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ABSTRACT
One-dimensional light models using the Beer–Lambert equation (BL) with the light extinction coefficient k 

are simple and robust tools for estimating light interception of homogeneous canopies. Functional–structural plant 
models (FSPMs) are powerful to capture light–plant interactions in heterogeneous canopies, but they are also more 
complex due to explicit descriptions of three-dimensional plant architecture and light models. For choosing an 
appropriate modelling approach, the trade-offs between simplicity and accuracy need to be considered when cano-
pies with spatial heterogeneity are concerned. We compared two light modelling approaches, one following BL and 
another using ray tracing (RT), based on a framework of a dynamic FSPM of greenhouse cucumber. Resolutions of 
hourly step (HS) and daily step (DS) were applied to simulate light interception, leaf-level photosynthetic acclima-
tion and plant-level dry matter production over growth periods of 2–5 weeks. Results showed that BL-HS was com-
parable to RT-HS in predicting shoot dry matter and photosynthetic parameters. The k used in the BL approach was 
simulated using an empirical relationship between k and leaf area index established with the assistance of RT, which 
showed variation up to 0.2 in k depending on canopy geometry under the same plant density. When a constant k 
value was used instead, a difference of 0.2 in k resulted in up to 27 % loss in accuracy for shoot dry matter. These 
results suggested that, with the assistance of RT in k estimation, the simple approach BL-HS provided efficient 
estimation for long-term processes.

K E Y W O R D S :  Canopy geometry; dry matter; functional–structural plant model (FSPM); light extinction 
coefficient; light interception; photosynthetic acclimation.

1 .  I N T R O D U C T I O N
Light is often a limiting factor for greenhouse crops due to 20–70 % 
reduction by the greenhouse construction (Warren Wilson et al. 1992; 
von Elsner et  al. 2000; Cabrera-Bosquet et  al. 2016). As one of the 

main greenhouse crops, cucumber plants are mostly trained in high-
wire system in a row arrangement (van Henten et  al. 2002). A  row 
crop system facilitates operations such as plant care and fruit harvest, 
but results in heterogeneous light distribution in both vertical and 
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horizontal directions (Sarlikioti et al. 2011b). This condition of limiting 
and heterogeneous light environment raised the question of suitable 
methods for modelling light–plant interaction and predicting produc-
tivity (Chelle and Andrieu 1999; Roupsard et al. 2008; Sarlikioti et al. 
2011b). Within homogeneous vegetation, intra-canopy light attenua-
tion can be approximated similarly to the light extinction through a 
turbid medium, by one-dimensional (1D) light models with consid-
eration of limited architectural information such as leaf area index L. In 
this case, vertical light intensity I is simulated following Beer–Lambert 
equation (BL) with a light extinction coefficient k (Monsi and Saeki 
2005) depicting an exponential decay of incoming light at an incident 
angle θ with intensity I0 through canopy depth described by L:

I = I0 × exp(− k× L) = I0 × exp
Å−Gθ × Ω

cosθ
× L
ã

 (1a)

where Gθ characterizes the leaf projection and accounts for the effects 
of leaf spatial distribution for intercepting light in the incident direc-
tion. In many ecological models a spherical distribution of leaves was 
assumed, such that Gθ is approximated as 0.5 (Campbell and Norman 
1989; Govind 2014). Parameter Ω is the clumping index, and it equals 
to 1 in the case of random leaf dispersion while it is <1 in the case of 
clumping (Nilson 1971; Chen and Black 1991), but it is dynamic with 
θ (Chelle and Andrieu 1999; Govind 2014) and difficult to specify 
mechanistically (Ponce de León and Bailey 2019). It was found that 
explicit descriptions of Gθ and Ω are required for adequate approxima-
tion of canopy light interception, especially at a θ < 70° (Govind 2014). 
The information describing the specific interaction between light and 
canopy architecture is thus inherently included in k. Observed val-
ues of k were between 0.3 and 2 for different plant functional types 
(Zhang et al. 2014) depending on solar position, leaf angle and clump-
ing (Chen and Black 1991; Monsi and Saeki 2005; Ponce de León and 
Bailey 2019). Given that canopy light interception depends strongly 
on characteristics of plant architecture and canopy spacing (Maddonni 
et al. 2001a, b; Sarlikioti et al. 2011a; Duursma et al. 2012), k was also 
influenced by canopy development (De Costa and Dennett 1992; 
Chen et  al. 2014b) and canopy configuration (Nilson 1971; Flénet 
et al. 1996; Drouet and Kiniry 2008; Evers et al. 2009; Sarlikioti et al. 
2011b). Allowing k to vary as a function of canopy characteristics was 
reported to result in better estimations of canopy light interception 
(Forrester 2014), light transmission (Aubin et al. 2000) and transpira-
tion (Tahiri et al. 2006). To determine the variation of k experimen-
tally, continuous measurements of canopy light transmission and L, 
ideally conducted at a θ near 0° under an overcast sky (Monsi and Saeki 
2005), can be rather laborious. A physically based virtual analysis may 
help better understanding the systematic variation in k.

Despite the good approximation of light interception of homoge-
neous canopies by the 1D approach (Bailey et  al. 2020), the effects 
of spatial heterogeneity of local light availability at leaf level cannot 
be explicitly captured (Chelle and Andrieu 1999; Vos et  al. 2010). 
Functional–structural plant models (FSPMs) incorporate three-
dimensional (3D) information of plant structure and light models in 
addition to plant functionality, making it possible to capture feedbacks 
between canopy architecture and light environment by surface-based 
models. Such models are especially important for studies considering 

spatial heterogeneity of environmental factors (Louarn and Song 
2020). The heuristic potentials of FSPMs to quantify the effects of can-
opy architecture on light interception and biomass production have 
been demonstrated (Sarlikioti et al. 2011a; Kang et al. 2012; Chen et al. 
2014b) as well as their capacity to extrapolate and apply knowledge to 
assist decisions on crop management and breeding (Vos et  al. 2010; 
Buck-Sorlin et al. 2011; Sarlikioti et al. 2011a; Perez et al. 2018; Chen 
et al. 2019; N Zhang et al. 2020a). Although the capability of handling 
multiple degrees of complexity is an advantage of FSPMs, it can lead 
to increased computational requirements and analytical intractability 
that restrict the range of methods that can be effectively incorporated 
for model parameterization, analyses, optimization and decision sup-
port (Louarn and Song 2020; Zhang and DeAngelis 2020). Despite 
it not being a major concern nowadays, the complexity of FSPM can 
still result in various degrees of limitations depending on the hardware 
and software that are available to the model developers and users. 
Compared to a simpler model, a more explicit and complex model may 
better represent the real system up to the point where errors aggravate 
over the uncertainty of its large amount of parameters (Vos et al. 2010).

Therefore, the selection of the degree of simplicity/complexity 
of an approach to predict spatial heterogeneity and crop productivity 
should be based on the balance between model accuracy and uncer-
tainty (Renton 2011). In this study, we aimed to examine the trade-offs 
between simplicity and accuracy of methods simulating light–plant 
interaction and its influence on long-term leaf-level photosynthetic 
acclimation and plant-level dry matter accumulation. We compared the 
two methods, 3D light model using ray tracing (RT) and 1D light model 
using BL, in a dynamic plant model of greenhouse cucumber. Model 
performance was evaluated and compared by the predictive accuracy in 
photosynthetic acclimation and biomass production using both hourly 
step (HS) and daily step (DS) of time resolutions in order to examine 
the possible influence of simulation time-step on the predictions.

