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A B S T R A C T   

Worldwide, fisheries face the consequences of climate change and compete with expanding human activities at 
sea, which may trigger unforeseen reactions of fishers. Hence, knowledge on drivers of fishing behavior is crucial 
for management and needs to be integrated in resource management policies. In this study, we identify factors 
influencing fishing activity of North Sea demersal fleets. First, we explore drivers of the North Sea demersal 
fisheries in scientific literature. Subsequently, we study the effects of identified drivers on the spatio-temporal 
dynamics of German demersal fisheries using boosted regression trees (BRT), a supervised machine learning 
technique. An exploratory literature review revealed a lack of studies incorporating biophysical, economic and 
socio-cultural fishing drivers in a single quantitative analysis. Our BRT analysis contributed to filling this 
research gap and highlighted the importance of biophysical drivers such as temperature, salinity, and bathymetry 
for fishing behavior. Contrary to findings of previous studies, our empirical analysis identified quotas and market 
prices to be irrelevant, except for low brown shrimp prices, which counter-intuitively increased fishing effort. 
Moreover, economic and socio-cultural variables influencing brown shrimp fishing effort differed from the other 
fleets, especially determined by increased effort on workdays and reduced effort when fuel prices were high. Our 
findings provide key information for marine spatial planning and supports the integration of fishing fleet 
behavior into policies.   

1. Introduction 

Human use of the oceans has been increasing globally, leaving few 
untouched areas and leading to local competition for space (Halpern 
et al., 2015, 2019; Kannen, 2014). Fishing is the largest human activity 
in terms of spatial scale and intensity and therefore must be considered 
in marine spatial planning (MSP; (Halpern et al., 2008; Stelzenmüller 
et al., 2022, 2021, 2008). To enable sustainable management, scientists 
and policy makers must understand fishers’ behavior and integrate it in 
new management directives (Hilborn, 2007; Salas and Gaertner, 2004). 
Ignorance of the human dimension in fisheries may cause fishers to 
respond unexpectedly to new regulations, which often exacerbates the 
state of the managed resource prior to these regulations (Fulton et al., 
2011). Examples of such negative outcomes are spatial or temporal 
closures encouraging a ‘race for fish’ among the fishers (Gordon, 1954; 
Sys et al., 2017), or displacing fishing effort to areas with more 
vulnerable habitats or species (Dinmore et al., 2003; Liu et al., 2016; 
Rijnsdorp et al., 2001). 

Individual fishing fleets often operate in different ranges of bio
physical parameters (Crespo et al., 2018; Hintzen et al., 2021; van der 
Reijden et al., 2018). Knowing the exact parameter ranges affecting 
fleets would promote the development of regulations that not only 
consider the status of fish stocks, but also the behavior of fishers. Such an 
integration would help policy makers to support effective management, 
but also fishers to reduce their ecological footprint, e.g. by avoiding 
bycatch species (Soykan et al., 2014) or optimizing their fuel con
sumption (Bastardie et al., 2010a) . Although the concept of perceiving 
fisheries as a socio-ecological system is increasingly embraced (Parte
low, 2018), empirical approaches integrating the analysis of biophysi
cal, economic, and socio-cultural drivers of fishing are still rare 
(Andrews et al., 2020; Castrejón and Charles, 2020; Rijnsdorp et al., 
2008). 

North Sea fishers face many challenges, such as increased competi
tion for space with renewable energy development (i.e. offshore wind 
farms) and marine conservation measures like marine protected areas 
(OECD, 2016; Stelzenmüller et al., 2022). Moreover, climate change is 
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likely to alter fishing opportunities spatially (Baudron et al., 2020), 
adding to the potential for conflicts between fisheries and other users of 
ocean space (Link et al., 2017; Mendenhall et al., 2020). Therefore, the 
North Sea requires proactive MSP that integrates fishers’ potential re
actions to these changes. 

In this study, we first conducted an exploratory literature review 
focusing on factors influencing fishing activity in the North Sea. We 
restricted our search to demersal fisheries, which account for the ma
jority of fishing in the North Sea (STECF, 2020). Second, we modelled 
spatio-temporal fishing effort (in hours) of German demersal fisheries in 
the southern North Sea and identified their main drivers using boosted 
regression trees (BRT). 

