130934 & 162701 & 105369 & 99902 & 1.722 & 2.046 & 1.449 \\
\hline 2008 & 124143000 & 158849105 & 97019649 & 95608 & 119311 & 76613 & 69892 & 1.578 & 1.913 & 1.301 \\
\hline 2009 & 104609000 & 134930708 & 81101204 & 164733 & 205575 & 132005 & 170934 & 0.886 & 1.182 & 0.664 \\
\hline 2010 & 109958000 & 153382153 & 78827696 & 170207 & 211284 & 137116 & 145415 & 1.072 & 1.377 & 0.835 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
\hline Year & Recruitment & High & Low & SSB & High & Low & Catches & F ages 1-2 & High & Low \\
\hline & (thousands) & & & (tonnes) & & & (tonnes) & (per year) & \\
\hline \(\mathbf{2 0 1 1}\) & 89088900 & 115680121 & 68610164 & 149422 & 192407 & 116040 & 122472 & 0.969 & 1.296 & 0.724 \\
\hline \(\mathbf{2 0 1 2}\) & 67893400 & 86480522 & 53301179 & 124904 & 153810 & 101430 & 96030 & 1.336 & 1.634 & 1.093 \\
\hline \(\mathbf{2 0 1 3}\) & 151849000 & 206375367 & 111729027 & 103116 & 127342 & 83499 & 60207 & 1.422 & 1.808 & 1.119 \\
\hline \(\mathbf{2 0 1 4}\) & 171345000 & 23225288 & 126410419 & 192302 & 251584 & 146989 & 190268 & 0.638 & 0.883 & 0.461 \\
\hline \(\mathbf{2 0 1 5}\) & 95014500 & 126602235 & 71308024 & 311969 & 410654 & 236999 & 298227 & 1.314 & 1.629 & 1.059 \\
\hline \(\mathbf{2 0 1 6}\) & 136982000 & 176588472 & 106258739 & 216052 & 278800 & 167426 & 227169 & 2.253 & 2.561 & 1.982 \\
\hline \(\mathbf{2 0 1 7}\) & 168157000 & 216616887 & 130538192 & 176752 & 221935 & 140768 & 135824 & 1.459 & 1.774 & 1.199 \\
\hline \(\mathbf{2 0 1 8}\) & 163028000 & 217041203 & 122456605 & 200339 & 249556 & 160828 & 190779 & 1.448 & 1.749 & 1.199 \\
\hline \(\mathbf{2 0 1 9}\) & 139860000 & 183850729 & 106395116 & 209892 & 267130 & 164919 & 137489 & 1.217 & 1.558 & 0.951 \\
\hline \(\mathbf{2 0 2 0}\) & 85515000 & 115933635 & 63077598 & 288838 & 368367 & 226479 & 181990 & 1.827 & 2.159 & 1.546 \\
\hline \(\mathbf{2 0 2 1}\) & 69413200 & 106348965 & 45305493 & 141574 & 178714 & 112152 & 80032 & 2.169 & 2.567 & 1.832 \\
\hline \(\mathbf{2 0 2 2}\) & 120979028 & & & 100495 & 138634 & 72848 & & & & \\
\hline
\end{tabular}
* Geometric mean recruitment (2011-2020)

Table 10.9.1. North Sea and Division 3.a Sprat. Input to forecast (years and age refer to the model year, e.g., 2021 = July 2021-June 2022).
\begin{tabular}{lclcc}
\hline Age & Age 0 & Age 1 & Age 2 & Age 3 \\
\hline Stock numbers(2022) (millions) & 120979 & 22058 & 3223 & 160 \\
\hline Exploitation pattern S1 & 0.003 & 0.433 & 0.734 & 0.668 \\
\hline Exploitation pattern S2 & 0.015 & 0.423 & 1.447 & 1.678 \\
\hline Exploitation pattern S3 & 0.027 & 0.157 & 0.348 & 1.073 \\
\hline Exploitation pattern S4 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Weight in the stock S1 (gram) & 4.800 & 7.593 & 10.633 & 13.621 \\
\hline Weight in the catch S1 (gram) & 4.80 & 7.59 & 10.63 & 13.62 \\
\hline Weight in the catch S2 (gram) & 5.78 & 9.00 & 11.84 & 15.58 \\
\hline Weight in the catch S3 (gram) & 5.81 & 9.34 & 12.21 & 15.19 \\
\hline Weight in the catch S4 (gram) & 6.44 & 9.42 & 12.36 & 15.93 \\
\hline Proportion mature(2020) & 0.00 & 0.41 & 0.87 & 0.95 \\
\hline Proportion mature(2021) & 0.00 & 0.41 & 0.87 & 0.95 \\
\hline Natural mortality S1 & 0.38 & 0.35 & 0.26 & 0.14 \\
\hline Natural mortality S2 & 0.26 & 0.20 & 0.16 & 0.15 \\
\hline Natural mortality S3 & 0.21 & 0.18 & 0.15 & 0.15 \\
\hline Natural mortality S4 & 0.28 & 0.22 & 0.18 & \\
\hline
\end{tabular}

Table 10.9.2. Sprat North Sea Division 3.a. Short-term predictions options table. Years refer to the model year, e.g., 2021 = July 2021-June 2022.

Catch options. Catches and SSB are in thousands of tonnes.
3-year average weight-at-age was used to calculate SSB. Recruitment(2021) = geometric average 2011-2020.
\begin{tabular}{lrrrrr}
\hline Basis & Catches(2022) & F(2022) & SSB(2023) & \%SSB change* & \%TAC change** \\
\hline Fcap & 68.690 & 0.69 & 181215 & \(80 \%\) & \(-36 \%\) \\
\hline \(\mathrm{~F}=0\) & 0 & 0 & 222210 & \(121 \%\) & \(-100 \%\) \\
\hline \(\mathrm{~F}=0.1\) & 12.231 & 0.1 & 214704 & \(114 \%\) & \(-89 \%\) \\
\hline \(\mathrm{~F}=0.2\) & 23.557 & 0.2 & 207825 & \(107 \%\) & \(-78 \%\) \\
\hline \(\mathrm{~F}=0.3\) & 34.071 & 0.3 & 201505 & \(101 \%\) & \(-68 \%\) \\
\hline \(\mathrm{~F}=0.4\) & 43.852 & 0.4 & 195688 & \(95 \%\) & \(-59 \%\) \\
\hline \(\mathrm{~F}=0.5\) & 61.490 & 0.5 & 190322 & \(89 \%\) & \(-50 \%\) \\
\hline \(\mathrm{~F}=0.6\) & 69.465 & 0.6 & 185363 & \(84 \%\) & \(-42 \%\) \\
\hline \(\mathrm{~F}=0.7\) & 76.944 & 0.7 & 180772 & \(80 \%\) & \(-35 \%\) \\
\hline \(\mathrm{~F}=0.8\) & 83.971 & 0.8 & 176512 & \(76 \%\) & \(-28 \%\) \\
\hline \(\mathrm{~F}=0.9\) & 90.586 & 0.9 & 172554 & \(72 \%\) & \(-21 \%\) \\
\hline \(\mathrm{~F}=1.0\) & 178.672 & 1 & 168869 & \(68 \%\) & \(-15 \%\) \\
\hline Bescapement with- & & & & & \(24 \%\) \\
\hline out Fcap & & & & & \(-67 \%\) \\
\hline
\end{tabular}
* SSB in July 2023 relative to SSB in July 2022
** catch (July 2022-June 2023) relative to the sum of the TACs (106715 tonnes) for July 2021-June 2022 in Subarea 4 and Division 3.a.


Figure 10.1.1. North Sea and Division 3.a sprat. Sprat catches in the North Sea and Division 3.a (in tonnes) for each calendar year by statistical rectangle.


Figure 10.2.1. North Sea and Division 3.a sprat. Number of samples taken in the North Sea and Division 3.a for each calendar year by statistical rectangle.

\section*{IBTS-Q1}


Figure 10.3.1. North Sea and Division 3.a sprat. IBTS Q1 survey index for Subarea 4 and Division 3.a combined. The index is calculated using a delta-GAM model formulation (see WKSPRAT report (ICES, 2018) for details). Years refer to the calendar year.

IBTS-Q3


Figure 10.3.2a. North Sea and Division 3.a sprat. IBTS Q3 survey index for Subarea 4 and Division 3.a combined. The index is calculated using a delta-GAM model formulation (see WKSPRAT report (ICES, 2018) for details). Years refer to the calendar year.

\section*{HERAS}


Figure 10.3.2b. North Sea and Division 3.a sprat. HERAS survey index for Subarea 4 and Division 3.a combined (sum of abundance indices published by WGIPS). Years refer to the calendar year.


S2



\section*{S4}


Figure 10.4.1. North Sea \& 3.a sprat. Mean weight at age in season 1-4 (S1-S4) (years refer to the model year, e.g., 2021 = July 2021-June 2022). Age 1 (grey), age 2 (black), age 3 (white). Red dot is the status quo weight and the red dashed line refer to the 3-year average used in the forecast last year.

\section*{Total landings by year (model year) and season (S1-S4)}


Figure 10.6.1a. North Sea \& 3.a sprat. Seasonal distribution of catches. Year and season 1-4 refer to the time-steps of the model (e.g., 2021 = July 2021-June 2022). Note that since the model year of 2021 is not yet finished, the 2021 column will be updated next year. Also note that there are no catches shown for S4, since these are moved to S1 in the following year (see WKSPRAT 2018 report (ICES, 2018) for details).

Proportion at age in catches (years refer to model year)


Figure 10.6.1b. North Sea \& 3.a sprat. Proportion of each age group in the catches. Year and age refer to the model year (e.g., 2021 = July 2021-June 2022).

Sprat S:1


Sprat S:2


Sprat S:3


Sprat S:4


Figure 10.6.2. North Sea \& 3.a sprat. Catch residuals by age. (Model year, e.g., 2021 = July 2021-June 2022)

IBTS Q1


IBTS Q3


Acoustic


Figure 10.6.3. North Sea \& 3.a sprat. Survey residuals by age. (Model year, e.g., 2021 = July 2021-June 2022)


Figure 10.6.4. North Sea \& 3.a sprat. Coefficients of variance (Model year, e.g., 2021 = July 2021-June 2022).


Figure 10.6.5. North Sea \& 3.a sprat. Retrospective analysis (Model year, e.g., 2021 = July 2021-June 2022)


Figure 10.6.6. North Sea \& 3.a sprat. Temporal development in Mean F, SSB and recruitment. Hatched lines are 95\% confidence intervals (Model year, e.g., 2021 = July 2021-June 2022).


Figure 10.6.7. North Sea \& 3.a sprat. Assessment summary (Model year, e.g., 2021 = July 2021-June 2022).

Sprat: Hockey stick, 1974:2021


Figure 10.7.1. North Sea \& 3.a sprat. Stock-recruitment relationship (Model year, e.g., 2021 = July 2021-June 2022).

\subsection*{10.14 References}

WKSPRAT 2013. Report of the Benchmark Workshop on Sprat Stocks. ICES CM 2013/ACOM:48
WGSAM 2017. Interim Report of the Working Group on Multispecies Assessment Methods (WGSAM) ICES CM 2017/SSGEPI:20

WKSPRAT 2018. Report of the Benchmark Workshop on Sprat. ICES CM 2018/ACOM:35. 60 pp
ICES. 2022. ICES Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. In prep.
ICES. 2020. Workshop on Catch Forecast from Biased Assessments (WKFORBIAS; outputs from 2019 meeting). ICES Scientific Reports. 2:28. 38 pp. http://doi.org/10.17895/ices.pub. 5997

\section*{11 Sprat in the English Channel (divisions 7. de)}

The stock structure of sprat populations in this region is not clear, despite evidence from acoustic surveys suggesting the stock is mainly confined to the UK side of 7.e. Further investigations and work are required to resolve this uncertainty.

\subsection*{11.1 The Fishery}

\subsection*{11.1.1 ICES advice applicable for 2022}

The advised catch for the English Channel (7.d and e) was set equal to 9200 tonnes.

\subsection*{11.1.2 Landings}

The total sprat landings by country from 1986-2021 are provided in Table 11.1.1. Total landings from the international sprat fishery are available since 1950 (Figure 11.1.1.). Sprat landings prior to 1985 in 7.de were extracted from official catch statistics dataset (STATLANT27, Historical Nominal Catches 1950-2010, Official Nominal Catches 2006-2013), from 1985 onwards they come from WG estimates. Since 1985 sprat catch has been taken mainly by the UK (England, Wales and Northern Ireland). According to official catch statistics large catches were taken by Danish trawlers in the English Channel between the late 1970s and 1980s. The identity of these catches was not confirmed by the Danish data managers, raising the question of whether those reported catches were the result of species misreporting (i.e. herring misreported as sprat). Therefore, ICES cannot verify the quality of catch data prior to 1988.

The fishery starts in August and runs into February and sometimes March the following year. Most of the catch is taken in 7.e, in the Lyme Bay area. In the last decade catch from the UK covered about \(93 \%\) of landed sprat, however in 2015 and 2016 this percentage diminished, with Netherlands, Denmark appearing, and taking a portion of the catch. Denmark and the Netherlands represent the two principle "transient fishing fleets" that appear occasionally in the time series and have been allocated a portion of the TAC under the common fisheries policy in previous years. In \(202199.5 \%\) of the catches were taken by UK vessels. Landings were very low in 2021, 49 tonnes in total (Figure 11.1.1), which has been attributed to a large number of small sprat in the catch, leading to a short season for the UK fleet and a switch to beaming and scalloping.
Sprat is found by sonar search and sometimes the shoals are found too far offshore for sensible economic exploitation. This offshore/near shore shift may be related to environmental variability such as spatial and temporal changes in temperature and/or salinity.

\subsection*{11.1.3 Fleets}

In the English Channel the primary gear used for the capture of sprat is midwater trawl. Within that gear type three vessels under 15 m have actively targeted sprat and have been responsible for the majority of landings (since 2003 they took on average \(96 \%\) of the total landings). Sprat is also caught by driftnet, fixed nets, lines and pots and most of the landings are sold for human consumption.

\subsection*{11.1.4 Regulations and their effects}

There is a TAC for sprat in ICES divisions 7.de, English Channel. Figure 11.1.2. shows the agreed TAC and the ICES catch from 2000-2022 and shows the catch is always below the agreed TAC.

\subsection*{11.1.5 Changes in fishing technology and fishing patterns}

There is insufficient information available.

\subsection*{11.2 Biological Composition of the Catch}

\subsection*{11.2.1 Catches in number and weight-at-age}

In 2017/2018 fishing season a pilot self-sampling program started in the Southwest of UK, involving sprat fishers from Lyme bay. This program has continued in 2021 however due to low uptake in the fishery only 1 vessel submitted data. The graphs have therefore not been updated this year as the previous year's data better represents the stock, when taken by the fishery. The 2019-2020 data shown are raw numbers-at-length in the samples, and not raised to the total catches (Figure 11.2.1 and Figure 11.2.2).

The skippers have collected length measurements from the catches and recorded information on fishing trips since 2018. In 2019, the sprat lengths in the fishers' samples ranged from 7.5 to 15 cm (Figure 11.2.1). The main processors for the fishery were engaged in 2019 and have provided length and weight data from landings subsamples. The length distributions recorded by the processors was reasonably consistent in 2020 (Figure 11.2.2). Due to low uptake in the fishery during 2021, the fishery operated for only two months of the season (August and September) and the FSP program provided very little data.

Biomass estimates for 2021 showed a huge increase in Sprat biomass, The PELTIC survey reports that there was a very strong recruitment (0-group) (Figure 11.3.3). These small fish were very widespread throughout the survey area. Anecdotal evidence from the Fisheries (self) sampling program (FSP) program and fishers also support the survey findings, with the Pelagic fisheries noting difficulties in being able to fish because of too much "whitebait" everywhere, below marketable size. The demand in the fishery tied more to size and marketability than stock biomass, with the processors reluctant to take catches with small fish. Figure 11.3.3 supports this and shows the large increase in 0 age fish in 2022 compared to 2021.

\subsection*{11.3 Fishery-independentinformation}

\section*{PELTIC Acoustic Survey (A6259)}

Cefas carried out the annual PELTIC survey (Pelagic Ecosystem Survey of the Celtic Sea and Western Channel) in autumn in the English Channel and the Celtic Sea to acoustically assess the biomass of the small pelagic fish community within this area (divisions 7.e-f), and sprat is one of the target species. This survey, conducted from the RV Cefas Endeavour, started in 2013, when it first focused only on UK waters but, from 2017, it expanded to also cover the southern area of division 7 .e (French waters). In 2018 a one-off extension of the survey was conducted into division 7.d to investigate the presence of the stocks in the eastern channel, the survey found almost no sprat present.

As detailed in the ICES survey manual (Doray et al., 2021), calibrated acoustic data were collected during daylight hours only at three frequencies \((38,120,200 \mathrm{kHz})\) from transducers mounted
on a lowered drop keel at 8.2 m below the surface. All non-fish acoustic targets were removed by creating a multi-frequency filter and only backscatter from swimbladder fish was retained for further analyses. The resulting echotraces were further partitioned by species based on the trawl catches and were converted into abundance and biomass estimates (plus Coefficient of Variation) in StoX software.

To convert acoustic biomass to abundance, a Target Strength (TS) equation is used. As no dedicated sprat specific TS equation is available for the area, the generic clupeid value of \(b 20=-71.2\) dB is used. This was found to be an acceptable conversion and it was noted that more negatively values (leading to a higher biomass) have been used for sprat stocks in adjacent waters.

As part of the 2021 sprat inter benchmark process (IBP), the ability of the survey to capture the sprat stock (catchability) was evaluated, as this feeds heavily into assumptions of the, management strategy evaluation (MSE). It was noted that the assessment is based on a biomass estimate from only a small area of the total management unit and is therefore likely to be a conservative estimate.

The survey also provides age and length structure for sprat aged \(0-6\) (Figure 11.3.2 and Figure 11.3.3). While there is high variability in the age distributions, this does not affect the overall estimate of biomass. However, it does preclude cohort tracking in the survey. The IBP found that the survey provided a robust estimate of biomass for application of a constant harvest rate (CHR) and is evaluated at two ICES working groups, WGIPS and WGACEGG each year."

\section*{Biological data}

Biological information from trawl catches carried out during the 2021 PELTIC acoustic survey, identified 5 age classes from 0 to 4 contributing on average to \(91.61 \%, 2.1 \%, 5.9 \%, 0.32 \%\), and \(0.02 \%\) respectively in the samples collected. The age structure observed in 2021 is shown in Figure 11.3.2 and 11.3.3. This supports anecdotal information from the fishery and is linked to the reduced catch in 2021, citing a high volume of small fish.

\subsection*{11.4 Mean weight-at-age and maturity-at-age}

No data on mean weight-at-age or maturity-at-age in the catch are available.

\subsection*{11.5 Recruitment}

The acoustic surveys may provide an index of sprat recruitment in divisions 7.d-e.

\subsection*{11.6 Stock Assessment}

This stock is considered a category 3 stock with the assessment and advice based on survey trends (ICES Advice 2018).

The stock went through an interbenchmark in February 2021 to update the assessment method based on the new guidance issued by WKLIFEX and developed by WKDLSSSLS2. The IBP tested the available data against the updated guidelines and assessed the suitability of three data limited methods for the stock.
1. 1 over 2 ratio-based advice with a \(20 \%\) and an \(80 \%\) uncertainty cap
2. Constant Harvest Rate
3. Surplus Production model (SPiCT)

Three exploratory SPiCT assessments were performed:
- an annual model using calendar year (January-December)
- an annual model using fishing year (July-June);
- a model using quarterly data.

The IBP concluded that SPICT analysis of the stock was not viable at this point in time due to the limited time series available for the PELTIC survey (2014-2020). There is also a strong transient component to the fishery from Denmark and the Netherlands which has not been present in recent years. The IBP determined that SPICT should be re-examined in the future.

A constant harvest rate (CHR) was determined by management strategy evaluation (MSE). The CHR was tested alongside the 102 with \(80 \%\) and \(20 \%\) uncertainty caps. The MSE tested three survey catchability options, with an assumption of \(0 \%, 50 \%\) and \(100 \%\) over estimation of the underlying biomass from the PELTIC survey. Assuming that some overestimation may take place on the survey, the IBP determined that the \(50 \%\) overestimation should be adopted. Three scenarios of fishing pressure, prior to implementation of the catch advice options, were simulated for 25 years to establish starting points for the stock.
This MSE was carried out on a seasonal time step due to limitations in the framework. The IBP notes that the current advice is given annually, however it is recommended to move to an an-nual- seasonal calendar. This will reduce the time lag between survey and advice, while keeping the stock within the HAWG. WKDLSSLS determined that the reduced lag between survey and advice was the key component of providing precautionary advice for short lived species. A CHR determined on a seasonal timestep will still be applicable to the stock and is more precautionary than the 1 o 2 rule.

The CHR was found to be more precautionary for the stock than the current 102 rule (with both UC values), supporting the findings of WKDLSSL1 \& 2. The CHR of \(12 \%\) was the maximum value estimated under the \(50 \%\) survey catchability overestimation level that kept the risk \(<5 \%\) in the long term under all fishing histories while giving the highest yield. A correction factor to the CHR was applied to account for a mismatch between survey weight at age in the PELTIC biomass and the weight at age in survey biomass simulated in the MSE. This was done to account for in year growth and results in a correction factor of 0.714 equal to the ratio of the MSEindex/"PelticIndex", where PelticIndex equates to the weight-at-age structure present at the time of the survey. This time-step accounts for a seven-month growth period, comprising the months between spawning in March and the survey in October. The IBP concluded that an adjusted CHR to \(8.57 \%\) was the most appropriate assessment method for the stock (ICES, 2021b).
Further investigation of the CHR, specifically using sprat in 7.de, was conducted at WKDLSSLS3 in 2021. The group examined the effect of applying an \(80 \%\) uncertainty cap (UC) to the CHRs. The conclusion from this was an UC resulted in minimal risk reduction for CHR's below the 5\% risk threshold. It did reduce risk for CHR's that are too high but could not bring them below the ICES risk threshold. The only significant difference between CHR and CHR+UC was a decrease in interannual variability in the stock. This contrasts with work by other members of the WKDLSSLS group, who note that UC's may introduce unnecessary risks to the stock when requiring rapid reduction of catches. Alternatively following a drop of catch advice, may prevent recovery of yield (Fischer et al. 2020, 2021 and Sánchez-Maroño et al. 2021). The group found that unconstrained CHRs appear robust to past fishing history, initial stock status and advice schedule but are sensitive to survey catchability. No recommendations from the WKDLSSLS were made in regard to applying a UC to CHR's. Application of uncertainty cap is a current research topic and future guidelines may clarify how they are applied as part of a CHR.

\subsection*{11.6.1 Data exploration}

\section*{Biomass Index}

A 9-year time-series of biomass estimates from the PELTIC survey is shown in Table 11.6.1. The extension of the survey into ICES division 7.d and the southern part of 7.e suggests that the stock is mainly located in the more northerly part of division 7.e during October. The survey conducted in 2021 showed a very large concentration of age 0 sprat in Lyme bay, Figure 11.6.1 and 11.3.2. The survey also covered the area around the Channel Islands (Figure 11.6.1) and found a large quantity of sprat present off the coast of France. This biomass does not feed into the assessment, which looks only at the "core area" of Lyme Bay.