2 .  M AT E R I A L S  A N D   M ET H O D S
2.1 Overview of model comparison

A dynamic plant model of greenhouse cucumber was implemented in 
GroIMP (Kniemeyer 2008) to compare the effect of plant–light inter-
action methods, recursive RT algorithm and simple BL, on predictive 
efficiency in photosynthetic acclimation and biomass production. The 
model described functions of leaf-level photosynthetic acclimation, 
photosynthesis and plant-level dry matter accumulation, depending 
on light absorbed by individual leaves as acclimatory signals and driv-
ing force (Fig. 1; see Supporting Information—Fig. S1). Leaf light 
interception and absorption was either simulated using BL as 1D light 
model (red box in Fig. 1), or using RT in a FSPM with 3D descriptions 
of plant architecture and light model (blue box in Fig. 1; see Supporting 
Information—Fig. S1). Before comparing model predictions of RT and 
BL, the plant structural traits (lamina area, elevation angle, petiole length 
and internode length) and light interception efficiency (Supporting 
Information—Note S1, Eq. S1), predicted using RT, were evaluated. 
Then, RT was used to simulate artificial scenarios of canopy configura-
tions in order to establish a function to estimate light extinction coef-
ficient k for use in method BL (Fig. 2). The computer code for the model 
is available from the corresponding author upon request.
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Model inputs were hourly values of photosynthetically active radi-
ation (PARout, mol m−2 h−1) above the greenhouse, temperature sum 
(°Cd, using 10  °C base temperature for cucumber), nitrogen supply 
(mM) and relative humidity (%) in the greenhouse. Hourly vapour-
pressure deficit (VPD, kPa) was calculated using temperature and rela-
tive humidity according to Eq. 12 in Moualeu-Ngangue et al. (2016). 
Simulations were carried out for both HS and DS resolutions. When 
applying DS, daytime mean VPD (when PARout > 0.1  mol m−2 h−1) 
and daily temperature sum were calculated from the hourly values. 
Daily mean photosynthetic photon flux density (PPFD) outside of the 
greenhouse (Iout, μmol m−2 s−1) was calculated from PARout by taking 
day length (h) into account following a function of Julian day and lati-
tude (°) according to Eqns (1)-(3) in Forsythe et al. (1995). Sunrise 
and sunset were defined as the moment when the top of the sun was 
apparently even with the horizon.

Intercepted and absorbed PPFD by leaves simulated by both light 
models were used as input to calculate photosynthetic parameters, 
photosynthesis and dry matter production (Fig. 1), which were then 
compared with measured data obtained in greenhouse experiments to 
evaluate model performance. Root-mean-square deviation (RMSD), 

accuracy (%) and relative bias were determined using measured (xi) 
and simulated (yi) values (modified by Kahlen and Stützel 2011):

RMSD =

Ã
1
n

nΣ
i=1

(yi − xi)
2

Accuracy (%) =

Ç
1− RMSD

1
n
Σn

i=1 xi

å
× 100

Relative bias =
1
n
Σn

i=1 (yi)
2 − 1

n
Σn

i=1 (xi)
2

1
n
Σn

i=1 (xi)
2

2.2 Greenhouse experiments for model evaluation
To obtain measured data of intra-canopy light distribution, architec-
tural traits, leaf photosynthetic parameters and plant dry matter, five 
experiments (Table 1) were conducted in Venlo-type greenhouses at 
the Institute of Horticultural Production Systems, Leibniz Universität 

Figure 1. Diagram of model data flow of the dynamic plant model of greenhouse cucumber using light models, the BL (red box) 
or RT (blue box). Environmental input data (dashed box) given into the model are outside PAR (mol m−2 h−1), temperature sum 
(°Cd), nitrogen supply (mM) and VPD (kPa). Details of Light model/Plant structure are shown in Supporting Information—Fig. 
S1. Relevant figures and tables to each variable are indicated in the parentheses.
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Hannover, Germany (latitude 52.4°N). Experiments 1a, 1b and 1c 
were conducted in August 2006, May 2007 and August 2007, respec-
tively. Experiments 2a and 2b were conducted in April and July 2017, 
respectively. In all experiments, cucumber (Cucumis sativus) ‘Aramon’ 
(Rijk Zwaan, De Lier, The Netherlands) plants were cultivated under 

a high-wire (up to 4 m) single-stem system in greenhouses oriented 
from north to south. Three weeks after sowing, five-leaf-stage seedlings 
in rockwool cubes (10 cm × 10 cm × 6.5 cm) were transferred onto 
rockwool slabs in the greenhouses and were drip-irrigated with nutri-
ent solution.

Figure 2. Processes of establishing the relationship between light extinction coefficient k and leaf area index (LAI) using RT, 
and evaluation of this relationship using the BL. Inputs are indicated in dashed boxes. The relationship between k and LAI was 
described by Equation (2a) with a minimal k (kmin), which was found to be dependent on canopy configuration, and distances 
between plants and between rows (Equation (2b) and Fig. 5). Simulated scenarios of canopy configuration are listed in Supporting 
Information—Table S2, and the simulated k is shown in Fig. 4. The canopy configuration of the greenhouse experiments 1b, 2a and 
2b (Table 2) was used in the evaluation. Relevant figures and tables to each process are indicated in the parentheses.

Table 1. Overview of climate conditions and growth period in the five greenhouse experiments.

Experiment 1a 1b 1c 2a 2b

Time August 2006 May 2007 August 2007 April 2017 July 2017

Mean temperature (°C) 24.8 ± 2.9 23.2 ± 1.1 23.7 ± 1.6 23.1 ± 0.9 23.9 ± 1.4
Daily PAR integral (mol m−2 day−1) 24.9 ± 6.7 20.9 ± 7.9 20.5 ± 7.6 22.4 ± 9.6 26.8 ± 10.4
Growth duration in greenhouse (day) 22 30 23 38 38
Julian day 206–227 127–156 211–233 94–131 192–229
Solar zenith angle (°) 32.9–38.5 35.9–30.2 34.0–40.4 46.6–34.7 30.5–39.3
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Incident PPFD on leaves was measured via PAR sensors on 14 
leaves per plant (see Fig. 1a in Wiechers et al. 2011b) at the third week 
after transplanting in experiments 1a, 1b and 1c. In experiments 1b, 2a 
and 2b, dry matter of leaves, petioles, internodes and fruits per plant 
was determined destructively with three replications between the 
second and the fifth weeks after transplanting. Leaf photosynthetic 
parameters were measured on two leaves per plant with two replica-
tions in experiment 2a at the second, third, fourth and fifth weeks 
after transplanting (Pao et al. 2019a). Plant architecture was digitized 
according to Wiechers et al. (2011b) to obtain organ sizes non-destruc-
tively in four experiments (1a, 1b, 1c and 2a for lamina size and angle, 
internode length and petiole length).

In experiments 2a and 2b, plants were grown in rows at a density 
of 1.33 plants per m2 (Table 2). Plants were subjected to treatments of 
either high light (HL, non-shaded) or low light (LL, reduced by shad-
ing to 50 % of HL condition) in combination with either high nitrogen 
(HN, 10 mM) or low nitrogen (LN, 2.5 mM) supply (for details, see 
Pao et al. 2019a).

In experiments 1a, 1b and 1c, four canopy arrangements (Table 2) 
of either row (R) or isometric (I) patterns in combination with a den-
sity of either 1 (R1 and I1) or 2 (R2 and I2) plants per m2 were applied 
(details see Wiechers et al. 2011b), under similar growing conditions 
as HLHN in experiments 2a and 2b. Plants in experiments 1a and 1c 
were decapitated above leaf rank 23. The ground in the greenhouses 
was covered by a white plastic film during experiments 1a–1c.

2.3 Model description—plant development
Virtual plants developed with the appearance of new phytomers. 
When a meristem reached the thermal age of a phyllochron (°Cd per 
leaf), the meristem produced a new phytomer. When using the 3D 
plant architecture model with RT, each phytomer consisted of a mer-
istem, an internode, a petiole and a leaf, represented by 3D objects. 
When using the 1D model with BL, the organs were not described 
except that each leaf was assigned the structural property of leaf area 
index which increased with thermal time. Thermal age of an organ 
was counted from 0  °Cd starting from the moment of appearance. 
To mimic the common cultural practice, one flower per node was 
allowed to develop from the seventh rank of phytomer onwards in the 
simulation. The ovary reached a length of 5 cm (assumed as starting 
point of fruit growth) at thermal age of 150 °Cd (ca. 10 days after the 
appearance of the respective phytomer). Phyllochron needed for a 
phytomer to appear was described by a logistic function of leaf rank 
(Supporting Information—Note S1, Eq. S2) with an initial phyl-
lochron of 125.4 °Cd at the beginning of plant growth (8–10 days for 
the first true leaf to appear) and then decreased with increasing rank 
to stable level of phyllmin [see Supporting Information—Table S1]. 
Values of phyllmin were derived for each treatment using measured data 
obtained in experiment 2a, and experiments 1a–1c were assumed to 
have the same constants as under treatment HLHN.