2. Material & methods 

2.1. Exploratory literature review for factors influencing demersal north 
sea fishing activity 

We performed an exploratory Web of Science literature review for 
studies investigating drivers of demersal North Sea fisheries (see Ap
pendix I for details). This search retrieved 104 articles of which we only 
retained those that focused on the North Sea and specifically identified 
factors influencing demersal fishing activity. In our screening for rele
vant articles, we defined fishing activity as any parameter related to 
fishing, i.e. fishing effort, catches, landings, choices about fishing loca
tion, target species and gear, as well as the decision whether to go fishing 
or not. Eventually, we found eight relevant studies that specifically 
analyzed factors influencing demersal North Sea fishing activity. We 
complemented those with additional eight articles that were deemed 
relevant and did not show during our Web of Science search. Of the 
complementary articles, six were known to the authors or found by 
following references within the original eight relevant studies and two 
were suggested by one anonymous reviewer. From the resulting 16 
relevant studies (see Supplementary Material for details), we identified 
factors influencing fishing activity and classified them into biophysical, 
economic, regulations, and socio-cultural. We grouped vessel charac
teristics to economic variables, because they are linked to investments. 
With our exploratory review, we do not claim to have exhausted all 
available relevant literature, but received a sufficiently large sample for 
this study. 

2.2. Empirical modelling of factors influencing German demersal fleets 

2.2.1. Preparation of fisheries data 
We used several data sets comprising information of spatio-temporal 

fisheries dynamics and vessel characteristics. Commercial fishing log
books contain information about fishing trips including start and end 
date, used gear, mesh sizes, as well as catch composition and weights. 
Spatial fishing dynamics were inferred from the vessel monitoring sys
tem (VMS), which is obligatory for all European fishing vessels larger 
than 12m. VMS data contain geo-coordinates (so-called ‘pings’), time
stamps, and vessel speed. Broadcasting frequencies differ among flag 
states and are set to 2 h for the German fishing fleet. Finally, we derived 
vessel characteristics, such as length and additional gear information, 
from the German Fishing Vessel Register and the European Fleet 
Register. 

We selected all vessels that were active in the North Sea area (EU 
fishing regions 27.4A-C) and used fishing gear, mesh size, and catch 
composition to group them into three fleets, representing the major part 
of the German commercial fisheries in the southern North Sea (Appendix 
II). The three fleets were: (i) the coastal brown shrimp (BS) fleet using 
smaller vessels (median 18m) and beam trawls, targeting exclusively 
brown shrimp (Crangon crangon), and primarily run by family- 
businesses; (ii) the flatfish (FF) fleet comprising large vessels (median 
36m), using beam and pulse trawls, mainly targeting plaice (Pleuronectes 
platessa) and sole (Solea solea), and affiliated to larger companies; (iii) 

and the mixed demersal (MDS) fleet composed of medium sized vessels 
(median 24m), using otter boards, mainly targeting plaice and Norway 
lobster (Nephrops norwegicus; Nephrops hereafter) and mostly affiliated 
to small businesses. 

We obtained VMS data for each fleet for the period 2012–2018 and 
improved data quality by removing duplicates and pings in harbors or on 
land. Subsequently, we identified continuous fishing trips based on 
spatial and temporal information from the VMS data and merged them 
with data on fishing trips from logbooks (similar to Bastardie et al. 
(2010b)). We complemented missing vessel characteristics with data 
from the German Fishing Vessel Register and the European Fleet Reg
ister. Finally, we used the VMS tools package (Hintzen et al., 2012) to 
separate steaming from fishing pings and calculated fishing effort in 
hours per data point. We then aggregated fishing effort per day in a 
0.25◦ Longitude × 0.25◦ Latitude grid. For each fleet, we used monthly 
frames, consisting of all cells with fishing effort in a month, to set the 
spatial frame for our daily-resolved fishing effort in the respective 
month. Since fishing effort data was available at a daily resolution, each 
monthly data set contained cells without fishing at certain days. To also 
represent cells where no fishing effort took place during a month, we 
created a 30 km buffer around each monthly frame. Adding negative 
samples enabled the model to not only learn which variables are affili
ated to fishing effort, but also those that are affiliated to no fishing effort. 
The resulting data sets of the three fleets differed with respect to spatial 
extent, size, and fishing effort intensity (Fig. 1). With regard to quanti
ties of data points (spatial grid cells at daily resolution), the MDS fleet 
represented the largest data set (n = 114703), followed by the FF (n =
90726) and BS fleet (n = 46974). In terms of mean fishing effort per day 
and grid cell, the order was reversed, as the BS fleet had the highest 
mean (3.67 h), followed by the FF (0.42 h) and MDS (0.35 h) fleets. We 
used the R programming language for all data processing (R Core Team, 
2019), of which a detailed description can be found in the supplemen
tary material (Appendix III). 