Sprat was in general the dominant small pelagic species in the trawl samples, with highest densities in the eastern parts of the western Channel and the Bristol Channel, with the bulk of the biomass centred in Lyme bay. As in previous years, large schools in the Bristol Channel appeared to consist mainly of juvenile sprat, whereas those in the English Channel also included larger size classes. In 2018, the PELTIC survey was extended into the eastern channel and found no discernible Sprat biomass, indicating a separation between 27.7.de and Sprat in the Eastern channel.

For more details on the survey design see Figure 11.3.1 and ICES 2021b.
A 2015 analysis of the age distribution of sprat in the survey area shows a marked distinction between the young fish (0 and 1) found in the Bristol Channel and the older age classes that occupy the Western English Channel (ICES 2015). Whether the two clusters belong to the same stock has yet to be proved: the circulation pattern of the area would allow sprat eggs/larvae to travel northward, from division 7.e to 7.g; however, the formation of a front in late spring/early summer seems to suggest these may be two different stocks.

The stock was examined using RAD-seq-derived SNPs (Restriction-site-associated DNA sequencing and single nucleotide polymorphisms) in 2020 (McKeown et al., 2020). This was part of a larger study of North Sea and Baltic sprat. The study found that amongst the North Sea population there was a lack of genetic differentiation between sampled stocks, indicating a high gene flow in the North Sea population. This would indicate that all sprat in the North Sea form one genetic unit, however the study suggests further work is needed. Specifically, for fisheries management, it should be noted that genetically connected stocks may still be isolated on the time scale of fisheries management.

\subsection*{11.7 State of the Stock}

The acoustic estimates for 2017 ( 32751 t ) show a three fold increase compared to the all-time low value in 2016 ( 9826 t ), although the biomass is still half of the high levels recorded in the period 2013-2015 ( \(70680 \mathrm{t}, 85184 \mathrm{t}\) and 65219 t respectively), Table 11.6.1. The PELTIC biomass has increased substantially from 36798 tonnes in 2020 to 107355 tonnes in 2021. The harvest rate has dropped from \(3 \%\) to \(0.05 \%\). This is due low catches in 2021 which has been attributed to a large number small sprat mixed in with the catch. The fleet is thought to have switched to beam trawling and scalloping because of this but should be expected to return when these small sprats mature.

\subsection*{11.8 Catch Advice}

Applying the constant harvest rate of \(8.57 \%\) to the current estimate of PELTIC biomass gives an advised catch of 9200 tonnes.

\subsection*{11.9 Short-term projections}

No projections are presented for this stock.

\subsection*{11.10 Reference Points}

The IBP suggested the use of the Istat value developed as part of WKDSLLS2 (ICES, 2021) could be used as a proxy \(\mathrm{B}_{\mathrm{lim}}\) for the stock. The Istat is defined as

Geomean(Ihist)*exp(-1.645*sd(log(Ihist))
Where Ihist refers to the biomass index, this gives a value of 11527.9 tonnes biomass for the stock. Note this should not be referred to as SSB or total biomass as SSB cannot be derived for the stock and the PELTIC does not capture the total biomass of the stock. Length based F (MSY) proxies were suggested by the ADG as being possibly applicable to the stock and providing useful information. They have not been explored to date but could be looked at in the future. The inclusion of the FSP sampling data (which includes length frequencies) could also be incorporated into these methods and provide interesting comparison between survey and fisheries derived data.

\subsection*{11.11 Quality of the Assessment}

The coverage of the PELTIC acoustic survey was extended in 2017 towards the southern part of Division 7.e: this extension confirmed that the bulk of the sprat distribution in 7.e is located in Lyme Bay and surrounding areas, and very little extend outside. In fact, the transects carried out off the French coast found very little sprat, mostly of ages 0 and 1 . This pattern may have changed somewhat in recent years as sprat have been recorded off the coast of France and around the channel island in 2018 and 2019. 2021 also saw sprat present off the coast of France, in line with a general increase in biomass across the area and consisted primarily of small age 0 fish. They do not feed into the advice, as they lie outside of the core Lyme bay area.

The extent to which the population migrates into Division 7.d was investigated during the 2018 survey. The survey showed that very little sprat was found on the eastern border of division 7.e suggesting no movements of sprat between the two areas and very little found in 7.d.

Concerns have been raised about the connection between the Western English Channel stock and the Bristol Channel, where large numbers of juveniles are found, it is currently believed the Bristol channel may represent a separate stock. See the data exploration section for details.

\subsection*{11.12 Management Considerations}

Sprat is a short-lived species with large interannual fluctuations in stock biomass. The natural interannual variability of stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by the observed levels of fishing effort.

Sprat annual landings from 7.d-e over the past 20 years have been 2532 tonnes on average. The average harvest rate for the 9 -year time-series is \(8 \%\), however if the 2016 value of \(34 \%\) is removed, this drops to \(5 \%\). The average harvest rate is \(2 \%\) over the last 3 years. In general, however, it seems that Lyme Bay, where most of the fishery occurs, consistently hosts quite a substantial part of the sprat stock: this is confirmed by the fact that even in 2016, when the estimated biomass was overall very low, Lyme Bay still contributed \(50 \%\) of the total sprat population in the Western English Channel.

The strong biomass fluctuations observed in the acoustic index and the relatively strong increase in biomass observed in 2017, suggests that the low level of catch is not impairing the stock. 2021 has seen another large increase in biomass. Due to the low fishing pressure and reports of average oceanographic condition from the survey, it is likely the increase is driven by environmental conditions or interactions with other stocks.

The timing of the advice relative to the PELTIC survey has been considered, previously the advice has been issued on an annual basis. This led to a lag between survey, advice and uptake, which was identified as problematic in a short-lived species. An agreement has been reached between the ICES members to move the advice to a seasonal calendar in line with the fishery for 2022/2023. The advice will now run across the fishing season (1 July- 30 June) instead of on an annual basis.
The PELTIC survey takes place in October of the advice year minus 1, with the advice issued in March of the advice year for the fishing season. The fishing season runs from 1 July advice year, to 30 June advice year plus 1 . Therefore, there is an 8-month delay between survey and advice. This is a weakness in the advice as Sprat can undergo rapid changes in biomass. The TAC issued separately to the ICES advice has been issue on a seasonal basis for 2022. A small delay is still present but has been greatly reduced. A further improvement to better respond to changing stock conditions would be a review mechanism at the time of the PELTIC in October to update the advice, if needed. However, this would present problems for issuing of the advice and there is currently little appetite to reopen advice mid-year for stocks in ICES or member states.

\subsection*{11.13 Ecosystem Considerations}

Multispecies investigations have demonstrated that sprat is one of the important prey species in the North Sea ecosystem, for both fish and seabirds. At present, there are no analysis available on the total amount of sprat, and in general of other pelagic species, taken by seabirds, marine mammals, and large predators in the Celtic Seas Ecoregion. However, a wide spectrum of data that covers the whole trophic chain have been collected during the PELTIC acoustic survey: these data will in the future provide a substantial contribution to the knowledge base for the area.

Table 11.1.1 Sprat in 7.d-e. Landings of sprat, 1986-2021.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Country & Denmark & France & Netherlands & UK Eng+Wales+N.Irl. & UK Scotland & Other & Total \\
\hline 1986 & 15 & 0 & 0 & 1163 & 0 & 0 & 1178 \\
\hline 1987 & 250 & 23 & 0 & 2441 & 0 & 0 & 2714 \\
\hline 1988 & 2529 & 2 & 1 & 2944 & 0 & 0 & 5476 \\
\hline 1989 & 2092 & 10 & 0 & 1520 & 0 & 0 & 3622 \\
\hline 1990 & 608 & 79 & 0 & 1562 & 0 & 0 & 2249 \\
\hline 1991 & 0 & 0 & 0 & 2567 & 0 & 0 & 2567 \\
\hline 1992 & 5389 & 35 & 0 & 1791 & 0 & 0 & 7215 \\
\hline 1993 & 0 & 3 & 0 & 1798 & 0 & 0 & 1801 \\
\hline 1994 & 3572 & 1 & 0 & 3176 & 40 & 0 & 6789 \\
\hline 1995 & 2084 & 0 & 0 & 1516 & 0 & 0 & 3600 \\
\hline 1996 & 0 & 2 & 0 & 1789 & 0 & 0 & 1791 \\
\hline 1997 & 1245 & 1 & 0 & 1621 & 0 & 0 & 2867 \\
\hline 1998 & 3741 & 0 & 0 & 1973 & 0 & 0 & 5714 \\
\hline 1999 & 3064 & 0 & 1 & 3558 & 0 & 0 & 6623 \\
\hline 2000 & 0 & 1 & 1 & 1693 & 0 & 0 & 1695 \\
\hline 2001 & 0 & 0 & 0 & 1349 & 0 & 0 & 1349 \\
\hline 2002 & 0 & 0 & 0 & 1196 & 0 & 0 & 1196 \\
\hline 2003 & 0 & 2 & 72 & 1368 & 0 & 0 & 1442 \\
\hline 2004 & 0 & 6 & 0 & 836 & 0 & 0 & 842 \\
\hline 2005 & 0 & 0 & 0 & 1635 & 0 & 0 & 1635 \\
\hline 2006 & 0 & 7 & 0 & 1969 & 0 & 0 & 1976 \\
\hline 2007 & 0 & 0 & 0 & 2706 & 0 & 0 & 2706 \\
\hline 2008 & 0 & 0 & 0 & 3367 & 0 & 0 & 3367 \\
\hline 2009 & 0 & 2 & 0 & 2773 & 0 & 0 & 2775 \\
\hline 2010 & 0 & 2 & 0 & 4408 & 0 & 0 & 4410 \\
\hline 2011 & 0 & 1 & 37 & 3138 & 0 & 0 & 3176 \\
\hline 2012 & 6 & 2 & 8 & 4458 & 0 & 0 & 4474 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Country & Denmark & France & Netherlands & UK Eng+Wales+N.Irl. & UK Scotland & Other & Total \\
\hline 2013 & 0 & 0 & 0 & 3793 & 0 & 0 & 3793 \\
\hline 2014 & 45 & 0 & 275 & 3338 & 0 & 0 & 3658 \\
\hline 2015 & 0 & 1 & 352 & 2659 & 0 & 0 & 3012 \\
\hline 2016 & 185 & 7 & 231 & 2867 & 0 & 49 & 3339 \\
\hline 2017 & 0 & 0 & 235 & 2498 & 0 & 0 & 2733 \\
\hline 2018 & 474 & 1 & 0 & 1776 & 0 & 0 & 2252 \\
\hline 2019 & 0 & 0.67 & 0 & 1544 & 0 & 28 & 1573 \\
\hline 2020 & 0 & 0 & 0 & 873 & 0 & 0 & 873 \\
\hline 2021 & 0 & 0.25 & 0 & 48.75 & 0 & 0 & 49 \\
\hline
\end{tabular}

Table 11.6.1. Sprat in 7.d-e. Annual sprat biomass in ICES Subdivision 7.e (Source: Cefas annual pelagic acoustic survey)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Area & Season & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 \\
\hline PELTIC & W Eng Ch & Oct & 70680 & 85184 & 65219 & 9826 & 32751 & 21772 & 36789 & 33798 & 107355 \\
\hline
\end{tabular}
* ICES rectangles 29E6, 30E6


Figure 11.1.1. Sprat in 7.d-e. Landings of sprat 1950-2021.


Figure 11.1.2. Sprat in 7.d-e. ICES catch (blue line) and agreed TAC (red line) from 2000 to 2022.


Figure 11.2.1. Length distribution collected by the fishers by month. Red line indicates weighted mean length at each month 2019, For the two boats supplying the FSP program.


Figure 11.2.2. Monthly sprat total length distribution collected by the three processors in the \(\mathbf{2 0 2 0}\) season. Red line indicates weighted mean length at each month.


Figure 11.3.2. Sprat in 7.d-e. Proportion of numbers-at-age in the biological sample collected during the 2021 PELTIC acoustic survey.


Figure 11.3.3. Sprat in 7.d-e. Proportion of numbers-at-age in the biological samples collected during the 2013-2021 PELTIC acoustic surveys.


Figure 11.3.1. Sprat in 7.d-e. Survey design (2021) with acoustic transects (blue lines), zooplankton stations (red squares) and oceanographic stations (yellow circles).


Figure 11.6.1. Sprat in 7.d-e. Acoustic backscatter attributed to sprat per 1 nmi equidistant sampling unit (EDSU) during October from the 2013-2021 PELTIC surveys.


Figure 11.6.2. Sprat in 7.d-e. Biomass of sprat estimated from the PELTIC acoustic survey from 2013 to 2021 for Division 7.e (red line) and the Lyme Bay area (blue line). The Partial survey has not been run since 2019.


Figure 11.7.1. Sprat in 7.d-e. Constant Harvest rate index (ratio between landings and PELTIC acoustic survey biomass estimate).

\subsection*{11.14 References}

Doray, M., Boyra, G., and van der Kooij, J. (Eds.). 2021. ICES Survey Protocols - Manual for acoustic surveys coordinated under the ICES Working Group on Acoustic and Egg Surveys for Small Pelagic Fish (WGACEGG). 1st Edition. ICES Techniques in Marine Environmental Sciences Vol. 64. 100 pp. https://doi. org/10.17895/ices.pub. 7462
Fischer, S. H., De Oliveira, J. A. A., and Kell, L. T. 2020. Linking the performance of a data-limited empirical catch rule to life-history traits. ICES Journal of Marine Science, 77: 1914-1926.

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D., and Kell, L. T. 2021. Using a genetic algorithm to optimize a data-limited catch rule. ICES Journal of Marine Science, 0 .

ICES. 2015. Report of the Working Group of International Pelagic Surveys (WGIPS), 19-23 January 2015, ICES HQ, Copenhagen, Denmark. ICES CM 2015/SSGIEOM:05. 279 pp.

ICES. 2021a. Inter-benchmark to revise the advice framework for the Sprat stock in 7.de based on the most recent changes to data-limited short-lived species assessments (IBPSprat). ICES Scientific Reports. 3:23. 42 pp. https://doi.org/10.17895/ices.pub. 7918

ICES. 2021b. Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. 3:40. 481pp. https://doi.org/10.17895/ices.pub. 8055
McKeown, N. J, Carpi, P., Silva, J. F, Healey, A. J E, Shaw, P. W, and van der Kooij, J. Genetic population structure and tools for the management of European sprat (Sprattus sprattus). - ICES Journal of Marine Science, doi:10.1093/icesjms/fsaa113.
ICES. 2021. Workshop on Data-Limited Stocks of Short-Lived Species (WKDLSSLS3). ICES Scientific Reports. 3:86. 60 pp . https://doi.org/10.17895/ices.pub. 8145
Sánchez-Maroño, S., Uriarte, A., Ibaibarriaga, L., and Citores, L. 2021. Adapting Simple Index-Based Catch Rules for Data-Limited Stocks to Short-Lived Fish Stocks' Characteristics. Frontiers in Marine Science, 8: 1-20.

\section*{12 Sprat in the Celtic Seas (Subarea 6 and divisions 7.ac and 7.f-k)}

Most sprat fisheries in the Celtic Seas area are sporadic and occur in different places at different times. Separate fisheries have taken place in the Minch, and the Firth of Clyde (6.aN); in Donegal Bay (6.aS); Galway Bay and in the Shannon Estuary (7.b); in various bays in 7.j; in 7.aS; in the Irish Sea. A map of these areas is provided in Figure 12.1.

The stock structure of sprat populations in this ecoregion is not clear. In 2014, HAWG presented an update of the available data on these sprat populations, in a single chapter. However, HAWG does not necessarily advocate that subareas 6 and 7 constitutes a management unit for sprat, and further work is required to resolve the problem.

\subsection*{12.1 The Fishery}

\subsection*{12.1.1 ICES advice applicable for 2022 and 2023}

ICES analysed data for sprat in the Celtic Sea and West of Scotland. Currently there is no TAC for sprat in this area, and it is not clear whether there should be one or several management units. ICES stated that there is insufficient information to evaluate the status of sprat in this area. Therefore, when the precautionary approach is applied, ICES advises that catches should be no more than 2240 t in 2022 and 2023. The TAC for the English Channel (7.d and e) is the only one in place for sprat in this area.

\subsection*{12.1.2 Landings}

The total sprat landings, by ICES Subdivision (where available) are provided in tables 12.1.112.1.7, with the total landings in Table 12.1.8, and in figures 12.2.1-12.2.8. Only Ireland and the United Kingdom landed from the stock in 2022, with Ireland taking the majority of the landings (Table 12.1.8).

\subsection*{12.1.3 Division 6.a (West of Scotland and Northwest of Ireland)}

Landings have been dominated by UK-Scotland and Ireland (Table 12.1.1). The Scottish fisheries have taken place in both the Minch and in the Firth of Clyde. The Irish fishery has always been in Donegal Bay. Despite the wide separation of these areas, the trends in landings between the two countries are similar, though the UK data have been higher. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length.

The Scottish fishery is mainly for human consumption and is typically a winter fishery taking place in November and December, occasionally continuing into January. Landings were high in the early part of the time-series peaking with average annual landings of \(\sim 7000 \mathrm{t}\) in the period 1972 to 1978 (Figure 12.2.1). Landings were low for a period after this until a second peak in the period 1995 to 2000 where landings averaged just around 4600 tonnes annually. In 2005 to 2009 the fishery was virtually absent but has slowly picked up again since 2010. In 2013 landings reached 968 tonnes, lower than in 2012, but then increased again in the last 3 years, until 2176 t in 2016. In 2015 Irish landings were higher than the Scottish ones, with 1300 t , but decreased again to low values in 2016. 2018 landing were only recorded for Ireland and were much lower in 2017, 1 tonne in total. Irish landings in 2019 increased substantially to 3423 tonnes. This has
been attributed to a low herring quota in the Celtic sea for the Irish fishery. Landings dropped to 736 tonnes in 2020 and anecdotal reports suggest the fleet may have moved to 7 .aS to target abundant sprat in the area. Limitations to the licensing of large vessels ( \(>18 \mathrm{~m}\) ) in Irish inshore waters that were due to come into effect in 2020 have been delayed due to an ongoing legal case. A total of 245.7 tonnes was taken in 2021, 160.7 by Scotland and the remainder ( 85 tonnes) by Ireland.

\section*{Division 7.a}

The main historic fishery was by Irish boats, in the 1970s, in the western Irish Sea. This was an industrial fishery and landings were high throughout the 1970s, peaking at over 8000 t in 1978 (figures for 7.aN are presented in Table 12.1.2 and 7.aS presented in Table 12.1.3). The fishery came to an end in 1979, due to the closure of the fishmeal factory in the area. It is not known what proportion of the catch was made up of juvenile herring, though the fishing grounds were in the known herring nursery areas. In the late 1990s and early 2000s, UK vessels landed up to 500 t per year. In recent years a trial fishery for sprat was carried out by the vessels that fish herring in the area. This was carried out to investigate the feasibility of a clean commercially viable sprat fishery. The results of the trials were inconclusive and plans to conduct further experiments are under discussion.

Irish Landings from 1950-1994 may be from 7.aN or 7.aS. Very high catches in 7.aS were reported in 2012 (Table 12.1.3) with a decrease in 2013 and only 16 t reported in 2014. In 2015 the catches raised again to over 3500 t and dropped again to less than 1000 t in 2016. Despite the high catches registered in some years, those figures should be interpreted with caution because they may be overestimated. In 2020 landings from 7.aS increased to 6888 tonnes up from 2785 tonnes in 2019. Irish landings from 7.aS are predominantly from Waterford Harbour (Table 12.1.3)

No landings from 7.aN were reported by Ireland in 2009-2013 or 2018 (Table 12.1.2), however there have been reported landings of 522 t in 2014, 771 t in 2015 and 150 t in 2016 and 2017. Irish landings in 2020 were 2521 tonnes up from 9 tonnes in \(7 . \mathrm{aN}\) in 2019. Scotland reported landings in 2021 of less than a tonne while Ireland took 381 tonnes

\subsection*{12.1.4 Divisions 7.b-c (West of Ireland)}

Sporadic fisheries have taken place, mainly in Galway Bay and the Mouth of the Shannon. The highest recorded landings were in 1980 and 1981 during winter of 1980-1981, when over 5000 t were landed by Irish boats (Table 12.1.4, Figure 12.2.4). This fishery took place in Galway Bay in winter 1980-1981 (Department of Fisheries and Forestry, 1982). Since the early 1990s landings fluctuated from very low levels to no more than 700 t per year in 2000 . Zero catches were reported for 2016, increasing to above 500 tonnes in the two subsequent years. Irish landings in 2020 were 1308 tonnes and 295 tonnes in 2021. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length.

\subsection*{12.1.5 Divisions 7.g-k (Celtic Sea)}

Sprat landings in the Celtic Sea from 1985 onwards are WG estimates. In the Celtic Sea, Ireland has dominated landings. Patterns of Irish landings in divisions 7.g and 7.j are similar, though the 7.j landings have been higher. Landings for 7.g and 7.j were aggregated in this report. Landings have increased from low levels in the early 1990s, with catches fluctuating between 0 t in 1993 and just under 4200 t in 2005 (Table 12.1.7). The average catches in the last 10 years were equal to 2452 t . Irish landings increased significantly in 2019 to 6148 tonnes, this has dropped to 2933 tonnes in 2020. Irish landings in 2021 increased to 5524 tonnes. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length.

\subsection*{12.1.6 Fleets}

Most sprat in the Celtic Seas Ecoregion are caught by small pelagic vessels that also target herring, mainly Irish, English and Scottish vessels. In Ireland, many polyvalent vessels target sprat on an opportunistic basis. At other times these boats target demersals and tuna, as well as other small pelagics. Targeted fishing takes place when there are known sprat abundances. However, the availability of herring quota is a confounding factor in the timing of a sprat-targeted fishery around Ireland.

Sprat may also be caught in mixed shoals with herring. The level of discarding is unknown, but based on a limited number of samples available to the working group this is estimated to be less than \(1 \%\) of the catch.

In Ireland, larger sprats are sold for human consumption while smaller ones for fishmeal. Other countries mainly land catches for industrial purposes.

\subsection*{12.1.7 Regulations and their effects}

There is a TAC for sprat for 7.d-e, English Channel. No other TACs or quotas for sprat exist in this ecoregion. Most sprat catches are taken in small-mesh fisheries for either human consumption or reduction to fishmeal and oil. It is not clear whether bycatches of herring in sprat fisheries in Irish and Scottish waters are subtracted from quota.

Recently the Irish government changed the regulation relating to the access of the inshore fishing grounds. Vessels \(>18 \mathrm{~m}\) LOA will not have access to the 6 nm inshore zone from 1 January 2020. For vessels targeting sprat, an exemption from this regulation is in place that allows a total sprat catch of up to 2000 t in 2020, up to 1000 t in 2021 and these vessels will not have access to the inshore zone from 2022. However, the policy directive is subject to an ongoing legal case and is not yet fully implemented.

\subsection*{12.1.8 Changes in fishing technology and fishing patterns}

There is insufficient information available.

\subsection*{12.2 Biological Composition of the Catch}

\subsection*{12.2.1 Catches in number and weight-at-age}

There is no information on catches in number or weight in the catch for sprat in this ecoregion.

\subsection*{12.2.2 Biological sampling from the Scottish Fishery (6.a)}

Between 1985 and 2002 the fishery was relatively well sampled and length and age data exists for this period with some gaps. Unfortunately, the data are not available electronically at the present time.