2.4 Model description—plant function
Photosynthetic acclimation of leaves to light was described by the light 
response of photosynthetic protein turnover (Supporting Information—
Note S1, Eqs S3a-e; Pao et al. 2019a), the outcome of simultaneous pro-
cesses of protein synthesis and degradation. Protein synthesis rate was 

adjusted to an hourly response to PPFD (μmol m−2 s−1) by assuming that 
daily protein synthesis only occurred during the light period. Nitrogen 
per m2 leaf area involved in photosynthetic functions (Np) of carboxyla-
tion (NV), electron transport (NJ) and light harvesting (NC) was simulated 
separately, with initial values of 0.33  mmol m−2 each. NV includes only 
Rubisco, NJ includes electron transport chain, photosystem II core and 
Calvin cycle enzymes other than Rubisco and NC includes photosystem 
I core and light harvesting complexes I and II (Buckley et al. 2013).

Leaf photosynthetic parameters were estimated from NV, NJ and NC, 
namely maximum carboxylation rate (Vcmax, μmol CO2 m−2 s−1), maxi-
mum electron transport (Jmax, μmol e− m−2 s−1) and leaf chlorophyll (Chl, 
mmol m−2), respectively (see Appendix ‘Computing photosynthetic 
parameters from N pools’ by Buckley et al. 2013). Electron transport 
(J, μmol e− m−2 s−1) and carboxylation rate (Vc, μmol CO2 m−2 s−1) were 
calculated depending on incident light according to Eq. 4 and Eq. 5 in 
Qian et al. (2012), respectively. Leaf absorptance (α, unitless) was cal-
culated in relation to Chl using Eq. 1 in Evans (1993). Newly appeared 
leaves had a minimum values of α = 0.13 due to the initial values of NC 
and NJ. Leaf reflectance and transmittance of PAR and red light were 
assumed (1 − α)/2. Respiration rates Rd (μmol CO2 m−2 s−1) of leaves 
were simulated depending on leaf age and incident light following Eq. 
10 in Pao et  al. (2019a). Mesophyll conductance (gm, mol CO2 m−2 
s−1) was simulated depending on leaf thermal age and Np (Supporting 
Information—Note S1, Eq. S4) modified by Pao et al. (2019a).

Leaf net photosynthesis rate An (μmol CO2 m−2 s−1) was deter-
mined as the minimum of RuBP carboxylation-limited (Ac, μmol CO2 
m−2 s−1) and RuBP regeneration-limited (Aj, μmol CO2 m−2 s−1) net 
photosynthesis rate following the biochemical photosynthesis model 
of Farquhar et al. (1980). For details and constants used in this study, 
please see Eqs 9, 14 and 15 in Pao et al. (2019a). To calculate dry mat-
ter production, CO2 uptake was converted to plant dry matter by a fac-
tor of 0.68 (Warren Wilson et al. 1992).

Dry matter distribution between organs was implemented accord-
ing to Wiechers et al. (2011a). In brief, a common pool of was assumed, 
which was augmented daily by dry matter production plus excess 
reserves from the previous day. Dry matter was distributed according 
to a priority scheme for meeting demands of different organs. Meeting 
maintenance costs (2 % reduction; Marcelis 1994) was the first prior-
ity, followed by root, reproductive growth and then vegetative growth.

Dry matter distributed to individual fruits followed the proportion 
of a fruit’s potential growth rate to the total demand of fruits, which 
was the sum of potential growth rate of all growing fruits in a plant 
(Wiechers et al. 2011a). Fruit abortion and dominance might occur, 
if the ratio rAD between total supply and total demand of fruits was 
lower than certain thresholds. When rAD < 0.3, fruits with thermal 
age between 150 and 220  °Cd were aborted (within 5–6  days after 
fruit length reached 5 cm). When rAD < 0.8, dry matter partitioning to 
individual fruit exhibited dominance favouring earlier initiated fruits. 
The potential growth rate of a fruit i (RPF,i, g DM day−1) was estimated 
equivalent to its potential dry matter, depending on the length of the 
fruit (LF,i, cm) at the previous day (Supporting Information—Note 
S1, Eq. S5). Actual fruit length LF,i was calculated inversely depending 
on its actual dry matter using Supporting Information—Note S1, 
Eq. S5. The growth duration of a fruit was accumulated from the time 
when its length had reached 5 cm until harvest (fruit length ≥ 30 cm).
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2.5 Model description—plant structure
Lamina expansion and elevation angles were used in both RT and BL 
methods [see Supporting Information—Fig. S1]. Lamina expan-
sion was described for individual leaves depending on their thermal age 
(°Cd) using a logistic function (see Eq. 5 in Kahlen 2006) with a mini-
mum of 5 cm2 and a specific growth rate of 0.0524 °Cd−1. The maximum 
area of a leaf depended on its acropetal rank following a log-normal curve 
(see Eq. 1 in Irving and Robinson 2006) with a maximum leaf area ALmax 
(cm2) occurring at rank rALmax and constant kAL determining the shape 
of the curve [see Supporting Information—Table S1]. Lamina eleva-
tion angle (range from −90° to 90°) was defined as the angle between 
the line connecting the base to the tip of the lamina and the horizontal 
plane. Newly appearing leaves oriented vertically upwards and thus had 
a maximal elevation angle of 90°, which then decreased with expansion 
in its lamina size (cm2) followed Supporting Information—Note S1, 
Eq. S6 by a rate constant of 0.0116 cm−2 to an asymptote of −68.4°. The 
constants used in lamina expansion and elevation angle were derived 
from measured data obtained in experiment 2a for each treatment, and 
experiments 1a–1c were assumed to have the same constants as under 
treatment HLHN. No leaves were removed in the simulation runs.

Other plant structural characteristics described below were only 
implemented when RT was used, namely lamina shape, petiole elonga-
tion, petiole zenith angle, leaf tropism and fruit radius [see Supporting 
Information—Fig. S1].

Four templates of lamina shape were reconstructed using digitiz-
ing data of cucumber leaves (see Fig. 6A in Pao et  al. 2020) of vari-
ous developmental stages (size ranging 0.01–0.11 m2) in experiment 
2a to capture the change of shape along leaf expansion. A  template 
was chosen for a given leaf according to its current size, with arbitrary 
thresholds set at 0.01, 0.05 and 0.07 m2. We chose a shape template 
depending on lamina size due to the topological dependency of grow-
ing leaves on their position and size rather than simple isometric scal-
ing (Schmidt and Kahlen 2019). The chosen template was then scaled 
to the size of the leaf by a factor, calculated as square root of the ratio 
between leaf size and template leaf size, to adjust the length of the lines 
constructing the template.

Leaf petiole elongation was described similar to leaf expansion, 
with a minimum of 1 cm and a specific growth rate of 0.0312 °Cd−1. 
The maximum length depended on its rank following a log-normal 
curve with a maximum length LPmax (cm) occurring at an acropetal 
rank rLPmax, and a constant kLP determining the shape of the curve [see 
Supporting Information—Table S1]. Petiole zenith angle was only 
thermal age-dependent, starting with 0° (vertically upwards), and then 
turning downwards at a rate of 0.3° per °Cd until a maximum of 100° 
was reached. Leaf petiole radius was set to 0.45 cm.

Phototropism of leaves was simulated as differential growth of 
the petiole at its base that caused horizontal movement (Kahlen 
et  al. 2008), with initial phyllotaxis set to 137.5°. Virtual leaves 
were constructed with two halves along the midrib, so that PAR 
absorbed by the left (PARl) and the right (PARr) leaf halves could 
be simulated separately. A leaf moved towards left when PARl/PARr 
> 1 until PARl/PARr  =  1, and vice versa. The maximum tropism 
was assumed to be 30° per day, with a speed of 2° per °Cd, and it 
stopped when the thermal age of the petiole exceeded 153  °Cd 
(Kahlen et al. 2008).

Internode elongation was influenced by daily mean temperature 
and light signals, i.e. incoming PPFD (µmol m−2 s−1) above the can-
opy and red/far-red ratio perceived by the internode according to  
Eqs 1, 3 and 4 in Kahlen and Chen (2015). The red/far-red signal was 
assumed to be sensed at the time of maximum growth rate (around 
internode length of 3  cm). Signals of temperature and incoming 
PPFD sensed were their 4-day mean values, calculated from Day 
6 to Day 3 before the internode reached 3  cm. Until reaching 3  cm, 
internode length was described depending on its thermal age (°Cd) 
using a logistic function (see Eq. 5 in Kahlen 2006) with a minimum 
of 1 cm, a specific growth rate of 0.104 °Cd−1 and a maximum of 6 cm. 
Angles between two adjacent internodes were set randomly to 15–25°. 
Internode radii were set to 0.48 cm.