2.2.2. Explanatory variables 
We gathered publicly available data sets on potential drivers of 

fisheries, i.e. bottom temperature, salinity, bathymetry, sea surface 
height, mixed layer depth, significant wave height, wind speeds, sedi
ment types, resource prices, resource quotas, crude oil price, spatial 
fishing restrictions, weekends, and holidays (see Appendix IV for sour
ces). The only regulation considered in this study was the plaice box, 
prohibiting the activity of beam trawlers with engine powers above 
221kw in coastal waters of the Netherlands, Germany, and Denmark 
(Beare et al., 2013). Explanatory variables were either spatially, 
temporally, or spatio-temporally resolved. In case the data presented a 
spatial component, we clipped them to the study area. Most spatial data 
sets were gridded at a finer resolution and thus adjusted to our grid size 
(0.25◦ Longitude × 0.25◦ Latitude) by taking the mean value. Wave 
height was the only variable with a coarser spatial resolution and thus 
was disaggregated. In case spatial data were in a polygon format, we 
calculated the percentage coverage of each grid cell with the respective 
polygon. Finally, we cropped temporal data to the study period 
(2012–2018) and adjusted them to a daily resolution. 

Fishing quotas were extracted from monthly fishery reports of the 
German Federal Office for Agriculture and Food (German: BLE). There 
were several months with missing quotas, which we either reconstructed 
by using linear interpolation or, in case it was the beginning of the year, 
choosing the first available information of the year. The reason for this 
was that the EU distributes annual quotas at the beginning of January, 
however, the individual quotas for German fishers are only distributed 
earliest in February. In order to enable fishers to start their business, the 
BLE estimates quotas for the previous months of the year. We calculated 
available monthly quotas by subtracting catches from quotas for plaice, 
sole, and Nephrops. The brown shrimp fishery is self-managed by fishers 
and not restricted by quotas. 

We used fishing effort in hours as response variable and the following 
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explaining variables: (i) spatio-temporal features: u- and v-component of 
wind, wind gusts, wave height, sea floor temperature, sea surface height, 
salinity, and mixed layer depth; (ii) spatial features: distance to port, 
bathymetry, substrate type, and fishing restrictions; and (iii) temporal 
features: crude oil price, resource market prices, available fishing quota, 
holidays, weekends, and work days. The u-component represents wind 
speeds from the west (positive values) and east (negative values), and 
the v-component from the south (positive values) and north (negative 
values). We included fish prices and quotas only if they were considered 
important for the respective fleet, e.g. for the FF fleet we included prices 
and quotas for plaice and sole, but not for brown shrimp or Nephrops, 
because they are barely caught by the FF fleet (Appendix II). We 
included the following holidays in our analysis: Easter (Good Friday to 
Easter Sunday), Ascension Day, Pentecost, Christmas & New Year (22nd 
December to 4th January). For the BS fleet we also included Eid al-Fitr, 
the end of Ramadan and Muslim holiday, since brown shrimps are 
usually peeled in Morocco and then reimported to Europe (Aviat et al., 
2011). 

2.2.3. Boosted regression trees 
We identified the importance of fisheries drivers by using boosted 

regression trees (BRT), a supervised machine learning technique that 
combines the advantages of tree-based models with boosting (Fig. 2; 
Friedman 2001). We used the xgboost package in R for BRT tuning and 
implementation (Chen et al., 2019; R Core Team, 2019). Contrary to 
other BRT approaches, the XGboost technique has a more sophisticated 
boosting algorithm, additional tuning parameters, an internal mecha
nism for imputing missing values, and scalability, i.e. parallel compu
tation to reduce run-time (Chen and Guestrin, 2016; see Appendix V for 
more details). 

For each fleet we randomly assigned 30% of the data to a test and 
70% to a training data set. We tuned the BRTs in an iterative procedure 
using 10-fold cross validation and root mean square error (RMSE) to 
determine the best combination of tuning parameters in each step. To 
reduce run time and avoid overfitting, we set early stopping to 10 
rounds, limited the maximum number of trees to 2000, and selected a 
learning rate between 0.01 and 0.2. Subsequently, we tried different 
combinations of the maximum tree level and the minimum leave weight 

Fig. 1. Spatial extent and density of fishing activity of the three fleets in the study area, based on the number of months a fleet was active in a grid cell from 2012 
to 2018. 

