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• Correlation of time series is common to
study climate change impact on ecosystems.

• Serial dependence in time series reduces ac-
curacy of correlation significance test.

• Ecology studies generally lack an accurate
significance estimate for correlation.

• Monte Carlo simulations allow assessment
of performance of significance tests.

• Artificial Skill Method is superior for eco-
logic, climatic and anthropogenic time
series.
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The cross-correlation between time series is a common tool to study and quantify the impact of climatic and anthropo-
genic changes on ecosystems. The traditional method for estimating the statistical significance of correlation relies on
the assumption that the data are independent, but time series found in nature are often strongly auto-correlated be-
cause of low-frequency environmental variability and ecosystem inertia. Previous authors have usedMonte Carlo sim-
ulations to study the impact of serial auto-correlation on the significance of cross-correlations. Most studies have used
random time series that are often a poor representation of those found in nature, e.g., low-order auto-regressivemodels
with normally distributed noise. Moreover, we are not aware of any tests of the applicability of those methods to an-
thropogenic time series. Here, we study the effect of serial auto-correlation on the performance of twomethods for es-
timating the significance of cross-correlations determined from Monte Carlo simulations with time series that are
generated synthetically based on power-law specification of spectral characteristics. Such time series have an auto-
correlation structure defined by a single parameter, their spectral “color”, and are generallymore convenient represen-
tations of natural time series than the autoregressivemodels. Our results show that one of the twomethods considered
here accurately reproduces prescribed error rates for the wide range of spectral colors representative of climatic, eco-
logical and anthropogenic time series. For this, we characterized roughly 1800 observational records in different cat-
egories of spectral colors, including climate variability, abundance of vertebrate species, and pollution.We specifically
focus on time series with annual sampling over data records of at least 40 years, which are particularly relevant for
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Fig. 1. Range of spectral colors λ (which is a paramet
series. For each type of time series, the horizontal exten
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climate studies. Themethodology advocated in this study provides a simple and realistic assessment of the significance
of sample estimates of cross correlation for time series with any sample interval and record length.
1. Introduction

Estimating the statistical significance of a sample estimate of the cross
correlation between two time series is important in natural sciences. For in-
stance, calculating the correlation between air temperature and abundance
of animal species provides insight into the impact of climate variability on
an ecosystem and helps identify potential predictors for ecosystem changes
in models of population dynamics (e.g., Iles and Beverton, 1998). For this
goal, use of the Pearson correlation coefficient is widespread (Puth et al.,
2014; Humphreys et al., 2019; Runge et al., 2019), mainly because of its
simplicity and easily understandable scale. Some recent examples of the
use of the Pearson correlation coefficient (referred to hereinafter as simply
the correlation) in ecology studies include Beaugrand and Reid, 2003;
Schindler et al., 2010; Li et al., 2013; Pershing et al., 2015; Akimova
et al., 2016; Capuzzo et al., 2018; Bedford et al., 2020.

Estimation of the significance of any statistic is fundamental to distinguish
robust outcomes from those occurring merely by chance (Fisher, 1935). Esti-
mation of the statistical significance of correlation is, however, challenging
when the time series are serially correlated. In such cases, successive sam-
ples are correlated and therefore not independent. The effective number
of independent realizations (or effective number of degrees of freedom
N*) is thus smaller than the record length N. Failing to take this auto-
correlation into account results in an erroneously small critical value for
the cross correlation, which can wrongly indicate significant correlation
where no real correlation exists (i.e., false positives). Previous studies
(Clifford et al., 1989; Pyper and Peterman, 1998; Lennon, 2000) have
shown that even modest levels of autocorrelation can cause the traditional
significance test to fail in up to 20 % more cases compared to statistically
erization of the auto-correlation tim
t of eachhistogram corresponds to
lative numbers of time serieswith a
e coefficient of determination R2 f
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independent time series (e.g., Fig. 1 of Clifford et al., 1989 for an auto-
correlation of 0.6 at a lag of 1). This is an important issue in many fields
of natural sciences, and is a common weakness in ecological studies
(Brown et al., 2011).

There are three approaches to estimate N* or the significance of a
sample estimate of the correlation between auto-correlated the time series:
1) Modification of the test statistic (e.g., Bartlett, 1946; Bayley and
Hammersley, 1946; Davis, 1976; Garrett and Petrie, 1981; Chelton, 1983;
Kope and Botsford, 1988; Pyper and Peterman, 1998); 2) Cross validation
(Michaelsen, 1987) and 3) Randomization (bootstrapping) of the time se-
ries (Ebisuzaki, 1997; Lennon, 2000). We focus here only on methods for
modifying the significance test. A justification of this choice is given in
Section 7 below.

To study the effects of auto-correlation time scale on the statistical sig-
nificance of a sample estimate of the cross correlation between two time se-
ries, it is first necessary to characterize the auto-correlation by some simple
parameterization. This has been approached in two different ways. One ap-
proach uses auto-regressive models (e.g., Clifford et al., 1989; Pyper and
Peterman, 1998; Dale and Fortin, 2002), a commonly used example being
the second-order auto-regressive Markov process, AR(2) (e.g., Eq. 3.2.16
of Box and Jenkins, 1970):

X tð Þ ¼ ϕ1X t−1ð Þ þ ϕ2X t−2ð Þ þ a tð Þ; ð1Þ

where the time index t spans a prescribed record lengthNΔt consisting ofN
samples separated by a sample interval of Δt. The parameters ϕi are the
auto-correlations at lags iΔt for i=1 and 2, and a(t) is the noise of the pro-
cess. Numerical values for a(t) and the first two elements of the AR(2) pro-
e scale; see Fig. 2) for various types of climatic, ecological and anthropogenic time
the 0.05 and 0.95 quantiles of the distribution ofλ values, sorted from top to bottom
particularλ value are shownwith dark gray histograms inside the bars. The number
or the fit of λ, and its STD are also listed.

Image of Fig. 1
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cess are drawn randomly from a normal distribution with zero mean and a
specified standard deviation (STD) σa of the noise time series a(t). For pres-
ent purposes of correlation analysis, σa is irrelevant. The AR(2) process is
thus defined by two parameters. The simpler first-order Markov process
AR(1) is the particular case of Eq. (1) with ϕ2 = 0 (Eq. 3.2.10 of Box and
Jenkins, 1970) and is thus defined by one parameter.

