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Abstract 
Context  Declining biodiversity in agricultural land-
scapes has increased the need for research and moni-
toring of insect abundance and diversity at the  land-
scape level.
Objectives  We investigated the accuracy of differ-
ent spatial sampling designs in estimating landscape-
level abundance and species richness of carabids in 
agricultural landscapes and, further, which sample 
size per landscape section was required and whether 
dominating land use or landscape subdivision affected 
accuracy and required sample size.
Methods  We developed a simulation model that cre-
ated raster maps of agricultural landscapes, compiled 
local carabid communities (species composition and 
abundances) within raster cells and simulated the 

sampling of carabids with pitfall traps using different 
spatial sampling designs and sample sizes between 4 
and 49 sampling points per landscape section. Spatial 
sampling designs included random, systematic grid-
based, stratified and clustered schemes.
Results  To estimate landscape-level abundance, 
area-proportional stratified random sampling was 
most accurate followed by systematic grid-based 
designs. A sample size of 25 appeared to be the best 
trade-off between accuracy and sampling cost. Accu-
racy was not affected substantially by landscape char-
acteristics in most cases. With respect to species rich-
ness, all designs except for clustered sampling had 
comparable accuracies, but even 49 samples were not 
sufficient to detect 80% of the species.
Conclusion  Systematic grid-based designs are gen-
erally recommendable for sampling of carabids in 
agricultural landscapes and, in case a carabid-specific 
habitat classification is available, area-proportional 
stratified random sampling provides optimal accuracy 
for estimating landscape-level abundance. For assess-
ment of species richness, large sample size is more 
important than spatial sampling design.
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Introduction

The abundance of insects declined in agricultural 
landscapes over the last decades (Hallmann et  al. 
2017; Seibold et  al. 2019) leading to a loss of eco-
system services and cascading effects on food webs 
(Cardoso et al. 2020). This has increased the need for 
research on the effectiveness of biodiversity meas-
ures in supporting insects and for monitoring of the 
development of insect communities in agricultural 
landscapes (Brooks et  al. 2012; Kunin 2019; Scher-
ber et al. 2021). Particularly, an increasing number of 
research and monitoring projects are seeking to assess 
the abundance and species richness of insects at land-
scape level (Scherber et al. 2019). In this regard, the 
questions arise of how to place sampling points in a 
landscape so that estimates of abundance and species 
richness are representative of the whole landscape, 
and how many sampling points are required?

Agricultural landscapes are spatially heterogene-
ous as they comprise different crops and semi-natu-
ral habitats. In heterogeneous landscapes with sev-
eral land-use/land-cover (LULC) types that differ in 
species composition and richness, the placement of 
sampling points may have substantial influence on 
landscape-level estimates of abundance and species 
richness (Miller and Ambrose 2000). This may be 
particularly severe with ground-dwelling insects who 
have a limited radius of action and whose abundance 
and species richness varies among LULC types, such 
as carabid beetles (Knapp and Řezáč 2015; Knapp 
et al. 2019).

Several spatial sampling designs are available for 
placing sampling points on a section of the earth’s 
surface in order to estimate the expected value of 
some spatial variable (Wang et  al. 2012). Here we 
will focus on sampling designs that do not require 
prior measurements of the spatial variable of inter-
est because such data are rarely available for insects 
in agricultural landscapes. That is, we will not con-
sider sampling designs based on estimates of spatial-
autocorrelation and model-based sampling methods 
(Wang et al. 2012; Benedetti et al. 2015). Instead, we 
will look at sampling designs that we deem generally 
applicable to ground-dwelling insects in agricultural 
landscapes and that require either no prior knowledge 
of landscape heterogeneity or use a spatial stratifi-
cation based on some sort of land-cover or habitat 
classification. These include simple spatial random 

sampling, systematic sampling designs based on spa-
tial grids, stratified random sampling, area-propor-
tional stratified random sampling and clustered sam-
pling (Wang et al. 2012).

Previous theoretical and empirical studies have 
shown that systematic and stratified sampling designs 
can be more efficient than simple spatial random 
sampling when the variable of interest shows spatial 
structure, such as spatial auto-correlation or patchy 
distribution of different mean values (Miller and 
Ambrose 2000; Wang et  al. 2010; McGarvey et  al. 
2016). However, rankings of efficiencies of spatial 
sampling designs may vary in the presence of ani-
sotropy or non-stationarity of the variable of inter-
est (Wang et  al. 2012). Regarding ground-dwelling 
insects in agricultural landscapes, species richness 
and abundances vary among different LULC types 
and, thus, are spatially auto-correlated (Knapp and 
Řezáč 2015; Knapp et  al. 2019). Further, crop rota-
tion will presumably lead to non-stationary distribu-
tions of abundance and species richness (Beduschi 
et al. 2015). Therefore, it is uncertain which type of 
spatial sampling design—simple random, systematic, 
stratified—would most reliably estimate abundances 
and species richness of ground-dwelling insects at 
landscape level.

Beyond general anisotropy and non-stationarity, 
the appropriateness of spatial sampling designs may 
be affected by landscape composition and landscape 
structure, i.e., the areal proportions of LULC types 
and the spatial configuration of fields and landscape 
elements, respectively (Plotkin and Muller-Landau 
2002). Regarding landscape composition, the une-
ven distribution of areal proportions of LULC types 
may be a challenge for the efficiency of sampling 
designs (Kivinen et al. 2006). Normally, agricultural 
landscapes are strongly dominated by either arable 
fields or grassland while subordinate land-use types 
and, particularly, linear landscape elements, such as 
hedges and field margins, have lower areal propor-
tions and may be underrepresented by random or 
systematic sampling designs. In this regard, the mag-
nitude of the difference in abundance and species 
richness between the dominating and subordinate 
LULC types may affect the efficiency of sampling 
designs. With respect to landscape structure, the effi-
ciency of systematic sampling designs may depend 
on the scale of spatial auto-correlation, i.e., field size, 
in relation to the size of the grid used for drawing 
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sampling points (Ripley 2005). Comparing different 
agricultural landscapes, field sizes may vary strongly 
between less than a hectare to hundreds of hectares 
(Lesiv et  al. 2019). Thus, it is questionable whether 
systematic sampling design will perform equally well 
in different types of agricultural landscapes.