Sampling of sprat in 6.a came to an end in 2003 and no information on biological composition of catches exists in the period 2003-2011. Sampling was resumed in 2012 where a total of 8 landings were sampled. The sampling programme has been carried out since and it is anticipated that it will continue in the future.

\subsection*{12.3 Fishery-independentinformation}

\subsection*{12.3.1 Celtic Sea Acoustic Survey (A4057)}

The Irish Celtic Sea Herring Acoustic Survey calculates an annual estimate of sprat biomass. Biomass estimates for Celtic Sea Sprat for the period November 1991 to October 2020 are shown in Figure 12.3.1 and Table 12.3.1. However, the survey results prior to 2002 are not comparable with the latter surveys because different survey designs were applied.

Since 2004 the survey has taken place each October in the Celtic Sea. Due to the lack of reliable 38 kHz data in 2010, no sprat abundance is available for this year.

It can be seen that there are large interannual variations in sprat abundance. Large sprat schools were notably missing in 2006, and so no biomass could be calculated. The utility of this survey as an index of sprat abundance should be considered carefully (Fallon et al., 2012). Sprat is the second most abundant species observed from survey data. Sprat biomass over the time-series up to 2009 is highly variable, more so than could be accounted for by 'normal' inter survey variability (Table 12.3.1). The variability in the latter years is in part due to the behaviour of sprats in the Celtic Sea which are often seen in the highest numbers after the survey has ended in November/December and again in spring during spawning. The survey is placed to coincide with peak herring abundance and is temporally mismatched with what would be considered sprat peak abundance.

Sprat biomass in the survey has decreased substantially from 60608 tonnes in 2019 to 4523 tonnes in 2020 and is the lowest since 2003. The distribution of sprat was notably different in 2020 with the distribution concentrated along the shore in the east and a lack of fish in the southwest. Anecdotal evidence suggests that prior to the survey a high abundance of sprat was observed in the southwest and was the focus of prolonged and persistent marine mammal feeding activity. Given the inshore distribution observed this year it is possible that the sprat stock was not fully contained within the survey area and so the estimate is low. The size profile of sprat was dominated by larger fish overall and lacked the spread of cohorts normally observed. This is not considered reflective of the state of the stock but rather a year effect which has been observed previously (O'Donnell et al, 2020).

The biomass of sprat in 2021 was higher than observed in 2020 (2021: 12376 t and 2020: 4523 t ). As in 2020, the distribution of sprat was concentrated in inshore waters. Given the inshore distribution this year it is possible that the sprat stock was not fully contained within the survey area and so an unknown proportion of the stock remains unaccounted for. The size profile of sprat was dominated by smaller fish compared to 2020 and lacked the larger length cohorts that dominated catches.

\subsection*{12.3.2 Scottish Acoustic Surveys (A9481)}

A Clyde herring and sprat acoustic survey was carried out in June/July 1985-1990 and then discontinued (Figure 12.3.2 for coverage). Biomass estimates from all years as well as lengths and ages from some years are available from this survey but not presented here.

In 2012 this survey was reinstated as an October/November survey for herring mainly. Full results from these surveys for sprats are not available at the moment. Age and length distribution from the survey in 2012 are in Figure 12.3.3. In 2013 the survey was cancelled due to technical problems but has been continued up to 2018 .

\subsection*{12.3.3 Scottish IBTS surveys (G1179)}

The Scottish West Coast IBTS has been carried out in Q1 since 1981 to the present and in Q4 from 1991 onwards (Figure 12.3.2). Although the survey is a groundfish bottom trawl survey it does catch sprat throughout the survey area. The survey provides numbers at length per haul and aggregated age-length keys on a subarea basis. In the period 1981 to 2012 a total of 1434 hauls were completed and approximately half of these caught sprat. Although the survey is still carried out the figure has not been updated in the last five years (2013 to 2018).

\subsection*{12.3.4 Northern Ireland Groundfish Survey (G7144)}

The Agri-Food and Biosciences Institute of Northern Ireland (AFBINI) groundfish survey of ICES Division 7.aN are carried out in March and October at standard stations between \(53^{\circ} 20^{\prime} \mathrm{N}\) and \(54^{\circ} 45^{\prime} \mathrm{N}\) (see Stock Annex for more detail on the survey). Sprat is routinely caught in the groundfish surveys however; data were not available at the time of submission of this report.

\subsection*{12.3.5 AFBI Acoustic Survey (A4075)}

The Agri-Food and Biosciences Institute of Northern Ireland (AFBINI) carries out an annual acoustic survey in the Irish Sea each September (see the Stock Annex for a description of the survey). While targeting herring, a sprat biomass is also calculated. The annual calculated biomass from 1998-2014 is shown in Figure 12.3.4 and Table 12.3.2. The biomass is estimated to have peaked in 2002 with 405000 t and it has declined since then to just under 95000 t in 2010 . Recent estimates suggest an increase with 2014 being the second highest estimate in the time-series, followed by a decline in the final year of the survey. Spatial distribution of sprat at the time of the survey is shown in Figure 12.3.5. Further work is required to investigate the utility of this survey for measuring sprat biomass in this area.

\subsection*{12.4 Mean weight-at-age and maturity-at-age}

No data on mean weight-at-age or maturity-at-age in the catch are available.

\subsection*{12.5 Recruitment}

The various groundfish and acoustic surveys may provide an index of sprat recruitment in this ecoregion. However further work is required.

\subsection*{12.6 Stock Assessment}

Currently, the only assessment carried out in the Celtic ecoregion is for sprat in 7.d-e and it is based on a survey index of biomass (Please refer to Section 12 - Sprat in divisions 7.d-e).

\subsection*{12.7 State of the Stock}

The state of the sprat stock in the Celtic Seas is currently unknown and the data available are not enough to provide any indication on its status. The only assessment available in the area for this species is for sprat in the English Channel (for that, please refer to Section 12 of this report).

\subsection*{12.8 Short-term projections}

No projections are presented for this stock.

\subsection*{12.9 Reference Points}

No precautionary reference points are defined for sprat populations in the region

\subsection*{12.10 Quality of the Assessment}

The stock status is unknown and the Working Group does not have enough information to assess the status of the stock in relation to reference points.

\subsection*{12.11 Management Considerations}

Sprat is a short-lived species with large interannual fluctuations in stock biomass. The natural interannual variability of stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by the observed levels of fishing effort.

The sprat has mainly been fished together with herring. The human consumption fishery only takes a minor proportion of the total catch. Within the current management regime, where there is a bycatch ceiling limitation of herring as well as bycatch percentage limits, the sprat fishery is controlled by these factors. Most management areas in this ecoregion do not have a quota for sprat. However, there is a quota in 7.d-e, English Channel, which has not been fully utilized.

\subsection*{12.12 Ecosystem Considerations}

In the North Sea Multispecies investigations have demonstrated that sprat is one of the important prey species in the North Sea ecosystem, for both fish and seabirds. At present, there are no data available on the total amount of sprat, and in general of other pelagic species, taken by seabirds in the Celtic Seas Ecoregion.

The Celtic Seas Ecoregion is a feeding ground for several species of large baleen whales (O'Donnell et al., 2004-2009). These whales feed primarily on sprat and herring from September to February.

Table 12.1.1 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2021, Division 6.a. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Country & Denmark & Faroe Islands & Ireland & Norway & UK Eng+Wales+N.Irl. & UK Scotland & Other & Total \\
\hline 1985 & 0 & 0 & 51 & 557 & 0 & 2946 & 0 & 3554 \\
\hline 1986 & 0 & 0 & 348 & 0 & 2 & 520 & 0 & 870 \\
\hline 1987 & 269 & 0 & 0 & 0 & 0 & 582 & 0 & 851 \\
\hline 1988 & 364 & 0 & 150 & 0 & 0 & 3864 & 0 & 4378 \\
\hline 1989 & 0 & 0 & 147 & 0 & 0 & 1146 & 0 & 1293 \\
\hline 1990 & 0 & 0 & 800 & 0 & 0 & 813 & 0 & 1613 \\
\hline 1991 & 0 & 0 & 151 & 0 & 0 & 1526 & 0 & 1677 \\
\hline 1992 & 28 & 0 & 360 & 0 & 0 & 1555 & 0 & 1943 \\
\hline 1993 & 22 & 0 & 2350 & 0 & 0 & 2230 & 0 & 4602 \\
\hline 1994 & 0 & 0 & 39 & 0 & 0 & 1491 & 0 & 1530 \\
\hline 1995 & 241 & 0 & 0 & 0 & 0 & 4124 & 0 & 4365 \\
\hline 1996 & 0 & 0 & 269 & 0 & 0 & 2350 & 0 & 2619 \\
\hline 1997 & 0 & 0 & 1596 & 0 & 0 & 5313 & 0 & 6909 \\
\hline 1998 & 40 & 0 & 94 & 0 & 0 & 3467 & 0 & 3601 \\
\hline 1999 & 0 & 0 & 2533 & 0 & 310 & 8161 & 0 & 11004 \\
\hline 2000 & 0 & 0 & 3447 & 0 & 0 & 4238 & 0 & 7685 \\
\hline 2001 & 0 & 0 & 4 & 0 & 98 & 1294 & 0 & 1396 \\
\hline 2002 & 0 & 0 & 1333 & 0 & 0 & 2657 & 0 & 3990 \\
\hline 2003 & 887 & 0 & 1060 & 0 & 0 & 2593 & 0 & 4540 \\
\hline 2004 & 0 & 0 & 97 & 0 & 0 & 1416 & 0 & 1513 \\
\hline 2005 & 0 & 252 & 1134 & 0 & 13 & 0 & 0 & 1399 \\
\hline 2006 & 0 & 0 & 601 & 0 & 0 & 0 & 0 & 601 \\
\hline 2007 & 0 & 0 & 333 & 0 & 0 & 14 & 0 & 347 \\
\hline 2008 & 0 & 0 & 892 & 0 & 0 & 0 & 0 & 892 \\
\hline 2009 & 0 & 0 & 104 & 0 & 0 & 70 & 0 & 174 \\
\hline 2010 & 0 & 0 & 332 & 0 & 0 & 537 & 0 & 869 \\
\hline 2011 & 0 & 0 & 468 & 0 & 248 & 507 & 0 & 1223 \\
\hline 2012 & 0 & 0 & 113 & 0 & 0 & 1688 & 0 & 1801 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Country & Denmark & Faroe Islands & Ireland & Norway & UK Eng+Wales+N.Irl. & UK Scotland & Other & Total \\
\hline 2013 & 0 & 0 & 487 & 0 & 0 & 968 & 0 & 1455 \\
\hline 2014 & 0 & 0 & 3 & 0 & 0 & 1540 & 0 & 1543 \\
\hline 2015 & 0 & 0 & 1305 & 0 & 0 & 1060 & 0 & 2365 \\
\hline 2016 & 0 & 0 & 431 & 0 & 0 & 2177 & 0 & 2608 \\
\hline 2017 & 0 & 0 & 604 & 0 & 0 & 1354 & 0 & 1958 \\
\hline 2018 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 2019 & 0 & 1 & 3243 & 0 & 66 & 1265 & 1 & 4575 \\
\hline 2020 & 0 & 0 & 796 & 0 & 0 & 724 & 0 & 1520 \\
\hline 2021 & 0 & 0 & 85 & 0 & 0 & 161 & 0 & 246 \\
\hline
\end{tabular}

Table 12.1.2 Sprat in the Celtic Seas Ecoregion. Irish landings of sprat, 1985-2021 from Division 7.aN. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & Ireland & Isle of Man & UK Eng+Wales+N.Irl. & \begin{tabular}{l}
UK \\
Scotland
\end{tabular} & Total \\
\hline 1985 & 668 & 0 & 20 & 0 & 688 \\
\hline 1986 & 1152 & 1 & 6 & 0 & 1159 \\
\hline 1987 & 41 & 0 & 0 & 0 & 41 \\
\hline 1988 & 0 & 0 & 4 & 6 & 10 \\
\hline 1989 & 0 & 0 & 1 & 0 & 1 \\
\hline 1990 & 0 & 0 & 0 & 0 & 0 \\
\hline 1991 & 0 & 0 & 3 & 0 & 3 \\
\hline 1992 & 0 & 0 & 0 & 0 & 0 \\
\hline 1993 & 0 & 0 & 0 & 0 & 0 \\
\hline 1994 & 0 & 0 & 0 & 0 & 0 \\
\hline 1995 & 0 & 0 & 30 & 0 & 30 \\
\hline 1996 & 0 & 0 & 0 & 0 & 0 \\
\hline 1997 & 0 & 0 & 2 & 0 & 2 \\
\hline 1998 & 0 & 0 & 3 & 0 & 3 \\
\hline 1999 & 0 & 0 & 146 & 0 & 146 \\
\hline 2000 & 0 & 0 & 371 & 0 & 371 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & Ireland & Isle of Man & UK Eng+Wales+N.Irl. & UK Scotland & Total \\
\hline 2001 & 0 & 0 & 269 & 3 & 272 \\
\hline 2002 & 0 & 0 & 306 & 0 & 306 \\
\hline 2003 & 0 & 0 & 592 & 0 & 592 \\
\hline 2004 & 0 & 0 & 134 & 0 & 134 \\
\hline 2005 & 0 & 0 & 591 & 0 & 591 \\
\hline 2006 & 0 & 0 & 563 & 0 & 563 \\
\hline 2007 & 0 & 0 & 0 & 0 & 0 \\
\hline 2008 & 0 & 0 & 2 & 0 & 2 \\
\hline 2009 & 0 & 0 & 0 & 0 & 0 \\
\hline 2010 & 0 & 0 & 0 & 0 & 0 \\
\hline 2011 & 0 & 0 & 0 & 0 & 0 \\
\hline 2012 & 0 & 0 & 0 & 0 & 0 \\
\hline 2013 & 0 & 0 & 0 & 0 & 0 \\
\hline 2014 & 522 & 0 & 0 & 0 & 522 \\
\hline 2015 & 792 & 0 & 0 & 0 & 792 \\
\hline 2016 & 150 & 0 & 0 & 0 & 150 \\
\hline 2017 & 150 & 0 & 0 & 0 & 150 \\
\hline 2018 & 0 & 0 & 0 & 0 & 0 \\
\hline 2019 & 9 & 0 & 0 & 0 & 9 \\
\hline 2020 & 2521 & 0 & 0 & 0 & 2521 \\
\hline 2021 & 381 & 0 & 0 & 0.078 & 381 \\
\hline
\end{tabular}

Table 12.1.3 Sprat in the Celtic Seas Ecoregion. Irish landings of sprat, 1985-2021 from Division 7.aS. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)
\begin{tabular}{|c|c|}
\hline Country & Ireland \\
\hline 1985 & 0 \\
\hline 1986 & 0 \\
\hline 1987 & 0 \\
\hline 1988 & 0 \\
\hline 1989 & 0 \\
\hline 1990 & 0 \\
\hline 1991 & 0 \\
\hline 1992 & 0 \\
\hline 1993 & 0 \\
\hline 1994 & 0 \\
\hline 1995 & 0 \\
\hline 1996 & 0 \\
\hline 1997 & 0 \\
\hline 1998 & 7 \\
\hline 1999 & 25 \\
\hline 2000 & 123 \\
\hline 2001 & 7 \\
\hline 2002 & 0 \\
\hline 2003 & 3103 \\
\hline 2004 & 408 \\
\hline 2005 & 361 \\
\hline 2006 & 114 \\
\hline 2007 & 0 \\
\hline 2008 & 102 \\
\hline 2009 & 0 \\
\hline 2010 & 433 \\
\hline 2011 & 1535 \\
\hline 2012 & 6261 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Country & Ireland \\
\hline 2013 & 2545 \\
\hline 2014 & 16 \\
\hline 2015 & 3659 \\
\hline 2016 & 935 \\
\hline 2017 & 935 \\
\hline 2018 & 1117 \\
\hline 2020 & 6888 \\
\hline 2021 & 7861 \\
\hline
\end{tabular}

Table 12.1.4. Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2021, from divisions 7.b-c. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than \(\mathbf{1 0} \mathbf{~ m}\) length. (tonnes)
\begin{tabular}{|c|c|}
\hline Country & Ireland \\
\hline 1985 & 0 \\
\hline 1986 & 0 \\
\hline 1987 & 100 \\
\hline 1988 & 0 \\
\hline 1989 & 0 \\
\hline 1990 & 400 \\
\hline 1991 & 40 \\
\hline 1992 & 50 \\
\hline 1993 & 3 \\
\hline 1994 & 145 \\
\hline 1995 & 150 \\
\hline 1996 & 21 \\
\hline 1997 & 28 \\
\hline 1998 & 331 \\
\hline 1999 & 5 \\
\hline 2000 & 698 \\
\hline 2001 & 138 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Country & Ireland \\
\hline 2002 & 11 \\
\hline 2003 & 38 \\
\hline 2004 & 68 \\
\hline 2005 & 260 \\
\hline 2006 & 40 \\
\hline 2007 & 32 \\
\hline 2008 & 1 \\
\hline 2009 & 238 \\
\hline 2010 & 0 \\
\hline 2011 & 0 \\
\hline 2012 & 23 \\
\hline 2013 & 237 \\
\hline 2014 & 0 \\
\hline 2015 & 250 \\
\hline 2016 & 0 \\
\hline 2017 & 874 \\
\hline 2018 & 508 \\
\hline 2019 & 842 \\
\hline 2020 & 1308 \\
\hline 2021 & 294 \\
\hline
\end{tabular}

Table 12.1.6 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2021, Division 7.f. (tonnes)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Country} & Netherlands & & Total \\
\hline & & \multicolumn{2}{|l|}{Eng+Wales+N.Irl.} \\
\hline 1985 & 273 & 0 & 273 \\
\hline 1986 & 0 & 0 & 0 \\
\hline 1987 & 0 & 0 & 0 \\
\hline 1988 & 0 & 0 & 0 \\
\hline 1989 & 0 & 0 & 0 \\
\hline 1990 & 0 & 0 & 0 \\
\hline 1991 & 0 & 1 & 1 \\
\hline 1992 & 0 & 0 & 0 \\
\hline 1993 & 0 & 0 & 0 \\
\hline 1994 & 0 & 2 & 2 \\
\hline 1995 & 0 & 0 & 0 \\
\hline 1996 & 0 & 0 & 0 \\
\hline 1997 & 0 & 0 & 0 \\
\hline 1998 & 0 & 51 & 51 \\
\hline 1999 & 0 & 0 & 0 \\
\hline 2000 & 0 & 0 & 0 \\
\hline 2001 & 0 & 0 & 0 \\
\hline 2002 & 0 & 0 & 0 \\
\hline 2003 & 0 & 0 & 0 \\
\hline 2004 & 0 & 0 & 0 \\
\hline 2005 & 0 & 0 & 0 \\
\hline 2006 & 0 & 0 & 0 \\
\hline 2007 & 0 & 2 & 2 \\
\hline 2008 & 0 & 0 & 0 \\
\hline 2009 & 0 & 1 & 1 \\
\hline 2010 & 0 & 7 & 7 \\
\hline 2011 & 0 & 1 & 1 \\
\hline 2012 & 0 & 2 & 2 \\
\hline
\end{tabular}
\(\left.\begin{array}{llll}\hline \text { Country } & \text { Netherlands } & \text { UK } \\
\text { Eng+Wales+N.Irl. }\end{array}\right]\)\begin{tabular}{l} 
Total \\
\hline 2013 \\
\hline 2014
\end{tabular}

Table 12.1.7 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2021, divisions 7.g-k. Irish data may be underestimated due to difficulties in quantifying the landings from vessels of less than \(\mathbf{1 0} \mathbf{~ m}\) length. (tonnes)
\(\left.\begin{array}{lllllllll}\hline \text { Country } & \text { Denmark } & \text { France } & \text { Ireland } & \text { Netherlands } & \text { Spain } & \text { UK } \\
\text { Eng+Wales+N.Irl. }\end{array}\right]\)\begin{tabular}{c} 
Total \\
\hline 1985 \\
\hline 1986 \\
\hline 538
\end{tabular}
\(\left.\begin{array}{lllllllll}\hline \text { Country } & \text { Denmark } & \text { France } & \text { Ireland } & \text { Netherlands } & \text { Spain } & \text { UK } \\
\text { Eng+Wales+N.Irl. }\end{array}\right]\)\begin{tabular}{c} 
Total \\
\hline 2001
\end{tabular}

Table 12.1.8 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2021 in Subarea 6 and divisions 7.a-c and 7.f-k.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2
\(\vdots\)
0
0
0 &  & \[
\begin{aligned}
& \frac{n}{0} \\
& \frac{\pi}{\pi} \\
& \frac{\pi}{0} \\
& \frac{0}{\pi} \\
& \hline \mathbf{L}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 쁜 } \\
& \text { 든 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{D} \\
& \underline{\widetilde{C}} \\
& \underline{\underline{N}}
\end{aligned}
\] &  &  & त

