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A B S T R A C T

The European Union’s Common Agricultural Policy (CAP) and the Habitats Directive aim to improve
biodiversity in agricultural landscapes. Both policies require enormous monitoring, which can be facilitated
by remote sensing. Use intensity, measured by mowing frequency is an important indicator of biodiversity in
permanent grasslands. The frequency and timing of mowing can be determined using satellite remote sensing
because photosynthetically active biomass changes rapidly in response to mowing. However, the rapid regrowth
of grasses requires very dense satellite time series for reliable detection. Radar time series can complement
optical time series and fill in cloud-related gaps to overcome this problem. Additional weather data can
support the detection of grassland mowing events, as mowing events are associated with specific meteorological
conditions. However, previous studies have not fully exploited both potentials or different machine learning
approaches for mowing event detection.

This study presents a new transferable two-step approach to detect grassland mowing events using
combined optical and SAR data and additional weather data. First, we filled cloud-related gaps in optical
time series using a supervised machine learning regression with optical and SAR data. We then classified time
series sequences of optical, SAR and weather data into mown and unmown using four different machine learning
algorithms. We used time series of NDVI and EVI (combined Sentinel-2 and Landsat 8), SAR backscatter,
six-day interferometric coherence, backscatter radar vegetation index, backscatter cross-ratio (Sentinel-1), and
temperature and precipitation sums. Our test sites are distributed across Germany and cover the entire gradient
of grassland use intensities.

Mowing events could be detected with F1 values of up to 89%, first cut with up to 94%. Our results
show no structural advantage of infilling time series with machine learning over linearly interpolated time
series. The combined Sentinel-2 and Landsat-8 time series provided dense time series with mostly median
gaps less than 20 days, which proved sufficient to reliably detect mowing events. SAR data were not essential
for mowing event detection in our study, but weather data improved classification results for models trained
on all areas and years. However, when the model was transferred to unknown years or areas that were not
used for training, SAR data improved detection accuracy, whereas weather data degrade it. Models trained on
all years but not all study sites detected mowing events with an accuracy of up to F1 = 76%. Models trained
with all regions but not all years detected mowing events in untrained years with F1 up to 80%.
1. Introduction

Permanent grasslands make up about 19% of the land surface
in the European Union (EU) and 14% in Germany (Eurostat, 2018;
Statistisches Bundesamt, 2019). They play a crucial role in nature
conservation by promoting the diversity of vegetation, insects, and
birds (Klimek et al., 2007; Kleijn et al., 2009; Wrage et al., 2011;

∗ Corresponding author at: Thuenen Institute of Rural Studies, Bundesallee 64, Brunswick, 38116, Germany.
E-mail address: a.holtgrave@tu-berlin.de (A.-K. Holtgrave).

Socher et al., 2012; García-Feced et al., 2015). In Germany, more
than half of all animal and plant species can be found in grasslands.
Grasslands help to prevent flooding, as they have a high water storage
capacity and good infiltration properties (Mitsch and Gosselink, 2000;
Fischer et al., 2015). By reducing the input of nutrients and pollutants
into water bodies, it contributes to water quality (Jankowska-Huflejt,
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2006). Moreover, intact grasslands have a positive impact on climate
change by storing greenhouse gases such as carbon dioxide and nitrous
oxides (Soussana et al., 2004). In addition, they contribute to the
aesthetics of the landscape and are an important cultural heritage.
Permanent grasslands are also an important source of feed for livestock
for milk and meat production, as well as a source of biomass for energy
production (Ketzer et al., 2017; Peeters, 2009). However, there is often
a trade-off between environmental and economic value of grasslands.
High biodiversity requires low use intensity, while high use intensity is
associated with high profitability.

To address the loss in biodiversity in Europe, the EU has imple-
mented several policy instruments. To promote sustainable agriculture
and thus biodiversity in particular, the EU’s Common Agricultural
Policy (CAP) provides instruments to compensate farmers through sub-
sidies for losses due to environmentally sound management in low-
input systems (European Union, 2021a). National CAP paying agencies
are responsible for monitoring and evaluating the effectiveness and im-
plementation of the CAP measures. The EU Habitats Directive (Council
Directive 92/43/EEC) requires national governments to designate areas
for the conservation of animal and plant species. The designated sites
must be monitored, their conservation status must be reviewed, and
measures must be developed to improve or maintain a favorable conser-
vation status in order to fulfill the obligations of the Habitats Directive
to restore, maintain, and promote biodiversity. In the future, remote
sensing technology will reinforce CAP controls (European Commission,
2018; European Union, 2021b) and can support the obligations of
the Habitats Directive by replacing and complementing costly physical
on-site inspections or site assessments (Corbane et al., 2015).

One of the standard CAP measures for grassland areas is the pro-
hibition of mowing before a certain date (e.g. Richtlinie NiB-AUM,
2019; Richtlinie KULAP, 2020). Early mowing can reduce biodiversity
by preventing flowering plants from completing their reproductive
cycle and disturbing ground-nesting birds (Smith et al., 2000; Brown
and Nocera, 2017). The number and frequency of mowing events per
year also influence which plants can regenerate, with high frequencies
allowing only a few grassland species to establish, resulting in low bio-
diversity (Schoof et al., 2020). However, mowing later for biodiversity
can mean a reduction in yield or forage quality and mowing less times
than possible a reduced monetary value (Brown and Nocera, 2017).
Therefore, it is possible to infer the use intensity from the number of
mowing events or the intervals between them (Döhler, 2009; Weiner
et al., 2011). Also, the date of the first cut is an indicator of the intensity
of use, as an early first cut indicates a highly productive grassland
that is managed intensively. Thus, the detection of mowing events by
remote sensing can help to control CAP measures and identify grassland
use intensities to inform decision makers. It can support the monitoring
of the Habitats Directive and other policies and monitoring programs
at the interface between agriculture and nature conservation.

To determine the intensity of grassland use from detected mowing
events, there are three ways to consider: the number of mowings
per parcel and year, the month of the first mowing date, or the
period between mowings (see Table 1). All three indicators are re-
lated to the amount of time the grass grows before being mowed.
At a certain state of growth, the quality of fodder decreases with
increasing biomass (McIntosh et al., 2016; Waramit et al., 2012). In
intensively managed grasslands, where forage value is often a priority,
fast-growing grassland species with low species diversity are used and
given less time to grow to produce the highest possible forage quality.
As a result, the first cut is made early in the year, the grass has little
time to regenerate and is cut more frequently throughout the year.
In extensive grassland, the benefits of forage are often secondary. In
some cases, management is more about minimum use or ecological
motives, as more extensive grassland has higher biodiversity. The first
mowing starts later, often because of environmental regulations. Where
extensive grassland is mown more than once a year, there are long
2

periods between mowings.
Table 1
Apportionment of intensity levels of grassland usage in agriculture in Germany.
Source: Adapted and abridged according to Rieder (1997) and Dierschke et al. (2002).