Fig. 2. The empirical work flow of this study starting with the preparation of input data and ending with the identified socio-ecological factors influencing fish
ing effort. 
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in steps from 2 to 10 and 1 to 5. Next, we tried values for the bag fraction 
and feature sampling between 0.5 and 0.9, respectively. Finally, we 
increased the number of trees to 103 and tuned the learning rate by 
trying the values 0.01, 0.05, and 0.1. Due to stochastic components in 
the model, i.e. bag fraction and feature sampling, the optimal number of 
trees varied in each model run. Therefore, we ran the model 10 times, 
recorded the optimal number of trees, and, in the final model, set 
maximum number of trees to the average of these recorded values. 

We applied the final model with all tuned parameters – and without 
cross validation – to the training data set another 10 times to counteract 
stochasticity and to perform external model validation. We identified 
the most accurate of the 10 final models and assessed model quality by 
calculating the deviance explained (r2) and four error measures, i.e. 
mean absolute error (MAE) and RMSE, as well as standardized versions 
of both. We used the caret package in R to calculate MAE, RMSE, and r2 

(Kuhn, 2019) and created standardized metrics by dividing them 
through the standard deviation of the response variable (Bennett et al., 
2013). Standardized metrics have the advantage of being scale- and 
variance-independent and therefore may be used to make cross model 
comparisons (Li, 2016). 

We determined the relevance of features by using variable impor
tance (VI) rankings, a measure based on how often features were 
selected for performing a split in the BRT models (Friedman, 2001). The 
resulting VI values indicate relative importance and are scaled, so that 
they sum up to 100. To distinguish between relevant and irrelevant 
fishing drivers, we added a random feature to the model consisting of 
random numbers between 1 and 100, prior to constructing the final 
model (Soykan et al., 2014). We calculated VI scores for all of the 10 
final models and defined features as relevant, if their minimum VI score 
was above the maximum VI score of the random number. Due to the 
large number of explanatory variables, we only provided results about 
relevant parameters. To show the importance by variable type, we 
calculated sum and mean VIs for parameter groups: (i) biophysical 
which may be further split into oceanographic and weather (wind 
speeds and wave height); (ii) economic (resource and oil prices, quotas, 
and distance to port); (iii) socio-cultural (work day, weekend, holidays); 
and (iv) regulations (plaice box). 

We visualized the effect of relevant features on fishing effort through 
accumulated local effects (ALE) plots of the most accurate final model, 
which perform well even if explanatory variables are correlated (Apley 
and Zhu, 2016). ALE plots show the change of the modelled average 
response variable at a certain interval of the respective explanatory 
variable. We set the number of intervals to 30. In general, reliability of 
BRT models increases with more available data. We hence presented 

ALEs only in the ranges of the 10- to the 90-percentile of each relevant 
feature. 

3. Results 

3.1. Drivers identified by the exploratory literature review 

Among the 16 relevant studies, methodological approaches varied 
between statistical modelling (7), the use of random utility models 
(RUM) or complex simulation approaches (7), and stakeholder elicita
tion methods such as in-depth interviews and surveys (4). Most studies 
included economic factors in their analysis (13), followed by socio- 
cultural (9), and biophysical (8) parameters, as well as regulations (4). 
While many studies investigated variables from more than one sector, 
only four combined biophysical, economic, and socio-cultural factors. 
Two of these studies used fisher surveys (Bastardie et al., 2013; Chris
tensen and Raakjær, 2006), one applied a RUM (Andersen et al., 2012), 
and one used statistics (Rijnsdorp et al., 2008). Fig. 3 shows an overview 
of the identified factors influencing fishing activity and a summarizing 
table can be found in Appendix I. 

Biophysical parameters influencing fishing activity may be grouped 
into weather and oceanographic variables, the former directly influ
encing fisher decisions, e.g. high waves restrict smaller vessels to go 
fishing (Bastardie et al., 2013; Christensen and Raakjær, 2006), and the 
latter affecting marine species, which in turn influences fisher behavior 
(van der Reijden et al., 2018). Oceanographic factors comprise ba
thymetry, bottom temperature, shear stress, and sediment compositions 
(Hintzen et al., 2019; van der Reijden et al., 2018). Most of these vari
ables are subject to temporal dynamics causing seasonality in fishing 
activities in the North Sea (Rijnsdorp et al., 2006, 2008; van Oosten
brugge et al., 2008). Conventional economic factors are linked to reve
nue and are used to assess the profitability of a fishing trip. Therefore, 
higher fish prices are incentives to go fishing (Bastardie et al., 2013; 
Christensen and Raakjær, 2006), whereas higher fuel prices are an 
incentive to restrict fishing (Poos et al., 2013). Vessel characteristics, i.e. 
engine power or fishing gears, determine the efficiency of fishing vessels 
and state-of-the-art equipment is related to higher catches and landings 
per unit effort (Sys et al., 2016; Rijnsdorp et al., 2006). The 
decision-making of fishers differs among business structures, as 
owner-operators include more personal matters in their decisions, as 
opposed to larger companies (Schadeberg et al., 2021). Temporal or 
spatial restrictions trigger a displacement of fishing effort (Andersen 
et al., 2012; Poos and Rijnsdorp, 2007), whereas quota restrictions may 
inhibit an entire fishery (Ulrich et al., 2011). Especially in mixed 