Fruit radius (rF,i, cm) was calculated depending on current fruit 
length LF,i (Supporting Information—Note S1, Eq. S7, Kahlen and 
Stützel 2007; Kuwar 2007). Ratio between fruit length and its petiole 
length was set to 3 with a minimum petiole length of 2 cm. The radius 
of the fruit petiole was set to 0.25 cm.

2.6 Simulation of light–plant interaction
To test the performance of the simplest form of 1D light model follow-
ing the BL, the solar angle was not considered in simulations in both 
HS and DS, meaning that the solar zenith angle θ was assumed to be 
0°. To simulate light–plant interaction with the simple BL, PPFD inci-
dent perpendicularly on a leaf i (acropetal rank) was calculated as light 
transmitted through all leaf area index above the leaf (Li+1) by Equation 
(1a). However, since not all the leaves are horizontally oriented, 
Equation (1a) had to be adjusted for individual leaves. Three adjust-
ment methods were compared for incident PPFD Ii on leaf rank i, 
either by the cosine of the lamina elevation angle βi (°, Pao et al. 2019a) 
for each leaf i, by kc (constant within a canopy, Charles-Edwards et al. 
1986) or by a rank-specific ki+1 for each leaf i:

Ii = I0 × exp(− kc × Li+1)× cosβi (1b)

Ii = I0 × exp(− kc × Li+1)× kc (1c)

Ii = I0 × exp(− kc × Li+1)× ki+1 (1d)

The value of kc in both Equations (1b) and (1c) was constant within 
a given canopy for all ranks of leaves, while ki+1 in Equation (1d) 
depended on Li+1. Theoretically, the value of k can be derived depend-
ing on the given solar zenith and leaf angle distribution of the canopy 
(see Table 1.1 in Campbell and Norman 1989) by assuming distribu-
tions of angles normal to the surface of certain geometric forms. Here, 
we attempted to apply a dynamic 3D model (Fig. 3) to directly quantify 
in silico the values of k of a canopy under the given condition to include 
the effects of the solar zenith angle and clumping (Equation (1a)). The 
quantified k was then used to establish an empirical relationship with 
L at various developmental stages and configurations (Fig. 2 and see 
below). The cosine correction in Equation (1b) had a significant effect 
on PPFD incident on the leaf and could lead to a reduction to 0 % or 
42.6  % of the PPFD perpendicularly transmitted to the leaf with an 
elevation angle of 90° (newly appeared leaves) or −64.8° (matured old 
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leaves), respectively. The k correction in Equations (1c) and (1d) on 
the other hand could restrict PPFD incident on the leaf up to 90  % 
reduction (if k = 0.1) depending on the value of k.

To simulate light–plant interactions with the more complex 
method of the 3D light model, RT, construction of 3D virtual cano-
pies and light sources were required. Virtual canopies were created 
in the middle on a square ground (60 m × 60 m), which blocked the 
light cast from below the horizontal plane during simulations in HS. 
With defined number of rows, number of plants per row and distances 
between rows and between plants (Table 2), virtual canopies were con-
structed as mock-up of the actual canopies. In this study, canopies con-
sisting of 21 plants (Fig. 3A) arranged in three north-south oriented 
rows and seven plants per row were tested. During each simulation, 
every plant was rotated randomly between −30° to 30° on the hori-
zontal plane to take into account the variation resulting from manual 
transplanting. The three middle plants in the central row of the canopy 
were sampled for leaf and plant parameters. A light sensor (blue square 
in Fig. 3B) was placed 0.1 m above-ground (3.5 cm above the virtual 
rockwool cubes of the three plants in the middle row, white squares 

in Fig. 3B), covering area of a width of one row distance and length 
of three plant distances in a row. This sensor sampled light transmis-
sion to the ground at 1200 h to calculate light extinction coefficients 
k (Equation (1a)) with leaf area index L of the canopy. It should be 
noted that the definition of L used here was not the projected leaf area 
(e.g. Lizaso et al. 2005) but the actual leaf area per ground area. In the 
scenario simulations of k under various canopy configurations (Fig. 2), 
the light sensor below the canopy (Fig. 3B) had light reflectance and 
transmittance of 0 %, so that it absorbed 100 % of the light incident on 
it and would not interfere with the 3D scene.

The 3D incoming light was simulated using a light model (Buck-
Sorlin et  al. 2010, 2011) with 72 diffuse light sources (sky objects) 
arranged in a hemisphere and one directional light source (sun object; 
Fig. 3C). The light objects cast rays onto the 3D scene, and a ray tracer 
was integrated to compute light distribution with 10 million rays and 
a recursion depth of 10 reflections, which was sufficient for simulat-
ing PAR at leaf level in rose and cucumber canopies (Buck-Sorlin et al. 
2011; Chen et  al. 2014a). The virtual rays consisted of three user-
defined channels, which interacted independently with the virtual 

Figure 3. Virtual canopy and light model in the dynamic plant model using RT. (A) A virtual cucumber canopy at a plant density 
of 1.33 plants per m2. The canopies used in the simulations consisted of 21 plants arranged in three north-south oriented rows 
and seven plants per row. The central three plants in the middle row were sampled for output. (B) Location of rockwool cubes 
(white squares, height 6.5 cm), from which single virtual plants were grown to form a virtual canopy. A light sensor (yellow 
square) covering a ground area of three plants was positioned under the canopy 3.5 cm above the rockwool cubes (thus the 
middle three rockwool cubes are covered). This light sensor had 0 % transmittance and a reflectance similarly to the ground 
in the corresponding greenhouse experiments. (C) Light model consisting of one direct and 72 diffuse light sources. Blue 
y-axis indicates south in the 3D scene. (D) Positions of eight light sensors (each had a size of 1 m2, red squares) for adjusting 
incident light, viewed from the top and (E) viewed from a side perspective. These eight sensors had 0 % reflectance and 99.9 % 
transmittance of light and thus negligible interaction with the virtual scene. The yellow and red coloration of the light sensors 
shown was only for the visualization. The greenhouse structure was not explicitly considered.
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objects. Due to the light signals concerned in the model, we defined 
the three channels as PAR, red and far-red light. Optical properties of 
objects were described according to their absorptance, transmittance 
and reflectance for each light channel. Optical properties of leaves for 
PAR and red light depended on Chl as described in the plant func-
tion section. For simplicity, leaves were assumed to reflect 38 % and 
transmit 45 % of far-red light (730 nm, Kahlen et al. 2008), whereas 
internodes, petioles and fruits reflect 6 % PAR and red light, and 38 % 
far-red light with 0 % transmittance of light. A fruit object would no 
longer interact optically with the virtual scene after it was harvested 
(0 % reflectance and 100 % transmittance). The ground in the virtual 
scene did not reflect nor transmit light, thus no reflected light that 
would affect the light adjustment by the eight light sensors above the 
ground (Fig. 3D and E). However, the light sensor below the canopy 
(Fig. 3B) reflected PAR and red light similarly to the ground in the 
greenhouse experiments 1 and 2, 80 % and 10 %, respectively, during 
simulations run for evaluation.

The PPFD above the canopy (I0, µmol m−2 s−1) was calculated as 
75 % of the PPFD outside the greenhouse (µmol m−2 s−1) according 
to the optical properties of the greenhouse construction. I0 was then 
separated according to the proportion of diffuse light (pdiff, range 0–1) 
into light power emitted from the sky objects (Psky = pdiff × I0 × 3 × fP) 
or from the sun object (Psun = (1 − pdiff) × I0 × 3 × fP). The multiplier 3 
accounted for the three light channels. The proportion of diffuse light 
pdiff was calculated following Eq. 3 in Reindl et al. (1990), with a clear-
ness index estimated using Eqs 1 and 2 in Hofmann and Seckmeyer 
(2017). Global radiation Rg (W m−2) was estimated by dividing out-
side PPFD by 2.07 (PPFD = Rg × 0.45 × 4.6, assuming 45 % PAR in the 
global radiation and a conversion factor of 1 W m−2 PAR = 4.6 µmol 
m−2 s−1; Ludlow 1983). Since the actual light rays reaching the ground 
in the 3D scene varied with many factors, such as the angle of the sun 
object, the proportion of diffuse light and the properties of the ground, 
a scaling factor fP was applied to adjust the incoming total light power 
automatically at every step before simulation according to the amount 
of light reaching the 3D scene (I0sim). I0sim was measured by eight 1-m2 
sensor objects (around the canopy, Fig. 3D) located at 7 m above the 
ground (Fig. 3E). These sensor objects were set to have 0 % reflectance 
and 99.9  % transmittance of light. The maximal value of I0sim from 
the eight positions was used to compute fP = I0/max(I0sim). After the 
correction using fP, the deviation of actual PPFD in the 3D scene (at 
heights up to 5 m above-ground) from I0 was within 5 %.