Criteria Intensity level

Extensive Medium Intensive

No. of mowings [n] 1–2 3–4 5–6
Recovery period [d] >75 40–75 <40
First Usage [month] June or later May April

A growing number of remote sensing studies are investigating the
detection of mowing events, as the abrupt change in biomass and vege-
tation height causes significant changes in spectral reflectance behavior
and surface roughness. For a detailed review of remote sensing studies
of grassland production and management see Reinermann et al. (2020).
Optical vegetation indices (VIs), derived from remote sensing satellites
such as Sentinel-2 (S2) or Landsat, have demonstrated their ability to
detect mowing events based on the spectral reflectance properties of
optical data (Courault et al., 2010; Halabuk et al., 2015; Estel et al.,
2018; Kolecka et al., 2018; Griffiths et al., 2019; Schwieder et al.,
2022; Reinermann et al., 2022). The most commonly used VIs in these
studies are the Normalized Difference Vegetation Index (NDVI) (Rouse
et al., 1973) and the Enhanced Vegetation Index (EVI) (Huete et al.,
2002). Although optical data is valuable for this task, cloud-caused
gaps in the optical time series can be a problem. Grass can regrow
fast after a cut. Therefore, the detection of mowing events is time-
critical and gaps in time-series can lead to missed events and wrong use
intensity estimations. Many attempts have been made to fill the gaps
in time series with mono-sensor data using past and future data for
interpolation at different levels of complexity from linear interpolation
to deep learning methods (Chen et al., 2019; Julien and Sobrino, 2019;
Kandasamy et al., 2013; Jin et al., 2021; Belda et al., 2020). Some
studies harmonized different optical sensors to fill the gaps (Moreno-
Martínez et al., 2020; Claverie et al., 2018; Bolton et al., 2020; Frantz,
2019). However, the application of Gap-handling approaches other
than interpolation for mowing event detection is rare.

Radiation in the microwave domain provides weather-independent,
almost seamless time series, but radar data from e.g. Sentinel-1 (S1)
Synthetic Aperture Radar (SAR) are more complex to interpret than op-
tical data. Nevertheless, SAR can be used to detect mowing of grassland.
The signal reflected from the ground represents the surface conditions
and is influenced by vegetation structure, biomass, and height, among
other factors. Backscatter is the portion of the outgoing radar signal that
is reflected directly back to the radar antenna by the target. Combin-
ing two SAR images taken at different times produces interferometric
images. Changes between the two scenes cause a loss of interferomic
coherence, which can be used to detect modifications (Rosen et al.,
2000). Removing grass by mowing changes the height and biomass
of vegetation abruptly, causing alterations in both backscatter and
coherence of the SAR signal. These alterations have more significant
effects on coherence (Lobert et al., 2021; de Vroey et al., 2021).
Successful detection of mowing events using backscatter alone has been
reported by Schuster et al. (2011), Grant et al. (2015a), and Siegmund
et al. (2016). Taravat et al. (2019) calculated additional grey-level co-
occurrence (GLCM) second-order texture metrics from S1 backscatter,
resulting in an overall accuracy of 85.7%. While Zalite et al. (2014,
2016) used coherence and partially backscatter for mowing event
detection on a small sample size of eleven sampling plots and eight
COSMO-SkyMed scenes, de Vroey et al. (2021) employed S1 backscat-
ter and coherence data on a region-wide dataset with coherence having
the higher explanatory power. Quad-polarimetric SAR has not been
widely used due to the limited availability of suitable satellites, and it
has not been as successful as the other approaches (Voormansik et al.,
2013).

Weather data can provide additional information and support satel-

lite imagery in detecting mowing events. Rainfall and temperature
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have a significant impact on vegetation condition and satellite signal.
Rainfall and temperature affect grass productivity and the rate at which
grass regrows after a cut (Smit et al., 2008). Additionally, farmers
rarely mow on rainy days. The date when grass starts to grow after
winter is the sustainable start of grassland vegetation. This date can be
predicted roughly by the weighted sum of average daily temperatures
from January onwards (grassland temperature sum). This is also known
as the beginning of the agro-meteorological spring (Ernst and Loeper;
Bundesanstalt für Landwirtschaft und Ernährung, 2017). Remote sens-
ing data prior to this date is mostly influenced by environmental factors
such as rain and soil moisture, or by management activities other
than mowing such as fertilizer spreading or rolling. Therefore, remote
sensing data before the start of the growing season can introduce
problematic patterns in algorithm training and misinterpretations in
application.

Weather data, especially when working with SAR data, can support
the detection of mowing events in remote sensing models (Garioud
et al., 2020; Zalite et al., 2016; Buddeberg et al., 2016). This is
because meteorological conditions affect the water content of plants,
and therefore the satellite signal. Soil moisture, which is influenced by
precipitation and temperature, also has a significant direct effect on the
SAR signal (Li et al., 2021). Precipitation on the same day as the SAR
acquisition can distort the signal due to interception.

Although both optical and SAR data have been shown to be valuable
for mowing event detection, only a few studies have used both together,
and even fewer have used additional weather data. For instance, Sten-
dardi et al. (2019) compared S1 backscatter coefficient and S2 NDVI for
mowing event detection. Their analysis suggested possible synergies,
but they did not propose a method for joint use. Sen4CAP (esa.sen4cap.
org) already includes a tool for detecting mowing events on grassland
using S1 coherence and S2 NDVI. de Vroey et al. (2021) evaluated
the algorithm against a reference dataset in Belgium and found that
79% of mowing events were detected. However, with only 58% true
positives and 42% false positives, the accuracy is relatively low. In
a hierarchical approach, de Vroey et al. (2023) first differentiated
grassland into grazed pastures and mown hay meadows. They then used
the Sen4CAP toolbox to detect mowing events on hay meadows only
with an accuracy of 93% and a detection rate of 82%. Lobert et al.
(2021) combined S1 backscatter and GLCM, six-day coherence, as well
as S2 and Landsat 8 (L8) NDVI data and performed a grid search for
the best combination of features to detect mowing events. Their results
showed only a slight improvement of the combined use compared to
the separate use of SAR or optical data, with the optical data having
a significantly higher explanatory power. Reinermann et al. (2022)
combined time series of optical EVI data (S2) with InSAR, PolSAR, and
backscatter features (S1) for a rule set approach. Again, the optical
data proved to be the most informative for mowing event detection.
PolSAR data were able to provide support, especially for longer cloud
induced gaps in the EVI time series but also introduced more false-
positive detections. Again with S1 coherence and S2 NDVI de Vroey
et al. (2022) was able to detect mowing events with an F1-score of
79% on hay meadows.