3
2 & & \[
\begin{aligned}
& \text {.ㅡㅡ̃ } \\
& \text { in }
\end{aligned}
\] & &  &  & - \\
\hline 1985 & 538 & 0 & 0 & 4532 & 1 & 0 & 0 & & 0 & & 10 & 520 & 5601 \\
\hline 1986 & 269 & 0 & 1 & 2230 & 0 & 0 & 0 & & 0 & & 0 & 582 & 3082 \\
\hline 1987 & 364 & 0 & 0 & 853 & 0 & 1 & 0 & & 0 & & 4 & 3870 & 5092 \\
\hline 1988 & 0 & 0 & 0 & 1163 & 0 & 0 & 0 & & 0 & & 1 & 1146 & 2310 \\
\hline 1989 & 0 & 0 & 0 & 1325 & 0 & 0 & 0 & & 0 & & 0 & 813 & 2138 \\
\hline 1990 & 0 & 0 & 0 & 205 & 0 & 0 & 0 & & 0 & & 4 & 1526 & 1735 \\
\hline 1991 & 28 & 0 & 0 & 508 & 0 & 0 & & 0 & & 0 & 0 & 1555 & 2091 \\
\hline 1992 & 22 & 0 & 0 & 2353 & 0 & 0 & & 0 & & 0 & 0 & 2230 & 4605 \\
\hline 1993 & 0 & 0 & 0 & 232 & 0 & 0 & & 0 & & 0 & 2 & 1491 & 1725 \\
\hline 1994 & 491 & 0 & 0 & 799 & 0 & 0 & & 0 & & 0 & 30 & 4124 & 5444 \\
\hline 1995 & 0 & 0 & 0 & 4214 & 0 & 0 & & 0 & & 0 & 0 & 2350 & 6564 \\
\hline 1996 & 0 & 0 & 0 & 2085 & 0 & 0 & & 0 & & 0 & 8 & 5313 & 7406 \\
\hline 1997 & 40 & 0 & 0 & 1578 & 0 & 0 & & 0 & & 0 & 54 & 3467 & 5139 \\
\hline 1998 & 0 & 0 & 0 & 5826 & 0 & 0 & & 0 & & 0 & 456 & 8161 & 14443 \\
\hline 1999 & 0 & 0 & 0 & 6032 & 0 & 0 & & 0 & & 0 & 371 & 4238 & 10641 \\
\hline 2000 & 0 & 0 & 0 & 455 & 0 & 0 & & 0 & & 0 & 367 & 1297 & 2119 \\
\hline 2001 & 538 & 0 & 0 & 4532 & 1 & 0 & & 0 & & 0 & 10 & 520 & 5601 \\
\hline 2002 & 0 & 0 & 0 & 1729 & 0 & 0 & & 0 & & 0 & 306 & 2657 & 4692 \\
\hline 2003 & 887 & 0 & 0 & 4948 & 0 & 0 & & 0 & & 0 & 592 & 2593 & 9020 \\
\hline 2004 & 0 & 0 & 0 & 4096 & 0 & 0 & & 0 & & 0 & 134 & 1416 & 5646 \\
\hline 2005 & 0 & 252 & 0 & 5928 & 0 & 0 & & 0 & & 0 & 604 & 0 & 6784 \\
\hline 2006 & 0 & 0 & 0 & 1523 & 0 & 0 & & 0 & & 0 & 563 & 0 & 2086 \\
\hline 2007 & 0 & 0 & 0 & 3745 & 0 & 0 & & 0 & & 1 & 2 & 14 & 3762 \\
\hline 2008 & 0 & 0 & 0 & 2353 & 0 & 0 & & 0 & & 0 & 2 & 0 & 2355 \\
\hline 2009 & 0 & 0 & 0 & 3773 & 0 & 0 & & 0 & & 0 & 1 & 70 & 3844 \\
\hline 2010 & 0 & 0 & 0 & 3200 & 0 & 0 & & 0 & & 0 & 7 & 537 & 3744 \\
\hline 2011 & 0 & 0 & 0 & 3770 & 0 & 0 & & 0 & & 0 & 261 & 507 & 4538 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  & \[
\begin{aligned}
& \text { त } \\
& \frac{3}{3} \\
& \frac{0}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \text {.듞 } \\
& \text { in }
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \overline{\mathrm{O}} \\
& \stackrel{1}{0}
\end{aligned}
\] \\
\hline 2012 & 0 & 0 & 0 & 9029 & 0 & 0 & 0 & 0 & 2 & 1688 & 10719 \\
\hline 2013 & 0 & 0 & 0 & 4916 & 0 & 0 & 0 & 0 & 2 & 968 & 5887 \\
\hline 2014 & 0 & 0 & 0 & 2852 & 0 & 0 & 0 & 0 & 1 & 1540 & 4392 \\
\hline 2015 & 0 & 0 & 0 & 9328 & 0 & 0 & 0 & 0 & 0 & 1060 & 10389 \\
\hline 2016 & 0 & 0 & 0 & 4763 & 0 & 0 & 0 & 0 & 1 & 2177 & 6941 \\
\hline 2017 & 0 & 0 & 0 & 4318 & 0 & 0 & 0 & 0 & 0 & 1354 & 5672 \\
\hline 2018 & 10 & 0 & 0 & 3580 & 0 & 0 & 0 & 0 & 0 & 0 & 3590 \\
\hline 2019 & 0 & 1 & 0 & 13018 & 0 & 3 & 0 & 0 & 66 & 1265 & 14353 \\
\hline 2020 & 0 & 0 & 0 & 14446 & 0 & 0 & 0 & 0 & 3 & 724 & 15173 \\
\hline 2021 & 0 & 0 & 0 & 14145 & & & & & 0.35 & 0.078 & 14146 \\
\hline
\end{tabular}

Table 12.3.1. Sprat in the Celtic Seas Ecoregion. Sprat biomass by year from the MI Celtic Sea Herring Acoustic Survey.
\begin{tabular}{|c|c|}
\hline Year & Biomass (t) \\
\hline Nov/Dec-91 & 36880 \\
\hline Jan-92 & 15420 \\
\hline Jan-92 & 5150 \\
\hline Nov-92 & 27320 \\
\hline Jan-93 & 18420 \\
\hline Nov-93 & 95870 \\
\hline Jan-94 & 8035 \\
\hline Nov-95 & 75440 \\
\hline 2002 & 20600 \\
\hline 2003 & 1395 \\
\hline 2004 & 50810 \\
\hline 2005 & 29019 \\
\hline 2008 & 5493 \\
\hline 2009 & 16229 \\
\hline 2011 & 31593 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Year & Biomass (t) \\
\hline 2012 & 35114 \\
\hline 2013 & 44685 \\
\hline 2014 & 54826 \\
\hline 2015 & 83779 \\
\hline 2016 & 42694 \\
\hline 2017 & 70745 \\
\hline 2018 & 47806 \\
\hline 2019 & 60608 \\
\hline 2020 & 4523 \\
\hline 2021 & 12376 \\
\hline
\end{tabular}

Table 12.3.2. Sprat in the Celtic Seas Ecoregion. Annual sprat biomass in ICES Division 7.a (Source: AFBI annual herring acoustic survey).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{3}{|c|}{Sprat \& 0-group herring} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sprat \\
Biomass ( t )
\end{tabular}} \\
\hline & Biomass (t) & CV & \% sprat & \\
\hline 1994 & 68600 & 0.1 & 95 & 65,200 \\
\hline 1995 & 348600 & 0.13 & n/a & n/a \\
\hline 1996 & n/a & n/a & n/a & n/a \\
\hline 1997 & 45600 & 0.2 & n/a & n/a \\
\hline 1998 & 228000 & 0.11 & 97 & 221300 \\
\hline 1999 & 272200 & 0.1 & 98 & 265400 \\
\hline 2000 & 234700 & 0.11 & 94 & 221400 \\
\hline 2001 & 299700 & 0.08 & 99 & 295100 \\
\hline 2002 & 413900 & 0.09 & 98 & 405100 \\
\hline 2003 & 265900 & 0.1 & 95 & 253800 \\
\hline 2004 & 281000 & 0.07 & 96 & 270200 \\
\hline 2005 & 141900 & 0.1 & 96 & 136100 \\
\hline 2006 & 143200 & 0.09 & 87 & 125000 \\
\hline 2007 & 204700 & 0.09 & 91 & 187200 \\
\hline 2008 & 252300 & 0.12 & 83 & 209800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{3}{|c|}{Sprat \& 0-group herring} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sprat \\
Biomass ( t )
\end{tabular}} \\
\hline & Biomass (t) & CV & \% sprat & \\
\hline 2009 & 175200 & 0.08 & 78 & 136200 \\
\hline 2010 & 107400 & 0.1 & 87 & 93700 \\
\hline 2011 & 280000 & 0.11 & 85 & 238400 \\
\hline 2012 & 171200 & 0.11 & 95 & 162600 \\
\hline 2013 & 255300 & 0.09 & 77 & 197500 \\
\hline 2014 & 393000 & 0.1 & 93 & 367100 \\
\hline 2015 & 237000 & 0.09 & 84 & 199,100 \\
\hline 2016 & & & & 236000 \\
\hline 2017 & & & & 222000 \\
\hline 2018 & & & & 219000 \\
\hline 2019 & & & & 146000 \\
\hline 2020 & & & & 117000 \\
\hline
\end{tabular}


Figure 12.1. Sprat in the Celtic Seas Ecoregion. Map showing areas mentioned in the text.


Figure 12.2.1. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES Division 6.a.


Figure 12.2.2. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES Division 7.aN. Note: Irish landings from 1973-1995 may be from 7.aN or 7.aS.


Figure 12.2.3. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES Division 7.aS.


Figure 12.2.4. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES divisions 7.b-c.


Figure 12.2.6. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES Division 7.f.


Figure 12.2.7. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES divisions 7.g-k.


Figure 12.2.8. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2021 ICES subareas 6 and 7 (Celtic Seas Ecoregion).


Figure 12.3.1. Sprat in the Celtic Seas Ecoregion. Estimated sprat biomass from the MI Celtic Sea Herring Acoustic Survey 2004-2021 (A4705).


Figure 12.3.2: Extent of Scottish surveys that may provide information about sprat in 6.a. In purple is the extent of the Clyde Herring and Sprat Acoustic Surveys carried out in July between 1985 and 1989 and again in October 2012. In green is the extent of the Sea Lochs Surveys carried out annually in Q1 and Q4 between 2001 and 2005. Red markers indicate all hauls from the Q1 and Q4 Scottish West Coast IBTS between 1985 and 2012 (G7144).


Figure 12.3.3. Length and age of sprat caught in the October 2012 Clyde Herring and Sprat Acoustic Survey. Data from six hauls were combined giving equal weight to the age and length distribution in each haul. 1442 sprat were measured and 182 were aged (G7144).


Figure 12.3.4. Sprat in the Celtic Seas Ecoregion. Annual sprat biomass in ICES Division 7.aN from the AFBI Acoustic Survey (A4075)


Figure 12.3.5. Map of the Irish Sea and North Channel with a post plot showing the distribution of NASC values (size of ellipses is proportional to square root of the NASC value per 15-minute interval) obtained during the 2020 acoustic survey on RV "Corystes". (a) Open blue circles are for herring NASC values (maximum value was 18895 and (b) open red circles are for clupeoid mix NASC, which include juvenile herring and sprat (maximum value was 2714) from the AFBI acoustic survey (A4705).

\section*{13 References}

Adams, D. C. and Otárola-Castillo, E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4): 393-399.

Alexander, Karen A.; Heymans, Johanna J.; Magill, Shona; Tomczak, Maciej T.; Holmes, Steven J.; Wilding, Thomas A. 2015. Investigating the recent decline in gadoid stocks in the west of Scotland shelf ecosystem using a foodweb model. ICES JOURNAL OF MARINE SCIENCE, Vol. 72, No. 2, 2015, p. 436-449.

Anon. 2013. UK National Data Collection Programmes under Council Regulation (EC) 199/2008, Commission Regulation (EC) 665/2008 and Commission Decision 2010/93/EU for the Collection, Management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy in 2011, 2012 and 2013. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/341475/2011-2013national.pdf

Bailey, N. DM Bailey, LC Bellini, PG Fernandes, C Fox, S Heymans, S Holmes, J Howe, S Hughes, S Magill, F McIntyre, D McKee, MR Ryan, IP Smith, G Tyldsely, R Watret and WR Turrell. 2011.: The west of Scotland marine ecosystem: a review of scientific knowledge. MSSR 09/11. 292pp.

Beggs, S. 2007. Stock Identification of 0-group Herring in the Irish Sea (VIIaN): Otolith microstructure and shape. Working Document to ICES HAWG.
Beggs, S., -Jan Schon, P.-J.,McCurdy, W., Peel, J., McCorriston, P. and McCausland, I. 2008. Seasonal Origin of Irish Sea Herring. Working Document to ICES HAWG 2008. Bowers, A. 1964. 0-group herring in the North Irish Sea. Seasonal Report of the Marine Biological Station Port Erin, 77: 34-42.

Bekkevold, D., Berg, F., Polte, P., Bartolino, V., Ojaveer, H., Mosegaard, H., Farrell, E.D., Fedotova, J., Hem-mer-Hansen, J., Huwer, B., Trijoulet, V., Albertsen, C.M., Fuentes-Pardo, A., Gröhsler, T., Petterson, M., Janssen, T., Folkvord, A., Andersson, L. (unpublished) Genetic stock identification in Atlantic herring (Clupea harengus) provides new tools for identifying management units and complex migration dynamics. BioRxiv - to be completed.

Berg, Casper W., Nielsen, Anders and Kristensen, Kasper. 2014. Evaluation of alternative age-based methods for estimating relative abundance from survey data in relation to assessment models. Fisheries Research, 151: 91-99.

Berg, F., Almeland, O. W., Skadal, J., Slotte, A., Andersson, L., Folkvord, A. 2018. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS ONE, 13: e0190995.

Berg, F., Lusseau, S. M., Bartolino, V., Gröhsler, T., Kvamme, C., Nash, R. D. M., Slotte, A. 2019. Using otolith shape analysis and machine learning techniques to discriminate between stocks of Atlantic herring. ICES CM 2019/C:427.
Berg, F., Østgaard, H.D., Slotte, A., Andersson, L., and Folkvord, A. 2020. A combination of genetic and phenotypic characterization of spring- and autumn-spawning herring suggests gene flow between populations. ICES Journal of Marine Science. doi: 10.1093/icesjms/fsaa046.

Berg, F., Seljestad, G., Bekkevold, D., Kvamme, C., Dahle, G., Glover, K. 2021. Stock splitting to estimate individual survey estimates for herring stocks occurring during the HERAS survey - Genetics as new method." In Report of the Working Group of International Pelagic Surveys (WGIPS), 11-15 January 2021

Bergström, U., Olsson, J., Casini, M., Eriksson B.K., Fredriksson R., Wennhage H., Appelberg M. (2015). Stickleback increase in the Baltic Sea - A thorny issue for coastal predatory fish. Estuarine, Coastal and Shelf Science. 163:134-142.

Brunel, T \& Dickey-Collas, M 2010. Effects of temperature and population density on von Bertalanffy growth parameters in Atlantic herring: a macro-ecological analysis. Mar Ecol Prog Ser Vol. 405: 15-28, 2010. doi: 10.3354/meps08491

Burke, N., Brophy, D., and King, P. A. 2008. Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. - ICES Journal of Marine Science, 65: 1670-1675.

Burke, N., Brophy, D., Schön, P-J., and King, P. A. 2009. Temporal trends in stock origin and abundance of juvenile herring (Clupea harengus) in the Irish Sea. ICES Journal of Marine Science, 66: 1749-1753.

Cardinale, M., Möllmann, C., Bartolino, V., Casini, M., Kornilovs, G., Raid, T., Margonski, P., Grzyb, A., Raitaniemi, J., Gröhsler, T., Flinkman, J. (2009). Effect of environmental variability and spawner characteristics on the recruitment of Baltic herring Clupea harengus populations. Marine Ecology Progress Series, 388, 221-234.

Chen, K.-Y., Marschall, E.A., Sovic, M.G., Fries, A.C., Gibbs, H.L., Ludsin, S.A. 2018. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods in Ecology and Evolution 9: 439-446.

Clarke, M., and Egan, A. 2012. Evaluation of proposed long-term management plan for Celtic Sea Herring. ICES CM 2012/ACOM:75. 48 pp.
Clarke, M., and Egan, A. 2017. "Good luck or good governance? The recovery of Celtic Sea herring." Marine Policy 78 (2017): 163-170.

Darby, C. D., \& Flatman, S. 1994. Lowestoft VPA Suite Version 3.1 User Guide. MAFF: Lowestoft.
Dodson, J.J., Daigle, G., Hammer, C., Polte, P., Kotterba, P., Winkler, G., Zimmermann, C. (2019). Environmental determinants of larval herring (Clupea harengus) abundance and distribution in the western Baltic Sea. Limnology and Oceanography, Limnology and Oceanography 64, 2019, 317-329
EU Council Regulation 2022/109 of 27 January 2022 fixing for 2022 the fishing opportunities for certain fish stocks and groups of fish stocks applicable in Union waters and for Union fishing vessels in certain non-Union waters.

EU 2016/1252. Council Regulation (EU) 2016/1252 of 26 July 2016 amending Regulations (EU) 2016/72 and (EU) 2015/2072 as regards certain fishing opportunities. EUR-Lex - 32016R1252 - EN - EUR-Lex (europa.eu)

EU 2017 COUNCIL REGULATION (EU) 2017/127 of 20 January 2017 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters http://eur-lex.europa.eu/legal-con- tent/EN/TXT/?uri=CELEX\%3A32017R0127
EU, 2018. Council Regulation (EU) 2018/120 of 23 January 2018 fixing for 2018 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2017/127. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX\%3A32018R0120\&qid=1653908461064

EU, 2019. Council Regulation (EU) 2019/124 of 30 January 2019 fixing for 2019 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R0124\&qid=1653908570958\&from=EN

EU, 2020. Council Regulation (EU) 2020/123 of 27 January 2020 fixing for 2020 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters.
https://eur-lex.europa.eu/legal-con-
tent/EN/TXT/HTML/?uri=CELEX:32020R0123\&qid=1653908756046\&from=EN
EU 2021. Council Regulation (EU) 2021/92 of 28 January 2021 fixing for 2021 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX\%3A02021R0092\(\underline{20211101 \& q i d=1653909029717}\)

Farrell, E.D., Campbell, N., Carlsson, J., Egan, A., Gras, M., Lusseau S.M., Nolan, C., O'Connell, S., O'Malley, M., White, E. 2021. Herring in Divisions 6.a, 7.b and 7.c: Scientific Assessment of the Identity of the Southern and Northern Stocks through Genetic and Morphometric Analysis. Final Report. European Commission. Service Contract EASME/EMFF/2017/1.3.2.1/SI2.767459. 251 pp.
Farrell, E.D., Andersson, A., Bekkevold, D., Campbell, N., Carlsson, J., Clarke, M., Egan, A., Folkvord, A., Gras, M., Lusseau, S.M., Mackinson, S., Nolan, C., O'Connell, S., O'Malley, M., Pastoors, M., Pettersson, M. and White, E. (in review). A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a and 7.b-c. Draft version. Submitted to Royal Society Open Science. https://www.biorxiv.org/content/10.1101/2022.04.07.487341v1
Grainger, R.J.(1978) A Study of Herring Stocks West Of Ireland and their Relations to Oceanographic Conditions. Phd thesis, University College Galway.

Grainger, R.J., (1980a). Irish West coast herring fluctuations and their relation to oceanographic conditions. Symposium on the Biological basis of Pelagic Stock Management No. 29

Grainger, R. J., (1980b). The distribution and abundance of early herring (Clupea harengus L.) larvae in Galway Bay in relation to oceanographic conditions. Proc. R. Ir. Acad., Sect. B 80:1-60.
Gröger, J.P., Hinrichsen, H.-H., Polte, P. (2014). Broad-scale climate influences on spring-spawning herring (Clupea harengus L.) recruitment in the western Baltic Sea. PLoS One 9, e87525, Doi:10.1371/journal.pone. 0087525.

Gröhsler T, Oeberst R, Schaber M, Larson N, Kornilovs G (2013) Discrimination of western Baltic springspawning and central Baltic herring (Clupea harengus L.) based on growth vs. natural tag information. ICES J Mar Sci 70(6):1108-1117, doi:19.1093/icesjms/fst064.

EU 2018/120. COUNCIL REGULATION of 23 January 2018 fixing for 2018 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2017/127. http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32018R0120\&from=EN

EU 2019/124. COUNCIL REGULATION of 30 January 2019 fixing for 2019 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2017/127 https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32019R0124\&from=EN

Fernández, A.C. and Prista, N. 2012. Portuguese discard data on anglershouthern Lophiuspiscatorius and blackbellied angler Lophiusbudegassa (2004-2010). Working document-07 presented at WKFLAT2012. ICES CM: ACOM: 46.

Han, F., Jamsandekar, M., Pettersson, M. E., Su, L., Fuentes-Pardo, A., Davis, B., Bekkevold, D., Berg, F., Casini, M., Dahle, G., Farrell, E. D., Folkvord, A., Andersson, L. 2020. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. eLife, 9: e61076.

Hatfield, E., Zuur, A.F., Boyd, J., Campbell, N., Chubb, J.C., Collins, C.M., Coughlan, J., Cross, M.A., Cross, T.F., Cunningham, C.O. and Geffen, A.J., 2005. WESTHER: A multidisciplinary approach to the identification of herring (Clupea harengus L.) stock components west of the British Isles using biological tags and genetic markers. ICES. CM 2005/K:01. 18pp.

Harma, C., Brophy, D., Minto, C., and Clarke, M. 2012. The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: Temporal trends in spawning component diversity. Fisheries Research 121-122: 31- 42.
Hintzen, N. T., Roel, B., Benden, D., Clarke, M., Egan, A., Nash, R. D. M., Rohlf, N., and Hatfield, E. M. C. 2015.Managing a complex population structure: exploring the importance of information from fisher-ies-independent sources. - ICES Journal of Marine Science, 72: 528-542.

ICES, 1994. Report of the Study Group on Herring Assessment and Biology in the Irish Sea and Adjacent Waters. ICES C.M.1994/H:5. 67 pp.
ICES. 2006. Report of the Herring Assessment Working Group South of 620 N (HAWG), 14-23 March, ICES Headquarters. ICES CM 2006/ACFM:20. 647 pp.

ICES 2007. Report of the Herring Assessment Working Group for the Area South of \(62^{\circ} \mathrm{N}\) (HAWG). ICES CM 2007/ACFM:11, 340 pp .

ICES. 2008. Report of the Herring Assessment Working Group South of 62 N (HAWG), 11-19 March 2008, ICES Headquarters, Copenhagen. ICES CM 2008/ACOM:02. 601 pp.
ICES. 2010. Report of the Herring Assessment Working Group for the Area South of 62n (HAWG), 15-23 March 2010, ICES Headquarters, Copenhagen, Denmark. 688 pp.

ICES, 2012a. Report of the Anglerfish (Lophiuspiscatorius) illicia and otoliths exchange 2011.61 pp .
ICES. 2012b. Report of the Benchmark Workshop on the Flatfish Species and Anglerfish (WKFLAT), 1-8 March 2012, Bilbao, Spain. ICES CM 2012/ACOM:46.

ICES. 2013. Report of the Benchmark Workshop on Sprat Stocks (WKSPRAT), 11-15 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:48. 220 pp

ICES. 2013. Report of the Benchmark Workshop on Sprat Stocks (WKSPRAT), 11-15 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:48. 220 pp
ICES. 2014a. Interim Report of the Working Group on Multispecies Assessment Methods (WGSAM), 20-24 October 2014, London, UK. ICES CM 2014/SSGSUE:11. 104 pp.

ICES. 2014b. Report of the Workshop to consider reference points for all stocks (WKMSYREF2), 8-10 January 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM 2014/ACOM:47. 91 pp.

ICES. 2015a. Report of the Benchmark Workshop on West of Scotland Herring (WKWEST), 2-6 February, Dublin, Ireland. ICES CM \(2015 \backslash\) ACOM:34. 229 pp. ICES. 2015b. Report of the Herring Assessment Working Group for the Area South of \(62^{\circ} \mathrm{N}\) (HAWG), 10- 19 March 2015, ICES HQ, Copenhagen, Denmark. ICES CM 2015/ACOM:06. 864 pp.

ICES. 2016. Report of the Working Group on Multispecies Assessment Methods (WGSAM), 9-13 November 2016, Woods Hole, USA. ICES CM 2016/SSGEPI:20. 206 pp.
ICES 2016a. General context of ICES advice. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.

ICES. 2016b. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58.

ICES 2016b. Greater North Sea Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee 2016. ICES Advice, 2016. Book 6. Section 6.1.

ICES 2016. Report of the Working Group on Integrated Assessments of the North Sea (WGINOSE). ICES CM 2016/SSGIEA:06.

ICES. 2016. Report of the Workshop on Blue Whiting (Micromesistius poutassou) Long Term Management Strategy Evaluation (WKBWMS), 30 August 2016, ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM:53. 104 pp.
ICES 2016g. EU request for advice on a scientific monitoring fishery for herring in ICES divisions 6.a, 7.b, and 7.c. Section 5.4.3 in ICES Special Request Advice Celtic Seas Ecoregion. 29 April 2016.

ICES. 2017. Interim Report of the Working Group of International Pelagic Surveys (WGIPS). 16-20 January 2017. Reykjavik, Iceland. ICES CM 2017/SSGIEOM:15. 577 pp.

ICES. 2017. EU request to assess the effects of lifting the "sprat box". In Report of the ICES Advisory Committee, 2017. ICES Advice 2017, sr.2017.06.