The second approach to parameterizing the autocorrelation is based on
modeling the spectrum of the time series as a power-law dependence on fre-
quency f:

S fð Þ ¼ f �λ , (2)

(e.g., Lennon, 2000),where S is the power spectral density of the time series
and λ is a parameter that effectively defines the auto-correlation time scale
of the time series (Lennon, 2000). Except on rare occasions, λ is generally
non-negative for time series found in nature. In analogy to spectral analysis
of electromagnetic waves, the parameter λ is called the “spectral color” of
the time series (e.g., Schroeder, 1991; Lennon, 2000), with positive, nega-
tive and zero values of λ corresponding to "red", "blue" and "white" time se-
ries, respectively.

A number of previous studies have characterized time series in terms of
their spectral color λ, portraying diverse examples of time series which fol-
low the power-law dependence on frequency (Eq. (2)): Acoustic noise,
semiconductor devices, natural and human-related disasters such as
flooding of rivers, droughts, stock markets and outages of electrical power
(Schroeder, 1991). Other examples include traffic flow, DNA sequences
and music (Halley, 1996), as well as atmospheric (Pelletier, 1997;
Vasseur and Yodzis, 2004) and oceanic (Vasseur and Yodzis, 2004) varia-
tions, and abundance of terrestrial and aquatic species (Inchausti and
Halley, 2002).

Spectral time series have someadvantages over the AR time series, espe-
cially for representing ecological phenomena for which λ can be large
(Halley, 1996). The role of λ on the traditional (i.e., non-modified) signifi-
cance test of correlation has been studied by Lennon, 2000. To the best of
our knowledge, no previous study has considered the associated effects of
serial correlation on the significance test based on spectral time series
(Eq. (2)). The present study attempts to fill this gap by comparing the
performance of two methods to modify the significance test of cross
correlation.

One of the methods considered here was developed by Pyper and
Peterman, 1998 (P&P98 hereinafter) based on their comparison of several
methods for modifying the significance test from a Monte Carlo (MC) anal-
ysis. P&P98 advocated a modification of the procedure they found to be
best and that they attribute to Chelton, 1984. They referred to their test
as the “modified Chelton method” and it has often been quoted that way
in the literature (e.g., Bedford et al., 2020). We will refer to it herein as
the “Pyper and Peterman Method” (PPM).

The PPM estimate of the significance test of cross-correlation is effec-
tively based on integration of the auto-correlation functions. It has been
widely used in the natural sciences (see for instance Brown et al., 2011).
While it was developed for application to fishery time series
(e.g., Richardson and Schoeman, 2004; Möllmann et al., 2008; Beaugrand
and Kirby, 2010; Kirby and Beaugrand, 2009; Hermant et al., 2010;
Bedford et al., 2020), it has also been used in other disciplines such as
meteorology (Li et al., 2021; Wang et al., 2021), oceanography (Huo
et al., 2021; Xie et al., 2021) and terrestrial ecology (Caldwell et al.,
2021), with more than 800 citations as of September 2022, according to
Google Scholar.

PPMwas developed and tested with auto-regressive time series and has
four shortcomings: 1) Its calculation of N* is based on the assumption that
sample estimates of the auto-correlation functions are the true values that
are required in the analytically derived formula that is the theoretical
basis for the PPM; 2) The theoretical equation on which PPM is based is
an equation for the effective number of degrees of freedom N* (Eq. (1) in
P&P98) that was derived analytically with an assumption of a large sample
size; this is often not valid, e.g., for ecological time series that are often short
3

(Richardson and Schoeman, 2004); 3) The PPM equation for N* omits
terms involving cross correlations that can be important in some applica-
tions; and 4) P&P98 did not compare their recommended method with
other methods available at that time. In particular, they overlooked a
method based on the average of the sample cross-correlation at long lags.
The procedure is referred to herein as the Artificial Skill Method (ASM)
andwas introduced and favored in the same study thatmotivated the devel-
opment of the PPM (Chelton, 1984; see also Davis, 1976 and Chelton,
1983).

The present study has two goals: A) Characterize a comprehensive set of
natural and human-related time series in terms of their spectral color λ to
study its impact on the performance of modified significance tests like
ASM and PPM. To achieve this, we analyzed nearly 1800 natural, anthropo-
genic and simulated time series in the form of Eq. (2) for a wide range of
spectral colors λ (see Section 2); B) Draw attention to the ASM, a method
that has been underappreciated for nearly four decades and that outper-
forms the extensively used PPM that P&P98 incorrectly described as amod-
ification of the Chelton method. In general, we show that PPM is often
unable to obtain accurate error rates for time series with spectral character-
istics that are typical of natural phenomena. We show in Section 4 that the
ASM addresses the shortcomings mentioned above and performs better
than PPM, particularly for the very applications for which the PPMwas spe-
cifically developed, namely for the short record lengths that are common in
fishery (and ecological) studies.

2. Data

It can be anticipated that the methods for estimation of correlation sig-
nificance that are considered in this studywill show good performance only
for specific ranges of values of spectral color λ. To evaluate the adequacy of
the methods, wemust first assess what the typical λ values of various types
of time series are. To determine the range of λ for time series found in na-
ture, we attempted to gather all available time series related to ecosystems
(animal abundance) and their driving mechanisms, i.e., environmental
(climatic) and anthropogenic changes. To our knowledge, this is the most
comprehensive compilation of time series of this type to date. These time
series consist of annual estimates (i.e., Δt = 1 year; normally observations
are averaged throughout the year or during a specific time of the year,
e.g., the spawning season) and are thus relatively short (rarely as long as
100 years). Note, however, that the methodology presented here can be ap-
plied to time serieswith any specifiedΔt and record lengthNΔt. If such time
series are long enough (Henson et al., 2017 recommend record lengths of at
least 40 years), they can be an important source of data for studies of the im-
pact of climate change on nature (e.g., some of the studies quoted in the in-
troduction). Because such studies involve the interaction between
atmosphere, hydrosphere, biosphere, and anthroposphere, they are an im-
portant contribution to our general understanding of the total environment.

The source of auto-correlation in our collected set of time series is
“oversampling” of low-frequency interannual (i.e., year-to-year) and de-
cadal variability associated with long-term climate change. To include as
much low-frequency variability as possible in our time series, we have set
threshold minima for the record lengths. These thresholds were chosen
for each data type considering a trade-off between record length and data
availability. Ecological time series were selected only if they had record
lengths of at least 50 years, while thresholds for environmental and anthro-
pogenic time series were chosen to be 40 and 60 years, respectively.