In the present study, we assessed the efficiency 
of different spatial sampling designs in estimating 
landscape-level abundance and species richness of 
carabids in agricultural landscapes using a simulation 
approach. For this purpose, we created artificial land-
scape maps representing 2 × 2 km in nature that com-
prised LULC types typical of agricultural landscapes 
in temperate Europe, including linear elements. The 
landscapes were either dominated by arable land or 
by grassland. Further, we varied the degree of sub-
division of the landscapes by controlling the number 
of fields (including both arable and grassland parcels) 
between 100, 500 and 1000 so that average field size 
varied between approximately 0.5 and 5 ha.

We aimed at answering the following research 
questions:

1.	 Which spatial sampling design is most accurate 
in estimating abundance/ species richness of car-
abids at landscape level?

2.	 Which sample size is required to get an accurate 
estimate of landscape-level abundance/species 
richness and which sample size is optimal with 
respect to the trade-off between sampling effort 
and accuracy?

3.	 Does the estimation accuracy and the required/ 
optimal sample size depend on landscape compo-
sition or subdivision?

As criteria for accurate estimates, we considered an 
acceptable deviation of ± 10% for abundance and a 
detection rate of 80% for species richness.

Methods

Spatial sampling designs

We tested seven spatial sampling designs (Table  1) 
that appeared generally suitable for sampling biodi-
versity in agricultural landscapes and do not require 
prior knowledge of the spatial distribution of the 
variable of interest apart from land-surface classifica-
tions, such as LULC or habitat types, that are used in 
stratified designs (Wang et al. 2012). Examples of the 
spatial distributions of sampling points for the tested 
sampling design are shown in Fig.  1. We excluded 
sampling designs that take into account spatial auto-
correlation because statistics of auto-correlation of 
occurrence and abundance of carabid species will 
usually not be available.

Empirical data of carabid occurrence and abundance

We aimed at compiling realistic local communi-
ties of carabids with respect to species composition, 
frequency and abundance on the landscape rasters 

Table 1   Description and implemented parameter values of spatial sampling designs. Abbreviations: LULC: land use/ land cover

Sampling design Description Parameter value

Random Sampling points are placed randomly within the landscape
Stratified random Each LULC type receives the same number of sampling points, which are placed randomly 

within the area of the respective type
Area-proportional 

stratified random
Each LULC type receives a number of sampling points proportional to its area in the land-

scape, which are placed randomly within the area of the type
Systematic random The landscape is superimposed by a regular grid and each grid cell receives N sampling 

points that are placed randomly
N = 1

Systematic regular Grid-based as above, but all sampling points have the same X and Y offset from the centre 
of the grid cell

N = 1

Systematic unaligned Grid-based as above, but the X offset from the centre of the grid cells is constant within 
each row while the Y offset is constant within each column of the grid

N = 1

Clustered N clusters of sampling points are scattered around N random locations in the landscape N = 2
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used for the simulations of spatial sampling. For this 
purpose, we used field data from a research study 
performed by the Leibniz Center for Agricultural 
Landscape Research (ZALF) in 2011 and 2012 in 
Scheyern, Bavaria, Germany (Glemnitz et  al. 2013) 
where carabids were sampled in all major LULC 
types in a section of an agricultural landscape of 
approximately 500 × 500 m. Pitfall traps were placed 
on neighbouring LULC patches comprising two ara-
ble fields with different crop types, one fallow field, 
one meadow, one field margin, one forest edge and 
one forest interior site (Fig. S1). In each habitat, five 
traps were installed. The distance between sampling 
sites was minimum 100 m. The trap replicates within 
single sites had a regular distance of 10 m.

The traps were sampled every two weeks from 
beginning of April until end of October in both years, 
summing up to 29 dates and 890 pitfall-trap samples 
in total. Carabid beetles were caught and preserved 
with a 4% formaldehyde solution with a drop of 
detergent. Pitfall content was sorted out and stored in 
70% ethanol until identification to species level using 
Müller-Motzfeld (2004). The nomenclature followed 
Köhler and Klausnitzer (1998).

In addition to the field data described above, 
we compiled a hybrid dataset based on data from 

multiple projects that conducted samplings of car-
abids with pitfall traps in various regions of Germany. 
However different studies used different exposure 
times and numbers of pitfall traps per site and, fur-
ther, the sampling periods varied considerably. There-
fore, we could only use a subset of available data 
with similar sampling periods. We scaled the data to 
a standard exposure time and one trap per site. This 
second dataset was used to check if results were con-
sistent for different sources of carabid data.

Pitfall traps introduce several biases into occur-
rence and abundance data of arthropods (Zaller et al. 
2015). The number of trapped individuals represents 
the activity density around the trap, rather than real 
abundance, and depends on species’ traits so that 
some species are overrepresented while others may 
be missing in the traps (Knapp et al. 2020). Further, 
the number of catches depends on temperature (Saska 
et al. 2013; Engel et  al. 2017), and the efficiency of 
pitfall traps varies with choice of collecting fluid and 
trap size (Koivula et  al. 2003; Schmidt et  al. 2006). 
We chose to use pitfall traps in awareness of these 
limitations, because it is the most widely used method 
in practice and other sampling methods are associ-
ated with other, partly even greater limitations (Zaller 
et al. 2015).

Fig. 1   Examples of spatial distributions of sampling points in landscapes of 2 × 2 km for the seven spatial sampling designs tested in 
the simulation study
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Species occurrence was calculated by dividing the 
number of each individual pitfall sample containing 
the respective species by the total number of samples 
for each LULC type. The species’ abundances were 
calculated as the mean number of individuals in pit-
fall-trap samples where they were present per LULC 
type. Accordingly, the standard deviations of species’ 
abundances were also calculated based on samples 
containing the species.