Fig. 3. Infographic displaying factors influencing North Sea demersal fishing activity based on the exploratory literature review.  
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fisheries, such as unselective demersal trawls, quotas may lead to an 
early fishing stop, if abundant bycatch species are subject to low quotas 
(Ulrich et al., 2011). This so-called ‘choke species’ effect is enhanced by 
landing obligations, prohibiting the discarding of undersized catches 
(Batsleer et al., 2016). Stakeholder elicitation methods with Danish 
fishers revealed that older skippers are more likely to abide regulations 
(Christensen and Raakjær, 2006). Socio-cultural factors are mostly 
linked to attributes of the fishers, i.e. age, experience, social network, or 
cultural norms. For this review we defined experience as information 
from past fishing trips used as a baseline for future decisions. Multiple 
studies revealed that fishers prefer previously known fishing locations 
(Andersen et al., 2012; Bastardie et al., 2013; Hutton et al., 2004; Poos 
and Rijnsdorp, 2007; Tidd et al., 2012). Memories of economic variables 
also influence the location choice, as high previous revenues function as 
an incentive for visiting that same fishing ground (Bastardie et al., 2013; 
Tidd et al., 2012), whereas high previous costs have the opposite effect 
(Tidd et al., 2012). In addition, information about profitable or un
profitable fishing events may also be acquired by information exchange 
among fishers (Christensen and Raakjær, 2006). As opposed to cooper
ative behavior on land, Poos and Rijnsdorp (2007) found that in
teractions at sea are more competitive and fishers generate less value per 
unit effort in areas with a high abundance of fishing vessels. Finally, low 
fishing effort during the bidweek (Rijnsdorp et al., 2008), a holiday for 
the Protestantism, and a preference for being at home during the 
weekend (Schadeberg et al., 2021) show that religious orientation may 
influence temporal fishing patterns as well. 

3.2. Drivers identified by the empirical modelling 

We found the best model fit for the brown shrimp (BS) fleet 
explaining a large part of the deviance in the response variable (fishing 
effort; r2 = 0.67), followed by the models for fleets targeting mixed 
demersal (MDS; r2 = 0.21) and flatfishes (FF; r2 = 0.18). Accordingly, 
standardized RMSE values showed that least erroneous predictions of 
fishing effort (in hours) were made by the BS model (0.58), followed by 
MDS (0.89) and FF (0.91) models (see Appendix VI for all model 
metrics). 

In all three models, spatio-temporal features achieved the highest 
variable importance (VI) scores (Appendix VI). In the BS model, spatial 

features were second and temporal features third most important, 
whereas the order was reversed for the FF and MDS models. Across 
feature types, biophysical parameters achieved the highest VI scores, 
followed by economic, and socio-cultural variables. Only in the BS 
model economic parameters were, on average, more important than 
biophysical features (Appendix VI). Fishing activities were not con
strained by the plaice box, the only regulation used in the model. 

We identified the highest number of relevant variables for the BS 
(13) followed by the MDS (10), and FF fleet (9) (Fig. 4). The biophysical 
variables bathymetry, salinity, and bottom temperature were most 
important, together amounting to 45% (BS), 27% (MDS), and 26% (FF) 
of total VI. In contrast to the other fleets, BS fishing effort was also 
strongly influenced by distance to port (11%). 

Accumulated local effects (ALE) showed that fishing effort increased 
with decreasing depth for the BS and FF fleet, whereas the opposite trend 
was observed for the MDS fleet (Fig. 5A). The effects were highest at -3m 
(BS), − 28m (FF), and − 47m (MDS), reflecting the preferred depths at 
which the fleets operate. Warmer and less saline waters affected fishing 
effort of all fleets positively. However, the BS model was the only one 
with positive ALEs below 11 ◦C and 33 salinity, indicating that this fleet 
is active in colder and less saline waters compared to the other two. Sea 
surface height was relevant for the BS and MDS fleets with fluctuating 
effects and local maxima around − 0.35m for both fleets. 