Combined optical and SAR features have shown their potential for
mowing event detection. However, the potential is not fully exploited.
The joint use of optical and SAR data also provides an opportunity to fill
cloud-induced gaps in the optical time series, thereby creating an artifi-
cial optical time series and reducing the risk of undetected events. Many
recent studies have attempted to synthetically fill optical data gaps
with optical and SAR data using machine learning (ML) techniques (e.g.
Mazza et al., 2018; Scarpa et al., 2018; Schmitt et al., 2018; Bermudez
et al., 2019; Cresson et al., 2019; Wang et al., 2019b). These attempts
focused primarily on the spatial filling of clouds in one satellite scene,
but sometimes also included temporal information (Zhao et al., 2020).
Although some of these studies have been very successful in filling
cloudy pixels with artificial values, the methods are often quite complex
3

and, being raster-based, are computationally and memory intensive
in training and application. Object-based approaches have also been
investigated. Holtgrave et al. (2020b) compared S1 and S2 data over
agricultural areas to test whether they behave in the same way over the
course of the year and therefore whether S1 data can replace S2 data in
the case of cloudy S2 scenes. Garioud et al. (2020, 2021) successfully
used a Recurrent Neural Network (RNN) with optical and SAR data,
weather, and topography information to infill optical time series for
grassland, crop and forest monitoring. However, to fill in the gaps,
the approach requires data from the whole year. Therefore, statements
about mowing could only be made at the end of the year. Such a late
analysis would be too late for CAP controls. In case of doubt about the
results of a mowing detection, on-site controls would still have to be
carried out. It is therefore important that the analyses are carried out
as soon as possible. Wang et al. (2019a) employed Random Forest and
Support Vector Machines (SVM) to predict Leaf Area Index (LAI) time
series at two sites with joint optical and SAR data. Unlike most studies,
the models were tested for transferability to other years. The combined
data overcame the disadvantages of the individual sensors: SAR can be
affected by soil at low biomass and optical data tend to saturate at high
biomass.

Aside from gap filling, ML methods are also applied in many other
remote sensing fields, including agriculture (Liakos et al., 2018). So
far, Halabuk et al. (2015), Taravat et al. (2019) and Lobert et al. (2021)
have used ML for mowing detection. The first used a Classification and
Regression Trees (CART) algorithm, the second a Multilayer Perceptron
(MLP) and the third a Convolutional Neural Network (CNN). The three
studies classified small consecutive sequences of the grassland time
series into mown and unmown. An advantage of machine learning
approaches is that they do not require expert knowledge of grassland
development. Patterns and correlations can be identified in large, mul-
tidimensional data sets without human intervention (Dahiya et al.,
2022). Other studies rely on change detection by thresholding or rule
sets for mowing event detection (Courault et al., 2010; Grant et al.,
2015a; Estel et al., 2018; Kolecka et al., 2018; Griffiths et al., 2019;
Stendardi et al., 2019; de Vroey et al., 2021; Schwieder et al., 2022; de
Vroey et al., 2022).

Previous remote sensing studies did not fully exploit the combi-
nations of different input features from optical, radar, and weather
data in deep learning approaches to detect mowing events. Advances
in data policy, making the Sentinel and Landsat satellite data freely
available can and should now be fully exploited. Exploring the potential
of different machine learning and deep learning methods has not been
done for mowing event detection. Most studies to this point do not
test their models for transferability to other sites and years but this
would especially important to apply an approach area-wide and make
it valuable for CAP or Habitat Directive monitoring. Therefore, the
aim of this study was to develop a feasible approach to monitoring
mowing events that allows spatial and temporal extrapolation to years
and areas that were not included in the training data. The approach
should also be continuously applicable throughout the whole growing
season and not only at the end of the year. We used both optical and
SAR remote sensing data in combination with weather data and a novel
two-step approach to fill gaps in optical time series with supervised
ML regression and then classified time series sequences into mown and
unmown using ML methods. We compared four different ML algorithms
and consider the usefulness of SAR, optical, and meteorological fea-
tures. Our reference data came from various grassland sites in Germany,
covering representative geographical regions over several years and
representing all intensity levels from extensive to intensive. We also
investigated the transferability of our approach in time and space.

This study aimed to answer the following questions:
(1) Can the detection of grassland mowing events be improved by

gap filling in optical time series with SAR data using machine learning
algorithms? (2) Can additional precipitation and temperature features
improve the results? (3) Can we transfer the trained model to unknown

years and regions?

https://esa.sen4cap.org
https://esa.sen4cap.org
https://esa.sen4cap.org
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Fig. 1. Locations of Study sites across Germany.

. Material

.1. Study sites

The study was carried out at seven grassland sites in the Federal Re-
ublic of Germany. Germany has a temperate climate with an average
emperature of 9.0 ◦C and an average precipitation of 721 mm (DWD
limate Data Center, 2021a,c). Grassland in Germany is mostly semi-
atural permanent grassland in the form of meadows, pastures and
ay meadows. It is managed for nature conservation or for fodder
roduction.

The study sites are widely distributed throughout Germany and
ave different climatic and soil conditions. They cover five of the seven
atural regions in Germany (see Fig. 1). Lindhof and Trenthorst have
maritime influence, Haus Riswick is situated in the warm lowlands,

he Schwäbische Alb is a low mountain range with comparatively
ower temperatures and well-drained soils, Aulendorf is in the warmer
nd wetter uplands, and Schorfheide-Chorin is again situated in the
elatively dry lowlands. Hainich-Dün lies in a transition area between
he low mountain range of eastern Hesse and arable plains.

.2. Reference data

We used data from seven study sites representing the heterogeneity
f the German grassland landscape in 2017, 2018 and 2019 (see
able 2). The different study sites represent a gradient of intensity,
anging from plots mown once or twice a year to more intensively
anaged areas with up to five cuts per year.