Virtual objects absorbed rays that came from all directions into 
contact according to their optical properties. Light power absorbed 
by objects was multiplied by 0.33 for red light (assuming one third of 

PAR) and by 0.275 for far-red light, shaping a red/far-red ratio of 1.15 
in sunlight. Light intensity incident at an object was determined by 
dividing the absorbed power by the absorptance.

3 .  R E S U LT S
3.1 Evaluation of plant structure and light intercep-
tion predicted by the dynamic plant model using RT

The plant structural traits simulated by the RT model in HS were first 
compared to digitized data obtained in experiments 1a–1c between 
ranks 5–20 (total of 191 measured data points from three experiments, 
four canopy configurations and ca. 16 leaves per plant). The accura-
cies were 74 %, 73 %, 87 % and 77 % for lamina area, elevation angle, 
petiole length and internode length, respectively (data not shown). 
Simulated light interception efficiency (ranging 0–1, Supporting 
Information—Note S1, Eq. S1) showed an accuracy of 73 % with a 
RMSD of 7.5 % [see Supporting Information—Fig. S2], which can 
be considered a reasonable approximation of the 3D plant structure 
and light interception.

3.2 Simulations of light extinction coefficient using 
RT under artificial scenarios

In order to compare predictions of photosynthetic acclimation 
and dry matter production between RT and by the classic BL, light 
extinction coefficient k had to be first determined for BL (Equations 
(1b–1d)). Due to the clear effect of canopy configuration on k [see 
Supporting Information—Fig. S3], we first simulated k under sce-
narios of different canopy configurations in row arrangements (Fig. 
2) using RT throughout the canopy development (growth period 
of 35  days) every day at midday (1200  h) in DS (Fig. 4). Canopy 
configurations with various plant densities (1.0, 1.5, 2.0, 2.5 and 3.0 
plants per m2) were created in combination with three different row 
distances (1.1, 1.5 and 1.9 m), so that plant distance within rows was 
always smaller than row distance [see Supporting Information—
Table S2]. These artificial scenarios were selected to cover the 
common range used in production and experiments. Since there 
was no apparent difference in simulated k between experiments 1a, 
1b and 1c within a given canopy configuration [see Supporting 
Information—Fig. S3], only the conditions of experiment 1a were 
used in this simulation.

Simulated k was found to decrease with increasing canopy leaf area 
index L, which could also be interpreted as canopy depth (Fig. 4).  
This was expectable, since that increasing proportion of expanded 
leaves approaching an elevation angle of −68.4° (Supporting 
Information—Note S1, Eq. S6) along canopy development allowed 

Table 2. Canopy configurations of arrangement, plant density and distances between rows and between plants in the five 
greenhouse experiments.

Experiment 1a/1b/1c 2a/2b

Canopy arrangement Row (R1) Row (R2) Isometric (I1) Isometric (I2) Row

Plant density m−2 1 2 1 2 1.33
Row distance (m) 1.86 1.86 0.93 0.93 1.5
Plant distance (m) 0.53 0.27 1.08 0.53 0.5
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higher light penetration through the canopy and also less efficient 
light interception towards the base of the canopy. It was observed that 
denser canopies and wider row distances resulted in lower k (Fig. 4); 
row distance could lead to a variation in k of up to 0.2 under the same 
plant density for canopies with L ≥ 1.0.

3.3 Relationship between light extinction coefficient 
and leaf area index as depending on canopy geometry
From the results of simulated k under various scenarios of canopy 
configuration (Fig. 4), an empirical relationship between k and L 
was derived following a log-normal function, where a maximal k of 1 
occurred at L equal to lm (0.0479 ± 0.0022), with coefficient vk (1.90 ± 

0.056) determining the shape of the curve. Along canopy develop-
ment, k approached a stable minimal k (kmin), which was related to 
plant distance Dplant and row distance Drow of the canopy:

k = (1− kmin)× exp

®
−
ï
ln
Å
L
lm

ã
/vk
ò2´

+ kmin (2a)

kmin = a1 − a2 × Dplant − a3 × Drow + a4 × Dplant × Drow (2b)

where coefficients were estimated to be a1  =  0.659 (± 0.0134), 
a2 = 0.348 (± 0.0744), a3 = 0.302 (± 0.0219) and a4 = 0.502 (± 0.0537). 
The six parameters in both Equations (2a) and (2b) were quantified 
with all simulated data of k in Fig. 4 using least square fitting.

Equation (2b) resulted in kmin between 0.1 and 0.7 under Dplant rang-
ing 0.1–0.9 m and Drow ranging 1.0–2.0 m (Fig. 5A). An index of can-
opy geometry, planting rectangularity (PR; Maddonni et al., 2001b), 
was calculated using Drow and Dplant as the ratio between the longer and 
the shorter distances. In addition to plant density, PR provided infor-
mation of the geometry of planting patterns. Planting rectangularity 
equal to 1 indicates a square spatial arrangement, whereas larger values 
indicate a rectangular geometry. Canopies with more even distribution 
(PR < 4) appeared to have higher kmin under lower plant density (Fig. 
5B). However, over a certain level of PR, higher plant density tended 
to have higher kmin (Fig. 5B). With information of canopy configura-
tion in greenhouse experiments 2a and 2b, kmin was determined 0.409 
with Dplant = 0.5 m and Drow = 1.5 m. For canopy configurations used in 
experiment 1b, kmin was determined 0.408, 0.255, 0.507 and 0.441 for 
canopy arrangements R1, R2, I1 and I2, respectively.

3.4 Comparison of leaf-level light availability  
simulated using RT and using the BL

Equation (2) was applied to simulated kc and ki+1 used in the BL 
Equations (1b–1d) for further simulations of light interception, pho-
tosynthetic acclimation and dry matter production under the condi-
tions of experiment 2a. In Equations (1b–1d), kc was determined using 

Figure 4. Simulated relationship between light extinction 
coefficient k and leaf area index of the canopies under scenarios 
of different plant densities (1.0, 1.5, 2.0, 2.5 and 3.0, indicated 
by colours; see Supporting Information—Table S2) and row 
distances (1.1, 1.5 and 1.9 m, indicated by symbols). Each 
point represents one estimate of k for a canopy on a specific day 
sampled at 1200 h using the FSPM with RT and simulations 
in HS. Since there was no apparent difference in simulated 
k between experiments 1a, 1b and 1c [see Supporting 
Information—Fig. S3], only the conditions of experiment 1a 
with a growth period of 35 days were used in this simulation.

Figure 5. Simulated minimal light extinction coefficient kmin using Equation (2b) under various canopy configurations. Colour 
indicates the value of kmin (A) at a given distance between rows (1.0–2.0 m) and distance between plants in a row (0.1–1.0 m), (B) 
under given PR (1.0–20.0, unitless) and plant density (0.5–10.0 plants per m2). Values of kmin ranged from 0.12 to 0.71. Planting 
rectangularity was calculated using row and plant distances as the ratio between the longer and the shorter distances. A PR equal 
to 1 indicates quadratic canopy geometry, whereas larger values indicate rectangular geometry.
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Equation (2a) with L of a canopy at a given time point. In Equation 
(1d), ki+1 was calculated using Equation (2a) for each leaf i with L 
above it in the canopy (Li+1).

Using the simulation at the end of experiment 2a at 1200 h, a snap-
shot of intra-canopy relative PPFD was in a comparable range for RT 
and BL (Fig. 6A) using both HS and DS time resolutions. Relative 
PPFD at leaf level (Ii/I0) at a given time point was calculated as the 
incident PPFD on a leaf at rank i (Ii) divided by the PPFD above the 
canopy (I0). Different BL equations resulted in large variation in I/I0 at 

higher ranks (≥20, young leaves) without systematic deviation from I/
I0 predicted using RT. At the lower ranks, the variation in I/I0 between 
BL equations became subtle. The light model BL using Equations (1b) 
and (1d) seemed to better capture the variability of Ii/I0 by RT at the 
higher ranks, which was not observed when applying Equation (1c). 
However, Equation (1c) rather predicted the middle-lower range of Ii/
I0 variability at the higher ranks.