ICES 2017a. Herring (Clupea harengus) in divisions 6.a and 7.b-c (west of Scotland, west of Ireland). In Report of the ICES Advisory Committee, 2017. Advice book 5. Section 5.3.33: June 30th 2017. Version 2: 11 July 2017 Version 3: 06 October 2017 DOI: 10.17895/ices.pub.3061. http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2017/2017/her.27.6a7bc.pdf
ICES. 2017. EU request for ICES to evaluate the recovery plan for herring in divisions \(6 . a\) and \(7 . b-c\). In Report of the ICES Advisory Committee, 2017. ICES Advice 2017, sr.2017.20. 9 pp.

ICES 2017b. EU request for ICES to evaluate the recovery plan for herring in divisions \(6 . a\) and \(7 . b-c\). ICES Special Request Advice Celtic Seas and Bay of Biscay and the Iberian Coast Ecoregions Published 24 November 2017 sr. 2017.20 DOI: 10.17895/ices.pub. 3599
ICES. 2018a. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA 2018), 12-16 February 2018, ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:32. 313 pp.

ICES, 2018b EU request for ICES to evaluate the long-term management plan for Celtic Sea herring
ICES. 2018. Report of the Working Group on International Pelagic Surveys (WGIPS). ICES WGIPS Report 2018 15-19 January 2018. Den Helder, the Netherlands. 340 pp.
ICES. 2018. Interim Report of the Working Group of International Pelagic Surveys (WGIPS). 13-18 January 2018. Santa Cruz, Tenerife. ICES CM 2018/SSGIEOM:15. 577 pp.

ICES. 2018a. Report of the Herring Assessment Working Group for the Area South of \(62^{\circ} \mathrm{N}\) (HAWG). 29-31 January 2018 and 12-20 March 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:07. 960 pp. http://www.ices.dk/sites/pub/Publication\%20Reports/Expert\%20Group\%20Report/acom/2018/HAW G/01\%20HAWG\%20Report\%202018.pdf
ICES. 2018. Benchmark Workshop on Sprat (WKSPRAT 2018). ICES WKSPRAT Report 2018, 5-9 November 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:35. 60 pp.

ICES. 2018 Report of the workshop on mixing of western and central Baltic herring stocks (WKMixHER). 11-13 September 2018, Gdynia, Poland. ICES CM 2018/ACOM:63. 39 pp.

ICES.2018. Workshop on the management strategy evaluation of the reference point, Fcap, for Sprat in Division 3.a and Subarea 4 (WKspratMSE). 11-12 December 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:69.

ICES. 2019. Interbenchmark Protocol for Herring in 6.a, 7.b-c 2019 (IBPher6a7bc). ICES Scientific Reports. 1:19.74 pp. http://doi.org/10.17895/ices.pub. 5261

ICES. 2019. Workshop on Data-limited Stocks of Short-Lived Species (WKDLSSLS).ICES Scientific Reports. 1:73. 166 pp. http://doi.org/10.17895/ices.pub. 5549
ICES. 2019. ICES Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. 1:11. 499 pp. http://doi.org/10.17895/ices.pub. 5122

ICES. 2019. ICES User Handbook: Best practice for Data Management. 12pp. http://doi.org/10.17895/ices.pub. 4889
ICES. 2019. Herring Assessment Working Group for the Area South of \(62^{\circ} \mathrm{N}\) (HAWG). ICES Scientific Reports, 1(2): 1-936.

ICES. 2019. EU request for advice on a monitoring TAC for herring in ICES divisions 7.a South of \(52^{\circ} 30^{\prime} \mathrm{N}\), 7.g-h, and 7.j-k. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, sr.2019.20, https://doi.org/10.17895/ices.advice. 5614
ICES. 2019a. Greater North Sea Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, Section 9.1, https://doi.org/10.17895/ices.advice. 5750 .

ICES. 2019b. Celtic Seas Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, Section 7.1, https://doi.org/10.17895/ices.advice. 5749 .

ICES. 2020. Tenth Workshop on the Development of Quantitative Assessment Methodologies based on LIFE-history traits, exploitation characteristics, and other relevant parameters for data-limited stocks (WKLIFE X). ICES Scientific Reports. 2:98. 72 pp. http://doi.org/10.17895/ices.pub. 5985
ICES 2020a. Report of the Working Group on International Pelagic Surveys (WGIPS). ICES WGIPS Report 2020 13-17 January 2020. Bergen, Norway pp.
ICES. 2020c. ICES Workshop on Herring Acoustic Spawning Surveys (WKHASS). ICES Scientific Reports. 2:18. 43pp. http://doi.org/10.17895/ices.pub. 6021
ICES. 2020d. Workshop on guidelines and methods for the evaluation of rebuilding plans (WKREBUILD). ICES Scientific Reports. 2:55. 79 pp. http://doi.org/10.17895/ices.pub. 6085

ICES. 2020e. Greater North Sea Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee, 2020. ICES Advice 2020 Section 9.1, https://doi.org/10.17895/ices.advice. 7632

ICES. 2020f. Celtic Seas Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee, 2020. ICES Advice 2020 Section 7.1- https://doi.org/10.17895/ices.advice. 7631
ICES. 2020. Steering Committee of the Regional Fisheries Database (SCRDB). ICES Scientific Reports. 2:24. 57 pp. http://doi.org/10.17895/ices.pub. 5992

ICES. 2020. Herring Assessment Working Group for the Area South of \(62^{\circ} \mathrm{N}\) (HAWG). ICES Scientific Reports, 2(60): 1-1151. http://doi.org/10.17895/ices.pub. 6105
ICES. 2020. Workshop on Data-limited Stocks of Short-Lived Species (WKDLSSLS2). ICES Scientific Reports. 2:99. 119 pp. http://doi.org/10.17895/ices.pub. 5984
ICES. 2021. Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. 3:40. 481pp. https://doi.org/10.17895/ices.pub. 8055

ICES. 2021a. Herring Assessment Working Group for the Area South of \(62^{\circ} \mathrm{N}\) (HAWG). ICES Scientific Reports. 3:12. 917 pp. https://doi.org/10.17895/ices.pub. 8214
ICES. 2021c. ICES fisheries management reference points for category 1 and 2 stocks; Technical Guidelines. In Report of the ICES Advisory Committee, 2021. ICES Advice 2021, Section 16.4.3.1. \(\underline{\text { https://doi.org/10.17895/ices.advice. } 7891}\)
ICES. 2021d. Inter-benchmark to revise the advice framework for the Sprat stock in 7. de based on the most recent changes to data-limited short-lived species assessments (IBPSprat). ICES Scientific Reports. 3:23. 42 pp. https://doi.org/10.17895/ices.pub. 7918

ICES. 2021e Working Group on Multispecies Assessment Methods (WGSAM; outputs from 2020 meeting). ICES Scientific Reports. 3:10. 231 pp. https://doi.org/10.17895/ices.pub. 7695

ICES. 2021f. TAF Reporting Workshop (WKREPTAF). ICES Scientific Reports. 3:16. 17 pp. https://doi.org/10.17895/ices.pub. 7927
ICES, 2021g. Tenth Workshop on the Development of Quantitative Assessment Methodologies based on LIFE-history traits, exploitation characteristics, and other relevant parameters for data-limited stocks (WKLIFE X). ICES Scientific Reports. 2:98. 72 pp. http://doi.org/10.17895/ices.pub. 5985.

ICES. 2021h. Advice on fishing opportunities. In Report of the ICES Advisory Committee, 2021. ICES Advice 2021, section 1.1.1. https://doi.org/10.17895/ices.advice.7720.
ICES. 2021. Inter-Benchmark Protocol on North Sea Herring (IBPNSHerring 2021). ICES Scientific Reports. 3:98. 168 pp. https://doi.org/10.17895/ices.pub. 8398

ICES. 2021. Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. 3:40. 481pp. https://doi.org/10.17895/ices.pub. 8055

ICES. 2022a. Benchmark Workshop for fish stocks in the North Sea and Celtic Sea. ICES Scientific Reports. In prep
ICES. 2022b. Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. In prep
Jardim, E., Azevedo, M. and Brites, N. M. (2015) 'Harvest control rules for data limited stocks using lengthbased reference points and survey biomass indices', Fisheries Research, 171, pp. 12-19. doi: 10.1016/j.fishres.2014.11.013.

Johnsen, E., Totland, A., Skålevik, Å., Holmin, A. J., Dingsør, G. E., Fuglebakk, E., \& Handegard, N. O. (2019). StoX: An open source software for marine survey analyses. Methods in Ecology and Evolution, 10(9), 1523-1528. https://doi.org/10.1111/2041-210x. 13250

Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403-1405.

Kanstinger, P., Beher, J., Grenzdörffer, G., Hammer, C., Huebert, K.B., Stepputis, D., Peck, M.A. (2018). What is left? Macrophyte meadows and Atlantic herring (Clupea harengus) spawning sites in the Greifswalder Bodden, Baltic Sea. Estuarine, Coastal and Shelf Science, 201, 72-81.

Kornis, M., S., Mercado-Silva, N., Vander Zanden, M., J. (2012). Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. Journal of Fish Biology, 80:2, 235-285

Kotterba, P., Kühn, C., Hammer, C., Polte, P. (2014). Predation of threespine stickleback (Gasterosteus aculeatus) on the eggs of Atlantic herring (Clupea harengus) in a Baltic Sea lagoon. Limnology and Oceanography 59 (2): 578-587.

Kotterba, P., Moll, D., Hammer, C., Peck, M.A., Oesterwind, D., Polte, P. (2017). Predation on Atlantic herring (Clupea harengus) eggs by the resident predator community in coastal transitional waters. Limnology and Oceanography, 62(6), 2616-2628.
Kotterba, P., Moll, D., von Nordheim, L., Peck, M.A., Oesterwind, D., Polte, P. (2017b) Predation on larval Atlantic herring (Clupea harengus) in inshore waters of the Baltic Sea. Estuarine, Coastal and Shelf Science 198, 1-11.

Landa, L., Duarte, R. and I. Quincoces. 2008. Growth of white anglerfish (Lophiuspiscatorius) tagged in the Northeast Atlantic, and a review of age studies on anglerfish. ICES Journal of Marine Science 65: 7280.

Lewy, P. and Vinther, M., 2004. A Stochastic age-length-structured multispecies model applied to North Sea stocks. ICES CM 2004/FF:20

Libungan, L. A., Óskarsson, G. J., Slotte, A., Jacobsen, J. A., Pálsson, S. 2015. Otolith shape: a population marker for Atlantic herring Clupea harengus. Journal of Fish Biology, 86: 1377-1395.

Libungan, L. A., and Pálsson, S. 2015. ShapeR: An R package to study otolith shape variation among fish populations. PLoS ONE, 10: e0121102.

Lyashevska, O., Harma, C., Minto, C., Clarke, M. and Brophy, D 2020. Long-term trends in herring growth primarily linked to temperature by gradient boosting regression trees. Ecological Informatics 60 (2020) 101154.

Mackinson, S. and Daskalov, G., 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142: 196pp.

Mackinson, S. 2017. Working Document on the location and timing of spawning for herring in \(6 . \mathrm{aN}\) for discussion in survey planning 2017. 21 April 2017.

Mackinson, S., Pastoors, M., Lusseau, S., Armstrong, E., O'Connell, S, Haan, D., Burgraaf, D., Berges, B., McClean, A, Langlands, B., Scott, A., Wiseman, A., O'Malley, M., Clarke, M. 2018. The 2017 industryscience survey of herring in the Western British Isles (ICES div 6a, 7bc).

Mackinson, S., Pastoors, M., Lusseau, S., O'Connell, S, Forbes-Birnie, J., Sakinan, S., Berges, B., Brigden, K., O'Malley, M., Farrel, Ed., Brigden, K. 2019. The 2019 industry-science survey of herring in the Western British Isles (ICES div 6a, 7bc). 98pp

Mackinson, S., Pastoors, M., O'Connell, S, Berges, B., Forbes-Birnie, J., McAulay, S., Brigden, K., Fraser, S., O'Malley, M., Farrel, Ed. 2021. The 2020 industry-science survey of herring in the Western British Isles (ICES div 6a, 7bc). 115pp

Marshall, K.N., Koehn, L.E., Levin, P.S., Essington, T.E. and Jensen, O.P. (2019) Inclusion of ecosystem information in US fish stock assessments suggests progress toward ecosystem-based fisheries management. ICES Journal of Marine Science, Volume 76, Issue 1, January-February 2019, Pages 19, https://doi.org/10.1093/icesims/fsy152

Moll, D., Kotterba, P., von Nordheim, L., Polte, P. (2018). Storm-Induced Atlantic Herring (Clupea harengus) Egg Mortality in Baltic Sea Inshore Spawning Areas. Estuaries and Coasts 4: 1-12.

Moll, D. (2018). Contribution of coastal nursery areas to the spring-spawning population of Atlantic herring (Clupea harengus) in the Western Baltic Sea. Dissertation, University of Hamburg, p. 233.
Möller, H. (1984). Reduction of a Larval Herring Population by Jellyfish Predator. Science, 224:4649, 621622

Molloy, J. 1980. The assessment and management of the Celtic Sea herring stock. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 177:159-165.

Molloy, J., and Corten, A. 1975. Young herring surveys in the Irish Sea. ICES CM H:11.
Molloy, J., Barnwall, E., \& Morrison, J. 1993. Herring tagging experiments around Ireland, 1991. Department of the Marine Fisheries Leaflet 154.8 pp.

Molloy, 2006 The Herring Fisheries of Ireland (1900-2005) Marine Institute, Galway, Ireland. 235pp.
Moyano M, Illing B, Polte P, Kotterba P, Zablotski Y, Gröhsler T, Hüdepohl P, Cooke SJ, Peck M (2020) Linking individual physiological indicators to the productivity of fish populations: A case study of Atlantic herring. Ecol Indic 113:106146, DOI:10.1016/j.ecolind.2020.106146.

N Bailey, DM Bailey, LC Bellini, PG Fernandes, C Fox, S Heymans, S Holmes, J Howe, S Hughes, S Magill, F McIntyre, D McKee, MR Ryan, IP Smith, G Tyldsely, R Watret and WR Turrell. 2011.: The west of Scotland marine ecosystem: a review of scientific knowledge. MSSR 09/11. 292pp.

Nielsen, J.R., Lundgren, B., Jensen, T.F., Strhr, K.-J. (2001). Distribution, density and abundance of the western Baltic herring (Clupea harengus) in the Sound (ICES Subdivision 23) in relation to hydrographical features. Fisheries Research 50, 235-258.

Nielsen, A., Hintzen, N.T., Mosegaard, H., Trijoulet, V., Berg, C.W. (2021). "Multi-fleet state-space assessment model strengthens confidence in single fleet and provide detailed forecast options." ICES Journal of Marine Science https://doi.org/10.1093/icesjms/fsab078

Nielsen, A. and Berg, C.W.(2014). "Estimation of time-varying selectivity in stock assessments using statespace models," Fish. Res., vol. 158, pp. 96-101, Oct. 2014.

Nolan, G., and Lyons, K. 2006. Ocean Climate variability on the western Irish shelf, an emerging time series. ICES CM/C:28.

Nordheim von, L., Kotterba, P., Moll, D., Polte, P. (2018). Impact of spawning substrate complexity on egg survival of Atlantic herring (Clupea harengus, L.) in the Baltic Sea. Estuaries and Coasts 41(2), 549-559.

Nordheim von L, Kotterba P, Moll D, Polte P (2020) Lethal effect of filamentous algal blooms on Atlantic herring (Clupea harengus) eggs in the Baltic Sea. Aquatic Conserv 30(7):1362-1372, DOI:10.1002/aqc. 3329

O'Donnell, C., Mullins, E., Lynch, D., Lyons, K., Keogh, N and O'Callaghan, S. (2018). Celtic Sea Herring Acoustic Survey Cruise Report 2018. FSS Survey Series: 2018/04

O'Donnell, C., Mullins, E., Lyons, K., Connaughton, P, and Perez Tadeo, M (2020). Celtic Sea Herring Acoustic Survey Cruise Report 2018. FSS Survey Series: 2020/04
O'Dwyer, P., McKeogh, E. and Berrow, S. 2016. Results of an Independent Observer Study of the Celtic Sea Herring Fishery, 2016. IWDG Consulting, Merchants Quay, Kilrush, Co Clare. 15 pp.

O'Malley, M., Clarke, M., O'Donnell, C., Murphy, I. 2016. Atlantic Herring in 6aS/7b,c Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Survey/01/2016

O'Donnell, C., O'Malley, M., Lynch, D., Lyons, K., Keogh, N. and O'Driscoll, D. (2017). Celtic Sea Herring Acoustic Survey Cruise Report 2017, 15-04 November 2017. FSS Survey Series: 2017/04. Marine Institute. http://hdl.handle.net/10793/1338

O'Dwyer, P and Berrow, S (2017). Results of an Independent Observer Study of the Celtic Sea Herring Fishery, 2017

O'Malley, M., Clarke, M., Smith, T. \& Mullins, E. (2018). Atlantic Herring and Horse Mackerel in 6aS/7b; Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Acoustic Survey/01/2017. Marine Institute. http://hdl.handle.net/10793/1341

O'Malley M. Blaszkowski M. White E. O'Brien S. \& Mullins E. (2019). Atlantic Herring and Horse Mackerel in \(6 \mathrm{aS} / 7 \mathrm{~b}\); Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Acoustic Survey/01/2019. Marine Institute

O'Malley M., Mullins E. \& Nolan C (2020). Atlantic Herring in 6aS/7b; Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Acoustic Sur- vey/01/2020. Marine Institute

O'Malley, M. \& Nolan, C 2021. NW Herring Industry Acoustic Survey: Acoustic Survey of Atlantic Herring in 6aS/7bc during spawning/pre-spawning aggregations. Working Document to WKNSCS 2022.
O'Malley, M., O'Connell, S., Nolan, C., Farrell, E.D., White, E., Egan, A., Campbell, N., MacLeod, E., Pert, C., Mackinson, S., Nash, R., Berges, B. \& Campbell, A. 2021. Splitting the Malin Shelf Herring Acoustic Survey estimates (2014-2020) using genetic results from the EASME project. Working Document to WKNSCS 2022.

O'Sullivan, D, O'Keeffe, E., Berry, A., Tully, O. and Clarke, M (2013) An inventory of Irish Herring Spawning Grounds. Irish Fisheries Bulletin No 422013.

Pelagic Advisory Council. 2016. Minutes of the Focus Group meeting on herring in area VIa and VII b,c. 27 January 2016, The Hague, The Netherlands. http://www.pelagic-ac.org/media/pdf/Minutes\%20VIa\%20herring\%2027\%2001\%202016.pdf
Peck, M.A., Kanstinger, P., Holste, L., Martin, M. Thermal windows supporting survival of the earliest life stages of Baltic herring (Clupea harengus). ICES Journal of Marine Science, 69(4), 529-536 (2012).
Pedersen, M.W. and Berg, C.W., 2017. A stochastic surplus production model in continuous time. Fish and Fisheries, 18(2), pp.226-243.

Podolska, M., Horbowy, J., Wyszyński, M. (2006). Discrimination of Baltic herring populations with respect to Anisakis simplex larvae infection. Journal of Fish Biology, 68:4, 1241-1256.
Polte P, Gröhsler T, Kotterba P, Nordheim L von, Moll D, Santos J, Rodriguez-Tress P, Zablotski Y, Zimmermann C (2021) Reduced reproductive success of Western Baltic herring (Clupea harengus) as a response to warming winters. Front Mar Sci 8:589242, DOI:10.3389/fmars.2021.589242.

Prista, N., Fernandes, A., Pereira, J, Silva, C., Alpoim, R. and F. Borges. 2014. Discards of WGBIE species by the Portuguese bottom otter trawl operating in the ICES division 9.a (2004-2013). Working Document presented at WGBIE2014.
Smoliński, S., Schade, F.M., and Berg, F. 2020. Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shape. Canadian Journal of Fisheries and Aquatic Sciences, 77(4): 674-683.

Speirs, D.C., Guirey, E.J., Gurney, W.S.C. and Heath, M.R., 2010. A length-structured partial ecosystem model for cod in the North Sea. Fisheries Research, 106(3), pp.474-494.
Wiegleb, J., Kotterba, P., Hammer, C., Oesterwind, D. (2018) Predation of the round goby (Neogobius melanostomus Pallas, 1814) on Atlantic herring eggs in the Western Baltic Sea. Marine Biology Research, 14:9-10, 989-1003.

\section*{Annex 1: List of participants}
\begin{tabular}{|c|c|c|c|}
\hline Name & Institute & Country & E-mail \\
\hline Aaron Brazier & CEFAS - Lowestoft Laboratory Centre for Environment, Fisheries and Aqua- culture Science & United Kingdom & aaron.brazier@cefas.co.uk \\
\hline Afra Egan (Co- Chair) & Marine Institute & Ireland & afra.egan@marine.ie \\
\hline Annegret Finke & Thünen Institute of Sea Fisheries & Germany & annegret.finke@thuenen.de \\
\hline Anna Rindorf & DTU Aqua -National Institute of Aquatic Resources & Denmark & ar@aqua.dtu.dk \\
\hline Bastian Huwer & DTU Aqua -National Institute of Aquatic Resources & Denmark & bhu@aqua.dtu.dk \\
\hline Benoit Berges & Wageningen University \& Research & Netherlands & benoit.berges@wur.nl \\
\hline Campbell Pert & Marine Laboratory Marine Science Scotland & United Kingdom & campbell.pert@gov.scot \\
\hline Cecilie Kvamme (Co-Chair) & Institute of Marine Research & Norway & cecilie.kvamme@hi.no \\
\hline Christopher Griffiths & Swedish University of Agricultural Sciences Institute of Marine Research & Sweden & christopher.griffiths@slu.se \\
\hline Claus Reedtz Sparrevohn & Danish Pelagic Producers' Organisation & Denmark & crs@pelagisk.dk \\
\hline Cormac Nolan & Marine Institute & Ireland & cormac.nolan@marine.ie \\
\hline Dorte Bekkevold & DTU Aqua - National Institute of Aquatic Resources & Denmark & db@aqua.dtu.dk \\
\hline Edward Farrell & Killybegs Fishermen's Organisation & Ireland & edward.d.farrell@gmail.com \\
\hline Eleanor McLeod & Marine Laboratory Marine Science Scotland & United Kingdom & eleanor.mcmeod@gov.scot \\
\hline Espen Johnsen & Institute of Marine Research & Norway & espen.johnsen@hi.no \\
\hline Florian Berg & Institute of Marine Research & Norway & florian.berg@hi.no \\
\hline Henrik Mosegaard & DTU Aqua -National Institute of Aquatic Resources & Denmark & hm@aqua.dtu.dk \\
\hline Johnathan Ball & CEFAS - Lowestoft Laboratory Centre for Environment, Fisheries and Aqua- culture Science & United Kingdom & johnathan.ball@cefas.co.uk \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Name & Institute & Country & E-mail \\
\hline \begin{tabular}{l} 
Kirsten Birch \\
Håkansson
\end{tabular} & \begin{tabular}{l} 
DTU Aqua -National Institute of \\
Aquatic Resources
\end{tabular} & Denmark & kih@aqua.dtu.dk \\
\hline Martin Pastoors & \begin{tabular}{l} 
Pelagic Freezer-Trawler Associa- \\
tion
\end{tabular} & Netherlands & mpastoors@pelagicfish.eu \\
\hline Mathieu Lundy & \begin{tabular}{l} 
Agri-food and Biosciences Institute \\
(AFBI)
\end{tabular} & United Kingdom & mathieu.lundy@afbini.gov.uk \\
\hline Valerio Bartolino & \begin{tabular}{l} 
Shënen Institute of Sea Fisheries \\
Sciences Institute of Marine Re- \\
Search
\end{tabular} & Germany & Sweden
\end{tabular}

\section*{Annex 2: Resolutions}

\section*{Generic ToRs for Regional and Species Working Groups}

2021/2/FRSG01 The following ToRs apply to: AFWG, HAWG, NWWG, NIPAG, WGWIDE, WGBAST, WGBFAS, WGNSSK, WGCSE, WGDEEP, WGBIE, WGEEL, WGEF, WGHANSA and WGNAS.