We collected the data from experimental farms of Federal Ministries
f Agriculture, research institutes, or universities, which keep per-
anent records of their grassland parcels and management practices.
nother source of ground truth data were three intensively studied
4

rassland areas of the Biodiversity Exploratories (Fischer et al., 2010;
Table 2
Overview over study sites ordered from north to south with site name, available years,
precipitation sum, average temperature, number of mowing events, and number of
parcels per year. The number of parcels includes all parcels with at least one mowing
and no grazing before the first mowing.

Study site Year Precipitation Temp. No. of Median no. No. of
sum [mm] avg [◦C] cuts of cuts parcels

Lindhof 2017 965 9.7 1–4 3 5
2018 575 10.2 1–4 2 14

Trenthorst 2017 913 9.7 1–2 1 6
2018 507 10.5 1 1 8
2019 711 10.5 1–2 2 11

Schorfheide 2017 736 9.8 1–2 2 18
Chorin 2018 418 10.8 1–2 1 22

2019 520 11.0 1–2 1 15
Riswick 2017 777 11.3 3–4 3 27

2018 669 12.2 1–4 4 27
2019 797 11.9 4 4 19

Hainich 2017 891 9.2 1–2 1 23
2018 540 10.1 1–2 1 21
2019 698 9.9 1–2 1 25

Schwäbische 2017 1147 8.2 1–4 2 43
Alb 2018 887 9.1 1–4 2 46

2019 1102 8.6 1–4 2 45
Aulendorf 2017 1156 9.0 1–5 3 53

2018 888 9.9 1–5 4 52
2019 1088 9.4 5 5 18

Vogt et al., 2019). All seven study areas together provided information
on 175 parcels in 2017, 190 parcels in 2018 and 133 parcels in 2019.
A total of 1200 mowing events were recorded.

All datasets for all study sites consisted of parcel boundaries and
information on grassland management practices and the corresponding
date or day of the year. The minimum management information in-
cluded grassland harvest dates. Data did not always include information
on grazing. In this case, we treated the parcels as grassland with no
grazing activities. We focused on parcels with at least one mowing. We
did not include pure pasture plots because we did not have information
on pasture management, such as livestock density or rotation, for all
study sites. In the case of hayfields with both mowing and grazing
information, we included data from the beginning of the year in the
training dataset until the first grazing occurred.

2.3. Satellite data

The SAR satellite constellation with two Sentinel-1 (S1) satellites
S1-A and S1-B and the optical satellite constellation with two Sentinel-
2 (S2) satellites S2-A and S2-B and Landsat 8 (L8) acquired the images
used in this study. We used available S2 and L8 data for all test sites for
the respective years, but where S2 and L8 acquired data on the same
day, we kept only the S2 scene due to its higher spatial resolution. For
the S1 data, we selected one orbit for each test site to ensure consistent
acquisition geometries for all images. To avoid signal interference from
morning dew, we only selected ascending orbits acquired at around 5
pm (Tamm et al., 2016). Fig. 2 shows the availability of the satellite
data for the study years and study sites.

S1 operates in C-band (5.5 cm wavelength) and mainly provides
dual-polarization data in VV (vertical transmit, vertical receive) and
VH (vertical transmit, horizontal receive) in the interferometric wide
swath (IW) mode. The S1 constellation has a revisit time of 6 days on
the same orbit (Hajduch and Bourbigot, 2022).

Repeatpass SAR coherence is a measure of the decorrelation be-
tween two co-registered images (Rosen et al., 2000). Changes between
two SAR images cause a decrease in interferomic coherence. We gen-
erated coherence time series from S1 single look complex (SLC) prod-
ucts, which contain phase and amplitude information. The coherence
between each image and the image acquired six days earlier was
calculated for VV and VH polarization, respectively. This was done
by updating all orbit positions and co-registering the corresponding
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Fig. 2. Availability of cloud free optical data from Sentinel-2 (S2) and Landsat 8 (L8) for the study sites and the availability of one Sentinel-1 (S1) orbit with its six-day revisit
interval. The sustainable start of growing season and the median number of days between two acquisitions per year are shown.
image pairs using SNAP-ESA Sentinel Application Platform software.
The coherence images were then debursted and terrain corrected. A
total of 1289 individual scenes were processed in this way.

We processed 1617 backscatter images from Ground Range Detected
(GRD) products that were detected, multi-looked, and projected to
the ground range with phase information lost. On the GRD data, we
performed the standard pre-processing steps thermal and border noise
removal, calibration, and terrain correction to calculate the gamma-
naught backscatter coefficient in VH and VV polarization for each
image with SNAP (Filipponi, 2019). A speckle filter was not necessary
because we used an object-based approach. After preprocessing, the
backscatter and coherence images had a resolution of 10 𝑥 10 m. From
S1 VV and VH backscatter, the Radar Vegetation Index (RVI)

𝑅𝑉 𝐼 = 4 ⋅ 𝑉 𝐻
𝑉𝐻 + 𝑉 𝑉

(1)

and the VH/VV ratio were calculated. They showed their potential
for agricultural vegetation monitoring as they are more robust against
environmental impacts (Holtgrave et al., 2020b; Schlund and Erasmi,
2020; Nasirzadehdizaji et al., 2019; Vreugdenhil et al., 2018).

S2 has 13 optical bands with wavelengths between 443 and
2202 nm and spatial resolutions of 10, 20, or 60 m. S2 has a revisit
time of 10 days at the same viewing angles (Thales Alenia Space Team,
2022). L8 acquires images in 9 bands from 430 to 1380 nm with a
revisit time of six-days. Except for the panchromatic band, L8 images
have a spatial resolution of 30 m (United States Geological Survey,
2019). For optical imagery, the viewing angles are neglected in this
study. The overlap of the different orbits at higher latitudes, therefore,
allows for a higher revisit frequency. Fig. 2 shows the availability of S2
and L8 scenes for the different sites.

Analysis-ready data (level-2) were provided by a FORCE data cube.
The S2 and L8 scenes were radiometrically and geometrically cor-
rected, reprojected and cloud masked using the FORCE (Framework
5

for Operational Radiometric Correction for Environmental monitoring)
processing system (Frantz, 2019). During this process, the L8 resolution
was adjusted from 30 m to 10 m using nearest-neighbor resampling. The
VIs NDVI (Rouse et al., 1973) and EVI (Huete et al., 2002) were then
calculated using the FORCE processor. In grassland studies, the joint
use of NDVI and EVI can be an advantageous, because they respond in
complementary way (Halabuk et al., 2015).

We calculated the pixel median of each grassland parcel for each
optical and SAR scene feature after applying an inward buffer of 12 m
to the parcels to avoid mixed pixels at parcel boundaries.