Total light interception by individual leaves (mol per leaf, Fig. 6B) 
over 5 weeks of growth period was also simulated under the conditions 
of experiment 2a. Regardless of the approach used, the middle-lower 
layer of the canopy contributed largely to total light interception (Fig. 
6B). Total light interception simulated using BL (1b) was 77–92 % of 
that using RT, whereas it was 88–102 % using BL (1c) and 116–134 % 
using Equation (1d) of that using RT [see Supporting Information—
Table S3]. Time resolution DS resulted in higher total light intercep-
tion than HS, ca. 14 % higher using RT and 4 % higher using BL [see 
Supporting Information—Table S3].

Since additional information of lamina elevation angle was not 
required in Equations (1c) and (1d), and these two equations captured 
the middle-lower and the higher ranges, respectively, of Ii simulated by 
RT, we combined the two equations to create variability in Ii by a ran-
dom factor ω (between 0 and 1 for individual leaves at a given time):

Ii = min [ Ii(1c), Ii(1d) ] + ω × {max [ Ii(1c), Ii(1d) ]
−min [ Ii(1c), Ii(1d) ]} − 0.3× (1− ω)×min [ Ii(1c), Ii(1d) ]

 (1e)
where Ii (1c) and Ii (1d) are the Ii simulated using Equation (1c) 
and Equation (1d), respectively. Using this equation, a variation of 
Ii around the minimum of Ii (1c) and Ii (1d) was generated, with a 
maximal value of Ii equal to the maximum of Ii (1c) and Ii (1d), and 
a minimal value of Ii equal to 70 % of the minimum of Ii (1c) and 
Ii (1d). The 30  % of variability for the lower Ii range chosen was 
consistent with the variability simulated by RT (1Q 18 %, median 
31 %, mean 35 %, 3Q 45 %). Equation (1e) led to comparable esti-
mation in leaf-level Ii/I0 (Fig. 7A) and light interception (Fig. 7B; 
see Supporting Information—Table S3) to RT, and was used in 
the further BL simulations.

3.5 Comparison of predictive accuracies of dry  
matter production and photosynthetic acclimation 

using RT and using the BL
Dry matter production is the outcome of light acclimation and light-
driven photosynthesis, reflecting integrative light–plant interaction 
from leaf to plant level. Shoot (total above-ground) dry matter was 
simulated under the conditions of experiments 1b, 2a and 2b using 
four combinations of model approaches and time-step resolutions, 
BL-DS, BL-HS, RT-DS and RT-HS, and compared to measured data 
(Fig. 8). The lowest accuracy (38.8 %, Fig. 8C) was achieved by RT-DS 
due to large overestimation, and the highest accuracy (83.0  %, Fig. 
8B) by BL-HS, comparable to that of RT-HS (79.9 %, Fig. 8D). Both 
BL-HS and RT-HS were able to predict shoot dry matter under dif-
ferent treatments during different seasons with high accuracy, but 
the computational duration of RT-HS (64.4  ± 24.0  s per simulation 
day) was by one order of magnitude longer than the execution time of 

Figure 6. Comparison of simulated light conditions at leaf 
level using different light models and time resolutions. The 
models compared were (A, B) RT and (C–H) the BL in DS 
(yellow circles) or HS (black triangles). Different methods 
of BL were compared, namely using Equation (1b) (C, D), 
Equation (1c) (E, F) and Equation (1d) (G, H). (A, C, E, G) 
Snapshot of simulated relative PPFD (Ii/I0) at 1200 h on the 
last day of a 5-week growth period, calculated as incident 
PPFD at each leaf divided by PPFD level above the canopy. (B, 
D, F, H) Total light interception (mol per leaf) summed over 
the 5-week growth period under the conditions of experiment 
2a and treatment HLHN (for other treatments, see Supporting 
Information—Table S3).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/3/2/diab031/6396947 by Johann H

einrich von Thuenen-Institut user on 25 January 2023

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab031#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab031#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab031#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab031#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab031#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab031#supplementary-data


How does structure matter? • 11

BL-HS (1.34 ± 0.16 s per simulation day). It should be noted that the 
computational duration to simulate k using RT was not accounted for 
in the case of BL-HS.

For both BL and RT approaches, time resolution of DS led to ca. 
40 % (between 20 and 55 %) higher simulated shoot dry matter than 
HS [see Supporting Information—Fig. S4A], although DS only 
resulted in 14 % and 4 % higher total light interception per plant than 
HS using RT and BL, respectively [see Supporting Information—
Table S3]. The overestimation by DS did not appear to result from a 
consistent overestimation of photosynthetic parameters, i.e. net pho-
tosynthesis rate measured at PPFD 1300  µmol m−2 s−1 (An1300; see 
Supporting Information—Fig. S4B), maximum electron transport 
rate (Jmax; see Supporting Information—Fig. S4C) and maximum 
carboxylation rate (Vcmax; see Supporting Information—Fig. S4D). 
In the following comparisons of model performance, only simulations 
with HS were further examined.

Plant dry matter distribution was simulated with time resolution of 
HS and compared between RT and BL Equation (1e) (Table 3). Since 
dry matter distribution only depended on dry matter availability in a 
plant and not on light, it was directly affected by simulated shoot dry 
matter following a given priority scheme. Positive value of relative bias 
indicated a systematical overestimation of shoot and vegetative, while 
negative relative bias indicated underestimation of dry matter distribu-
tion to reproductive parts (Table 3). Following the same comparison, 
simulated leaf photosynthetic parameters were also examined with 
measured data obtained in experiment 2a. For all parameters examined, 
both BL and RT resulted in high accuracies between 71 and 82 %, except 
for maximum carboxylation rate (Vcmax) and respiration rate (Rd, Table 

3), which were clearly over- and underestimated, respectively. In addi-
tion, both approaches tended to overestimate leaf chlorophyll (Chl) 
and photosynthetic nitrogen (Np), and to underestimate net photosyn-
thesis rate measured at PPFD 1300 µmol m−2 s−1 (An1300) and maximum 
electron transport rate (Jmax). In summary, the performance of BL (1e) 
is comparable to and even slightly better than RT in predicting plant-
level dry matter accumulation and leaf-level photosynthetic acclimation 
although there is still room for improvement in the functional part of 
the model, particularly dry matter distribution, Vcmax and Rd.

3.6 Sensitivity of predictive accuracy of dry matter 
production and photosynthetic acclimation to light 

extinction coefficient used
To test the sensitivity of model predictions to the k value used, con-
stant values of kc ranging 0.3–0.7 (in steps of 0.1) and a variable kc cal-
culated using Equation (2) were input into Equation (1c) to simulate 
plant dry matter in experiments 1b, 2a and 2b (Fig. 9A and C) and 
photosynthetic parameters in experiment 2a (Fig. 9B and D).

Among the constant kc used, a kc of 0.5 resulted in the highest accu-
racy (86.5 %) for shoot dry matter (Fig. 9A), and a deviation in kc of 
0.2 from kc of 0.5 led to a decrease in accuracy by up to 27 %. When 

Figure 7. Comparison of simulated light conditions at leaf level 
using different light models and time resolutions. The models 
compared were (A, B) RT and (C, D) the BL (1e) in DS (DS, 
yellow circles) or HS (black triangles). (A, C) Snapshot of 
simulated relative PPFD (Ii/I0) at 1200 h on the last day of 5-week 
of growth period, calculated as incident PPFD at each leaf divided 
by PPFD level above the canopy. (B, D) Total light interception 
(mol per leaf) summed over the 5-week growth period under 
the conditions of experiment 2a and treatment HLHN (for other 
treatments, see Supporting Information—Table S3).