The working group should focus on:
a) Consider and comment on Ecosystem and Fisheries overviews where available;
b) For the aim of providing input for the Fisheries Overviews, consider and comment on the following for the fisheries relevant to the working group:
i) descriptions of ecosystem impacts on fisheries
ii) descriptions of developments and recent changes to the fisheries
iii) mixed fisheries considerations, and
iv) emerging issues of relevance for management of the fisheries;
c) Conduct an assessment on the stock(s) to be addressed in 2022 using the method (assessment, forecast or trends indicators) as described in the stock annex; - complete and document an audit of the calculations and results; and produce a brief report of the work carried out regarding the stock, providing summaries of the following where relevant:
i) Input data and examination of data quality; in the event of missing or inconsistent survey or catch information refer to the ACOM document for dealing with COVID19 pandemic disruption and the linked template that formulates how deviations from the stock annex are to be reported.
ii) Where misreporting of catches is significant, provide qualitative and where possible quantitative information and describe the methods used to obtain the information;
iii) For relevant stocks (i.e., all stocks with catches in the NEAFC Regulatory Area), estimate the percentage of the total catch that has been taken in the NEAFC Regulatory Area in 2021.
iv) For category 3 and 4 stocks requiring new advice in 2022, implement the methods recommended by WKLIFE X (e.g. SPiCT, rfb, chr, rb rules) to replace the former 2 over 3 advice rule ( 2 over 5 for elasmobranchs). MSY reference points or proxies for the category 3 and 4 stocks
v) Evaluate spawning stock biomass, total stock biomass, fishing mortality, catches (projected landings and discards) using the method described in the stock annex;
1) for category 1 and 2 stocks, in addition to the other relevant model diagnostics, the recommendations and decision tree formulated by WKFORBIAS (see Annex 2 of https://www.ices.dk/sites/pub/Publication\%20Reports/Ex-pert\%20Group\%20Report/Fisheries\%20Resources\%20Steering\%20Group/2020/WKFORBIAS 2019.pdf) should be considered as guidance to determine whether an assessment remains sufficiently robust for providing advice.
2) If the assessment is deemed no longer suitable as basis for advice, consider whether it is possible and feasible to resolve the issue through an interbenchmark. If this is not possible, consider providing advice using an appropriate Category 2 to 5 approach.;
vi) The state of the stocks against relevant reference points;

Consistent with ACOM's 2020 decision, the basis for Fpa should be Fp. 05.
1) 1. Where Fp. 05 for the current set of reference points is reported in the relevant benchmark report, replace the value and basis of Fpa with the information relevant for Fp. 05
2) 2. Where Fp. 05 for the current set of reference points is not reported in the relevant benchmark report, compute the Fp. 05 that is consistent with the current set of reference points and use as Fpa. A review/audit of the computations will be organized.
3) 3. Where Fp. 05 for the current set of reference points is not reported and cannot be computed, retain the existing basis for Fpa.
vii) Catch scenarios for the year(s) beyond the terminal year of the data for the stocks for which ICES has been requested to provide advice on fishing opportunities;
viii)Historical and analytical performance of the assessment and catch options with a succinct description of associated quality issues. For the analytical performance of category 1 and 2 age-structured assessments, report the mean Mohn's rho (assessment retrospective bias analysis) values for time series of recruitment, spawning stock biomass, and fishing mortality rate. The WG report should include a plot of this retrospective analysis. The values should be calculated in accordance with the "Guidance for completing ToR viii) of the Generic ToRs for Regional and Species Working Groups - Retrospective bias in assessment" and reported using the ICES application for this purpose.
d) Produce a first draft of the advice on the stocks under considerations according to ACOM guidelines.
i. In the section 'Basis for the assessment' under input data match the survey names with the relevant "SurveyCode" listed ICES survey naming convention (restricted access) and add the "SurveyCode" to the advice sheet.
e) Review progress on benchmark issues and processes of relevance to the Expert Group.
i) update the benchmark issues lists for the individual stocks in SID;
ii) review progress on benchmark issues and identify potential benchmarks to be initiated in 2023 for conclusion in 2024;
iii) determine the prioritization score for benchmarks proposed for 2023-2024;
iv) as necessary, document generic issues to be addressed by the Benchmark Oversight Group (BOG)
f) Prepare the data calls for the next year's update assessment and for planned data evaluation workshops;
g) Identify research needs of relevance to the work of the Expert Group.
h) Review and update information regarding operational issues and research priorities on the Fisheries Resources Steering Group SharePoint site.
i) If not completed in 2020, complete the audit spread sheet 'Monitor and alert for changes in ecosystem/fisheries productivity' for the new assessments and data used for the stocks. Also note in the benchmark report how productivity, species interactions, habitat and distributional changes, including those related to climate-change, could be considered in the advice.

Information of the stocks to be considered by each Expert Group is available here.

\section*{HAWG - Herring Assessment Working Group for the Area South of 62ㅇN}

2021/2/FRSG03 The Herring Assessment Working Group for the Area South of \(\mathbf{6 2}{ }^{\mathbf{\circ}} \mathbf{N}\) (HAWG), chaired by Afra Egan, Ireland, and Cecilie Kvamme, Norway will meet:
Online/hybrid meeting 25-27 January 2022 to:
a ) Compile the catch data of sandeel in assessment areas \(1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4,5 \mathrm{r}, 6\), and 7 r and address generic ToRs for Regional and Species Working Groups that are specific to sandeel stocks in the North Sea ecoregion;
and in Copenhagen, Denmark (dates tbc) to:
b ) compile the catch data of North Sea and Western Baltic herring on (dates tbc);
c) address generic ToRs for Regional and Species Working Groups on (dates tbc) for all other stocks assessed by HAWG.

The assessments will be carried out based on the Stock Annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group on the dates specified in the 2022 ICES data call.

HAWG will report by 11 February (sandeel), (dates tbc) (sprat) and (dates tbc) (herring) 2022 for the attention of ACOM.

Only experts appointed by national Delegates or appointed in consultation with the national Delegates of the expert's country can attend this Expert Group

\section*{Annex 3: List of stock annexes}

The table below provides an overview of the HAWG Stock Annexes. Stock Annexes for other stocks are available on the ICES website library under the content type Stock Annexes. Enter the stock code, year, ecoregion, species, and/or acronym of the relevant ICES expert group into the search box, and sort by Publication date to see the results. Follow the need help? link for searching tips.
\begin{tabular}{|c|c|c|c|}
\hline Stock ID & Stock name & Last updated & Link \\
\hline her.27.20-24 & Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic) & March 2021 & her.27.20-24 SA \\
\hline her.27.3a47d & Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel) & August 2021 & her.27.3a47d SA \\
\hline her.27.6aN & Herring (Clupea harengus) in Division 6.a North (North of \(56^{\circ} 00^{\prime} \mathrm{N}\) and East of \(07^{\circ} 00^{\prime} \mathrm{W}\) ), autumn spawners (West of Scotland) & February 2022 & her.27.6aN SA \\
\hline her.27.6aS7bc & Herring (Clupea harengus) in Division 6.a South (South of \(56^{\circ} 00^{\prime} \mathrm{N}\) and West of \(07^{\circ} 00^{\prime} \mathrm{W}\) ) and 7.b-c (northwest and west of Ireland) & May 2022 & \(\underline{\text { her.27.6aS7bc SA }}\) \\
\hline her.27.irls & Herring (Clupea harengus) in divisions 7.a South of \(52^{\circ} 30^{\prime} \mathrm{N}\), 7.g-h, and 7.j-k (Irish Sea, Celtic Sea, and southwest of Ireland) & April 2021 & her.27.irls SA \\
\hline her.27.nirs & Herring (Clupea harengus) in Division 7.a North of \(52^{\circ} 30^{\prime} \mathrm{N}\) (Irish Sea) & June 2017 & her.27.nirs SA \\
\hline san.sa.1r & Sandeel (Ammodytes spp.) in Divisions 4.b and 4.c, Sandeel Area \(1 r\) (central and southern North Sea, Dogger Bank) & Jan 2018 & san.sa.1r SA \\
\hline san.sa. 2 r & Sandeel (Ammodytes spp.) in Divisions 4.b and 4.c, and Subdivision 20, Sandeel Area \(2 r\) (Skagerrak, central and southern North Sea) & Jan 2020 & san.sa. 2 L SA \\
\hline san.sa.3r & Sandeel (Ammodytes spp.) in Divisions 4.a and 4.b, and Subdivision 20, Sandeel Area 3r (Skagerrak, northern and central North Sea) & Jan 2020 & san.sa.3r SA \\
\hline san.sa. 4 & Sandeel (Ammodytes spp.) in divisions 4.a and 4.b, Sandeel Area 4 (northern and central North Sea) & Nov 2016 & san.sa. 4 SA \\
\hline san.sa.5r & Sandeel (Ammodytes spp.) in Division 4.a, Sandeel Area \(5 r\) (northern North Sea, Viking and Bergen banks) & Nov 2016 & san.sa. 5 r SA \\
\hline san.sa. 6 & Sandeel (Ammodytes spp.) in subdivisions 20-22, Sandeel Area 6 (Kattegat) & Nov 2016 & san.sa. 6 r SA \\
\hline san.sa. 7 r & Sandeel (Ammodytes spp.) in Division 4.a, Sandeel Area 7r (northern North Sea, Shetland) & Nov 2016 & san.sa.7r SA \\
\hline spr.27.3a4 & Sprat (Sprattus sprattus) in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea) & March 2019 & spr.27.3a4 SA \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline Stock ID & Stock name & Last updated & Link \\
\hline spr.27.67a-cf-k & \begin{tabular}{l} 
Sprat (Sprattus sprattus) in Subarea 6 and Divisions 7.a-c \\
and 7.f-k (West of Scotland, southern Celtic Seas)
\end{tabular} & 2013 & spr.27.67a-cf-k SA \\
\hline spr.27.7de & \begin{tabular}{l} 
Sprat (Sprattus sprattus) in divisions 7.d and 7.e (English \\
Channel)
\end{tabular} & March 2021 & spr.27.7de SA \\
\hline
\end{tabular}

\section*{Annex 4: List of Working Documents}

\section*{Working documents HAWG 2022}

WD 01 Polte, P and Gröhsler, T. 2021 Western Baltic spring spawning herring recruitment monitored by the Rügen Herring Larvae Survey

WD 02 Gröhsler, T. German Herring Fisheries and Stock Assessment data in the Western Baltic in 2021.

WD 03 Régnier, T. and Boulcott, P. Marine Scotland Science sandeel dredge survey indices for SA4

WD 04 Cruise report sandeel survey 2021. Arctic Hunter and M/S Reykjanes

WD 05 Pastoors, M.A. and Quirijns, F.A. PFA Self sampling report for North Sea herring Fisheries, Including sprat and plichard, 2016-2021

WD 06 Berg, F., Trijoulet, V., Moesgaard Albertsen, C., Birch Håkansson, K., Bekkevold, D., Mosegaard, H., Gröhsler, T., Bartolino, V., Kvamme, C., Rohlf, N., Pastoors, M. and Bergès, B. Stock splitting of North Sea autumn spawners (NSAS) and western Baltic spring spawners (WBSS) for their 2022 assessments.

WD 07 Trijoulet, V. et al. Roadmap for WBSS herring benchmark

\section*{Annex 5: Audit reports}

\author{
Audit of her.27.20-24 \\ Review of ICES Scientific Report, (HAWG) (2022) (20.05.2022) \\ Reviewers: Norbert Rohlf, Martin Pastoors \\ Expert group Chair: Cecilie Kvamme, Afra Egan \\ Secretariat representative: Sarah Millar
}

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Consistent with last year's advice, continued to be zero catch advice when MSY approach is applied. Stock is well below Blim with a slight upward trend and strong decline in fishing mortalilty in recent years

\section*{For single-stock summary sheet advice}

Stock: her.27.20-24

The WBSS stock is caught in several management units, in Subdivision 20-24 and in Subarea 4a. Catches consists of a mixture of WBSS and NSAS herring. The stock was last benchmarked in 2018.
1) Assessment type: update
2) Assessment: accepted
3) Forecast: accepted
4) Assessment model: multi-fleet SAM
5) Consistency: consistent with last year's assessment. Model was applied as per stock annex. Assumptions on age structure in catches taken in the transfer area differ somewhat from preceding years, but conclusions were analyses, presented and explained at HAWG.
6) Stock status: SSB is below Blim. Recruitment continues to be very low.
7) Management plan: There is no agreed management plan for this stock.

General comments
In 2022, 100\% of herring quotas can be transferred from 3.a into 4.a., compared to \(50 \%\) in recent years. This results in important changes of the proportions of WBSS caught in the different fleets, and predicted catches of WBSS highly depend on the area where the catches will be taken.
The stock is caught in different management unit. Recovery will be impaired if catches are not minimized in all units.

Fleet definitions used in the assessment and forecast have been updated to respond to the recent requenst for explanation for several stakeholders. These definitions have also been used for the North Sea herring advice.

Technical comments
None

Conclusions
The assessment has been performed correctly and considered adequate as the basis for TAC advice. All information is available on Stockassessment.org.

\section*{ICES stock advice}

区 Ensure the basis of the advice used is the correct one i．e Management plan；MSY approach；precau－ tionary approach．The same as stated in the basis of advice table and history of advice table．

凹 The advised value of catches should be the same as presented in the catch options table．
区 Check the years for which the advice is given．

\section*{Stock development over time}

区 Ensure all units used in the plots are correct（compare with previous year advice sheet）．
区 Ensure all titles of the plots are correct i．e caches；landings，recruitment age（0，1，2．．．）；relative index
\(\boxtimes\) Recruitment plot：if the intermediate years is an outcome of a model the value should be unshaded．
\(\boxtimes\) Ensure the F and SSB reference points（RP）in the plots are the same as in the reference points table． Also，check the respective labels if they correspond with the RP．

区 Check if the legend of the plots is consistent with what is shown in the plots．
区 Check that the graphs match the data in table of stock assessment results．

\section*{Stock and exploitation status}Compare with the previous year＇s advice sheet．The years in common should have the same status （symbol）．Check if the labels for the years are correct．Compare the status table with the F and SSB plots they should show the same information．Does the stock have a management plan？If yes than the row for the management plan should be filled as well otherwise will read not applicable．

\section*{Catch options}

\section*{Basis of catch options table：}

For each of the rows in the table ensure that：
区 The year is correct，
区 The value is correct，
区 The notes are correct and
区 The sources are correct．

\section*{Catch options table：}The forecast should be re－run to ensure all values are correct．
\(\boxtimes\) Compare the input data with previous year run（previous year should be in the share point under the data folder）

区 The wanted catch and SSB values should be given in tonnes（ t ）；

区 Confirm if the \(F\) values for the options \(\mathrm{Flim}_{\mathrm{lim}} ; \mathrm{F}_{\mathrm{pa}}\) ；are correct．
\(\boxtimes\) For the options where the value of F will take \(S S B\) of the forecast year to be equal to \(\mathrm{Blim}_{\mathrm{lm}} ; \mathrm{B}_{\mathrm{pa}} ; \mathrm{MSY}_{\mathrm{Btrigger}}\) confirm if the SSB value for the forecast year is equal or close to the reference points．For the options where a percentage is added or taken（i．e \(+10 \% ; 15 \%\) ，etc．）from the current TAC． Ensure that the calculated values are correct．

区 For all the options given in the table calculate the percentage of change in SSB and TAC．
区 In the first column（Rationale）ensure the rational of the first line is the correct basis for the advice．All other options should be under＂Other options＂．

区 Compare different catch options；higher F should result in lower SSB
\(\boxtimes\) Check if SSB change is in line with F．

\section*{Basis of the advice}
\(\boxtimes\) Ensure the basis of the advice is correct and if the same is used in the catch option table and in the ICES stock advice section．Is there a management plan？If there is one it should be stated if it has been evaluated by ICES and considered precautionary or not and also if it has been sign off by the clients（EU；Norway，Faroe Is－ lands，etc．）

\section*{Quality of the assessment}

区 Are the units in plots correct？
区 Are the titles in the plots correct including F（age range）recruitment（age）．
\(\boxtimes\) The red line correspond to the year of assessment（except \(F\) which is year of assessment -1 ）
区 Each plot should have five lines．
区 Ensure the reference points lines（in the SSB and F plots）are correct and match with the values in the reference point table and summary plots．

\section*{Issues relevant for the advice}

区 Along with the spelling and structure in the text ensure that any values referenced in the text match the values or percentages in the tables within the advice sheet

\section*{Reference points}

区 Ensure all the values，technical basis and sources are correct．If new values were not calculated the table should be the same as previous year．

If there is no change from the previous year the table should be the same．
区 Ensure there is no typos wrong acronyms for the surveys
凹 Assessment type－check that the standard text is used．

\section*{Information from stakeholders}If no information is available the standard sentence should be＂There is no additional available infor－ mation＂

\section*{History of advice，and management}

This table should only be updated for the assessment year and forecast year except if there was revi－ sion to the previous years．

区 Ensure that the forecast year＂predicted landings or catch corres．to advice＂column match the advice given in the ICES stock advice section（usually given in thousand tonnes）．

\section*{History of catch and landings}

\section*{Catch distribution by fleet table：}
\(\boxtimes\) Ensure the legend of the table reflects the year for the data given in the table．
Ensure that the sum of the percentage values in each of the components（landings and discards） amount to 100\％Ensure that the sum of the values for discards and landings are equal to the value in the catch column． However，if only landings or discards components are shown，then total catch should be unknown．

\section*{History of commercial landings table：}
\(\boxtimes\) Ensure that the values for the last row are correct check against the preliminary landings（link to be added）

\section*{Summary of the assessment}

This table is an output from the standard graphs．If there was any errors picked up with any of the plots，then this table should be replaced by a new version once the errors are corrected．Check if the column names are correct mainly recruitment age and age range for \(F\) ．If the stock is category 5 or 6 then it should read＂There is no assessment for this stock＂

\section*{Sources and references}

E Ensure all references are correct．
区 Ensure all references in the advice sheet are referenced in this section

\section*{Audit of Her.6aS7bc}

\author{
Working Group: HAWG Stock Name: her.27.6aS7bc \\ Review of ICES Scientific Report, HAWG 2022 \\ Reviewers: Paul Marchal, Kirsten Birch Håkansson \\ Expert group Chair: Cecilie Kvamme and Afra Egan \\ Secretariat representative: Sarah Millar
}

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}
- Assessment and forecasts up to date with 2022 procedure for Category 3 stocks (constant harvest rate, method 2.2)
- The reasons why MSHAS survey lacks of consistency for a number of age pairs should be further investigated

\section*{For single-stock summary sheet advice}

Stock: Herring in 6a South and 7b, c
Short description of the assessment as follows:
1) Assessment type: benchmark (carried out in 2022; Category 3 stock)
2) Assessment: accepted
3) Forecast: NA
4) Assessment model: Category 3, Constant harvest rule (CHR, WKLIFE method 2.2), based on a survey-based biomass index (Split Malin Shelf Acoustic Surveyand harvest rates. Advised catches building on the MSHAS biomass index, commercial catch length frequencies and relative von Bertalanffy parameters estimates, a biomass safeguard cap and a life-history-based multiplier. A stability clause bound by \(-30 \%\) and \(+20 \%\) of 1999-2021 catch applies.
5) Consistency: the most reliable survey index (MSHAS) has been used.
6) Stock status: Increasing biomass from low level in 2006, but no recent recruitment indices in recent years. Harvest rate \(<\mathrm{F}_{\text {proxyMSY }}\) and SSB \(>\) MSY \(\mathrm{B}_{\text {trigger. }}\) No recent recruitment indices. Advised catch increased by \(20 \%\) compared to 2019-2021 catch average, which is entirely driven by the stability clause in the CHR;
7) Management plan: NA

\section*{Conclusions}

Assessment performed correctly and according to procedure, except the value for the index trigger value seems a bit of in the advice table 1 and 3 . The value is set to \(51,340 \mathrm{t}\), but table 8 (advice) shows that the lowest value is \(36,707 \mathrm{t}\), which should give a value of \(51,390 \mathrm{t}\). Further, it is not clear from the report if this index trigger value will be updated if a lower survey biomass is observed in the future.

The reasons why the MSHAS survey lacks of consistency for a number of age pairs should be further investigated.

\section*{Audit of Her.6aN}

Review of ICES Scientific Report, (HAWG) (2022) (9-12/06/2022)
Reviewers: Vanessa Trijoulet
Expert group Chair: Cecilie Kvamme and Afra Egan
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

Stock: Autumn-spawners herring in Division 6.a North
Short description of the assessment as follows (examples in grey text):
1) Assessment type: update following benchmark in 2022, Category 3
2) Assessment: accepted
3) Forecast: Not relevant
4) Assessment model: Category 3, Method 2.2 Constant Harvest Rate using indices for 6 aN herring from Malin Shelf Herring Acoustic Survey (MSHAS) and commercial catches above the \(56^{\circ} \mathrm{N}\) line (total catch and length frequencies)
5) Consistency: Method used as agreed at the benchmark
6) Stock status: Fishing pressure on the stock is below FMSYproxy since 2017 and SSB index is above the MSY Btrigger ( \(\mathrm{I}_{\text {trigger }}=1.4^{*}\) Iloss) since 2020.
7) Management plan: Not relevant

\section*{General comments}

The assessment and advice was performed in adequacy with what was decided at the 2022 benchmark. The 2023 advice of 1212 t is entirely driven by the stability clause of the chr rule that constrains the advice to not exceed \(20 \%\) of the previous advice (here the average 3 -year catch). Without the stability clause the advice would have been significantly larger ( 8119 t ). Given that the previous combined stock ( \(6 a \mathrm{~N}+6 \mathrm{aS7bc}\) ) advice was zero in 2022, using the stability clause is deemed appropriate. It has to be noted that both stocks have now a positive catch advice given the downgrade to category 3 , which does not allow zero catch advice if applied. The advice catch for 2023 is below the monitoring TAC that was used to date.

\section*{Technical comments}

The following comments were sent to the stock assessors and edited accordingly:
Advice sheet:
Stock development over time: SSB plot the \(I_{\text {trigger }}\) line is full in the plot but described as dashed in the caption. Catches plot, is the value of 177 t in 2020 missing or it is due to the scale of the plot?

Catch scenarios: Table 1 add "tonnes" after 8119 (CHR calculation) or eventually remove the unit everywhere and add it to the caption. Second footnote \(\left({ }^{* *}\right)\) should maybe be Cy \(+1=1 \mathrm{ly}-1 \times \mathrm{FMSY}\) proxy \(\times \mathrm{b} \times \mathrm{m}\) ? C because it is not last year advice but 3 year average catch and index of year for I .