Weather parameters influenced all fleets similarly, as ALEs decreased 
with rising values of wind gusts, meaning that fleets prefer to fish with 
less stormy weather (Fig. 5B). Likewise, fishing effort decreased with 
growing wave heights, except for the FF fleet showing a stronger resis
tance to high waves. The effects of south-north and west-east winds were 
negative around low wind speeds and increased with stronger winds in 
either direction. This pattern was most pronounced for the MDS and less 
for the FF fleet, the latter showing a strong positive effect at calm south- 
north winds and therefore a higher preference for windless days. 

Distance to port was the only relevant economic variable for the FF 
and MDS fleets, whereas resource and fuel price were additional rele
vant parameters in the BS model (Figs. 4 & 5C). Positive ALEs of distance 
to port represented a gradient among fleets starting with the BS (20 km), 
and followed by the FF (139 km), and MDS fleet (175 km). This suggests 
less spatial flexibility for the BS in comparison to the other fleets. 
Moreover, the ALE of the BS model depicted a clear threshold with 
values being positive and constant above 18 km. Resource price 

Fig. 4. Variable Importance (VI) scores for relevant explanatory variables computed by averaging VI scores of all 10 models with error bars indicating minimum and 
maximum values. The dotted line shows the VI score of the random variable, which was used to identify relevant parameters. 
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influenced BS fishing effort positively at lower prices. With regard to 
crude oil price, the distribution of underlying data was skewed towards 
the extremes, suggesting that ALE between $70 and $100 per barrel are 
unreliable. In ranges with more data, the effect of crude oil price on BS 
fishing effort was greater when fuel was less expensive, indicating that 
BS fishers favor lower fuel prices. 

The only relevant socio-cultural parameter was workdays for the BS 
fleet, showing that fishers prefer to leave the port on workdays as 
opposed to weekends and holidays (Fig. 5D). 

4. Discussion 

We identified socio-ecological drivers influencing North Sea 
demersal fishing activity and modelled spatio-temporal fishing effort 
dynamics of German demersal fishing fleets in the North Sea using 
boosted regression trees (BRT). The exploratory literature review 
revealed that studies combining biophysical, economic, socio-cultural 
and fishing regulation factors in one single quantitative analysis are 
rare. As such, our empirical analysis contributed to filling this research 
gap. Advancing from previous BRT studies analyzing fishing effort 

(Castrejón and Charles, 2020; Cimino et al., 2019; Crespo et al., 2018; 
Soykan et al., 2014), our analysis considered a higher model resolution 
(i.e. daily fishing hours per grid cell). Biophysical variables were the 
most relevant for effort dynamics, although their effects varied among 
fleets. Quotas were not relevant for the German demersal North Sea 
fisheries and market prices only for the brown shrimp (BS) fleet, 
although our exploratory literature review revealed both parameters to 
be important influencing fishing activity. Contrary to the flatfish (FF) 
and mixed demersal (MDS) fleets, the BS fleet generally showed a 
stronger dependency on socio-economic drivers. 

4.1. Biophysical drivers influencing fishing effort 

The observed effects of bathymetry among fleets resemble the hab
itats of the respective fleet’s target species, since brown shrimp is caught 
in shallow waters (Schulte et al., 2020) whereas plaice, sole and 
Nephrops occur in deeper areas (Hunter et al., 2003; Johnson et al., 
2013; van Hal et al., 2016). Our results hence support earlier findings 
suggesting that biophysical drivers of fishing fleets reflect the ecological 
niches of their target species (Crespo et al., 2018; Hintzen et al., 2021; 