We gathered 402 ecological time series from the Living Planet Database
(LPD; LPD, 2021), which includes the data from which the Living Planet
Index (LPI) was derived (WWF-ZSL, 2020; Loh et al., 2005; Collen et al.,
2009; McRae et al., 2017). The LPD data are time series of the population
sizes of terrestrial, freshwater and marine vertebrates, in the form of either
a direct measure such as population counts, densities, or indices, or as a re-
liable proxy, e.g., breeding pairs, nests, tracks, capture per unit effort, or
biomass for a single species. The data were gathered from a variety of
sources, including published scientific literature, online databases, govern-
ment reports, individual researchers, institutions, and gray literature.
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Because of the large number of species, populations and data involved, this
data-set is cumbersome to summarize in a table. We therefore refer the
reader to WWF-ZSL, 2020 and LPD, 2021 for further details about these
time series.

To represent environmental (or climatic) changes, we also gathered 35
time series of atmospheric and oceanic variability (Table S1). A few well-
known examples are the El Niño/Southern Oscillation (ENSO), the Pacific
Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO), the
global-average air temperature, the average sea surface temperature in
the German Bight, and the volume of Labrador Sea Water (LSW).

Finally, to represent anthropogenic influences on ecosystems, we gath-
ered 1154 time series of human-related activities from “OurWorld In Data”
(OWID; OWID, 2021). Some examples of these time series are air pollution,
energy and food production, number of armed conflicts and demographic
growth, all of which are available by country as annual totals (see
Table S2). While some of these time series (human health and literacy
level, for example) might seem to have little relation to anthropogenic im-
pact on ecosystems, they speak to the level of development of societies and
countries, which in turn is an indicator of their capacity to impact nature.
These anthropogenic time series are relevant for studies of, for instance,
the impact of technology development on fisheries (e.g., Galbraith et al.,
2017) or the relation between war and fish abundance (e. g., Engelhard
et al., 2014).

In total, we gathered 1591 time series, which we have grouped in the
categories listed in Fig. 1.

3. Analysis

3.1. Spectral color λ of the collected time series

To characterize our compilation of time series in terms of their spectral
color λ, we tapered each time series with a Hann window (often referred to
incorrectly as the Hanning window) and calculated its spectral density S(f),
which in turn was smoothed by non-overlapping band-averages over five
adjacent Fourier frequencies. Averaging over a larger number of frequency
bands would be desirable but the length of the shortest time series consid-
ered here (40 years) results in insufficient frequency resolution of the
Fig. 2.The average auto-correlation time scale (thick curve) over 5000 synthetic spectral
The thin curves are plus and minus one STD. The auto-correlation time scale was define
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spectrum. We fitted a straight line by least-squares estimation to the
band-averaged spectral values in log-log space with the power-law form
of Eq. (2), i.e.:

log S fð Þð Þ ¼ λ log fð Þ,

obtaining λ as the fitted linear parameter. Our approach is similar to
Inchausti and Halley, 2002, but improved through the tapering and band-
averaging that is essential to avoid corruption of the spectral estimates by
leakage because of the short record lengths and noise in the raw spectral
estimates.

The larger the value of the spectral color λ, the steeper the rolloff of the
power spectrumwith increasing frequency and thus themore dominant the
power of low-frequency variability of the time series. As shown in Fig. 2, the
auto-correlation time scale increases monotonically with increasing λ. We
calculated the value of λ for each time series in each of the 13 categories
listed in Fig. 1 in which the range of λ values for each category of time se-
ries is characterized by the central 90 % of the distribution of all of the cal-
culated values ofλ in that particular category. As ameasure of the quality of
the fit of λ, and thus of the validity of Eq. (2) as a representation of nature
and human influence, we calculated the average coefficient of determina-
tion R2, which is the regression sum of squares divided by the total sum
of squares and represents the fraction of the variance of S(f) that is ex-
plained by the linear fit of λ. We also computed the STD of R2 within
each category. A good fit of λ for a specific category is characterized by
an average value of R2 near 1 with a small STD. Conversely, small values
of both the average R2 and the STD are a sign of a poor λ fit for the corre-
sponding category (because most of its time series would have a small R2).

Fig. 1 includes application of the spectral procedure to 100 randomly
generated AR(1) and AR(2) time series of the form represented by Eq. (1)
(200 time series in total) to assess the ranges of values of the spectral
color λ that can be represented by these auto-regressive processes. These
time series were constructed with record lengths of N = 100 for auto-
correlation parameters ϕi randomly drawn from the uniform distribution
U(0,1). Together with the observed 1591 time series (Section 2), the AR
time series yield a total of 1791 analyzed time series.
time serieswith record length N=100 as function of their spectral colorλ (Eq. (2)).
d to be the lag for which the auto-correlation decreased to a value of 0.5.

Image of Fig. 2
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3.2. Comparison of the methods for estimating correlation significance

The two methods tested in this study to modify the significance test for
correlation are both described in detail elsewhere: ASM in Chelton, 1983
(see also AppendixA of Dhage and Strub, 2016) and PPM in P&P98. The de-
tails of the methods are summarized here in the Supplement (Sections S2
and S3). The two methods are compared in this section by performing
MC simulations: We generated random time series by first approximating
their power spectra with the power law of Eq. (2) for a given value of λ.
The amplitude of the Fourier transform at each Fourier frequency fj = j/
(NΔt) is proportional to the square root of the power spectral density at
that frequency. The phases of the Fourier transform at these frequencies
were drawn randomly from the uniform distribution U(0,π).

Random time serieswere then generated by inverse Fourier transforming
the amplitudes and phases of the Fourier transform at each Fourier fre-
quency fi = i/(NΔt). Time series with 512 elements were generated and
then subsampled to shorter prescribed lengths ofN≤ 110 (because our lon-
gest observed records are roughly 100 years long). This procedure mimics
the real world in which every finite-length time series includes unresolved
variability at periods longer than the record length. We generated n =
5000 pairs of random time series X(t) and Y(t) in this manner for ranges of
N and the spectral colorλ that are similar to those of the real time series sum-
marized in Fig. 1. Specifically, we consideredN ranging from10 to 110 years
in steps of 2 years and λ ranging from 0 to 4.5 in steps of 0.25.

Because the time series X(t) and Y(t) are generated randomly, they are
statistically independent of each other. Mostly, non-significant correlations
are expected but correlations that are deemed to be significant with a prob-
ability P=(1- α) can arise out of chance. A goodmethod for estimating sta-
tistical significance should keep P close to the prescribed value of α that
defines the significance P. In the analysis presented here, we used α =
0.05, which corresponds to the 95 % significance level. Results for alterna-
tive choices of α=0.10 and 0.01, which correspond to the 90 % and 99 %
significance levels, respectively, can be inferred graphically from Fig. S1
in the Supplement (see also the graphical abstract).