Issues relevant for the advice: \(4^{\text {th }}\) paragraph "remains"?
History of commercial landings table: should the double asterisk be removed for 2020?
Summary assessment: Table 8, typo in caption: "Lmean refers"
References: References identified by Ellie should be removed if not added somewhere in the sheet.

Stock annex: Reference to multifleet SAM model should be replaced by Nielsen et al. 2021 (https:doi.org/10.1093/icesjms/fsab078)

Report: Add value of Itriger in the section 4.6. Some problems with values when comparing tables in report and advice sheet (explained in a excel document to stock assessors). This needs to be checked to see which are correct. Also 2 columns for UK in Table 4.1.6 in report.

\section*{Conclusions}

The assessment was performed correctly and according to procedure.

\section*{ICES stock advice}
\(\boxtimes\) Ensure the basis of the advice used is the correct one i.e Management plan; MSY approach; precautionary approach. The same as stated in the basis of advice table and history of advice table.The advised value of catches should be the same as presented in the catch options table.
\(\boxtimes\) Check the years for which the advice is given.

\section*{Stock development over time}
\(\boxtimes\) Ensure all units used in the plots are correct (compare with previous year advice sheet).
\(\boxtimes\) Ensure all titles of the plots are correct i.e caches; landings, recruitment age ( \(0,1,2 \ldots\) ); relative indexRecruitment plot: if the intermediate years is an outcome of a model the value should be unshaded.
\(\boxtimes\) Ensure the F and SSB reference points ( RP ) in the plots are the same as in the reference points table. Also, check the respective labels if they correspond with the RP.
\(\boxtimes\) Check if the legend of the plots is consistent with what is shown in the plots.Check that the graphs match the data in table of stock assessment results.

\section*{Stock and exploitation status}Compare with the previous year's advice sheet. The years in common should have the same status (symbol).Check if the labels for the years are correct.Compare the status table with the F and SSB plots they should show the same information.Does the stock have a management plan? If yes than the row for the management plan should be filled as well otherwise will read not applicable.

\section*{Catch options}

\section*{Basis of catch options table:}

For each of the rows in the table ensure that:
\(\square\) The year is correct,The value is correct,The notes are correct andThe sources are correct.

\section*{Catch options table:}The forecast should be re-run to ensure all values are correct.Compare the input data with previous year run (previous year should be in the share point under the data folder)The wanted catch and SSB values should be given in tonnes \((\mathrm{t})\);Confirm if the F values for the options \(\mathrm{Flim}_{\text {lim }} \mathrm{F}_{\mathrm{pa}}\); are correct.For the options where the value of F will take SSB of the forecast year to be equal to \(\mathrm{Blim}_{\mathrm{lim}}\); \(\mathrm{B}_{\mathrm{pa}}\); MSY \({ }_{\text {Btrigger }}\) confirm if the SSB value for the forecast year is equal or close to the reference points.For the options where a percentage is added or taken (i.e \(+10 \% ; 15 \%\), etc.) from the current TAC. Ensure that the calculated values are correct.For all the options given in the table calculate the percentage of change in SSB and TAC.In the first column (Rationale) ensure the rational of the first line is the correct basis for the advice. All other options should be under "Other options".Compare different catch options; higher F should result in lower SSBCheck if SSB change is in line with F.

\section*{Basis of the advice}
\(\boxtimes\) Ensure the basis of the advice is correct and if the same is used in the catch option table and in the ICES stock advice section.
\(\boxtimes\) Is there a management plan? If there is one it should be stated if it has been evaluated by ICES and considered precautionary or not and also if it has been sign off by the clients(EU; Norway, Faroe Islands, etc.)

\section*{Quality of the assessment}Are the units in plots correct?Are the titles in the plots correct including F (age range) recruitment (age).The red line correspond to the year of assessment (except \(F\) which is year of assessment -1 )Each plot should have five lines.Ensure the reference points lines (in the SSB and F plots) are correct and match with the values in the reference point table and summary plots.

\section*{Issues relevant for the advice}

Along with the spelling and structure in the text ensure that any values referenced in the text match the values or percentages in the tables within the advice sheet.

\section*{Reference points}

Ensure all the values, technical basis and sources are correct. If new values were not calculated the table should be the same as previous year.

\section*{Basis of the assessment}
\(\square\) If there is no change from the previous year the table should be the same.Ensure there is no typos wrong acronyms for the surveys
\(\boxtimes\) Assessment type- check that the standard text is used.

\section*{Information from stakeholders}If no information is available the standard sentence should be "There is no additional available information"

\section*{History of advice, and management}This table should only be updated for the assessment year and forecast year except if there was revision to the previous years.
\(\boxtimes\) Ensure that the forecast year "predicted landings or catch corres. to advice" column match the advice given in the ICES stock advice section (usually given in thousand tonnes).

\section*{History of catch and landings \\ Catch distribution by fleet table:}
\(\boxtimes\) Ensure the legend of the table reflects the year for the data given in the table.
\(\boxtimes\) Ensure that the sum of the percentage values in each of the components (landings and discards) amount to \(100 \%\)Ensure that the sum of the values for discards and landings are equal to the value in the catch column. However, if only landings or discards components are shown, then total catch should be unknown.

\section*{History of commercial landings table:}Ensure that the values for the last row are correct check against the preliminary landings (link to be added)

\section*{Summary of the assessment}
\(\boxtimes\) This table is an output from the standard graphs. If there was any errors picked up with any of the plots, then this table should be replaced by a new version once the errors are corrected.Check if the column names are correct mainly recruitment age and age range for \(F\).If the stock is category 5 or 6 then it should read "There is no assessment for this stock"

\section*{Sources and references}

Ensure all references are correct.Ensure all references in the advice sheet are referenced in this section

\section*{Audit of Her.27.irls}

\author{
Working Group: HAWG \\ Stock Name: her.27.irls
}

Date: May 2022
Review of ICES Scientific Report, Herring Assessment Working Group (HAWG) 2022, 9-12/05/2022
Reviewers: Neil Campbell
Expert group Chair: Cecilie Kvamme (Norway), Afra Egan (Ireland)
Secretariat representative: Sarah Millar

\section*{Stock Celtic Seas Herring}

Short description of the assessment as follows (examples in grey text):
1) Assessment type: Update
2) Assessment: Accepted
3) Forecast: Accepted
4) Assessment model: ASAP - as defined at WKWEST (2015) and WKPELA (2018), tuned by the Celtic Sea herring acoustic survey
5) Consistency: the assessment has developed a strong retrospective pattern on SSB (Mohn's rho = 1.34). Because the stock is below Blim, the assessment is still used to provide advice.
6) Stock status: B < Blim with no catch options in 2023 consistent with rebuilding the stock above this level; F under the monitoring TAC below both \(\mathrm{F}_{\mathrm{pa}}\); uncertainty on R is high in the most recent year
7) Management plan: The long-term management strategy for Celtic Sea herring that was proposed by the Pelagic Advisory Council in 2011 was reevaluated by ICES in 2018. ICES advises that the harvest control rule is no longer consistent with the precautionary approach. The management strategy results in a greater than \(5 \%\) probability of the stock falling below Blim in several years throughout the 20-year simulated period.

\section*{General comments}

The spawning-stock biomass (SSB) has decreased significantly in the last decade and has been below \(\mathrm{B}_{\text {lim }}\) since 2016. The fishing mortality (F) was above Fmsy since 2014, and above Flim between 2016 and 2019, but in 2020 F fell below \(F_{m s y}\) and remained there in 2021. Recruitment has been below average since 2013 and is uncertain. The assessment had a substantial historical retrospective bias in recent years. Applying the ICES MSY approach results in zero catch for 2023, however, in order to continue to monitor the stock development ICES provides a technical service assuming a continued monitoring TAC of 869 tonnes, the same as last year.

The assessment is well presented and carried out in line with the process described in the stock annex.

Technical comments
Table 8 (advice sheet) and Table 6.1.1.2 (report) Totals column do not correspond to sum of catches in country \& discard columns, differing by up to \(30 \%\).

\section*{Conclusions}

The assessment has been performed correctly in line with the stock annex, and appropriate procedures followed to provide advice and technical services.

\section*{Checklist for audit process}

\section*{General aspects}

Has the EG answered those TORs relevant to providing advice? Yes
Is the assessment according to the stock annex description? Yes
If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? Management plan not used.

Have the data been used as specified in the stock annex? Yes
Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes

Is there any major reason to deviate from the standard procedure for this stock? No

Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice? Yes

It is useful to print previous year advice sheet for comparison purposes it will make it easier to find potential errors and or inconsistencies. Done

Along with the spelling and structure of the text ensure that any values referenced in the text match the values or percentages shown in the tables. Done

All the values presented in the advice sheet should not be rounded at the WG. All rounded will be done at the ADG. OK

\section*{ICES stock advice}
\(\boxtimes\) Ensure the basis of the advice used is the correct one i.e Management plan; MSY approach; precautionary approach. The same as stated in the basis of advice table and history of advice table.
\(\boxtimes\) The advised value of catches should be the same as presented in the catch options table.
\(\boxtimes\) Check the years for which the advice is given.

\section*{Stock development over time}
\(\boxtimes\) Ensure all units used in the plots are correct (compare with previous year advice sheet).
\(\boxtimes\) Ensure all titles of the plots are correct i.e caches; landings, recruitment age ( \(0,1,2 \ldots\) ); relative index
\(\boxtimes\) Recruitment plot: if the intermediate years is an outcome of a model the value should be unshaded.
\(\boxtimes\) Ensure the F and SSB reference points (RP) in the plots are the same as in the reference points table. Also, check the respective labels if they correspond with the RP.
\(\boxtimes\) Check if the legend of the plots is consistent with what is shown in the plots.
\(\boxtimes\) Check that the graphs match the data in table of stock assessment results.

\section*{Catch options}

\section*{Basis of catch options table:}

For each of the rows in the table ensure that:
\(\boxtimes\) The year is correct,
\(\boxtimes\) The value is correct,
\(\boxtimes\) The notes are correct and
\(\boxtimes\) The sources are correct.

\section*{Basis of the advice}

Ensure the basis of the advice is correct and if the same is used in the catch option table and in the ICES stock advice section.
\(\boxtimes\) Is there a management plan? If there is one it should be stated if it has been evaluated by ICES and considered precautionary or not and also if it has been sign off by the clients(EU; Norway, Faroe Islands, etc.)

\section*{Quality of the assessment}
\(\boxtimes\) Are the units in plots correct?
\(\boxtimes\) Are the titles in the plots correct including F (age range) recruitment (age).
\(\boxtimes\) The coloured line correspond to the year of assessment (except F which is year of assessment -1)
\(\boxtimes\) Each plot should have five lines.
\(\boxtimes\) Ensure the reference points lines (in the SSB and F plots) are correct and match with the values in the reference point table and summary plots.

\section*{Issues relevant for the advice}
\(\boxtimes\) Along with the spelling and structure in the text ensure that any values referenced in the text match the values or percentages in the tables within the advice sheet.

\section*{Reference points}
\(\boxtimes\) Ensure all the values, technical basis and sources are correct. If new values were not calculated the table should be the same as previous year.

\section*{Basis of the assessment}
\(\boxtimes\) If there is no change from the previous year the table should be the same.
\(\boxtimes\) Ensure there is no typos wrong acronyms for the surveys.
\(\boxtimes\) Assessment type- check that the standard text is used.

\section*{History of advice, and management}
\(\boxtimes\) This table should only be updated for the assessment year and forecast year except if there was revision to the previous years.
\(\boxtimes\) Ensure that the forecast year "predicted landings or catch corres. to advice" column match the advice given in the ICES stock advice section (usually given in thousand tonnes).

\section*{History of catch and landings}

\section*{Catch distribution by fleet table:}
\(\boxtimes\) Ensure the legend of the table reflects the year for the data given in the table.
\(\boxtimes\) Ensure that the sum of the percentage values in each of the components (landings and discards) amount to \(100 \%\)
\(\boxtimes\) Ensure that the sum of the values for discards and landings are equal to the value in the catch column. However, if only landings or discards components are shown, then total catch should be unknown.

\section*{History of commercial landings table:}
\(\boxtimes\) Ensure that the values for the last row are correct check against the preliminary landings (link to be added)

\section*{Summary of the assessment}
\(\boxtimes\) This table is an output from the standard graphs. If there was any errors picked up with any of the plots, then this table should be replaced by a new version once the errors are corrected.
\(\boxtimes\) Check if the column names are correct mainly recruitment age and age range for F .
\(\boxtimes\) If the stock is category 5 or 6 then it should read "There is no assessment for this stock"

\section*{Sources and references}
\(\boxtimes\) Ensure all references are correct.
\(\boxtimes\) Ensure all references in the advice sheet are referenced in this section
```

Her27.irls
Review of ICES Scientific Report, (HAWG) (2022) (24.05.2022)
Reviewers: Johnathan Bal
Expert group Chair: Cecilie Kvamme, Afra Egan
Secretariat representative: Sarah Millar

```

Audience to write for: advice drafting group, ACOM, and next year's expert group
General
Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

For single-stock summary sheet advice
Stock: Her.irls
1) Assessment type: update
2) Assessment: accepted
3) Forecast: accepted
4) Assessment model: ASAP Analytical assessment, using a single acoustic survey ages 2-7 (2002-2021) and catch data (1958-2021)
5) Consistency: The assessment has been accepted last year and this year, but has suffered from retrospective revisions for both SSB and F.
6) Stock status: Biomass remains below Blim, but has seen a slight increase, F at age was above \(\mathrm{F}_{\mathrm{pa}}\) between 2016 and 2019, but in 2020 was brought under \(\mathrm{F}_{\text {msy }}\) and remains there in 2021. Recruitment is up from 2020 but remains low and a downwards revision is
seen in the retrospectives. The uncertainty in recruitment has been attributed to a lack of fisheries independent information.
7) Management plan: The long-term management strategy for the stock was evaluated by ICES in 2018 and the harvest control rule was found to be no longer consistent with the precautionary approach. The current TAC (869t) has been agreed following the special request to ICES and the advisement of a monitoring TAC to allow for continued stock assessment in the face of a zero catch advice.

General comments
Well written

Technical comments

No comments
Conclusions
The assessment has been performed correctly

\section*{Audit of Her.27.nirs}

Review of ICES Scientific Report, (expert group/workshop title) (year) (dates)
Reviewers: Campbell Pert and Ed Farrell
Expert group Chair: Afra Egan, \& Cecile Kvamme
Secretariat representative:

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

Stock: Herring in Division 7.a North of \(52^{\circ} 30^{\prime} N\) (Irish Sea)
Short description of the assessment as follows (examples in grey text):
1) Assessment type: Update
2) Assessment: Accepted
3) Forecast: Accepted
4) Assessment model: Age-based analytical assessment (FLSAM; ICES, 2022) that uses catches in the model and in the forecast.
5) Consistency: The advice is consistent with last year's assessment although the historic SSB appears to be sensitive to addition of a new year's data resulting in revision during the recent time period.
6) Stock status: The assessment is performed on a mixed stock (including juveniles from the Celtic Sea), which affects the estimates of the younger ages. Due to the presence of herring from other stocks, the assessment may overestimate
the Irish Sea stock. However, fishing pressure on the stock is below FMSY and spawning-stock size is above MSY Btrigger, Bpa, and Blim.
7) Management plan: There is no agreed management plan for this stock.

\section*{General comments}

This has previously been raised but it seems unusual to be calculating \(F\) on ages \(4-6\), when from the data it's clear that the majority of the catches comprise of \(2-3 \mathrm{wr}\) and therefore this appears to differ from how we deal with other stocks.

A wider issue with this and other adjacent stocks is that trying to forecast the SSB to 2024 given all the uncertainties and also the partial data for 2022 seems like a bit of a stretch and perhaps not very useful for the advice. This is a wider issue than just this stock though it may be worth discussing at the ADG.

The assessment outputs (recruitment, F at age and SSB) seem to have a high level of uncertainty, which has increased annually over the past number of years.

Technical comments
Figure 1 SSB, Table 1, Table 9: The SSB for 2022 in Fig 1 and Table 9 is indicated as 27504t but in Table 1 it is 24716 t. The 2022 SSB in the presentation was the same as Table 1. Also applies to Figure 2 SSB.

Table 2. Can you check the percentage SSB change and advice change values in this table.
Table 4. There is only one 2021 reference so you don't need 2021a
Table 8. The UK catch in 2021 doesn't tally with the catch in slide 23 of the presentation. Was there other UK catch (apart from NI) that wasn't sampled?

On the references 'Groot' is cited in the text but it should be 'de Groot'

\section*{Conclusions}

As an update assessment the assessment appears to have been performed correctly for the purposes of providing updated advice. However given the issues mentioned above in general comments and the pattern on increasing uncertainty it may be time to look at the assessment data and model in more detail.

\section*{Audit of san.sa. 1 r}

Reviewers: Espen Johnsen
Expert group Chair: Cecilie Kvamme and Afra Egan
Secretariat representative: Sarah Millar
Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

\section*{For single-stock summary sheet advice}

Stock: san.sa.1r
1) Assessment type: update
2) Assessment: accepted
3) Forecast: accepted
4) Assessment model: Analytical assessment based on SMS 2 season (Jan-Jun and Jul-Dec) model. Age based assuming a relationship between F and fishing effort. 1 fleet and 1 dredge survey,
5) Consistency: Consistent assessment, but with some retrospective pattern in the recruitment and SBB
6) Stock status: spawning-stock size is above below MSY Bescapement and Bpa, but above Blim 1st January 2022. R 2021 is far below average.
7) Management plan: No MP for SA1r

General comments

Technical comments

\section*{Audit of san.sa. 1 r}

Review of ICES Scientific Report, HAWG 2022
Reviewers: Claus R. Sparrevohn
Expert group Chair: Cecilie Kvamme
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

Stock

Short description of the assessment as follows (examples in grey text):
1) Assessment type: update
2) Assessment: accepted
3) Forecast: accepted
4) Assessment model: SMS with dredge survey index and commercial effort
5) Consistency: Accepted. Model is consistent with to last year
6) Stock status: \(\mathrm{SSB}>\operatorname{Blim}\) but fluctuates somewhat between years due to the nature of shortlived species. No fishery reference point is defined for this stock
7) Management plan: No agreed management plan

General comments
Due to a low recruitment index (dredge survey), the combination of the incoming 2021 yearclass and the estimated 2022 SSB is not big enough to support any fishery. Because of that, the group support setting a monitoring TAC on 5000 t combined with a sampling procedure ensuring data for next years assessment.

There is retrospecitive bias in the assessment, especially in the SSB and recruitment,

\section*{Conclusions}

An assessment appropriate basis for advice.

\section*{Audit of san.sa.2r}

Review of ICES Scientific Report, HAWG 2022, 3 February
Reviewers: Valerio Bartolino and Christopher Griffiths
Expert group Chair: Cecilie Kvamme and Afra Egan
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}
- Assessment and forecasts conform to the procedures
- The retrospective patterns in both R and SSB are known to be problematic for the stock and the Mohn's rho has deteriorated further compared to the last year's assessment ( \(\rho . S S B\) from 0.49 to 0.55 and \(\rho . R\) from 0.29 to 0.37 ). When compared to last year's assessment, SSB has been revised downwards for several years back in time. The reasons for this are not clear from the text in the advice sheet but it must be related to the revision in R.
- The dredge survey found high densities of age 0 in 2021 throughout both the northern and southern grounds. This builds confidence in the good 2021 age 0 survey index
- The estimate of survey catchability (especially for age 0 ) is highly variable among years which is problematic to the assessment of the stock. However, the net effect given by the combination of the catchability parameter and the parameter used in the power model is consistent with last year's assessment.
- The increase in the advice seems in line with the predicted 2021 year class

\section*{For single-stock summary sheet advice}

Stock: san.sa.2r
Short description of the assessment as follows (examples in grey text):
8) Assessment type: update
9) Assessment: accepted
10) Forecast: accepted
11) Assessment model: analytical assessment based on SMS assuming a relationship between F and fishing effort - 1 fleet and 1 dredge survey, two timesteps per year (Jan-Jun and Jul-Dec).
12) Consistency:
- The assessment has a strong retrospective pattern. The downward revision of recruitment and SSB is not limited to last year estimates and goes several years back in time. Reasons for this are only partially understood by the group
- There is an important change in the survey catchability especially for age0 (from 0.616 to 0.356 ) but ultimately not in the net effect
once the density-dependent catchability parameter (DD-parameter) of the power model is taken into account. The DD-parameter is estimated to be 1.32 in the 2022 assessment compared to 1.27 from the 2021 assessment
- An increased variance in catchability for all ages in the fishery suggests some deterioration of model fitting to the catch.
- The survey residuals for age 0 are larger in the years 2015, 2016, 2018, 2019 compared to the last year's assessment (see bubble plot residuals for age 0 ).
13) Stock status: SSB in 2022 is estimated below Blim but the good year class estimated for 2021 results in relatively high advice. This might not the best situation given the tendency to overestimate recruitment in this assessment. Increases in the DD-parameter should help but uncertainty around this advice remain high. The overall perception is that the stock has had low productivity for \(>20\) years and it continues to stay low despite signals of occasionally good incoming year classes (only informed by the survey). The good incoming year class for 2021 has produced a considerable increase in the advice for 2022. The Fcap drives the advice for 2022.
14) Management plan: No MP for SA2r.

\section*{Conclusions}

The assessment has been performed correctly and according to procedure. The retrospective pattern is problematic, especially on SSB.

\section*{Audit of San.sa.3r}

Working Group: HAWG Stock Name: san.sa.3r
Review of ICES Scientific Report, (HAWG) (2022) (02.02.2021)
Reviewers: Johnathan Ball
Expert group Chair: Cecilie Kvamme
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

Stock: san.sa.3r

The stock is separated in seven management areas. Fishing takes place in five of these seven areas (sandeel area 1r-3r, 4 and 6). The stock was last benchmarked in 2016 (Interbenchmark in 2020). Sandeel area 3r mainly consists of fishing grounds in Norwegian EEZ.
15) Assessment type: update
16) Assessment: accepted
17) Forecast: accepted
18) Assessment model: SA3r uses a seasonal SMS-effort model, tuned by dredge and acoustic survey index. The recruitment index of the dredge survey includes a density-dependency, to account for overestimation of large incoming year classes. An update to natural mortality's is available but has not been implemented.
19) Consistency: The advice is consistent with last year's assessment.
20) Stock status: SSB has been above \(B_{p a}\) since 2015. F is lower than last year, however confidence around F has increased compared to recent pre 2020 values and remains above averages. Recruitment is noted to be lower than average for the stock.
21) Management plan: There is no agreed management plan for this stock.

General comments.
This has probably been discussed but should a note be added to the management plan section of the advice mentioning the existence of a Norwegian management plan. I realise this is not universally agreed, but it does affect the stock. It's a bit jarring to find it buried in the report with no mention in the advice.

Will the new natural moralities be looked at the benchmark?
Advice sheet
- SSB legend and lines are different from last year
- blim and bpa values swapped in legend MSYbescape also appears to be 80,000 not 129,000 as in table 4
- same issue in figure 2
- History of catch (table 8) does not match the table 9 provided during advice meeting.

Report
- Report table 9.4.10 is this model values vs actual values as they do not match advice table 9.I also checked the report table also does not match the sag graph data from the sag excel. Is this just because the tables are showing different things? I do note that the report labels table 9.4.10 as report model estimates

Technical comments

\section*{Conclusion}

The report is well written, however given the discussion around the power model should a detailed explanation of how it functions and is applied be added?