Figure 8. Model evaluation by comparing simulated shoot dry 
matter (g per plant) to measured data obtained in experiments 
1b, 2a and 2b. Shoot dry matter including all above-ground 
dry matter of vegetative and reproductive parts was simulated 
(A) by BL (1e) in DS, (B) by BL in HS, (C) by RT and DS, (D) 
by RT and HS. Measured data were obtained in experiment 1b 
(yellow symbols), 2a (blue symbols) and 2b (green symbols) 
with three replications harvested between the second and 
the fifth weeks after transplanting into greenhouse (total 
36 measured data points). Four combinations of light and 
nitrogen supply treatments (high light, HL, low light, LL, 
high nitrogen, HN, and low nitrogen, LN) applied in the 
experiments are indicated by different symbols. Dotted lines 
are one-to-one lines.
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using kc values estimated by Equation (2) (indicated by the vertical 
grey line in Fig. 9A), the accuracy for shoot dry matter was 82.5  %, 
which was slightly lower than that by BL (1e) (83.0 %, Table 3). The 
higher the kc used, the higher was the simulated plant dry matter and 
thus the higher the overestimation of shoot dry matter (Fig. 9C). The 
accuracy for vegetative dry matter peaked at a kc of 0.4 (Fig. 9A), while 
that for reproductive dry matter increased with kc, indicating a bias in 

distribution scheme towards vegetative parts. The accuracies of An1300 
and Rd increased with increasing kc, and that of Chl and Vcmax increased 
with decreasing k (Fig. 9B), but the effects of kc on these parameters 
were not as strong as on dry matter (Fig. 9A). Higher kc values also 
resulted in higher simulated photosynthetic parameters (Fig. 9D), 
where a kc of 0.5 resulted in the highest accuracy (82.9 %) for Jmax (Fig. 
9B).

In summary, BL (1c) with a constant kc of 0.5 was able to predict 
plant dry matter production and leaf photosynthetic acclimation well 
(Fig. 9), justifying the applicability of a constant k using BL if an 
appropriate k could be first determined before model simulations were 
conducted. Although in this case the application of variable k values 
(Equation (2)) seemed somewhat redundant, it provided a proper k 
proxy without prior knowledge of k.

4 .  D I S C U S S I O N
In conjunction with a dynamic model of greenhouse cucumber, we 
compared the performance of 1D (BL) and 3D (RT) light modelling 
approaches in predicting leaf-level photosynthetic acclimation and 
plant-level dry matter accumulation over growth periods of 2–5 weeks. 
Prediction accuracy by BL Equation (1c) (Fig. 9) or Equation (1e) 
(Table 3) in combination with HS time resolution of simulation was 
found comparable to that by RT with HS (Table 3), when using light 
extinction coefficients k estimated following an empirical relationship 
(Equation (2)) established with the assistance of RT.

4.1 Applying the 3D light model enabled  
systematic examination of variation in light  

extinction coefficient k
The advantage of using the proposed relationship to estimate k as a 
function of L is that it provided a k proxy, whereby the effects of canopy 
geometry on k are taken into account. Motivated by similar intention, 

Table 3. Predictive quality of light models using simple BL (1e) and using RT in HS. Plant dry matter variables simulated 
were vegetative and reproductive dry matter per plant and their sum as shoot dry matter. Photosynthetic acclimation variables 
simulated were net photosynthesis rate measured at PPFD 1300 µmol m−2 s−1 (An1300), maximum electron transport rate (Jmax), 
maximum carboxylation rate (Vcmax), chlorophyll (Chl), photosynthetic nitrogen (Np) and respiration rate (Rd). Measured data 
of plant dry matter were obtained in experiments 1b, 2a and 2b during the second and the fifth weeks after planting with three 
replications (total 36 measured data points). Leaf photosynthetic parameters were measured at two leaves per plant in experiment 
2a for four consecutive weeks with two replications (total 32 measured data points).

Light model Accuracy (%) Relative bias RMSD (unit as variable)

Variable BL-HS RT-HS RT-HS

Shoot dry matter (g per plant) 83.0 79.9 0.037 0.164 14 16
Vegetative dry matter (g per plant) 62.8 56.5 0.540 0.742 20 24
Reproductive dry matter (g per plant) 43.9 46.3 –0.531 –0.474 15 14

An1300 (µmol CO2 m−2 s−1) 73.3 71.5 –0.342 –0.359 4.1 4.4
Jmax (µmol e− m−2 s−1) 81.2 75.7 –0.127 –0.141 22 28
Vcmax (µmol CO2 m−2 s−1) 72.2 67.6 0.250 0.227 17 20
Chl (mmol m−2) 80.3 79.7 0.305 0.263 0.085 0.087
Np (mmol m−2) 82.2 78.4 0.151 0.121 6.9 8.3
Rd (µmol CO2 m−2 s−1) 68.8 61.5 –0.384 –0.365 0.41 0.51

Figure 9. Effect of light extinction coefficient kc on accuracy 
of predicting leaf photosynthetic acclimation and plant dry 
matter by BL (1c). Accuracies for (A) plant dry matter and 
(B) leaf photosynthetic parameters. Relative bias for (C) plant 
dry matter and (D) leaf photosynthetic parameters. Constant 
values of kc between 0.3 and 0.7 were tested. Grey vertical 
dashed lines indicate the accuracy using variable kc values 
estimated depending on canopy configuration by Equation (2).
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the effect of row spacing on k was examined experimentally in maize, 
sorghum, soybean and sun flower canopies by Flénet et al. (1996) as 
well as by a modelling approach in virtual gramineous canopies by 
Drouet and Kiniry (2008). Both found a decrease in k with increasing 
row spacing under the same plant density, consistent with our in silico 
measurements of k using RT (Fig. 4).

With information of canopy configuration, i.e. distance between rows 
(Drow) and distance between plants in a row (Dplant), minimal k (kmin) for 
a developed cucumber canopy was estimated using the empirical rela-
tionship Equation (2b) (Fig. 5A). In the given ranges of Drow between 1 
and 2 m and Dplant between 0.1 and 1.0 m, kmin was found higher in more 
quadratic canopies, represented by a PR closer to one (Fig. 5B). With PR 
< 4, kmin tended to be higher under lower plant density, while over a PR 
of 4, kmin tended to be higher under higher plant density (Fig. 5B). The 
observation under lower PR can be intuitively understood in the sense of 
clumping at a scale of plant community. A quadratic distribution leads to 
lower clumping of plants in the field and thus higher k (Equation (1a)). 
Under high PR, individual plants are prone to aggregate within the row, 
but increasing plant density at the same PR reduces the gaps between the 
rows and slightly decreases clumping, thereby resulting in higher k (Fig. 
5B). The experimental data obtained from maize canopies (Maddonni 
et al. 2001b) agreed with our in silico observation. At a density of 3 plants 
per m2 and a leaf area index L ca. 2.5, a more square-distributed maize 
canopy with PR = 1.5 had higher k in comparison to that of a canopy 
with PR = 2.7. However, the effect of canopy geometry became insig-
nificant under higher plants density (9 and 12 plants per m2), and k was 
found higher in the canopies with a plant density of 9 plants per m2 (L of 
ca. 6) and 12 plants per m2 (L of ca. 7) than the canopy with a density of 
3 plants per m2 (Maddonni et al. 2001b).

Although internode elongation and phototropism reacted to light 
signals in the current model, appearance of new phytomers, leaf expan-
sion and petiole elongation exhibited no feedback response to these 
cues. Ignoring responses to light limitation and shading occurring at a 
high plant density, e.g. reduced leaf development and increased petiole 
elongation (Sessa et al. 2005; He et al. 2020), might lead to an underes-
timation of k due to unrealistically higher L and light transmission (I/
I0) using equation k = −ln(I/I0)/L. This increases the uncertainty of 
Equation (2b) under high plant density.

The values of k reported in literature for greenhouse cucumber 
vary from 0.42 to 0.87 [see Supporting Information—Table S4]. 
In addition to the effect of canopy geometry, seasonal solar posi-
tion and diffuse light also contribute to this variation. Consistent 
with Equation (1a), a smaller solar zenith angle was found to result 
in lower k using a wheat FSPM (Evers et  al. 2009), where in the 
most extreme case, a difference of 60° solar zenith led to a differ-
ence in k up to 0.48. The presence of diffuse light generally leads 
to lower k, although this effect interacts with solar angle (Li et  al. 
2014). These effects explain partly the lower k found in spring and 
summer (k between 0.4 and 0.6, from March to September) com-
pared to autumn and winter (k > 0.8, from October to February; see 
Supporting Information—Table S4). The values of k in Fig. 4 was 
simulated from Julian day 206 to 227 under the conditions of experi-
ment 1a (Table 1), where the solar zenith angle at 1200 h was 47° 
at the beginning and 35° at the end of the simulation. The effect of 
the zenith angle was intrinsically included in the k quantified by the 

3D model. At the same location, the midday solar zenith can vary 
from 29° (cosθ = 0.87) at summer solstice to 76° (cosθ = 0.24) at 
winter solstice. Since in Equation (2b) these effects of incident light 
were not explicitly described (but see Eqs 5–8 in Lizaso et al. 2005), 
Equation (2) was only advisably applicable for conditions used in 
this study (as evaluated in Fig. 8B).