Highest total carabid abundances were found 
in arable fields, followed by forest edges (Fig.  2). 
Medium abundances were found on fallow land, 
grassland and in the forest interior, and the lowest on 
the field margins. Species numbers showed the same 
ranking among habitats, but with lower variation.

Simulation model of spatial sampling

The simulation of spatial sampling comprised, first, 
the creation of raster-based artificial landscapes with 
different landscape compositions and subdivisions, 
then, the simulation of local carabid communities in 
landscape raster cells and, finally, the sampling of 
carabid communities with different spatial sampling 
designs and different sample sizes. The simulations 
were repeated 100 times. We implemented the sim-
ulation model in R version 3.6.0 using the packages 
NLMR (Sciaini et  al. 2018), plyr (Wickham 2011), 
raster (Hijmans 2021), rgdal (Bivand et  al. 2021), 
rgeos (Bivand and Rundel 2021), sf (Pebesma 2018), 
sp (Bivand et al. 2013), spatialEco (Evans 2021) and 

spatstat (Baddeley et  al. 2015). The program code 
is contained in the file ‘SpatSam_1.0.R’ that can be 
accessed through the GitLab project SpatSam (https://​
gitlab.​com/​jan.​thiele/​spats​am). A detailed description 
of the simulation model is provided in the documen-
tation file in the GitLab project.

The landscapes represented 2.2 × 2.2 km in nature 
and the size of raster cells was 5 × 5 m. We used two 
types of landscape compositions: (a) arable-domi-
nated and (b) grassland-dominated. The subdivision 
of landscapes was controlled by the number of fields, 
which was either 100, 500 or 1000. We first created 
the respective number of fields using Voronoi poly-
gons. Then, we assigned areal Land-use/ land-cover 
(LULC) types to the polygons based on predefined 
proportions that are given in Table  2. Thereafter, 
all boundaries of forest polygons were converted to 
spatial lines of class ‘forest edge’, while 50% of the 
remaining polygon boundaries were assigned to the 
class ‘field margin’. Finally, we created landscape 
rasters by first rasterising the LULC polygons and, 
thereafter, inserting the also rasterised spatial lines of 
forest edges and field margins. For an example of a 
simulated landscape see Fig. S2. The proportions of 
LULC types varied to some degree among the simu-
lated landscapes due to randomness in the creation 
and classification of Voronoi polygons. The mean 
proportional areas of areal LULC types were lower 
than the predefined values because parts of their poly-
gon margins were reclassified as linear landscape ele-
ments. Field margins covered between 1.1 and 8.5% 

Fig. 2   Abundance sums 
per pitfall trap and number 
of species (species pools) 
of carabids by habitat types: 
arable fields (arable), fallow 
land (fallow), agricultural 
grasslands (grassl), field 
margin (margin), forest 
edge (f. edge) and forest

https://gitlab.com/jan.thiele/spatsam
https://gitlab.com/jan.thiele/spatsam
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and forest edges between 0.3 and 5.9% of the area 
(Fig. S3), with proportions increasing with the num-
ber of fields in the landscape.

The local carabid communities were simulated 
based on LULC-type specific frequencies and abun-
dances. For each of the 57 carabid species, we first 
defined the presence cells by drawing a random sam-
ple of raster cells proportional to the species’ fre-
quency stratified by LULC type. For the simulation 
of abundances, we transformed the empirical mean 
abundances in pitfall traps to abundances per raster 
cell. For this purpose, we estimated the effective sam-
pling area of a pitfall trap using a Gaussian kernel of 
5 × 5 raster cells with a standard deviation of 0.6. The 
kernel size of 625  m2 was chosen according to esti-
mated catchment areas of pitfall traps for carabids of 
620–640  m2  (Bergeron 2019). This Gaussian kernel 
was later also used for sampling of carabids assum-
ing a catch rate of 40% of carabid individuals on the 
central raster cell (Table  S1). The effective area of 
the sampling kernel was 22.7  m2 meaning that the 
number of individuals caught in the pitfall trap rep-
resented abundance per 22.7  m2. This abundance 
was then scaled to the size of raster cells (25 m2) and 
divided by catch rate so that it represented total abun-
dances of the species including individuals that were 
not caught in the trap. Then, we drew abundances of 
the respective species for each presence cells from 
either a Poisson distribution to avoid negative values 
when the mean abundance was smaller than five or, 
otherwise, a Gaussian distribution parameterised with 
the transformed mean abundance and transformed 
standard deviation. In this way, we created random 
distribution patterns of presences and abundances of 
species per habitat type (see Fig. S2 for an example).

After that, we simulated spillover of carabid indi-
viduals from grasslands, field margins und forest 
edges into arable fields using a Gaussian kernel and 

multiplying the kernel values with the species’ abun-
dances in habitat cells adjacent to the arable fields. 
Spillover accounted for approximately 1–4% of total 
carabid abundance in the landscape depending on 
landscape composition and subdivision (Fig. S4).

The spatial sampling was simulated with sample 
sizes of 4, 9, 16, 25, 36 and 49 pitfall traps by draw-
ing the respective number of sampling points from the 
central 2 × 2 km of the landscape rasters. We omitted 
the outer 100 m of the landscape to avoid boundary 
effects. For stratified random sampling, sample sizes 
were 6, 12, 18, 24, 36 and 48 because, by design, 
all six LULC types had to receive the same number 
of sampling points. The proportions of LULC types 
among the sampling points varied in the random sam-
pling designs, but areal proportions were generally 
well represented in samples of size 16 and above (Fig. 
S5).