For the case of ASM, we define the error rate eASM(α) for the correlation
critical value cASM(i,α) calculated for the ith realization by Eq. S5 in the Sup-
plement for a specified value of α to be

eASM αð Þ ¼ 1
n
∑
n

i¼1
δi,

where n = 5000 is the total number of realizations of the MC simulation
and

δi ¼
1 if ρ ið Þj j≥cASM i,αð Þ
0 if ρ ið Þj j < cASM i,αð Þ :

�

Here ρ= (ρ1, ρ2,…, ρN) is the set of n correlation coefficients between
the nMC simulated pairs of time series. The deviation of the error rate eASM
(α) from the true value α is

ΔeASM αð Þ ¼ eASM αð Þ � α: (3)

An analogous set of equations define the error rate deviation ΔePPM(α) for
the PPM method. The critical value cPPM(i,α) for PPM is given by the
same Eq. S5 as cASM(i,α) but with the different estimate of N* obtained
from Eq. S8 (rather than the Eq. S3 used for ASM). When the method is ir-
relevant in the discussion that follows, the error rate deviation and critical
value of the correlation will be denoted as Δe and c with no subscripts. The
quantities ΔeASM and ΔePPM characterize the accuracy of each method,
i.e., howwell eachmethod yields an error rate close to the true significance
level α calculated from the MC simulations.

From the definition (Eq. (3)), it is apparent that positive values of Δe in-
dicate that e is an overestimate of α. This implies that the probability P =
(1- α) is lower than intended. Consequently, sample cross correlations
could be deemed statistically significant with probability (1- α) when in
fact the probability is lower (false positives).
5

In practice, users normally have only a single pair of time seriesX and Y.
They therefore need the significance test to be as accurate and precise as
possible, whichwe assess here from the n realizations of theMC simulation.
In addition to a small error rate deviation Δe, an estimate of the critical
value should yield similar error rates e with repeated random tries,
i.e., Δe should have a small variance. By averaging the differences of the
critical values cPPM(i,α) or cASM(i,α) calculated by the two methods com-
paredwith the true critical value csim(α) from theMC simulation, we can es-
timate the variance of each method. Note that a similar metric with the
error rates ePPM and eASM is not possible, since the true error rate is not
known (the error rate is itself a statistical concept). We define the critical
value csim(α) for α = 5 % as the lower bound of the largest 5 % of all n of
the magnitudes |ρi| of the correlation estimates from the MC simulation
(csim(α) for the case of N = 50 samples and α values of 0.10, 0.05 and
0.01 are shown in the bottom panel of the graphical abstract). We further
define the mean absolute difference of critical values as:

MADcASM αð Þ ¼ 1
n
∑n
i¼1 cASM i,αð Þ � csim αð Þj j, (4)

with an analogous equation for MADcPPM(α). The explicit dependencies of
the various statistics above on α can be omitted for clarity and themean ab-
solute difference of critical values will be denoted as MADc when the
method is irrelevant in the discussion that follows.

The ASM and PPMmethods are both based on estimation of N*, which
has applications beyond the significance of correlation (e.g., for estimation
of confidence intervals for regression coefficients). The estimate ofN* is re-
lated to the critical value c as summarized mathematically and graphically
in Sections S2 and S3 of the Supplement (see also the top panel of the graph-
ical abstract). A complete comparison of the two methods thus demands
studying also the statistical characteristics of N* (such as its variance) esti-
mated by each method. Use of the ratio ν = N*/N (see Eq. S1b) is conve-
nient for graphical reasons as it makes the comparison independent of the
record length NΔt. As a second metric for evaluating the variance of esti-
mates of N* by each method, we used the STD of the ratio ν:

σν ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n
i¼1 N∗

i � N∗
� �2r

: (5)

For a few of the MC realizations, one or the other method yielded N* >
N, which is clearly erroneous. Kope and Botsford, 1990 and P&P98
constrained N* to be equal to N in these cases. While this truncation of
N* is reasonable when applying these methods to real data, we explicitly
rejected it here in order to include all possible contributions to σν and
achieve a better assessment of the two methods.

P&P98 suggest in general using J= N/5 lags in the definition of N* in
their Eq. S8 (see also the discussion in Section S3). To assess the effects of
this choice on the performance of PPM, we also tested a modified PPM
method in which the number of lags involved in the sum in Eq. S8 was ex-
tended to J = N/2.

We do not advocate detrending for estimates of N* because that often
fundamentally changes the frequency content of a time series, and therefore
the lagged autocorrelation values, compared with the original time series.
But since detrending is so common in the literature (e.g., Brown et al.,
2011), we tested the performance of the methods for two cases: retaining
and removing a least-squares fit linear trend.

In addition to themodel comparison, theMC simulationswere also used
to test different configurations for the ASM, which are summarized in
Section S4.

4. Results

4.1. Spectral color λ of the collected time series

It can be seen from Fig. 1 that the time series with the smallest spectral
color λ (i.e., the shortest auto-correlation time scale, see Fig. 2) are in the



Fig. 3. Error rate deviations Δe (Eq. (3)) expressed in percent as functions of λ and record lengthNΔt from theMC simulations (dots in the left panels) for PPM and ASMwith
and without detrending of the time series (top and bottom panels, respectively). Different record lengthsNΔt of the time series are indicated by the dots according to the gray
scale. The curves in the left panels are the median Δe (thick gray curve: standard PPMwith J= N/5; thin gray curve: modified PPMwith J= N/2; black: ASM). Scatter dots
for PPMwith J=N/2 are omitted for clarity. The curves in the right panels (same formats as in the left panels) are the deviations of the 0.25 and 0.75 quantiles ofΔe for each
λ from the median of Δe. These curves are, therefore, a measure of the scattering of the dots around the curves in the left panels.
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category of natural disasters, for which most time series have near-zero λ,
i.e., they are essentially “white noise”. These are followed by abundance
of freshwater species, first-order autoregressive models and climate,
which reach values of roughly λ = 2. Abundance of terrestrial species
can have slightly longer auto-correlation time scales (larger λ) than the
climatic time series, with a maximum of λ = 2.5. The time series with
larger λ values are all anthropogenic, reaching a maximum beyond λ =
8 for the category of human health. The only exception is the abundance
of marine species, which haveλ values as large asλ=5.5, and thus consid-
erably longer autocorrelation time scales than their terrestrial and freshwa-
ter counterparts.

A few examples of ecological, climatic and anthropogenic time series
that closely follow the power law of Eq. (2) are shown in Fig. S5 in the
Supplement. More than 1300 of the time series analyzed here (73 % of
the total) have a coefficient of determination R2 > 0.5. This indicates that
Eq. (2) is a good representation of most natural and anthropogenic time
series.