4.2 Simulation with different time resolutions 
revealed the impact of fluctuating light on dry matter 

accumulation
Higher dry matter accumulation in plants was predicted by simula-
tions in DS (Fig. 8A and C) compared to HS (Fig. 8B and D), leading 
to an 20–55  % overestimation of dry matter with a trend of higher 
overestimation simulated by RT at Week 5 than that at Week 2 [see 
Supporting Information—Fig. S4A]. Since DS did not lead to appar-
ent overestimation of photosynthetic parameters [see Supporting 
Information—Fig. S4B–D], this overestimation of plant dry matter 
could not be explained by the effect of photosynthetic acclimation. 
Although input total light integral per day was identical in both DS 
and HS, total plant light interception was ca. 14  % and 4  % higher 
in DS simulations at the end of a period of 5 weeks by RT and BL, 
respectively [see Supporting Information—Table S3], which still 
did not completely explain the extent of overestimation by DS. It can 
be argued that DS simulations approximate virtual plants photosyn-
thesizing under constant light regime with an average daily light level 
without fluctuation during the day, whereas HS simulations approxi-
mate a growth light condition with natural fluctuation every hour. The 
phenomenon has been experimentally observed across C3 and C4 spe-
cies. Compared to the plants grown under fluctuating light regimes, 
19–140  % higher dry matter was accumulated under constant light 
regimes for the same daily light integral depending on plant species 
and the fluctuating pattern applied (Watling et al. 1997; Leakey et al. 
2002; Kubásek et  al. 2013; Vialet-Chabrand et  al. 2017b; Sakoda 
et al. 2020). The discrepancy has been described as Jensen’s inequal-
ity, a mathematical consequence of the non-linear functions where 
systematic bias aggregates from averaging values of the independent 
variable over a coarser scale than that experienced by the real system 
(Ruel and Ayres 1999). This applies especially to the asymptotic light 
response of photosynthesis since its response to changing light takes 
place rapidly at the scale of seconds to minutes, whereas the modifica-
tion in photosynthetic proteins occurs at the scale of hours (Mettler 
et al. 2014). However, this effect has also been reported insignificant 
in tomato plants grown for 2–3 weeks (Kaiser et  al. 2018; Y Zhang 
et al. 2020b), or reported to be opposite in an understory rainforest 
species Micromelum minutum (Watling et  al. 1997). The large vari-
ability in the observations between species (Watling et al. 1997; Blom 
and Zheng 2009) may be explained by the species-specific biologi-
cal effects (photosynthetic induction, e.g. Acevedo-Siaca et al. 2020; 
photoprotection, e.g. Niedermaier et  al. 2020) in addition to the 
mathematical effect of Jensen’s inequality. This pinpoints the avenues 
for further investigations of species-specific mechanisms of acclima-
tion to dynamic light environments in both morphology and physi-
ology (Vialet-Chabrand et  al. 2017a; Pao et  al. 2019b; Morales and 
Kaiser 2020; Y Zhang et al. 2020b).
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4.3 Application of 1D light model facilitated  
predictions of average responses at whole-leaf and 

whole-plant levels
The choice of model depends on the scale of traits of interest ( Jones 
et al. 2017). The general approach for constructing models is starting 
simple and then extending with details necessary for answering the 
question addressed, ensuring that the model is fit for purpose (Renton 
2011; Auzmendi and Hanan 2020). The capability of FSPM to cap-
ture 3D distribution of environmental conditions and their interaction 
with plant architecture is necessary for a realistic representation and 
intuitive comprehension of the real systems (Vos et al. 2010) in order 
to answer research questions where spatial variability plays a crucial 
role, e.g. studying plant spacing, canopy structure manipulation and 
their interaction with lighting conditions from both solar and artificial 
sources (e.g. Buck-Sorlin et al. 2020). The advantage of FSPM enables 
mechanistic analyses of individual processes involved in architectural 
acclimation, assisting with identifying leaf- and canopy-level traits 
for improving cultural practices (e.g. Buck-Sorlin et  al. 2011, 2020; 
Evers and Bastiaans 2016; N Zhang et al. 2020a) and selective breed-
ing (e.g. Chen et al. 2014a; Perez et al. 2018). Here, we took advantage 
of the 3D light model to examine the effect of canopy geometry on 
light interception under various stages of canopy development (Fig. 
4; see Supporting Information—Fig. S3), thereby establishing an 
estimation for k (Equation (2)) where the influences of diffuse light 
and solar zenith angle were integrated. The established estimation of k 
can then be applied to facilitate in silico experiments of various plant-
ing scenarios using 1D approach under the given environment. Since 
the current 3D model only takes the spatial distribution of light into 
account, physiological responses to other microclimate, e.g. tempera-
ture, relative humidity and CO2 (but see Boulard et al. 2017; Ma et al. 
2019), were not included. With future development of FSPMs, model-
ling biological response at a finer spatio-temporal scale would enable 
intelligible examinations in plant–environment interactions.

The application of 1D BL approach assumes homogeneity and isot-
ropy of the canopies. This approximates well the conditions of evenly 
spaced, dense and closed canopies with randomly orientated and dis-
tributed canopy elements (Campbell and Norman 1989; Ponce de 
León and Bailey 2019), thereby well predicting the vertical extinction 
of direct solar radiation (Nilson 1971). For crops with fine and/or pin-
nate leaves with azimuthally symmetric orientation (e.g. wheat, tomato 
and palm), the assumptions appear to be adequate. However, for crops 
with large and compact leaves (e.g. cucumber and banana), high het-
erogeneity in the horizontal light distribution is expected, especially 
at the early developmental stages and in a row arrangement, where 
the assumptions are violated due to the large gaps in the plant com-
munity. Although presentation of light–plant interaction is restricted 
by using 1D model for cucumber canopies at an early developmental 
stage, its effect on carbon assimilation during this stage may not be 
significant to affect the total dry matter production at the scale of a 
later stage. Moreover, in a plant community with high ratio between 
its horizontal and vertical dimensions the horizontal heterogeneity 
may become recurrent, so that the probability of photon interception 
by individual plants still follows the Beer–Lambert law at the commu-
nity level (Ponce de León and Bailey 2019; Bailey et  al. 2020). The 

impact of heterogeneity is expected to be further reduced under light 
condition consisting of diffuse light due to the high solar zenith angle 
(low elevation angle) of the incoming radiation (Ponce de León and 
Bailey 2019). Extensions and modifications have been proposed for 
the BL to partly include the variability in horizontal light distribution 
between canopies for row crops (Thornley and Johnson 1990), and by 
considering diffuse/direct light distribution in a canopy and shade/
sunlit portion within a leaf (de Pury and Farquhar 1997; Lizaso et al. 
2005; Roupsard et al. 2008; Govind 2014; Hikosaka 2014) depending 
on modelling aims.

Although canopy light interception and absorption can be well 
approximated using 1D light model, its suitability for predicting dry 
matter production is still unclear given the non-linearity of the light 
response of photosynthesis (Ponce de León and Bailey 2019). We 
showed that the classical models can be efficient tools for agronomic 
purposes. For simulating traits from whole-leaf (photosynthesis) to 
whole-plant (dry matter) level, the application of the simplest 1D light 
model following the BL (Equations (1c) and (1e)) reduced the com-
putational demand without compromising the predictive accuracy 
of responses in the greenhouse cucumber canopies where high het-
erogeneity is expected. In summary, our results suggested that, with 
the assistance of the 3D plant structure and light model, the 1D light 
model using the BL provided efficient estimation for long-term pro-
cesses integrating over weeks.

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Note S1. Supplementary information of model description.
Table S1. Constants used to simulate phyllochron, leaf expansion and 
petiole elongation.
Table S2. Scenarios of plant densities and corresponding distances 
between rows and between plants simulated in Fig. 4.
Table S3. Simulated total light interception accumulated over a five-
week growth period in experiment 2a.
Table S4. Reported light extinction coefficient k from literature for 
greenhouse cucumber crops.
Figure S1. Diagram of model data flow of the dynamic plant model of 
greenhouse cucumber.
Figure S2. Comparison of measured and simulated light interception 
efficiency at different leaves using ray tracing in hourly steps.
Figure S3. Simulated relationship between light extinction coefficient 
k and leaf area index of the canopy under different arrangements.
Figure S4. Overestimation by simulations in daily steps compared to 
in hourly steps of dry matter and photosynthetic parameters.
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