We used the R function rSSI (package spatstat) 
with a minimum distance of zero for simple random 
sampling. Further, we used sampleStratified (ras-
ter) for stratified random sampling, rsyst (spatstat) 
for systematic regular, rstrat (spatstat) for systematic 
random, spsample (sp) for systematic unaligned and 
clustered, and own source code for area-proportional 
random sampling.

For each sampling point, the presence and abun-
dance of all species was recorded and, for each sam-
ple, the total species richness and projected total 
abundance of carabids at landscape-level was calcu-
lated. We projected total abundance by calculating the 
sample mean, dividing by the effective sampling area 
and multiplying by the total landscape area. For strati-
fied random sampling, we additionally calculated 
weighted estimates of landscape-level abundance by 
area of the LULC types.

We conducted sensitivity analyses for those model 
parameters that were uncertain, i.e., the standard 

Table 2   Proportions (%) of land-use/ land-cover (LULC) types for creating artificial landscapes

For areal LULC types, proportions relate to the number of polygons in the landscape, while for linear landscape elements, i.e. field 
margins and forest edges, proportions relate to the number of line segments of the boundaries of field and forest polygons, respec-
tively

Land-use/land-cover type

Landscape composition Arable fields Fallow fields Grassland Forest Field margin Forest edge

Arable-dominated 60 10 20 10 50 100
Grassland-dominated 18 9 55 18 50 100
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deviation of the Gaussian sampling kernel and the 
catch rate. For this purpose, we varied the standard 
deviation between 0.1 and 1.5 (values: 0.1, 0.3, 0.6, 
0.9, 1.2, 1.5) and the catch rate between 0.1 and 1.0 
(values: 0.1, 0.2, 0.4, 0.6, 0.8, 1.0). Further, we tested 
model variants with clustered spatial distribution of 
carabids, with a uniform sampling kernel instead of 
Gaussian, and without spillover.

Analysis of simulation results

We assessed the estimation accuracy of landscape-
level abundance and species richness of carabids with 
Root Mean Squared Error (RMSE) calculated with 
estimated and true abundance/ species richness over 
the 100 repetitions of the simulations. RMSE was 
calculated separately for each combination of land-
scape composition and subdivision, sampling design 
and sample size. Additionally, we calculated Mean 
Percentage Error (MPE) to assess if abundances were 
over- or underestimated.

We calculated 95% confidence intervals of RMSE 
based on 1000 bootstrap resamples of estimated and 
true abundance/ species richness in the 100 rep-
etitions. We further used the RMSE values from the 
bootstrap resamples to conduct pairwise Wilcoxon 
tests (function ‘pairwise.wilcox.test’) comparing 
all sampling methods and sample sizes within each 
landscape type, i.e., combination of landscape com-
position and subdivision. To correct for multiple test-
ing, we applied Benjamini-Hochberg’s adjustment of 
p-values in the Wilcoxon tests.

Further, we tested the estimation accuracy 
with equivalence tests against the true values of 

abundance/ species richness. Regarding abundances, 
we applied paired Two One-Sided Tests (TOST) 
using the function ‘tost’ (package ‘equivalence’; Rob-
inson 2016) with a region of similarity of ± 10%. For 
species richness, we conducted one-sided equivalence 
tests (non-inferiority tests) using the function ‘equiv.
test’ (package ‘eqivUMP’) against 80% detection of 
species.

Results

Abundance

At a sample size of 25 pitfall traps per 2 × 2  km 
landscape, area-proportional random sampling was 
most accurate in estimating landscape-level carabid 
abundance, followed by systematic random and 
systematic regular sampling according to RMSE 
(Fig. 3). Differences in accuracy between sampling 
designs were significant, except for systematic ran-
dom and regular sampling in grassland-dominated 
landscapes (Table  3). All sampling designs but 
stratified random sampling provided estimates of 
abundance equivalent to the true values accord-
ing to Equivalence Tests with a region of similar-
ity of ± 10% (p < 0.05). When using area-weighted 
estimates of landscape-level abundance, stratified 
random sampling also yielded results equivalent to 
the true values and performed particularly well in 
grassland-dominated landscapes, but moderately 
in arable-dominated ones (Fig. S6). The rankings 
of sampling designs did not change consistently 
with increasing sample sizes. Swapping of ranks 

Table 3   Rankings of spatial sampling designs by estimation accuracy of landscape-level abundance and species richness of carabids 
in arable- and grassland-dominated landscapes of 2 × 2 km with 500 fields at sample size 25

Designs with different ranks have significantly different mean Root Mean Squared Error (RMSE) in Wilcoxon tests calculated on 
1000 bootstrap resamplings. Rank numbers with underlining indicate that abundance/ richness estimates were equivalent to the true 
values in Equivalence Tests (p < 0.05) with a region of similarity of ± 10% of mean true abundance or > 80% of true species richness

Target value Landscape type Sampling designs

Random Stratified 
random

Area-prop. strat-
ified random

System. 
random

System. 
regular

System. 
unaligned

Clustered

Abundance arable 4 7 1 2 3 5 6
grassl 5 6 1 2 2 4 7

Species richness arable 3 1 2 4 5 5 7
grassl 3 1 2 5 4 7 6



926	 Landsc Ecol (2023) 38:919–932

1 3
Vol:. (1234567890)



927Landsc Ecol (2023) 38:919–932	

1 3
Vol.: (0123456789)

occurred only among designs that showed moderate 
differences in RMSE (Fig. 3).

Even though most sampling designs provided 
abundance estimates equivalent to the true values at 
a sample size of nine, estimation accuracy further 
increased, i.e. RMSE decreased, with increasing sam-
ple size with the exception of clustered sampling in 
coarse-grained landscapes (100 fields) and stratified 
random sampling in arable-dominated landscapes 
(Fig. 3). The curves of RMSE levelled off at sample 
sizes between 25 and 36. Further increases in estima-
tion accuracy from 36 to 49 sampling points were sig-
nificant (Wilcoxon tests on 1000 resamples p < 0.001; 
exceptions: random sampling in arable-dominated 
landscape with 500 fields: p = 0.460; systematic regu-
lar sampling in grassland-dominated landscape with 
1000 fields: p = 0.572), but moderate except for area-
proportional random sampling in arable-dominated 
landscapes with 100 fields.