4.2. Performance of the significance tests in terms of spectral color λ

The dependencies of the performances of the significance tests for PPM
andASMon the spectral colorλ and lengthN of the time series are shown in
Fig. 3. For both methods, the error rate deviations Δe from the true value α
(Eq. (3)) are close to zero for short auto-correlation time scales (λ < 0.5),
regardless of whether the trend is removed (panel a) or retained
(panel c). This is because time series with small λ have very weak trends.
For detrended time series, ΔeASM is close to 1 % for λ between 0.5 and
2.5, while ΔePPM increases rapidly from about 5 % for λ = 1.5 to about
20 % for λ = 3, and to more than 30 % for λ > 3.5. The ASM error
ΔeASM slowly increases to only 5 % for λ = 3 and then increases more
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rapidly but does not reach 30 % until λ = 4.5. There is no dependence of
ΔePPM or ΔeASM on the record length NΔt when the trend is removed (the
dots show no particular pattern in terms of their gray scale). This is because
detrending shortens the decorrelation time scale of time series with large λ.

Perhaps surprisingly, both methods perform better in terms of Δe with-
out detrending (panel c). The error rate deviations ΔePPM are roughly 1 %
for λ between 0 and 2, increasing to more than 10 % for λ > 2 and exceed-
ing 30 % again for λ > 3.5. ASM slightly underestimates α (ΔePPM ≈ 1 %)
but is closer to the correct value for all values of λ in comparison to PPM,
and exceeds 1 % only for λ larger than about 3.5. In contrast to the weak
dependence on record length with detrending, ΔeASM and ΔePPM without
detrending both decrease inmagnitude with increasingN (gray scale), indi-
cating better performance for longer data records. According to Δe, the
modified PPM with J = N/2 (thin gray curve in panel a) performs better
with detrending than both the traditional PPM and the ASM, but it will
be shown below that it is also much noisier.

The interquartile curves of Δe indicate similar variance of Δe over all
values of N for both methods with detrending (panel b) and the variance
of Δe is larger for PPM than for ASM without detrending (panel d). The
modified PPM with J= N/2 (thin gray curves) performs considerably bet-
ter than the traditional PPM, particularly with detrending as indicated also
by the median ΔePPM closer to zero (thin gray curve in panel a). The vari-
ance of ΔePPM begins to increase when λ > 2.5 for the traditional PPM
with J = N/5 and when λ > 3 for the modified PPM. The variance of
ΔeASM does not begin to increase rapidly until λ exceeds about 3.75.

Fig. 4 shows the mean absolute difference MADc of critical values
(Eq. (4)) for the two methods. For detrended time series (top panels), the
MADcPPM for the traditional PPM (panel a) increases monotonically with
increasing values of λ, whereas the MADcPPM for the modified PPM
(panel b) increases to a maximum of about 0.16 near λ = 2 and then

Image of Fig. 3


Fig. 4.Mean absolute difference of critical valuesMADc (no units; Eq. 4) for the traditional PPMwith J=N/5 (left panels), themodified PPMwith J=N/2 (central panels)
and the ASM (right panels) as functions ofλ and record lengthNΔtwith andwithout detrending (top and bottom panels, respectively). Situations in which at least one critical
value was undefined (see text) are represented with triangles. The black and gray lines and the gray scales for the dots are as in Fig. 3.
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decreases for λ > 2. MADcASM increases similarly to a slightly smaller
maximum of about 0.13 near λ = 2 and then decreases slowly for larger
λ. Without detrending, MADcPPM (panels d and e) and MADcASM
(panel f) are similar to the case with detrending between λ = 0 and λ =
2, where both methods reach their maxima. For λ > 2, both the modified
MADcPPM (panel e) and MADcASM (panel f) slightly outperform the tradi-
tional MADcPPM. Similar to the case of Δe, both methods perform better
without detrending (i.e., they have smaller variance and are thus more pre-
cise), as indicated by smaller MADc values for λ > 2 in the bottom panels.

With PPM, many of our MC experiments yielded at least one undefined
critical value that arises from the N* estimate being smaller than 3 (the tri-
angles in Fig. 4; see also Eq. S5). N* can even be negative with PPM (these
particular cases are not distinguished from the caseN*< 3 in Fig. 4). In con-
trast, all critical valueswere defined in ourMC experimentswithASM (note
that it is actually not possible to obtain N* < 0 with ASM since all of the
quantities that define N* in Eq. S3 are positive). The probability of
obtaining N* < 0 with PPM increases with decreasing N, as evidenced by
the fact that all of the triangles in the left and central panels are light
gray. Similarly, the probability of obtaining N* < 0 also increases with
increasing number of lags J, as shown by a larger spreading of MADc
estimates and a larger number of triangles for the modified PPM with
J = N/2 (panels b and e) in comparison to J = N/5 (panels a and d).

Contrary to Δe, there are clear patterns for MADc dependence on the
record length N for both cases, with and without detrending. For λ < 1
(1.5 for the modified PPM), MADc decreases with increasing N (i.e., the
methods are all more precise with long records). For λ > 1, the opposite oc-
curs, i.e., the methods are more precise with short records.

Fig. 5 shows the STDs σν of ν= N*/N (Eq. (5)) as functions of λ and re-
cord length NΔt. Except for the slight increase from λ = 0 to λ = 1, σν
mostly decreases with increasing λ for both methods. It also decreases
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with increasing record length (gray scale), indicating a smaller variance
of N* for long data records. PPM shows a larger variance of N* in compar-
ison to ASM (note the larger scattering of σν for PPM), especially for the
modified PPM with J = N/2 (middle panels). Contrary to ASM, σν with
PPM can be quite large also for long records (dark dots), reaching values
well beyond 1 in some cases, again particularly for J = N/2 (encircled
dots at the tops of both left and middle panels).

5. Discussion

5.1. Spectral color λ of the collected time series

Our results in Fig. 1 are consistent with several previous studies that
have characterized environmental time series in terms of their spectral
color λ. Halley, 1996 assess that λ=1 should be common for environmen-
tal data. In agreement, Pelletier, 1997 found that atmospheric temperatures
from hundreds of stations and ice core records ranged from white noise to
λ = 2. Vasseur and Yodzis, 2004 focused not only on atmospheric but also
on oceanic time series, estimating lower spectral colors for atmospheric
variations, i.e. closer towhite noise, and values close toλ=2 for oceanic var-
iations. These values are all in good agreement with our “climate” category,
which includes both atmospheric and oceanic time series (Fig. 1, row d).

Pelletier, 1997 further observed that power spectra of atmospheric tem-
perature from continental stations could be divided into two different fre-
quency regimes with distinct values of λ, while observations from
maritime stations closely follow a power-law relation with a single value
ofλ for all frequencies. Multiple power-law regimes in a single spectrum re-
duce the quality of the linearfit forλ over the full range of frequencies. This
could be a reason that the R2 values are smaller for terrestrial (row e) and
freshwater species (row b) than for marine species (Fig. 1, row k).