Fig. 5. Accumulated local effects (ALE) of relevant explanatory variables of the Brown Shrimp (BS), Flatfish (FF), and Mixed Demersal (MDS) fleet. Panels are 
grouped into oceanographic (A), weather (B), economic (C), and socio-cultural (D) variables. ALE of numeric variables (A–C) are standardized. Dark grey lines 
represent ALE of the respective fleets, light grey lines relevant ALE of other fleets, and rug plots the distribution of intervals used to calculate the ALE. 
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van der Reijden et al., 2018). Furthermore, we found bottom tempera
ture and salinity to be positively and negatively related to fishing effort, 
respectively. Assuming that effort distribution is steered by the dy
namics of target species, this result contradicts ecological studies 
reflecting a negative influence of higher temperatures on the recruit
ment and occurrence of plaice (Akimova et al., 2016; Engelhard et al., 
2011; Teal et al., 2012; van Hal et al., 2016) and weak effects of salinity 
on plaice and sole (Akimova et al., 2016; Fonds, 1979; Lauria et al., 
2011), Nephrops (Johnson et al., 2013), and brown shrimp (Kerambrun 
et al., 2001). Biophysical variables are subject to seasonal variability 
(Appendix VII), which is also reflected in the fleets’ target species. 
Seasonal catch variations of the main target species brown shrimp 
(Schulte et al., 2020; Temming and Damm, 2002), plaice (Hunter et al., 
2003), sole (Rijnsdorp et al., 1992), and Nephrops (Redant, 1987), occur 
due to migrations or life cycles and peak in the warmer months from 
spring to autumn. 

Our results are in line with the assumption that stormy weather 
limits the operationality of vessels (Bastardie et al., 2013; Boonstra and 
Hentati-Sundberg, 2016; Christensen and Raakjær, 2006). Differences in 
vessels’ seaworthiness can be explained by technical dissimilarities, 
such as vessel sizes (Bastardie et al., 2013; Salas and Gaertner, 2004). In 
our case, the FF fleet is composed of the largest vessels (Appendix II) and 
thus resisted higher waves as compared to the other two fleets. 

4.2. Economic and socio-cultural drivers influencing fishing effort 

Our findings revealed that economic and socio-cultural drivers differ 
among fleets, despite operating in similar spatial areas and belonging to 
the same flag state. The only socio-economic variable influencing both 
the MDS and FF fleet was distance to port. In contrast, BS fishers have a 
higher dependency on market price dynamics and prefer fishing on 
workdays. An important difference between the BS and the other fleets is 
that BS fishers usually run family-owned businesses operating a single 
vessel, whereas several vessels in the FF fleet are managed by larger 
companies (STECF, 2020). Boonstra and Hentati-Sundberg (2016) 
demonstrated that Swedish small-scale fishers are motivated by personal 
norms, such as the need to spend time at home and Schadeberg et al. 
(2021) found that decisions of fishers owning small businesses are more 
influenced by personal matters as opposed to those made in larger 
fishing companies. This is in line with our results, as the BS fleet was the 
only one driven by workdays and hence preferred to stay home on 
weekends and holidays. Moreover, BS fishers operate closer to the coast 
and fishing trips usually last no longer than one day (Aviat et al., 2011), 
whereas the other two fleets operate for several days, limiting their 
flexibility to stay in port during the weekend (Poos et al., 2013). 

Another difference between the BS and the other two fleets is that BS 
is not subject to any quota, despite being the largest fishery in the 
German Bight (STECF, 2020). Some BS fishers follow self-imposed reg
ulations, such as weekend bans to prevent an excess supply and thus gain 
certain control on the resource price (Aviat et al., 2011; Döring et al., 
2020). Resource price was only relevant for BS fishers and, contrary to 
previous findings (Bastardie et al., 2013; Christensen and Raakjær, 
2006; Girardin et al., 2017; STECF, 2020), our results show that higher 
resource prices were affiliated with less fishing effort. One possible 
explanation could be a well-functioning offer and demand dynamic 
where retailers lower their prices if catches increase and vice versa. 
Another explanation could be that BS fishers reduce their fishing effort 
when the resource price is high – be it due to self-imposed regulations to 
prevent a glut of brown shrimp landings and preserve stable prices or 
because of achieving personal objectives, i.e. generating a certain 
weekly profit. Moreover, the BS fleet was most dependent on nearby 
ports, perhaps because, contrary to the other two fleets, its target species 
occurs in coastal areas. On the other hand, distance to port is a proxy for 
steaming time and thus the amount of fuel used per fishing trip, sug
gesting that the BS fleet is more restricted by fuel costs than the other 
two fleets. This finding is supported by the fact that the BS fleet is the 

only one for which we identified fuel price as a relevant driver. 
Surprisingly, our results revealed that quotas were irrelevant for the 

German demersal fleets, despite low annual German quotas for Neph
rops of less than 20t. To enable a Nephrops fishery, Germany has 
swapped Nephrops quotas with other EU member states (STECF, 2020). 
Since the data we used encompasses the amount of available quota after 
inter-country swaps, our results suggest that Germany always found 
partner countries for quota swaps, so that the MDS fleet was able to 
catch Nephrops without restrictions. However, the consequences of the 
Brexit will lower Germany’s swapping capacities due to reduced cod 
quota, which was mostly used to swap for Nephrops quota from the 
United Kingdom (Letschert et al., 2021). 