2.4. Weather data

The three years considered, 2017–2019, had different weather con-
ditions. 2017 was a wet year, while 2018 was extremely dry, warm
and with above average sunshine hours (DWD Climate Data Center,
2021a,c,b). 2019 was also warmer and drier than average, but not as
extreme as 2018.

We used daily weather data from the German Weather Service
(DWD) in a one-kilometre grid (German Weather Center, 2020). We
averaged the mean temperature in ◦ C and the precipitation sums in mm
for each study site and day and calculated three, six, and 12-day right
aligned rolling sums. By using rolling precipitation and temperature
sums, the weather of previous days is considered to reflect the growing
conditions for the plants or the management conditions.

We calculated the corrected cumulative grassland temperature sum for
each study site and year to obtain the day of the sustainable vege-
tation start (Ernst and Loeper; Bundesanstalt für Landwirtschaft und
Ernährung, 2017). For the corrected cumulative sum, all positive daily
temperature averages from the beginning of the year are added. In
January temperatures are multiplied by a factor of 0.5, in February
by a factor of 0.75, and thereafter by a factor of 1. If the cumulative
sum exceeds 200 in spring, the sustainable start of vegetation has been
reached. The date is used to exclude satellite scenes from our dataset
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Fig. 3. Schematic depiction of method. Different machine learning and deep learning methods were tested (RFR: Random Forest Regression, SVR: Support Vector Regression, DNN:
Deep Neural Network, RFC: Random Forest Classification, SVM: Support Vector Machine, CNN: Convolutional Neural Network, LSTM: Long Short-Term Memory).
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Table 3
Overview of input data for gap filling and for mowing event detection.

Type Feature Gap Mowing event detection
Filling OPT+SAR OPT SAR

+W −W +W −W +W −W

SAR Backscatter x x x x x
(VV, VH) Coherence x x x x x

RVI, Ratio x x x x x
Optical NDVI x x x x x

EVI x x x x x
Weather Temperature x x x

Precipitation x x x

prior to the sustainable vegetation start individually for each study site
and year. The temperature differences between the years and between
the different study sites lead to different starts of the growing season
(see Fig. 2).

2.5. Features

After processing the satellite scenes, we had different SAR, optical,
and weather features in time series for each parcel. In the following,
these features were used for gap filling and time series classification. To
fill the gaps, we also used the information from the period between suc-
cessive optical scenes. As we also wanted to determine the importance
of optical, SAR and weather features we compared different feature
groupings: Optical and SAR features together (OPT+SAR), optical fea-
tures only (OPT), and SAR features only (SAR). We compared each
group with weather data (+W) or without weather data (−W). Table 3
shows an overview of all different features and in which method and
grouping they are deployed.

3. Methods

Mowing event detection is time-critical because grass can grow back
very quickly after a mowing event, which could easily result in an event
being missed if satellite imagery is not available. Due to cloud cover,
optical data time series can have long gaps between scenes. Therefore,
in a first step, we wanted to fill the gaps in optical time series with
different machine learning regression methods. In a second step, we use
ML techniques to classify time series snippets into mown and unmown
(see Fig. 3).

3.1. Gap handling

All data must be on the same temporal grid for SAR, optical, and
weather data to be used together in a binary classification of time series
snippets, as not all ML algorithms used in this study can work with
missing values. We used the S1 data in its regular six-day interval as
the reference grid. We fitted temperature and precipitation data to this
6

grid using only weather data from the same days as the S1 data. The
availability of optical data from S2 and L8 does not have a regular time
interval due to clouds and different sensing geometries. The aim of the
gap filling was therefore to produce artificial optical data on the days
of the S1 acquisitions when no actual optical data were available to
match with the temporal grid.

A simple approach to fill gaps in time series is linear or spline
interpolation between existing data (e.g. de Carvalho et al., 2017).
However, this can lead to over- or under-estimation of actual values,
resulting in mowing events going undetected. We therefore tested three
machine learning algorithms in addition to a linear interpolation to fill
the optical time series grid with the help of SAR data based on our
previous findings (Holtgrave et al., 2020a,b).

To train and test the Gap-handling approaches, we created a dataset
of days with both SAR and optical data available. The presence of such
coincident data was assessed individually for each grassland parcel. For
all parcels combined, this resulted in 5245 samples across all years. The
two previous (𝑡−1, 𝑡−2) and two subsequent (𝑡1, 𝑡2) optical and SAR data

ere assigned to each of these samples at the time of 𝑡0, regardless of
hether they were on the six-day grid (see Fig. 4). For the SAR data, the

ix-day repeat time resulted in a window size of five observations and
4 days. For the optical data, the window size is also five observations,
ut the number of days within the window varies depending on cloud
onditions. Therefore, the days between optical observations were also
dded as a feature. The target variable of this regression task was the
egetation indices at 𝑡0 and the input variables were all other features
t 𝑡−1, 𝑡−2, 𝑡1 and 𝑡2. In addition, the SAR features at 𝑡0 were included in
he regression task. 80% of the samples were used as training data and
0% as test data, including all parcels and years. In the test dataset, the
ptical target variable was removed at 𝑡0 to create synthetic gaps.

We tested Random Forest Regression (RFR), Support Vector Regres-
ion (SVR), and a Deep Neural Network Regression (DNN) to generate
rtificial optical data at data gaps. Random forest is a classification and
egression method that consists of multiple uncorrelated decision trees.
ll decision trees are grown under a particular type of randomization
uring the learning process (Ho, 1995; Breiman, 2001). In regression
asks, the average prediction of the individual trees is returned. Ran-
om Forest is a widely used method for remote sensing applications due
o the accuracy of the results and the direct evaluability of the variable
mportance (Belgiu and Drăgu, 2016). We used the ranger method from
he R package caret with 10 k-fold cross validation (Kuhn et al., 2021).
VR is based on Support Vector Machines (SVM) for classification
urposes developed by Vapnik (2000). In SVR, the original non-linear
unction is transferred to a higher dimensional feature space where the
unction can be treated as a linear function. Linear regression can be
pplied, and an optimal approximation can be obtained. SVMs were
ntroduced years before Random Forest, but are still of great interest in
he remote sensing community (Mountrakis et al., 2011; Sheykhmousa
t al., 2020). From caret we employed the svmRadial method with
0 k-fold cross validation. Both RF and SVR use an automatic grid
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Fig. 4. Schematic depiction of gap filling. The target variable are the vegetation indices
at 𝑡0 and the input variables are the optical and SAR features at 𝑡−1, 𝑡−2, 𝑡1 and 𝑡2 and
the SAR features at 𝑡0.

search for the tuning parameters with a tune length of three. They
automatically select the best model. Hinton and Salakhutdinov (2006)
developed DNNs from Artificial Neural Networks. In deep learning,
several blocks of filters or layers with specific functions are stacked to
capture image information. This method is increasingly used in remote
sensing applications (Li et al., 2019). Using the keras R package (Allaire
and Cholle, 2021) we built a basic DNN with two dense layers (64
nodes) and relu activation with a mean squared error loss function. We
trained the model for 100 epochs with a 0.2 validation split and early
stopping.