Image of Fig. 4


Fig. 5. STD σν of ν= N*/N (no units; Eq. (5)). The distribution of panels is as in Fig. 4. The dots inside open circles at the tops of each of the left and middle panels represent
PPM values of σν that exceed 1, ranging from 1.2 to 20 beyond the upper limit of the ordinate. The numbers of these extreme PPM values per λ level are labeled above each
open circle.
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For environmental time series, we have a disagreement with Schroeder,
1991 for the category of natural disasters. That studymentions spectra with
λ > 2, while we find that natural disasters are basically white noise (Fig. 1,
row a). Our results seemmore plausible because natural disasters occur spo-
radically in time and are usually short-lived.

Another disagreement occurs in the case of ecological time series.
Inchausti and Halley, 2002 observe a median of λ=1.02 over a large num-
ber of terrestrial and aquatic species. While this value matches our results
for freshwater (Fig. 1, row b) and terrestrial species (row e), we observe
considerably larger values of λ for marine species (as high as λ = 5.5;
row k). The LPI database includes the Global Population Dynamics Data-
base of Inchausti and Halley, 2002. It also includes considerably more
time series. A possible explanation for the differences from the results of
our study might thus be that Inchausti and Halley, 2002 underestimated
the values of λ because they considered time series for only a limited
number of marine species. This is suggested because they find that marine
species have particularly small values of λ in comparison to the terrestrial
populations, which is not only opposite of what we find (Fig. 1, rows e
and k), but also opposite to what has been found by Steele, 1985 and
Ariño and Pimm, 2005 (as quoted by Halley, 1996).

The above studies clearly show that time series with power-law spectra
of the form in Eq. (2) are ubiquitous in nature. Such time series have broad-
banded variability over a continuum of frequencies and thus represent phe-
nomena with no characteristic frequency (Schroeder, 1991). This follows
the notion that nature is often fractal in essence (i.e., self-similar on all
scales; Halley, 1996), having no preference for cyclical behavior. Excep-
tions are: a) processes such as tides and annual cycles, which occur at
shorter time scales than the annual sample interval Δt considered in this
study; and b) cyclical population trends of a few mammals such as
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lemmings (see Oli, 2019) that are represented by only one time-series in
our dataset (the Grey sided vole;Myodes rufocanus).

In addition to time series found in nature, our analysis shows that the
spectra of time series related to human systems also closely follow the
power law of Eq. (2). This is seen from the large average R2 values for all
anthropogenic time series, such as war (R2 = 0.6; row f in Fig. 1), energy
production and pollution (R2 = 0.7; row g), food production (R2 = 0.7;
row h), as well as human development (R2 = 0.9; row i), demography
(R2= 0.8; row j) and health (R2= 0.9; rowm). In general, human systems
seem to produce time series with larger λ values than natural systems. This
is also reflected in the λ values of the marine species, which mostly consist
of fish and are thus subject to stronger human influence (i.e., commercial
exploitation and management) than the terrestrial and freshwater species.
This might indicate that human forcing is subject to longer time scales
than are generally found in nature, i.e., human-related changes such as
modification of fishing policies, improvements in the health care system,
and pursuits of world peace that occur secularly over the course of history
in comparison to natural variations. These large values of λ are also likely
related to the approximately exponential growth of world population.

Anthropogenic time series also have larger R2 values than the natural
time series. There is actually a well-defined and systematic relation be-
tween λ and R2, with R2 increasing with increasing λ (see Fig. 1 and
Fig. S6). This might be interpreted as evidence that human systems produce
time series that follow Eq. (2) more closely than natural systems. A simpler
and more likely explanation, though, is that R2 decreases with increasing
high-frequency variability (i.e., with decreasing λ) because stochastic
noise in the inherently noisy spectral estimates computed from the time se-
ries is not adequately reduced with our small amount of band averaging
over only five frequency bands, thus yielding a poorer fit of Eq. (2).

Image of Fig. 5
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5.2. Performance of the methods for estimating correlation significance

A study similar to this one was performed by Lennon, 2000, who com-
puted the significance of the linear coefficient in spatial regression models
with the traditionally defined p-value that corresponds to the level of prob-
ability that a sample estimate of the correlation occurs purely by chance.
Lennon, 2000 showed that even modest spectral colors of λ = 1 result in
an error rate of 20 % (his Fig. 4). While Lennon, 2000 appears to be the
first to point out this problem in ecology, he did not investigate error
rates in modified tests of significance as were considered here.

Among themethods of modifying the significance test to account for se-
rial correlation in the time series, the most commonly used approaches to
estimate N* are, like PPM, based on integration of the auto-correlation
functions (Bartlett, 1946; Bayley and Hammersley, 1946; Orcutt and
James, 1948; Davis, 1976; Garrett and Petrie, 1981; Kope and Botsford,
1988; Clifford et al., 1989; Pyper and Peterman, 1998). Here we have
shown that the ASM methodology that is based on averages of squared
cross-correlation of the time series at long lags is considerablymore reliable,
particularly for record lengths and values ofλ typical of natural and anthro-
pogenic time series. With and without detrending, ASM consistently yields
a smaller error rate than PPM for estimates of N* (Fig. 3), as well as the
same or smaller variances of the estimates of the correlation critical value
for a given choice of confidence level α (Fig. 4) and N* (Fig. 5). The superi-
ority of ASM over PPM for the purpose for which the methods are specifi-
cally intended, i.e., estimation of N*, is readily apparent from Fig. 5,
regardless of how that impacts the critical value or any other statistic.

The better performance of ASM for estimation of N* is particularly evi-
dent for the highly auto-correlated time series (Fig. 3a and c), for which the
error rate of the traditionally defined PPMwith J=N/5 increases to about
10 % for λ=2.5 and then increases rapidly to more than 30 % for λ > 3.5.
The reason for this rapid increase is that J= N/5 lags in Eq. S8 are too few
to account for the slow decay of the autocorrelations for such large λ. This
issue has been discussed by P&P98, who state that the definition of N*
Eq. S8 should include more than J = N/5 lags for strongly auto-
correlated time series (P&P98, page 2133). Our results show that, while in-
creasing the number of lags to J=N/2 indeed improves the error rate (thin
gray curves in Fig. 3), the precision and accuracy of the method consider-
ably decrease as shown by MADc (Fig. 4b and e) and σν (Fig. 4b and e).
This is further discussed in Section S3.