In general, area-proportional random sampling 
was the most accurate design for estimating abun-
dances followed by systematic random and regular 
sampling being the next best designs with moderate 
differences in performance. This main pattern did 
not change with landscape composition and subdivi-
sion. However, stratified random sampling performed 
much worse in arable-dominated landscape compared 
to grassland-dominated ones. Further, clustered sam-
pling showed improving accuracy with increasing 
subdivision of the landscapes albeit never reaching 
top ranks.

Deviations of estimates of landscape-level carabid 
abundance from true values did not show consistent 
patterns of over- or underestimation for most of the 
sampling designs, but stratified random sampling sub-
stantially underestimated abundances in arable-dom-
inated landscapes, whereas it overestimated abun-
dances in grassland-dominated ones (Figs. S7–S9).

In the sensitivity analysis, increasing the standard 
deviation of the Gaussian sampling kernel and the 
catch rate decreased estimation errors, but otherwise 
showed results comparable to the main model. That 
is area-proportional random sampling was confirmed 
to be most accurate, while stratified random and clus-
tered sampling performed poorly. Only the interme-
diate sampling designs showed frequent changes of 
ranks among model variants. Also model variants 
with clustered instead of random distribution of spe-
cies in the landscape, or without simulating spillo-
ver or with uniform sampling kernel yielded similar 
results as the main model. Finally, we also found vir-
tually the same results when using the hybrid dataset 
of pitfall samples compiled from several studies con-
ducted in different regions of Germany (Fig. S10).

Species richness

Stratified random sampling was the best design for 
estimating species richness of carabids at landscape 
level at a sample size of 25 (Table 3; N.B.: for strati-
fied random sampling the sample size was 24 in fact) 
and at almost all other sample sizes (Fig. 4). Differ-
ences in accuracy among the remaining sampling 
designs were moderate, apart from clustered sam-
pling, even though they were statistically significant 
in Wilcoxon tests (p < 0.001, with few exceptions). 
The rankings of sampling designs did not change sub-
stantially with sample size. However, all sampling 
designs failed to detect 80% of landscape-level spe-
cies richness. Stratified random sampling detected on 
average 56.3% of the species at a sample size of 25, 
while the maximum detection rate was 66.8% at 49 
sampling points. The second best sampling design, 
area-proportional random sampling detected on aver-
age 55.8% of species at a sample size of 25 and up to 
66.3% at sample size of 49 (cf. Fig. S11).

Estimation accuracy increased markedly with 
sampling size and did not level off at sample size 49. 
Landscape composition and subdivision did not affect 
the accuracy and ranking of sampling designs, except 
for clustered sampling that fell behind in coarse land-
scapes (100 fields). Model variants with different 
parameterisations of sampling kernels and different 
spatial distributions of species showed virtually the 
same results as the main model.

Fig. 3   Accuracy of estimated total carabid abundance at land-
scape level expressed as root mean squared error (RMSE) of 
100 simulation runs versus sample size for seven spatial sam-
pling designs. Simulations were run for six landscape types 
with either arable fields or grasslands as the dominating land-
use and different degrees of subdivision (100, 500 or 1000 
fields per landscape). Shaded areas indicate 95% confidence 
intervals based on 1000 bootstrap resamples
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Discussion

Which spatial sampling design is most accurate in 
estimating abundance/species richness of carabids at 
landscape level?

The present simulations suggest that area-propor-
tional stratified random sampling appears to be most 
accurate in case that a sound habitat classification is 
available. Further, systematic sampling designs per-
form better than simple random sampling in estimat-
ing landscape-level abundance of carabids in agri-
cultural landscapes although the difference is mostly 
small. In contrast, stratified random and clustered 
sampling seem to be inappropriate for estimating car-
abid abundances.

The suitability of stratification depends on our 
knowledge of habitat types and their species com-
position and abundance of carabids. If the habitat 
classes comprised different carabid communities 
with varying composition and abundances that cov-
ered unknown proportions of the habitat-class areas, 
then area-proportional sampling might lead to wrong 
results. Hence, it should be assessed beforehand, if 
available habitat classifications are compatible with 
ecological requirements of carabid communities. 
Since carabids are one of the best-studied groups 
of insects and often used as biodindicators, such an 
assessment should be possible where databases with 
regionalised habitat preferences are available. How-
ever, if the knowledge about the habitats and their 
carabid communities is incomplete, systematic ran-
dom or systematic regular sampling designs seem to 
be most suitable (Wang et  al. 2012). A systematic 
design was also proposed for bees in agricultural 
landscapes (Scherber et  al. 2019). Further, projects 
that investigate multiple species groups might face 
the problem that there is no single uniform habitat 
classification suitable for all taxa. Also in this case, 
systematic designs might be a robust choice.

Regarding species richness, the choice of sampling 
design appears to be less important, with the excep-
tion that clustered sampling is only suitable in fine-
grained landscapes. Stratified random sampling is 
somewhat more efficient in detecting species, which 
is plausible because rare habitats that are potentially 
species-rich are sampled with the same intensity as 
the dominating LULC types. If, however, a research 
or monitoring project seeks to investigate abun-
dances, in addition to species richness, the choice of 
sampling design should be based on the suitability 
for estimating landscape-level abundances of ground-
dwelling insects.

In line with the present results, area-proportional 
stratified random sampling was more accurate than 
simple stratified random sampling in assessing abun-
dance of marine benthos at regional scale (van Hoey 
et al. 2019) and also better than simple random sam-
pling in estimating cover of intertidal benthic commu-
nities at landscape scale (Miller and Ambrose 2000). 
Further, another study on monitoring of amphibians 
and reptiles at national scale found that stratification 
by environment and protection status improved detec-
tion of species substantially (Carvalho et al. 2016). In 
contrast to our study, random sampling was found to 
be more efficient than systematic sampling in estimat-
ing frequencies of aquatic species in lakes and rivers 
in a simulation study (Marta et al. 2019).