After training the models, we applied the models to the test sam-
ples. From the difference between the observed and predicted VIs, we
determined the best method by calculating the residual sum (RS), root
mean square error (RMSE), and mean absolute error (MAE). Kolecka
et al. (2018) found that the NDVI decreases by at least 0.2 after a
mowing event. For this reason, we considered deviations of more than
0.2 between observed and predicted values to be particularly critical
for the detection of mowing events. If the predicted value differs from
the observed value by more than 0.2, the probability of introducing
false mowing events or removing real events is high. Therefore, we
also used the number of extreme residuals above or below +/−0.2 for
evaluation. The method with the lowest RMSE, MAE, RS and number
of extreme residuals was then used again to train a model with 100%
of all samples with simultaneous S1 and optical data to make use of all
available data. This model was applied to the remaining data points of
all parcels where SAR data was available, but optical data was missing
at 𝑡0 to create a six-day interval of the optical data.

To compare time series fitted to the six-day grid using ML methods
and those where missing values were interpolated, we linearly interpo-
lated the original optical data between days of cloud-free acquisitions.
Only values that fit the six-day grid were then considered to construct
the interpolated time series. We linearly interpolated values between
𝑡−1 and 𝑡1 (see Eq. (2)) and compared the interpolated VIs with the
observed VIs at 𝑡0.

𝑉 𝐼(𝑡0) = 𝑉 𝐼𝑡−1 +
𝑉 𝐼𝑡1 − 𝑉 𝐼𝑡−1

𝑡1 − 𝑡−1
⋅ (𝑡0 − 𝑡−1) (2)

After the gap handling, there were four data sets with time series
f satellite and weather features for each grassland parcel on a six-day
emporal grid: The three gap-filled ML datasets (RFR, SVR, DNN) and
ne dataset with linearly interpolated values (int). For mowing event
etection, only the best gap-filled (gf ) dataset and the int dataset were
onsidered.

We normalized all satellite features of the int and gf time series
from zero to one by parcel and year to scale the input features to the
7

same range of values, as this improves model training (Bisphop, 1995).
Weather data were normalized using all weather data from 2017–2019
to preserve the temporal and spatial variability between years and
study sites.

3.2. Mowing event detection

To detect mowing events, we sliced the time series of all parcels
and features in the six-day grid into sequences of equal length using
a sliding window approach, to detect mowing events throughout the
whole growing season (see Fig. 5). Five observations before and five
after the midpoint 𝑡0 were included in a sequence, resulting in 11 ob-
servations over 60 days. This window size was found to be appropriate
in Lobert et al. (2021). If a mowing event occurred at the midpoint 𝑡0
or between 𝑡−1 and 𝑡0, the sequence was labeled as mown. If no mowing
occurred, or a mowing occurred before 𝑡−1 or after 𝑡0, it was labeled as
unmown. We utilized each observation point once as the midpoint 𝑡0 of
a sequence.

As described in Section 2.1, some parcels were only valid for train-
ing. This was the case when grazing occurred after the mowing. All
sequences with coincident grazing were omitted and only sequences
before grazing were used for training. The remaining sequences were
split into 80% training and 20% test sequences, stratified by year and
study site. Each parcel-year combination was considered for either
training or testing only. This resulted in approximately 16 000 training
and 3 600 test sequences. Of the 16 000 training sequences, 988
sequences and of the 3 600 test samples, 225 sequences included a
mowing event. The training set included sequences from 346 extensive,
133 medium and 33 intensive plots.

To classify the sequences into mown and unmown, we compared
four different ML algorithms. Random Forest Classification (RF) and
SVM are well-known and established ML classifiers. CNN and Long
Short-Term Memory (LSTM) deep learning algorithm have shown great
potential in image or time-series classification tasks (Lu et al., 2021;
Zhang et al., 2019; Karim et al., 2019). In SVMs, vectors represent each
object in a vector space. The SVM fits a hyperplane to this space, which
divides the training objects into classes. In order for the hyperplane
to separate the objects linearly, the SVM transfers the vectors to a
higher dimensional feature space, as in SVR (Vapnik, 2000). As with
regression, the RF classification is an algorithm consisting of multiple
uncorrelated decision trees. For a classification, each tree in this forest
is allowed to make a decision and the class with the most votes decides
the final classification. Both RF and SVM do not take into account the
order of the features and therefore cannot retain temporal information.

In contrast, CNN and LSTM have the ability to handle the order
of the input values. Both are based on Artificial Neural Networks
(ANN) with input and output layers and hidden layers in between (Zou
et al., 2008). CNN are not designed for time series per se, but are
often used in computer vision to detect objects and patterns in im-
ages (O’Shea and Nash, 2015). They can be adapted to work on
time-series classification (Zhao et al., 2017). A CNN consists of one or
more convolutional layers, which extract higher-level features. Within
a convolutional layer, the input is transformed by filters before being
passed on to the next layer. Initially, the values in the filter are random.
Therefore, the first runs, or convolutions, serve as a training phase.
After each iteration, the CNN automatically adjusts these values using
a loss function. The CNN continuously readjusts the filters as training
progresses. Convolutional layers are often followed by pooling layers
that summarize and downsample the extracted information (O’Shea
and Nash, 2015). LSTMs are recurrent neural networks (RNN) - neu-
ral networks that, unlike feedforward networks, are characterized by
connections from neurons in one layer to neurons in the same or a
previous layer (Hochreiter and Schmidhuber, 1997). RNNs keep track
of arbitrary long-term dependencies in the input sequences that can

provide contextual information. This makes them ideal for time series



Remote Sensing of Environment 295 (2023) 113680A.-K. Holtgrave et al.