The poor performance of PPM forλ> 2.5 is striking because themethod
was specifically designed for fishery time series, which belong to the
marine species category and can thus have spectral colors as high as λ =
5.5 (Fig. 1). Some examples of fish species from the LPI data with λ > 2
are Arrowtooth flounder (Atheresthes stomias; λ = 4.9), Sablefish
(Anoplopoma fimbria; λ = 4.5) and Indo-Pacific Sailfish (Istiophorus
platypterus; λ = 4). ASM shows a modest error rate for values of λ as
large as 4. While there are a few time series of marine species with λ > 4,
most of them have λ < 4 (Fig. 1, row k; note the histogram). ASM is thus
the preferred method for studying relations between marine species and
their forcing mechanisms.

While trend removal is often used to obtain more trustworthy signifi-
cance estimates using the traditional test (Brown et al., 2011), our results
show that it is detrimental to the performance of modified significance
methods like PPM and ASM. The traditional PPM and the ASM both per-
form better without detrending, with generally poor performance for
large λ when a trend is removed (Figs. 3 and 4, top panels). The likely ex-
planation for this behavior is that the linear trend contributes to the low fre-
quency variability. Detrending thus decreases the auto-correlation time
scale and increases N*. As a consequence, the critical value decreases (see
Eqs. S7) and both the number of significant correlations and the error
rate deviation increase.

Related to accuracy, there are twomajor advantages of ASM in compar-
ison with PPM: 1) With ASM, N* is defined as a function of positive quanti-
ties only (Eq. S3), but PPM can sometimes yield N* < 0 (see Eq. S8 and the
triangles in Fig. 4), which is obviously incorrect. This situation occurred in-
frequently (roughly 0.5% of the 5000MC iterations), mostly when the data
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records were short, but it is a serious issue because critical values are unde-
fined whenever N* < 3 (see Eq. S5). 2) While both methods can yield N* >
N with similar probability, the differences |N*-N| are often considerably
smaller with ASM than with PPM (Fig. 5). The larger uncertainties of
PPM estimates of the correlation critical value and N* are an important
issue because, contrary to the MC simulations from synthetically generated
time series analyzed here, most users have only a single pair of time series
to work with. While the situation N* > N can reasonably be handled by
adjusting N* to be N (as done by Kope and Botsford, 1990 and P&P98),
there is no similar alternative for an undefined critical value when N* < 3.

Similar to P&P98, we also checked the performances of the methods
when one of the time series X or Y has a specified fixed λ value. We per-
formed four additional MC simulations in which X had λ = 0, 1, 2 and 4,
while λ for Y varied as usual in all cases (figure not shown here). Excluding
a slightly better error rate deviation for PPM in comparison to ASM for the
case ofλ≤ 1, these results confirmed a general better performance of ASM.
The reason why PPM performs well if one time series has small λ (i.e., the
time series is nearly white with short decorrelation time scale) is that the
choice ofN/5 in PPM is sufficiently large for the product ρXρY of autocorre-
lations to reach zero, thus accounting for the decorrelation time scale.

ASMandPPMare both generallymore accurate (Fig. 3, panel c) and pre-
cise (Figs. 4 and 5) when data records are long, as expected. For the time se-
ries considered here with a sample interval ofΔt=1 year, Figs. 3 and 4 can
be used to obtain a qualitative guideline for the minimum N that should be
considered for correlation analysis. A threshold minimum N can be defined
based on adoption of some value of the probability distribution of the ordi-
nate variables. For instance, for the upper quartile value of 75 % for ASM in
Figs. 3 and 4, the associatedminimumvalue ofN overmost of the range ofλ
is approximately N= 30. Working with data records shorter than 30 years
should thus be a matter of concern, particularly for PPM. This is especially
relevant to applications of the methods based on short time series with
large λ and hence long auto-correlation time scales (Fig. 2), as is often the
case in ecology applications (Richardson and Schoeman, 2004).

With any method for estimating N*, users should be careful with appli-
cations to very short time series, especially when λ is large (for an example
of such usage, see Aschan and Ingvaldsen, 2009). For data recordswithN=
10, for instance, estimates ofN* from the traditional PPMwith J=N/5 are
based on sample correlations at only two lags (see Eq. S8). While ASM is
better because it is computed from 10 lags (5 positive lags and 5 negative
lags, for our recommended implementation of ASM; see Section S4) over
which the long-lag skills are averaged, this is still a small number of lags
for sample correlations that are inherently noisy. Statistics with such
small numbers cannot be expected to be precise. We therefore recommend
that users refrain from computing cross correlations from short data
records. It is far better to wait for longer data records to accumulate before
attempting correlation analysis, and limit assessment of the relationships
between short time series to visual inspection (e.g., Núñez-Riboni et al.,
2012). Although such analysis is only qualitative and does not allow
predictions (Zimmermann and Werner, 2019), this is preferable to basing
predictions on correlations that are not statistically significant.

Finally, it is perhaps important to mention that the bulges of the perfor-
mance metrics (Figs. 3 to 5) are not related to modes of variability in the
random time series (which should not exist given themethod used to create
them). Rather, they are a consequence of the distributions of N*, and criti-
cal value (for each level ofλ) aswell as of the transformation between them
(i.e., Fig. S1).

5.3. Limitations of auto-regressive time series

To assure that our implementation of PPM was accurate, we confirmed
that our analysis reproduced results reported by P&P98with AR(1) time se-
ries. By using the same combination of auto-correlation ϕ1 at lag 1 and re-
cord length N, we were able to reproduce the mean (0.047) minimum
(0.043) and maximum (0.051) error rates for their Case L to the 2nd deci-
mal place. Moreover, our results for PPM were the same as Fig. 1F of
P&P98 (with random variations of 0.5 % around α).
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Previous studies have discussed the abilities of synthetically generated
time series from AR models and the spectral method to characterize ob-
served time series. Halley, 1996 advocated the spectral method as a better
representation of ecological time series, arguing that real ecological time se-
ries keep increasing in variance with increasing record length, while the
variances of AR time-series quickly converge to some finite value. In agree-
ment with this notion, Cuddington and Yodzis, 1999 show that low-
frequency variations of AR models contribute less variance to the total
signal, which is not the case with spectral time series (their Fig. 1). These
authors also show that AR(1) and AR(2) models are not able to capture
the unpredictability associated with red noise, which could lead to an
overly optimistic view of the ability to predict the effects of environmental
noise on ecosystems.