Which sample size is recommendable for estimating 
landscape‑level abundance and species richness?

According to equivalence tests with a region of simi-
larity of ± 10%, nine sampling points would be suffi-
cient to accurately assess the abundance of carabids at 
landscape level in a 2 × 2 km agricultural landscape. 
However, estimation accuracy increases substantially 
up to 25 or 36 sampling points. Bearing in mind the 
trade-off between accuracy and sampling effort, we 
would suggest that a sample size of 25 could be a 
good choice for scientific studies. For wild bees, 25 
samples on 1 × 1  km were found suitable in recent 
research (Scherber et al. 2019).

Comprehensive inventories of species richness of 
carabids at landscape level do not seem to be possi-
ble with the tested sample sizes (up to 49) in a single 
sampling period of two weeks. In addition, carabid 
species have different periods of peak abundance and 
activity throughout the year (Wang et al. 2014) and, 

Fig. 4   Accuracy of assessment of total carabid species rich-
ness at landscape level expressed as root mean squared error 
(RMSE) over 100 simulation runs versus sample size for seven 
spatial sampling designs. Simulations were run for six land-
scape types with either arable fields or grasslands as the domi-
nating land-use and different degrees of subdivision (100, 500 
or 1000 fields per landscape). Shaded areas indicate 95% confi-
dence intervals based on 1000 bootstrap resamples
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therefore, it is unlikely to detect all present species at 
one point of time. Hence, it seems recommendable 
to repeat sampling several times per year rather than 
to increase the sample size on a single time point in 
order to increase detection rates. In our simulations, 
detection of species depended on their frequencies in 
the landscape-raster cells which we took from empiri-
cal datasets of pitfall samples. If in reality species had 
higher frequencies, then a higher percentage of spe-
cies could be detected in field samplings compared to 
our simulation.

Does estimation accuracy and optimal sample size 
depend on landscape composition or subdivision?

The accuracy and required sample sizes of most 
sampling designs were not affected substantially 
by landscape composition and subdivision. Marked 
landscape effects were observable only for stratified 
random and clustered sampling with respect to the 
assessment of landscape-level abundances.

Stratified random sampling was less accurate in 
the arable-dominated landscapes where it substan-
tially underestimated carabid abundances. The reason 
for this is that the dominating arable-fields had the 
highest local abundances in our model (Fig.  2), but 
stratified random sampling placed 5 out of 6 sampling 
points in subordinate LULC types that all had lower 
local abundances. In contrast, stratified random sam-
pling performed better in grassland-dominated land-
scapes, but overestimated abundances, because the 
local abundance in grasslands was closer to the over-
all mean, but lower. More generally, underrepresenta-
tion of the main LULC type in the samples distorts 
landscape-level estimates when the local mean devi-
ates from the global mean. In conclusion, stratified 
random sampling is not suitable for assessing land-
scape-level abundance in cases where there is a domi-
nating LULC type that has abundances well above or 
below the average.

Clustered sampling performed most poorly in 
coarse-grained landscapes, but substantially better in 
fine-grained ones. The likely reason for this is that 
most sampling points of a cluster could be located 
on a single large field in the coarse landscape, so that 
other LULC types were undersampled or not repre-
sented in the samples at all. Regarding shorter travel 
distances among sampling points, clustered sampling 
could possibly be a cost-effective alternative to other 

sampling designs in very fine-grained landscapes, but 
it proved to be consistently less accurate than other 
sampling designs over the gradient of subdivision 
tested in this study.

Generalisability of results

Regarding landscape composition and subdivision, it 
appears that the main results of the present study are 
generally valid for agricultural landscapes independ-
ent of the proportions of arable fields, grasslands and 
semi-natural habitats, except for stratified random 
sampling. Further, the results seem to be valid for 
all studies using pitfall traps regardless of sampling 
intervals and regional differences in the composition 
of arthropod communities, at least for agricultural 
landscapes in Central Europe, as results based on the 
hybrid carabid dataset were tantamount to the local 
dataset presented here. Thus, biases of pitfall sam-
ples introduced due to different sampling intervals 
and temperature effects (Schirmel et al. 2010; Saska 
et al. 2013; Engel et al. 2017) do not seem to affect 
the accuracy rankings of spatial sampling methods. 
However, we suggest to verify our results in regions 
with markedly different climate conditions or habitat 
inventories. Still, we would suggest that results are 
likely applicable to agricultural landscapes in other 
regions of the world as different landscape settings as 
well as spillover effects (yes or no) and spatial distri-
butions of species (random or clustered) did not affect 
the results.

Different sampling methods introduce different 
biases into carabid community data (Zaller et  al. 
2015). Therefore, it is not safe to generalise the 
results to studies using other sampling methods for 
ground-dwelling carabids, such as emergence traps 
and suction sampling. The results should first be 
validated using field data collected with these meth-
ods. Further, verification of the results is needed 
for other groups of arthropods that show markedly 
different community structure or behaviour. In par-
ticular, our simulations are not transferable to fly-
ing insects, such as bees, butterflies and hoverflies. 
Assessments of spatial sampling designs for fly-
ing insects would require simulating their foraging 
behaviour in the landscape.
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Conclusion

All systematic grid-based sampling designs are rec-
ommendable for sampling abundances of ground-
dwelling insects in agricultural landscapes unless 
a sound habitat classification tailored for the target 
species group is available, in which case area-pro-
portional stratified random sampling is most accu-
rate. A sample size of 25 traps per 2 × 2  km land-
scape provides a good balance between accuracy 
and sampling cost. Regarding species richness, 
differences in efficiency between sampling designs 
are moderate except for clustered sampling which 
is less accurate. High sample size and/ or repeated 
samplings is more important than choice of sam-
pling design for detecting species of ground-dwell-
ing insects in agricultural landscapes.