\section*{Audit of San.sa.3r}

Review of ICES Scientific Report, (HAWG) (2022) (03.02.2022)
Reviewers: Norbert Rohlf
Expert group Chair: Cecilie Kvamme, Afra Egan
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

Stock: san.sa.3r

The stock is separated in seven management areas. Fishing takes place in five of these seven areas (sandeel area \(1 r-3 r, 4\) and 6). The stock was last benchmarked in 2016 (Interbenchmark in 2020). Sandeel area 3r mainly consists of fishing grounds in Norwegian EEZ.
1) Assessment type: update
2) Assessment: accepted
3) Forecast: accepted
4) Assessment model: Seasonal SMS-effort model, tuned by dredge and acoustic survey index. Density-dependency in the recruitment index of the dredge survey was included to account for overestimation of large incoming year classes. Natural mortalities not updated with latest SMS runs; this would have led to substantial changes of stock's historic perception. HAWG to consider if new reference points should be estimated.
5) Consistency: consistent with last year's assessment. Model was applied as per stock annex. Implementing density dependence on the relationship between recruitment and the dredge survey reduced the retrospective bias in the recruitment and the Mohn's Rho in the current assessment.
6) Stock status: SSB has been above \(B_{\text {pa }}\) since 2015, combined with low \(F\). Above recruitment in period 2018 to 2020. F is actually increasing and peaked in 2020. Thus, SSB has decreased considerably, but is still well above \(B_{\text {pa. }}\).
7) Management plan: There is no agreed management plan for this stock. Since 2011, the Norwegian sandeel fishery in SA3r has been managed according to an area-based management plan for the Norwegian EEZ.

\section*{General comments}

The report is very concise and documents all decisions and settings made in the assessment well.
Technical comments
None

\section*{Conclusions}

The assessment has been performed correctly and considered adequate as the basis for TAC advice. Most of the fishing grounds are in Norwegian EEZ and managed according to a Norwegian area based management plan. However, this management plan has not been evaluated by ICES.

\section*{ICES stock advice}

Ensure the basis of the advice used is the correct one i.e Management plan; MSY approach; precautionary approach. The same as stated in the basis of advice table and history of advice table.

区 The advised value of catches should be the same as presented in the catch options table.
区 Check the years for which the advice is given.

\section*{Stock development over time}

区 Ensure all units used in the plots are correct（compare with previous year advice sheet）．
区 Ensure all titles of the plots are correct i．e caches；landings，recruitment age（ \(0,1,2 \ldots\) ）；relative index
R Recruitment plot：if the intermediate years is an outcome of a model the value should be unshaded．
\(\boxtimes\) Ensure the \(F\) and \(\operatorname{SSB}\) reference points（RP）in the plots are the same as in the reference points table． Also，check the respective labels if they correspond with the RP．

区 Check if the legend of the plots is consistent with what is shown in the plots．
区 Check that the graphs match the data in table of stock assessment results．

\section*{Stock and exploitation status}Compare with the previous year＇s advice sheet．The years in common should have the same status （symbol）．Check if the labels for the years are correct．Compare the status table with the F and SSB plots they should show the same information．Does the stock have a management plan？If yes than the row for the management plan should be filled as well otherwise will read not applicable．

\section*{Catch options}

\section*{Basis of catch options table：}

For each of the rows in the table ensure that：
区 The year is correct，
凹 The value is correct，
凹 The notes are correct and
区 The sources are correct．

\section*{Catch options table：}The forecast should be re－run to ensure all values are correct．
© Compare the input data with previous year run（previous year should be in the share point under the data folder）

凹 The wanted catch and SSB values should be given in tonnes（ t ）；
区 Confirm if the F values for the options Flim； \(\mathrm{F}_{\mathrm{pa}}\) ；are correct．
区 For the options where the value of F will take SSB of the forecast year to be equal to \(\mathrm{Blim}_{\mathrm{lim}} ; \mathrm{B}_{\mathrm{pa}} ; \mathrm{MSY}_{\mathrm{Btrigger}}\) confirm if the SSB value for the forecast year is equal or close to the reference points．
\(\boxtimes\) For the options where a percentage is added or taken（i．e \(+10 \%\) ； \(15 \%\) ，etc．）from the current TAC． Ensure that the calculated values are correct．
\(\boxtimes\) For all the options given in the table calculate the percentage of change in SSB and TAC．

区 In the first column（Rationale）ensure the rational of the first line is the correct basis for the advice．All other options should be under＂Other options＂．Compare different catch options；higher F should result in lower SSB
区 Check if SSB change is in line with F．

\section*{Basis of the advice}
\(\boxtimes\) Ensure the basis of the advice is correct and if the same is used in the catch option table and in the ICES stock advice section．Is there a management plan？If there is one it should be stated if it has been evaluated by ICES and considered precautionary or not and also if it has been sign off by the clients（EU；Norway，Faroe Is－ lands，etc．）

\section*{Quality of the assessment}

区 Are the units in plots correct？
X Are the titles in the plots correct including F （age range）recruitment（age）．
区 The red line correspond to the year of assessment（except F which is year of assessment -1 ）
区 Each plot should have five lines．
区 Ensure the reference points lines（in the SSB and F plots）are correct and match with the values in the reference point table and summary plots．

\section*{Issues relevant for the advice}
\(\boxtimes\) Along with the spelling and structure in the text ensure that any values referenced in the text match the values or percentages in the tables within the advice sheet．

\section*{Reference points}

Ensure all the values，technical basis and sources are correct．If new values were not calculated the table should be the same as previous year．

\section*{Basis of the assessment}

区 If there is no change from the previous year the table should be the same．
区 Ensure there is no typos wrong acronyms for the surveys
区 Assessment type－check that the standard text is used．

\section*{Information from stakeholders}If no information is available the standard sentence should be＂There is no additional available infor－ mation＂

\section*{History of advice，and management}

This table should only be updated for the assessment year and forecast year except if there was revi－ sion to the previous years．

区 Ensure that the forecast year＂predicted landings or catch corres．to advice＂column match the advice given in the ICES stock advice section（usually given in thousand tonnes）．

\section*{History of catch and landings}

\section*{Catch distribution by fleet table：}

区 Ensure the legend of the table reflects the year for the data given in the table．
区 Ensure that the sum of the percentage values in each of the components（landings and discards） amount to 100\％Ensure that the sum of the values for discards and landings are equal to the value in the catch column． However，if only landings or discards components are shown，then total catch should be unknown．

\section*{History of commercial landings table：}

区 Ensure that the values for the last row are correct check against the preliminary landings（link to be added）

\section*{Summary of the assessment}
\(\boxtimes\) This table is an output from the standard graphs．If there was any errors picked up with any of the plots，then this table should be replaced by a new version once the errors are corrected．Check if the column names are correct mainly recruitment age and age range for \(F\) ．If the stock is category 5 or 6 then it should read＂There is no assessment for this stock＂

\section*{Sources and references}

区 Ensure all references are correct．
Ensure all references in the advice sheet are referenced in this section

\section*{Audit of San.sa. 4}

Review of ICES Scientific Report, HAWG 2022, 4 February
Reviewers: Espen Johnsen
Expert group Chair: Cecilie Kvamme and Afra Egan
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

The is a concern that TAC is given for an area that includes a closed area without any commercial sandeel fishing. The advice does not consider the potential consequences of this spatial distribution of effort, which may lead to a high catches in the open areas.

\section*{For single-stock summary sheet advice}

Stock: san.sa. 4
22) Assessment type: update
23) Assessment: accepted
24) Forecast: accepted
25) Assessment model: Analytical assessment based on SMS 2 season (Jan-Jun and Jul-Dec) model. Age based assuming a relationship between F and fishing effort. 1 fleet and 1 dredge survey,
26) Consistency: The 2022 assessment resulted in a marked reduction and downshift in SBB for the full time series (see attached Figure). The reason for this change is not clear, but it may be related to an increase in the assessment CV of the dredge survey that has destabilize the assessment.
27) Stock status: spawning-stock size is above below MSY Bescapement and Bpa, but above Blim 1st January 2022. R 2021 is below average.
28) Management plan: No MP for SA4, but the area off the east coast of Scotland, from Rattray Head to St Abbs have been closed for industrial fishery for sandeel since 2000.

\section*{General comments}

The dredge survey covers the closed area off the coast of Scottland, and does not overlap with the open area with commercial catches. Any spatial structure of recruitment and survival may affect the two time series and lead to some extra uncertainty in the assessment.

Technical comments

\section*{Conclusions}

The assessment has been performed correctly and according to procedure. The retrospective downscaling of the SSB is of concern.

\section*{SSB (thousand tonnes)}


\section*{Audit of San.sa. 4}

Review of ICES Scientific Report, (expert group/workshop title) (year) (dates)
Reviewers: Claus R. Sparrevohn
Expert group Chair: Cecilie Kvamme
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

\section*{Stock SA4}

Short description of the assessment as follows (examples in grey text):
1) Assessment type: update
2) Assessment: accepted
3) Forecast: accepted
4) Assessment model: SMS with dredge survey index
5) Consistency: Accepted. Model is consistent with to last year
6) Stock status: \(\mathrm{SSB}>\) Blim but fluctuates somewhat between years due to the nature of shortlived species. No fishery reference point is defined for this stock
7) Management plan: No agreed management plan

General comments
Due to a low recruitment index (dredge survey), the combination of the incoming 2021 yearclass and the estimated 2022 SSB is not big enough to support any fishery. Because of that, the group support setting a monitoring TAC on 5000 t combined with a sampling procedure ensuring data for next years assessment.

Technical comments
There is a pronounced retrospecitive bias in the assessment, especially in the SSB and recruitment. The 2020 recruitment has been downward revised with \(79 \%\) and a downward revision is seen for most of the timeseries. This is related to changes in catchability in the dredge survey, which also had a higher CV this year.

Conclusions
An assessment appropriate basis for advice, but there is some issues that should be looked at during he upcoming benchmark.

\section*{Audit of Spr.27.7de}

Working Group: HAWG Stock Name: spr.27.7.de
Review of ICES Scientific Report, HAWG 2022, 5 \({ }^{\text {th }}\) April 2022
Reviewers: Eleanor MacLeod, Kristen Birch Hakånsson
Expert group Chair: Afra Egan, Cecile Kvamme
Secretariat representative: Sarah Louise Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

\section*{For single-stock summary sheet advice}

Stock: Sprat in the English Channel (spr.27.7de)
Short description of the assessment as follows (examples in grey text):
8) Assessment type: update
9) Assessment: accepted, based on PELTIC survey biomass trends
10) Forecast: \(N A\)
11) Assessment model: There is no assessment model for this stock
12) Consistency: This advice is consistent with last year's assessment, following ICES category 3 rules using an adjusted CHR (8.57\%)
13) Stock status: No reference points for this stock, but large increase in stock biomass. Drop in harvest rate attributed to large abundances of juvenile sprat mixed into the stock hampering fishing.
14) Management plan: There is no agreed management plan for this stock

\section*{General comments}

Assessment has been conducted correctly according to the guidelines set out at the last interbenchmark. Both the draft report and the catch advice are clear and well explained.

There are three matters awaiting secretariat support:
1. SAG graphs in the advice sheet have not yet been completed. Updated plots should replace ones currently there.
2. Two references in the advice sheet need to be updated
3. Secretariat support required to decide whether the Istat value gets updated this year or stays at the level set at the interbenchmark. Will need to be updated in the advice sheet and draft report section.

Drop in harvest rate - second year in a row that this has substantially dropped - concerning that in both years there seems to be an extenuating circumstance to explain the drop. Last year the drop at least resulted in a small decrease in advice due to a lower index, now due to the index there is a substantial increase in advice. This is not an issue with the way the assessment has been performed this year, but should be kept in mind going forward.

\section*{Technical comments}

The assessment appears to be done according to the stock annex.
Conclusions
The assessment seems to have been conducted correctly according to the Stock Annex and the advice was given following the new rules agreed at the 2021 interbenchmark for this category 3 stock

\section*{Audit of Spr.27.3a4}

Working Group: HAWG Stock Name: spr.27.3a4
Review of ICES Scientific Report, HAWG 2022
Reviewers: Paul Marchal
Expert group Chair: Cecilie Kvamme and Afra Egan
Secretariat representative: Sarah Millar

Audience to write for: advice drafting group, ACOM, and next year's expert group

\section*{General}
- Assessment and forecasts conform to the procedures
- Retrospective patterns in both R and SSB persist but have reduced to acceptable levels
- Trends in catch and IBTS-Q3 residuals to be investigated
- All catch options lead to an increase in forecast SSB. This may be driven by the GM-estimated 2022 recruitment value used in short-term forecast ( 120 billion), which is much higher than the 2021 ( 69 billion) and the 2020 ( 85 billion) values

\section*{For single-stock summary sheet advice}

Stock: Sprat in 3a and 4

Short description of the assessment as follows (examples in grey text):
15) Assessment type: update (last benchmark in November 2018)
16) Assessment: accepted
17) Forecast: accepted
18) Assessment model: SMS-based analytical model with quarterly time steps, and tuned by three surveys
19) Consistency:
a. Medium-high CV for catch residuals; small CV for survey residuals;
b. Negative trend in catch residuals since late 1990s and positive trend in IBTS-Q3 residuals since late 2000 s ;
c. Tendency to overestimate R and SSB (although reduced compared to previous assessment);
20) Stock status: \(B_{\lim }<B(2022)<B_{p a} ; 2022\) recruitment below average; \(\mathrm{F}(2021)=2.17\) well above \(\mathrm{F}_{\text {cap }}=0.69\) used in the advice
21) Management plan: NA

\section*{Conclusions}

Assessment performed correctly and according to procedure. The reasons for trends in catch and IBTS-Q3 residuals should be investigated.```


[^0]:    ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

[^1]:    ${ }^{1}$ From ICES guidelines

[^2]:    * Including any bycatches in the industrial fishery.

[^3]:    $19473609393213591337113956414908659677768742816183787658 \quad 20274076166295$ $\begin{array}{lllllllllllllllll}1948 & 33922411 & 16752169 & 7752809 & 7084872 & 3233361 & 4628207 & 2818194 & 2145713 & 4714114\end{array}$ 1949295978191576320910851381631993138286792079292297661717732984059964 $\begin{array}{llllllllllll}1950 & 40627635 & 13074607 & 9033028 & 8791989 & 4719749 & 2238395 & 1317643 & 1659497 & 3031759\end{array}$ $\begin{array}{lllllllllll}1951 & 39440118 & 19345219 & 7081018 & 6115954 & 6427695 & 3347964 & 1417880 & 766015 & 2593261\end{array}$ $\begin{array}{lllllllllll}1952 & 39202102 & 18112677 & 10821930 & 4179763 & 3606880 & 3701136 & 2042192 & 888887 & 2113747\end{array}$ $\begin{array}{llllllllllllllllll}1953 & 43036414 & 17856733 & 9661115 & 5984202 & 2698213 & 2115634 & 2176856 & 1161805 & 1661387\end{array}$ $1954 \quad 4 \mathrm{e}+07 \quad 20315640 \quad 9292090 \quad 5398021 \quad 3233641 \quad 1714175 \quad 124342412474351625343$ $19553461991117932899109135705264622 \quad 276747218390131040662 \quad 6611741369763$ $\begin{array}{lllllllllll}1956 & 25968979 & 16111660 & 8445230 & 6172460 & 2917568 & 1529044 & 1074515 & 579813 & 1367085\end{array}$ $\begin{array}{lllllllllll}1957 & 62093137 & 10988363 & 8089546 & 3827082 & 3537414 & 1694566 & 947070 & 661837 & 1169426\end{array}$ $\begin{array}{llllllllllll}1958 & 26115891 & 34116757 & 4770550 & 4441642 & 1928697 & 2181839 & 946780 & 553022 & 1018277\end{array}$ $\begin{array}{lllllllllll}1959 & 28657528 & 11569021 & 19492580 & 2222328 & 2332883 & 1107674 & 1171629 & 575195 & 1200850\end{array}$ $\begin{array}{llllllllllll}1960 & 12186191 & 14312061 & 5247995 & 10791132 & 1096748 & 1201637 & 608142 & 623417 & 1101960\end{array}$ $\begin{array}{llllllllll}1961 & 55563221 & 4231482 & 7032921 & 2517921 & 7040539 & 677632 & 814066 & 348424 & 887227\end{array}$ $\begin{array}{llllllllllllll}1962 & 28262748 & 28263813 & 1722745 & 3126909 & 1386615 & 4306990 & 422336 & 528385 & 724653\end{array}$ $\begin{array}{lllllllllll}1963 & 32170955 & 1.3 \mathrm{e}+07 & 16514904 & 1032285 & 1308222 & 707785 & 2298998 & 207437 & 713749\end{array}$ $\begin{array}{lllllllllll}1964 & 34142629 & 14283094 & 6632125 & 9634320 & 668880 & 759170 & 510074 & 1570891 & 562289\end{array}$ $\begin{array}{lllllllllll}1965 & 17859019 & 16422385 & 5928575 & 3427110 & 5315554 & 393020 & 428820 & 323572 & 1397370\end{array}$ $\begin{array}{llllllllllll}1966 & 17969166 & 8123565 & 7531218 & 2142467 & 1384520 & 2265497 & 176603 & 190049 & 850704\end{array}$ $\begin{array}{llllllllll}1967 & 23777353 & 7705972 & 3635946 & 3202601 & 840670 & 657642 & 877591 & 102969 & 468618\end{array}$ $\begin{array}{llllllllllllll}1968 & 23298271 & 10652581 & 3019696 & 1703701 & 1164918 & 291128 & 253371 & 275757 & 166455\end{array}$ $\begin{array}{llllllllll}1969 & 12696599 & 10354073 & 4296609 & 676195 & 306856 & 347754 & 78215 & 64905 & 95111\end{array}$ $\begin{array}{llllllllll}1970 & 23081631 & 5754218 & 4157793 & 1475367 & 204378 & 96889 & 113035 & 16236 & 42981\end{array}$ $\begin{array}{lllllllllll}1971 & 18967092 & 10535473 & 2390802 & 1240220 & 377970 & 55176 & 29722 & 30400 & 17448\end{array}$ $\begin{array}{lllllllllll}1972 & 12824572 & 8546123 & 3327981 & 756248 & 307919 & 95343 & 14444 & 1057 & 6489\end{array}$ $\begin{array}{lllllllllll}1973 & 6901059 & 5492126 & 2628245 & 1153130 & 294057 & 123269 & 45461 & 7653 & 4444\end{array}$

[^4]:    intermediate year $0.18470 .03036 \quad 0.003506$ 0.001744 $\begin{array}{lllllllll} & 0.1864 & 0.03559 & 360884 & 6103 & 3330 & 350.6 & 1383486\end{array}$ fmsyAR_transfer $\begin{array}{lllllllllllllll}0.3143 & 0.05042 & 0.003278 & 0.002043 & 0.3161 & 0.05692 & 529663 & 8653 & 3330 & 350.6 & 1275260 & 1274284\end{array}$ fmsyAR_transfer_Btarget $\begin{array}{llllllllllllllllllll}0.3144 & 0.04291 & 0.003278 & 0.002034 & 0.3161 & 0.0494 & 529761 & 7396 & 3330 & 350.6 & 1275250 & 1274562\end{array}$ fmsyAR_no_transfer $0.307 \quad 0.050440 .006308 \quad 0.002044$ fmsyAR_no_transfer_Btarget $\quad 0.307 \quad 0.04191 \quad 0.006307$ 0.002034 $\begin{array}{llllllllllll} & 0.31 & 0.05 & 519391 & 7224 & 6405 & 350.6 & 1280819 & 1281919\end{array}$ $\begin{array}{lllllllllllll}m p A & 0.2173 & 0.03454 & 0.003509 & 0.001735 & 0.2191 & 0.04004 & 378230 & 7613 & 3615 & 301 & 1367895 & 1445014\end{array}$
    $\begin{array}{lllllllllllllll}\text { mpAC } & 0.2173 & 0.03454 & 0.003509 & 0.001735 & 0.2191 & 0.04004 & 378230 & 7613 & 3615 & 301 & 1367895 & 1445014\end{array}$ $\begin{array}{llllllllllllll}\text { mpAD } & 0.2173 & 0.03454 & 0.003509 & 0.001735 & 0.2191 & 0.04004 & 378230 & 7613 & 3615 & 301 & 1367895 & 1445014\end{array}$ $\begin{array}{lllllllllllllll}m p B & 0.2219 & 0.03693 & 0.003509 & 0.001734 & 0.2236 & 0.04247 & 385226 & 8128 & 3613 & 300.5 & 1363333 & 1436118\end{array}$ fmsy $\begin{array}{lllllllllllll}0.307 & 0.05044 & 0.006308 & 0.002044 & 0.31 & 0.05854 & 519293 & 8653 & 6405 & 350.6 & 1280821 & 1281588\end{array}$ $\begin{array}{lllllllllllll}\mathrm{nf} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1614283 & 1998030\end{array}$
    $\begin{array}{llllllllllllll}\text { tacro } & 0.1968 & 0.03234 & 0.006206 & 0.002018 & 0.1997 & 0.03943 & 356357 & 5619 & 6405 & 350.6 & 1387630 & 1481508\end{array}$
    $-15 \% ~ 0.16380 .026910 .0061750 .00201 \quad 0.1666$
    
    
    $\begin{array}{lllllllllllll}\text { fpa } & 0.307 & 0.05044 & 0.006308 & 0.002044 & 0.31 & 0.05854 & 519293 & 8653 & 6405 & 350.6 & 1280821 & 1281588\end{array}$
    $\begin{array}{llllllllllllll}\text { flim } & 0.3968 & 0.06521 & 0.006391 & 0.002065 & 0.4 & 0.07413 & 636961 & 11072 & 6405 & 350.6 & 1201995 & 1148262\end{array}$
    $\begin{array}{llllllllllllll}\text { bpa } & 0.7391 & 0.1214 & 0.006701 & 0.002145 & 0.7428 & 0.1335 & 991541 & 19849 & 6405 & 350.6 & 956483 & 797441\end{array}$
    blim $\begin{array}{lllllllllllll}0.8822 & 0.145 & 0.006828 & 0.002179 & 0.8861 & 0.1583 & 1107178 & 23328 & 6405 & 350.6 & 874198 & 698338\end{array}$
    $\begin{array}{lllllllllllllll}\text { MSYBtrigger } & 0.3607 & 0.05927 & 0.006358 & 0.002056 & 0.3638 & 0.06787 & 591183 & 10106 & 6405 & 350.6 & 1232828 & 1199070\end{array}$

[^5]:    1In the R formula syntax, the regression model is $\sim b s(w r, 3)+b s(w r, 3) *$ SubDivision $+b s(w r, 3) * C r u i s e ~+b s(w r, 3) *$ Quarter + wr0Quarter + (1 I TripID), where bs (-,3) is a B-spline with 3 knots, and wr0Quarter is a factor with a level per quarter for 0 wr and a combined level for $1+\mathrm{wr}$. Winter rings were capped at 8 in the analysis.

[^6]:    Fleet $\mathrm{C}=$ Human consumption, Fleet $\mathrm{D}=$ Industrial catch, Fleet $\mathrm{F}=$ All catch from Subdivisions 22-24.

[^7]:    * small revision during HAWG 2010

[^8]:    *Calculated from estimates of weight per box and in some years estimated bycatch in the sprat fishery