In disagreement with a statement of P&P98, we found that AR
(1) models are often a poor representation of an important type of ecologi-
cal time series, namely those of marine species abundance (mostly fish):
While AR(1) time series have maximum spectral color values of about
λ = 2 (Fig. 1, row c), time series of marine species abundance can have
values as high as λ=5.5 (row k). The spectral method is able to reproduce
the low-frequency variability and long auto-correlation time scales that
characterize many time series of marine species. Such long auto-
correlations cannot be represented with the single auto-correlation param-
eter of AR(1) models. Consistent with this conclusion, Cuddington and
Yodzis, 1999 pointed out that AR(1) models fail to simulate large values
of λ found in some natural systems. AR(2) models (Fig. 1, row l) are re-
quired to reproduce the range of λ values similar to those found for marine
species abundance.

AR(q) times series may be able to reproduce all of the important charac-
teristics of natural time series mentioned above if q is sufficiently large. The
spectral method, however, which characterizes the auto-correlation struc-
ture with single parameter λ, is a simpler and more convenient method
than AR(q) models that require specification of q parameters (the case of
q = 2 is defined by Eq. (1)). Furthermore, regardless of their order q, AR
time series, can only reproduce normally distributed random data
(Eq. (1)), but ecological and anthropogenic data often have skewed distri-
butions. Random spectral time series are not constrained to normal distri-
butions. The more complex version of the spectral method used by
Schreiber and Schmitz, 1996 can even reproduce many statistical proper-
ties of a particular type of data, such as their skewness, or their auto-
correlation and probability distribution functions. For this goal, themethod
sets some restrictions on the synthetic time series which, however, also
make themmore similar to each other when the lengths of the real time se-
ries are short, as is often the case. The method used here yields simulated
time series with statistical properties (for instance, different distributions)
that can differ somewhat from those of the real time series, but it retains
their independence, which is required in MC simulations.

6. Conclusions

Estimating the spectral colorλ of time series (like those found in nature)
is important for a number of reasons, including studies of the probability of
occurrence of events (Halley, 1996) or studying the time scales and vari-
ability of natural phenomena (Pelletier, 1997). The results obtained from
our analysis contribute to that general knowledge by characterizing various
types of time series in terms of their spectral color λ (Fig. 1). A highlight in
comparison to previous similar studies (like Inchausti and Halley, 2002) is
our focus on time series important to inestigate the effect of climate change
on ecosystems. For instance, in addition to a large number of ecological and
climatic time series, we also estimated λ (for the first time, to our knowl-
edge) for time series of human activities representing potential anthropo-
genic influences on nature (like CO2 emissions; Table S2). Our results
show that time series of natural disasters have the smallest λ values,
being almost white noise (Fig. 1, row a). Other time series with relatively
small λ are those of freshwater species (row b), of climatic changes
(row d), and of terrestrial species (row e). Time series with larger λ values
are almost all anthropogenic (rows b to m), excluding only time series of
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marine species (row k). The large values of λ for these time series should
be of particular relevance for investigations of the influence of climate
change on marine ecosystems.

In this study, we characterized nearly 1800 time series in terms of their
spectral color λwith the specific goal of studying the effect of λ on the sig-
nificance of cross correlations between two time series. The effect of λ on
the performance of the traditional method of correlation significance has
been studied previously by Lennon (2000), showing that increasing λ con-
siderably degrades the performance of the significance test. We showed
that such decreases of performance with increasing λ also affects signifi-
cance tests that have been modified to account for data interdependence
(e.g., PPM and ASM). The error rate of the methods for correlation signifi-
cance tested in this study remains stable and close to zero only until a par-
ticular value of λ = 2 (for PPM) and λ = 3 (for ASM) and it increases
considerably for increasingly large values of λ (e.g., Fig. 3c).

Roughly half of the published studies of the effects of climate change on
ecosystems from time-series analysis have neglected the effects of serial cor-
relation of observations on their statistical results (Brown et al., 2011). Ad-
ditionally, the most commonly used method of modifying the significance
test, i.e., PPM, yields results that are less accurate than ASM for the broad
range of spectral colors λ and record lengthsN found in climatic, ecological
and anthropogenic time series. In particular, PPM overestimates α (Fig. 3),
which implies that the probability value P = (1- α) of the critical value of
the correlation is lower than intended. This can lead to inferences of statis-
tically significant correlation when none really exists.

The overestimation of statistical significance with PPM is particularly
large for λ > 2 (Fig. 3), which encompasses a large number of marine and
anthropogenic time series (Fig. 1). This raises the question of whether
there is a bias towards “significant relation” when none actually exists in
the many published studies in the marine biology and marine ecology liter-
ature that have been based on PPM. Use of ASM should substantially im-
prove the assessment of the statistical significance of sample estimates of
the cross correlation in studies of the effects of climate change on ecosys-
tems. To help facilitate such analyses, we have made our ASM codes
available in the programming languages R, Octave and Fortran through
the Internet platform gitlab (https://gitlab.com/ismael_diego/artificial-
skill-method).

7. Future work

None of the methods considered here are well-suited to application to
some of the time series considered in Fig. 1, e.g., those of human health
which can have values of spectral color λ of nearly 8 (Fig. 1, row m). The
performance of ASM in terms of error rate deviation degrades for λ values
larger than roughly 3.5 (Fig. 3c). For such large values of λ, it is possible
that randomization (e.g., Ebisuzaki, 1997) or cross-validation (Michaelsen,
1987) procedures might yield better results than those obtained here with
the ASM. We have not considered these alternative methods, mainly
because they are computationally intensive, not necessarily in a single, prac-
tical application but when evaluating their performance in an MC simula-
tion. To test the performance of a randomizing method, each of the 5 ×
103 significance estimates from the MC simulation would arise itself from
a large number (order 1×103) of iterations. This results in the requirement
of computations over 1 × 106 iterations. We therefore leave a comparison
with such methods to a future study.

Another possible extension of the techniques presented in this study is
related to tests of “field significance”. The systematic search for correlations
between a (fixed) time series X and N gridded time series Yi can inflate the
probability of finding significantly correlated time series when the time se-
ries Yi are correlated with each other. A field significance test evaluates
whether a “patch” of significantly correlated time series is large enough
to preclude the possibility that it arises only by chance. A widespread
method is Livezey and Chen, 1983, which is based on MC simulations
where the probability distribution of the sizes of all patches of significant
correlations between X and Yi is used to set a threshold for the significance
of the patch sizes. However, that study modified the serial auto-correlation

https://gitlab.com/ismael_diego/artificial-skill-method
https://gitlab.com/ismael_diego/artificial-skill-method
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of X (by creating random time series in their MC simulations) and used a
poor significance test (based on integration of the auto-correlation func-
tions; Davis, 1976) for the individual tests between X and Yi. These short-
comings could be improved with the spectral random time series of the
present study and by using ASM for the significance tests between X and Yi.
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