Acknowledgements  We cordially thank Jens Schirmel and 
Sascha Buchholz for helpful advice and discussions on the 
simulation of carabid communities and pitfall trapping. We are 
grateful to two anonymous reviewers for their comments on an 
earlier version of the manuscript.

Author contributions  All authors contributed to the study 
conception and design. Collection of field data was performed 
by MG. Data preparation was conducted by GSaE and DG. 
Development and coding of the simulation model was per-
formed by JT. The first draft of the manuscript was written by 
JT and all authors commented on previous versions of the man-
uscript. All authors read and approved the final manuscript.

Funding  Open Access funding enabled and organized by 
Projekt DEAL. The authors declare that no funds, grants, 
or other support were received during the preparation of this 
manuscript.

Data availability  The R script of the simulation model and 
the model documentation as well as auxiliary R scripts for data 
preparation, processing multiple runs and analysis of results, 
and the data used and generated during the current study are 
available in the GitLab repository ‘SpatSam’, https://​gitlab.​
com/​jan.​thiele/​spats​am.​git.

Declarations 

Competing interests  The authors have no relevant financial 
or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 

in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: 
methodology and applications with R. Chapman and Hall/
CRC Press, London

Beduschi T, Tscharntke T, Scherber C (2015) Using multi-level 
generalized path analysis to understand herbivore and par-
asitoid dynamics in changing landscapes. Landscape Ecol 
30(10):1975–1986

Benedetti R, Piersimoni F, Postiglione P (2015) Sampling spa-
tial units for agricultural surveys. Springer, Berlin

Bergeron C (2019) Estimates of catchment area of pitfall traps 
for carabids. ARPHA Conf Abstracts 2:e38518

Bivand R, Rundel C (2021) rgeos: Interface to Geometry 
Engine-Open Source (‘GEOS’). R package version 0.5-8. 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​rgeos

Bivand R, Pebesma E, Gomez-Rubio V (2013) Applied spatial 
data analysis with R, 2nd edn. Springer, New York

Bivand R, Keitt T, Rowlingson B (2021) rgdal: bindings for the 
‘Geospatial’ data abstraction library. R package version 
1.5–27. https://​CRAN.R-​proje​ct.​org/​packa​ge=​rgdal

Brooks DR, Bater JE, Clark SJ, Monteith DT, Andrews C, 
Corbett SJ, Beaumont DA, Chapman JW (2012) Large 
carabid beetle declines in a United Kingdom monitoring 
network increases evidence for a widespread loss in insect 
biodiversity. J Appl Ecol 49:1009–1019

Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, 
Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hall-
mann CA, Hill MJ, Hochkirch A, Kwak ML, Mammola 
S, Noriega JA, Orfinger AB, Pedraza F, Pryke JS, Roque 
FO, Settele J, Simaika JP, Stork NE, Suhling F, Vorster C, 
Samways MJ (2020) Scientists’ warning to humanity on 
insect extinctions. Biol Conserv 242:108426

Carvalho SB, Goncalves J, Guisan A, Honrado JP (2016) Sys-
tematic site selection for multispecies monitoring net-
works. J Appl Ecol 53(5):1305–1316

Engel J, Hertzog L, Tiede J, Wagg C, Ebeling A, Briesen H, 
Weisser WW (2017) Pitfall trap sampling bias depends on 
body mass, temperature, and trap number: insights from 
an individual-based model. Ecosphere 8:e01790

Evans JS (2021) spatialEco R package version 1.3-6. https://​
github.​com/​jeffr​eyeva​ns/​spati​alEco

Glemnitz M, Platen R, Krechel R, Konrad J, Wagener F (2013) 
Can short-rotation coppice strips compensate struc-
tural deficits in agrarian landscapes. Aspects Appl Biol 
118:153–162

Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, 
Schwan H, Stenmans W, Müller A, Sumser H, Hörren 
T (2017) More than 75% decline over 27 years in total 
flying insect biomass in protected areas. PLoS ONE 
12(10):e0185809

https://gitlab.com/jan.thiele/spatsam.git
https://gitlab.com/jan.thiele/spatsam.git
http://creativecommons.org/licenses/by/4.0/
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgdal
https://github.com/jeffreyevans/spatialEco
https://github.com/jeffreyevans/spatialEco


932	 Landsc Ecol (2023) 38:919–932

1 3
Vol:. (1234567890)

Hijmans RJ (2021) raster: geographic data analysis and mod-
eling. R package version 3.5-2. https://​CRAN.R-​proje​ct.​
org/​packa​ge=​raster

Kivinen S, Luoto M, Kuussaari M, Helenius J (2006) Multi-
species richness of boreal agricultural landscapes: effects 
of climate, biotope, soil and geographical location. J Bio-
geogr 33:862–875

Knapp M, Řezáč M (2015) Even the smallest non-crop habi-
tat islands could be beneficial: distribution of carabid 
beetles and spiders in agricultural landscape. PLoS ONE 
10(4):e0123052

Knapp M, Seidl M, Knappová J, Macek M, Saska P (2019) 
Temporal changes in the spatial distribution of carabid 
beetles around arable field-woodlot boundaries. Sci Rep 
9:8967

Knapp M, Knappová J, Jakubec P, Vonicka P, Moravec P 
(2020) Incomplete species lists produced by pitfall trap-
ping: how many carabid species and which functional 
traits are missing? Biol Conserv 245:108545

Köhler F, Klausnitzer B (1998) Verzeichnis der Käfer 
Deutschlands. Entomologische Nachrichten und Berichte 
Beiheft 4:1–185

Koivula M, Kotze J, Hiisivuori L, Rita H (2003) Pitfall trap 
efficiency: do trap size, collecting fluid and vegetation 
structure matter? Entomol Fennica 14:1–14