c
p
‘
o
a
c
r
p
t
t
c
L
c
a

e
b
g
s
a
o
a
2
w
c
T
t
u
c
a
f
t
l
a
a
v
a

s
I
b
r
t
u
i
r
t
s
s

Fig. 5. Division of time series into time series sequences. Sequences were labeled as mown if mowing occurred in the period between 𝑡−1 and 𝑡0 or on 𝑡0.
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lassification and prediction. But a vanilla RNN is trained using back-
ropagation, thus the long-term gradients that are back-propagated can

‘vanish’’ and tend to zero, or ‘‘explode’’ and tend to infinity, forgetting
r overemphasizing information from long ago. LSTM units, which also
llow gradients to flow unchanged, prevent this problem. An LSTM
ell consists of three parts: The first part is the Forget Gate, which
emembers or forgets information from previous time steps. The second
art (Input Gate) learns new information from the current input and the
hird part is the Output Gate. This gate passes the updated information
o the next cell. The cell knows the hidden state of the previous and the
urrent state, which can be seen as a short-term memory. Unlike RNNs,
STMs also know the state of the cell. This is the long-term memory that
arries information with all time steps. For a deeper insight into CNN
nd LSTM see Goodfellow et al. (2016).

For the RF and SVM methods, we used the caret package in R (Kuhn
t al., 2021). The aim of our study was not to perfect one method
ut to compare the general ability of the approaches to determine
rassland use intensity. Therefore, we used the default classification
ettings for RF and SVM. Both resample five times k-fold and use an
utomatic grid search for the tuning parameters with a tune length
f three. We implemented the CNN and LSTM methods with Keras
nd TensorFlow backend in R (Fabel et al., 2022; Kalinowski et al.,
023). We used the same CNN model as used in Lobert et al. (2021),
ho adapted a 1D-CNN from Wang et al. (2017). It consists of two

onvolutional layers with kernel sizes of five and three, respectively.
he output of the convolutional layers was zero-padded to remain
he same size as the input. Batch normalization and a rectified linear
nit (ReLU) activation function were applied after each layer. The two
onvolutional layers were followed by a global average pooling and
single densely connected and sigmoid-activated neuron to give the

inal output. The LSTM model was again a stacked LSTM consisting of
wo LSTM layers (24 and 48 units respectively) followed by a dropout
ayer to prevent overfitting and a dense layer with sigmoid activation
t the end. The binary crossentropy with rmsprop optimizer was used as
loss function. We trained 100 epochs with a batch size of 64 and a

alidation split of 0.2. The training curves were controlled randomly to
void overfitting.

The binary classification task is very unbalanced with only 5% mown
amples (n = 1 285) compared to 94% unmown samples (n = 23 866).
n this case, ML algorithms may be biased towards the larger group. To
alance out the dataset, we up-sampled the mown samples using the
andom oversampling method (Ling and Li, 1998) until they reached
he same sample size as the mown samples. This was done using the
pSample-function of the R caret -package. All the original data were left
ntact and additional samples were added to the minority classes with
eplacement. Random upsampling proved to be the best method for this
ask in previous experiments, compared to downsampling the unmown
amples, creating artificial samples with the Synthetic Minority Over-
ampling Technique (SMOTE) (Chawla et al., 2002), or using weighting
8

actors on the samples. We then tested the four classification algorithms
n multiple runs with different settings. We ran the sequences generated
y the best ML gf method against the int time series, each with six
ifferent feature combinations. With the different feature combinations,
e tested how the method behaved with only optical or only SAR
ata, and what the influence of the weather was (see Table 3 and
ection 2.4).

We then tested the same combinations for transferability. To test
patial transferability, we manually separated training and test data
y study site, ensuring that the training and test datasets included
ifferent intensity levels and spatial locations within Germany. We used
ll sequences from Aulendorf (medium-intensive; southern Germany),
indhof (extensive-medium; northern Germany), Schorfheide-Chorin
extensive; north-eastern Germany) and Schwäbische Alb (extensive-
edium; southern Germany) for training, and tested the models on

he sequences from Hainich (extensive, central Germany), Haus Riswick
medium; western Germany), and Trenthorst (extensive; northern Ger-
any). To test the temporal transferability, we trained the model on

wo of the three years and tested it on the remaining year — each of
he years 2017–2019 was the target year once.

Mowing events were often detected in successive sequences because
he characteristics of a mowing event are present although not at
0 (Lobert et al., 2021). Therefore, consecutive classified mowing events
ere clustered to the median event with a tolerance of +/−12 days. The

lassification results of the different methods and feature combinations
ere then compared in terms of precision (true positive rate — TPR),

ecall (positive predictive value — PPV) and F1-score (F1), which is the
armonic mean of precision and recall (Kent et al., 1955).

In addition, we analyzed the ability of the models to find the exact
umber of mowing events per parcel and the number of correctly
lassified first two mowing events in the test dataset. For the latter,
n addition to the condition that the mowing event must be within a
olerance of +/−12 days, it must also be in the correct position/order;
or example, a second cut is only valid if the date is correct and there
s only one cut detected before that date.

. Results

.1. Gap handling

We tested the ability of three different ML methods and linear
egression to predict optical data at dates with only SAR data. The
esults showed that all methods, including linear interpolation, pre-
icted gaps within the VI time series mainly within the non-critical
ange of residuals between −0.2 and 0.2 (see Fig. 6). The medians of
he residuals were close to zero, and the lower and upper quartiles were
arrow for all methods. For the mowing event detection, we, therefore,
ocused on the ability of the approaches to avoid extreme residuals
ith residuals below or above this range. For both NDVI and EVI, the
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a

Fig. 6. The residual distribution of the Gap-handling results calculated with DNN, SVR, RF, and with linear interpolation. The differences between observed and predicted values
re shown (residuals). The light-grey area marks the residual range between −0.2 and 0.2, which is considered to be non-critical for mowing event detection.
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Table 4
Metrics for gap handling algorithms by vegetation index and algorithm. Extreme
Residuals are the number of values with residuals larger than 0.2 or lower than −0.2.
The best results are shown in bold.

VI Algorithm RMSE MAE Extreme Residual
residuals sum

NDVI interpolated 0.102 0.061 87 95.34
RFR 0.069 0.044 34 69.3
SVR 0.07 0.047 36 73.93
DNN 0.091 0.063 53 99.07

EVI interpolated 0.101 0.057 86 88.56
RFR 0.069 0.044 36 68.53
SVR 0.071 0.048 31 75.54
DNN 0.099 0.067 58 104.6

interpolation produced the highest number of extreme residuals. RFR
and SVR resulted in the lowest number of critical extreme residuals
for NDVI and EVI, respectively (see Table 4). RFR gave the lowest
RMSE, MAE, and RS values for NDVI and EVI with RMSE = 0.072 and
0.070, MAE = 0.048 and 0.047, and RS = 69.30 and 68.53 respectively.
Compared to the other methods, the DNN had the highest interquartile
range and was the least suitable for filling the gaps.