4.3. Implications for management 

Our study supports the call for approaching fisheries as a socio- 
ecological system in management, which has been suggested by many 
authors (Hare, 2020; Hilborn, 2007; Salas and Gaertner, 2004). 
Furthermore, results on the three German fishing fleets highlight the 
importance of recognizing different biophysical and socio-cultural re
quirements among fleets in fisheries management (Christensen and 
Raakjær, 2006). This information is key for the advancement of inte
grative management approaches, such as marine spatial planning 
(MSP), and promotes the spatial representation of fishers in manage
ment plans (Trouillet et al., 2019). In this study, the BS fleet was the 
most distinctive in terms of influencing socio-economic factors sug
gesting a dependency on fuel and resource prices. Because of these de
pendencies, the BS fleet is also the most vulnerable to economic changes, 
especially since it suffered from the COVID-19 pandemic and a general 
old age of vessels (Goti-Aralucea et al., 2021). In practice, these factors 
limit the BS fleet’s ability to switch to alternative fishing practices or 
catch grounds in response to area closures or displacement of its target 
species because of climate change (Pecl et al., 2017). 

Another pressing issue for fisheries is the overlap with other marine 
industries. Equivalent to the massively growing ocean economy ex
pected in the next decade (OECD, 2016), MSP needs to adapt and 
especially focus on underrepresented stakeholder groups, such as 
small-scale fisheries (Flannery et al., 2016). Especially in the North Sea, 
expanding offshore windfarms will constrain the available space for 
fishing and force fishers to displace their effort (Letschert et al., 2021; 
Stelzenmüller et al., 2022). However, alternative fishing grounds might 
not always provide the same biophysical conditions and therefore 
potentially reduce the safety, efficiency, or profitability of fishing op
erations. Examples are stormier or further offshore located displacement 
areas leading to less days when fishing is possible or increased trip 
lengths and fuel costs. As a consequence of longer trips, fishing could 
become less attractive to fishers who prefer to return to the port before 
the weekend. Furthermore, the reallocation of demersal fishing effort 
could lead to a higher overall benthic disturbance (Stelzenmüller et al., 
2015). Socio-ecological drivers identified by this study can be used to 
find alternative fishing opportunities and thus aid to reduce the uncer
tainty linked to reactions following changes in the socio-ecological 
system of fisheries. 

4.4. Methodological considerations 

We acknowledge that our empirical model is static and based on 
aggregated fleet data. In our exploratory literature review, we identified 
vessel- and fisher-specific variables influencing fishing activity, i.e. 
vessel size, engine power, as well as skipper age and experience. Dis
aggregated and more dynamic models, such as agent-based models, 
would allow to include these variables and enable the analysis of indi
vidual fishing behavior and strategies. These models allow incorporating 
differences among individual fishers and combining empirical data with 
social science theories about human-decision making (Müller et al., 
2013; Schlüter et al., 2019; Smajgl et al., 2011; Wijermans et al., 2020). 
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The performances of our models measured as deviance explained 
was similar to previous studies using BRTs to analyze fishing effort, even 
while applying a higher spatial and temporal resolution. However, BRTs 
of fleets with large spatial fishing grounds (FF and MDS) performed 
worse than those of fleets with a smaller spatial flexibility (BS). This is 
likely because of the larger variety in the spatial data. Additional 
explanatory factors might improve the model performance. 

5. Conclusions 

We identified potential drivers of demersal North Sea fishing fleets 
and showed that boosted regression trees (BRT) are a suitable tool to 
empirically analyze socio-ecological factors influencing fishing effort. 
Model performances were satisfying, although BRTs for fleets with large 
spatial variety might benefit from including additional explanatory 
factors. Our results revealed that individual fishing fleets might be 
influenced by distinct socio-ecological factors, even though they operate 
in similar geographical areas and target similar species assemblages. 
With our fleet-based results we set a possible frame for dynamic and 
vessel- or fisher-based models (i.e. agent-based models), which can be 
used to combine empirical data and human-decision making theories. 
Especially in the North Sea, fishers will be confronted with many socio- 
ecological changes leading to yet unpredictable adaptations in the 
coming decades. In this context, our study represents a strong contri
bution helping to unravel fishers’ behavior and thereby reducing the 
uncertainty in fisheries management and integrated marine spatial 
planning. 
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