Kunin WE (2019) Robust evidence of insect declines. Nature 
574:641–642

Lesiv M, Laso Bayas JC, See L, Duerauer M, Dahlia D, 
Durando D, Hazarika R, Sahariah PK, Vakolyuk M, Bly-
shchyk V, Bilous A, Perez-Hoyos A, Gengler S, Prestele 
R, Bilous S, ul Hassan Akhtar I, Singha K, Choudhury 
SB, Chetri T, Malek Ž, Bungnamei K, Saikia A, Sahariah 
D, Narzary W, Danylo O, Sturn T, Karner M, McCallum 
I, Schepaschenko D, Moltchanova E, Fraisl D, Moorthy I, 
Fritz S (2019) Estimating the global distribution of field 
size using crowdsourcing. Glob Change Biol 25:174–186

Marta S, Lacasella F, Romano A, Ficetola GF (2019) Cost-
effective spatial sampling designs for field surveys of spe-
cies distribution. Biodivers Conserv 28(11):2891–2908

McGarvey R, Burch P, Matthews JM (2016) Precision of sys-
tematic and random sampling in clustered populations: 
habitat patches and aggregating organisms. Ecol Appl 
26(1):233–248

Miller AW, Ambrose RF (2000) Sampling patchy distributions: 
comparison of sampling designs in rocky intertidal habi-
tats. Mar Ecol Prog Ser 196:1–14

Müller-Motzfeld G (2004) Die Käfer Mitteleuropas, Vol. 2: 
Adephaga 1: Carabidae, 2nd edn. Spektrum, Heidelberg

Pebesma E (2018) Simple features for R: standardized support 
for spatial Vector Data. R J 10(1):439–446

Plotkin JB, Muller-Landau HC (2002) Sampling the species 
composition of a landscape. Ecology 83:3344–3356

Ripley BD (2005) Spatial statistics. Wiley, New Jersey
Robinson A (2016) Equivalence: provides tests and graph-

ics for assessing tests of equivalence. R package version 
0.7.2. https://​CRAN.R-​proje​ct.​org/​packa​ge=​equiv​alence

Saska P, van der Werf W, Hemerik L, Luff ML, Hatten TD, 
Honek A (2013) Temperature effects on pitfall catches of 

epigeal arthropods: a model and method for bias correc-
tion. J Appl Ecol 50:181–189

Scherber, Beduschi T, Tscharntke T (2019) Novel approaches 
to sampling pollinators in whole landscapes: a lesson for 
landscape-wide biodiversity monitoring. Landsc Ecol 
34:1057–1067

Scherber C, Beduschi T, Tscharntke T (2021) A grid-based 
sampling approach to insect biodiversity monitoring in 
agricultural landscapes. In: Mueller L (ed) Exploring and 
optimizing agricultural landscapes. Springer, New York, 
pp 415–424

Schirmel J, Lenze S, Katzmann D, Buchholz S (2010) Capture 
efficiency of pitfall traps is highly affected by sampling 
interval. Entomol Exp Appl 136:206–210

Schmidt MH, Clough Y, Schulz W, Westphalen A, Tscharntke 
T (2006) Capture efficiency and preservation attributes of 
different fluids in pitfall traps. J Arachnol 34:159–162

Sciaini M, Fritsch M, Scherer C, Simpkins CE (2018) NLMR 
and landscapetools: an integrated environment for simu-
lating and modifying neutral landscape models in R. 
Methods Ecol Evol 9:2240–2248

Seibold S, Gossner MM, Simons NK, Bluethgen N, Muel-
ler J, Ambarli D, Ammer C, Bauhus J, Fischer M, Habel 
JC, Linsenmair KE, Nauss T, Penone C, Prati D, Schall 
P, Schulze ED, Vogt J, Woellauer S, Weisser WW (2019) 
Arthropod decline in grasslands and forests is associated 
with landscape-level drivers. Nature 574:671–674

van Hoey G, Wischnewski J, Craeymeersch J, Dannheim J, 
Enserink L, Guerin L, Marco-Rius F, O’Connor J, Reiss 
H, Sell AF, Vanden Berghe M, Zettler ML, Degraer 
S, Birchenough SNR (2019) Methodological elements 
for optimising the spatial monitoring design to support 
regional benthic ecosystem assessments. Environ Monit 
Assess 191(7):423

Wang J, Haining R, Cao Z (2010) Sample surveying to esti-
mate the mean of a heterogeneous surface: reducing 
the error variance through zoning. Int J Geogr Inf Sci 
24(4):523–543

Wang JF, Stein A, Gao BB, G Y (2012) A review of spatial 
sampling. Spat Stat 2:1–14

Wang X, Müller J, An L, Ji L, Liu Y, Wang X, Hao Z (2014) 
Intra-annual variations in abundance and species compo-
sition of carabid beetles in a temperate forest in Northeast 
China. J Insect Conserv 18(1):85–98

Wickham H (2011) The split-apply-combine strategy for data 
analysis. J Stat Softw 40(1):1–29

Zaller JG, Kerschbaumer G, Rizzoli R, Tiefenbacher A, Gruber 
E, Schedl H (2015) Monitoring arthropods in protected 
grasslands: comparing pitfall trapping, quadrat sampling 
and video monitoring. Web Ecol 15:15–23

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=equivalence

	Efficiency of spatial sampling designs in estimating abundance and species richness of carabids at the landscape level
	Abstract 
	Context 
	Objectives 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Spatial sampling designs
	Empirical data of carabid occurrence and abundance
	Simulation model of spatial sampling
	Analysis of simulation results

	Results
	Abundance
	Species richness

	Discussion
	Which spatial sampling design is most accurate in estimating abundancespecies richness of carabids at landscape level?
	Which sample size is recommendable for estimating landscape-level abundance and species richness?
	Does estimation accuracy and optimal sample size depend on landscape composition or subdivision?
	Generalisability of results

	Conclusion
	Acknowledgements 
	Anchor 24
	References