Fig. 7 shows the gap-filled and interpolated time-series for three
randomly selected parcels in the year 2017 on the six-day grid together
with the actual NDVI values on the day of acquisition. In most cases, the
RF and SVR predictions capture the trends quite well. In contrast, the
DNN time-series show large fluctuations. In Aulendorf and Schwäbische
Alb low values are moderated compared to the real values. This can
lead to mowing events not being detected, but low values due to
undetected clouds can be compensated (see very low value around
September in Aulendorf). In Trenthorst there were only few optical
scenes available throughout the year. The interpolated time-series is
therefore very flat. The ML algorithms introduce more movement.

As the RFR algorithm had the lowest RMSE, MAE, and RS values and
the lowest number of extreme residuals for NDVI, we used it to continue
with the Gap-handling. An analysis of the variable importance of the
RFR model showed that for both VIs, the most important variables
were the optical variables themselves immediately before and after the
gap (70.6 and 56.7). VV and VH coherence at 𝑡1 (3.5 and 2.9) and
backscatter RVI at 𝑡0 (2.3) had the highest variable importance of the
SAR features, but they have a comparatively low importance. The time
between optical acquisitions did not play a role.

4.2. Mowing event classification

Mowing event detection was performed with different settings to
9

find the best algorithm, the best feature combination, and the best s
Gap-handling method for classifying time series sequences into mown
and unmown. We tested two different methods to generate missing
optical data in temporal grids, four different ML methods for classifying
time series sequences, and six different feature combinations. Correctly
classified mowing events were within a tolerance of +/−12 days of the
eference mowing date. We evaluated the results with F1, PPV, and
PR. Fig. 8 shows in (a), (b), (c) and (d) the results separated by gap
andling, algorithm, and feature combination, as well as the results by
ear. Table 5 shows the ranking of all classification settings ordered by
1. The best classification result was obtained with gf time series with
ptical and weather features (OPT+W ) and the LSTM algorithm (TPR
0.92, PPV = 0.85, and F1 = 0.89).
Fig. 8(a) breaks down the by the ML algorithm. CNN and LSTM

roduced robustly good models with high medians and narrow in-
erquartile ranges for F1, PPV and TPR. RF tend to produce rather poor
odels, with F1 and TPR varying widely from model to model. The

VM models also had narrow interquartile ranges but do not achieve
s high F1, PPV, and TPR values as the CNN and LSTM methods. Due to
he unreliable results of RF and SVM, Figs. 8(b) to 8(d) show only the
esults of LSTM and CNN. Fig. 8(b) compares the results of the mowing
vent detection for time series with linearly interpolated VIs (int) and
or time series with gap-filled VIs (gf ). The median F1, PPV, and TPR
ere very similar for both gap filling methods, with the int values being

lightly better.
The overall best model in terms of F1 used optical and weather data,

ut no SAR features (OPT+W ). The combination of OPT+W features
lso gave stable results (see Fig. 8(c)). Among the top ten models,
here the values are close overall, there are only variations with optical
OPT ) and optical and SAR features combined (OPT+SAR). Except
or one case, these models always included weather data (OPT+W or
PT+SAR+W ). From Fig. 8(c) it is clear that weather data improved

he classification results.
We analyzed the results to see if there were differences in predictive

ower across use intensity levels (see Fig. 10). The best results were
btained for the intensively used parcels with a median F1 of 0.93,
ollowed by the medium intensity parcels (F1 = 0.88) and extensive
arcels with F1 of 0.67 based on the LSTM and CNN algorithm. We
ifferentiated by individual parcel because the use intensity of one
tudy site differed for individual parcels. The training set included 7800
equences from extensive parcels, 7000 samples from medium intensive
arcels, and 1150 samples from intensive parcels.

Looking at the different test sites, the best results were obtained at
he Riswick test site, followed by Schwäbische Alb and Aulendorf with
edian F1 values of 0.94, 0.83 and 0.80 respectively. These were the
tudy sites with the most sample sequences in the training data set —
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Fig. 7. Actual and predicted NDVI values from DNN, linear interpolation, RF, and SVR for three parcels of three study sites for the year 2017. Predicted values were predicted
on the 6 day grid.
Fig. 8. Classification measures F1, Precision (PPV) and Recall (TPR) for time series sequence classification into mown and unmown. (a) shows the results for the classification
algorithm, (b) depicts the results grouped by gap handling method without SAR models, (c) the results grouped by feature combination, and (d) discriminated between years. In
each case, all results were taken into account and only subdivided according to the corresponding category. (b) - (d) only include the CNN and LSTM algorithm.
over 3000 each. The results for the other study sites with less than 2000
sample sequences reached median F1 values of 0.64 (Schorfheide) or
0.67 (Lindhof, Trenthorst and Hainich).

For those mowing dates that were correctly identified within the
+/−12 day evaluation window, the difference between the predicted
and actual mowing dates for the LSTM and CNN models was on average
only two days earlier than the predicted date. The mean MAE was 2.6
10
days and the mean RMSE was 4.0 days when comparing the predicted
date with the actual date.

We also looked at the results for the three years considered (see
Fig. 8(d)). 2019 had the best classification results. 2017 and 2018 both
had worse results, with 2017 having better TPR and 2018 having better
PPV values. The higher TPR values in 2017 indicate that cuts were more
likely to be missed, whereas in 2018 mowing events were detected, that
did not take place.
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Table 5
Classification metrics for mowing event classification by algorithm, gap handling and
features. F1, Recall (TPR) and Precision (PPV) are shown. The list is ordered by
descending F1.

Method Gap handling Features Weather F1 PPV TPR

LSTM Gap-filled OPT + W 0.89 0.85 0.92
LSTM Lin. interpolated OPT + W 0.88 0.85 0.91
CNN Lin. interpolated OPT + W 0.86 0.84 0.88
LSTM Gap-filled OPT+SAR + W 0.86 0.88 0.84
CNN Gap-filled OPT + W 0.85 0.79 0.91
CNN Lin. interpolated OPT+SAR −W 0.85 0.84 0.86
CNN Lin. interpolated OPT+SAR + W 0.85 0.81 0.89
LSTM Lin. interpolated OPT+SAR + W 0.85 0.83 0.87
RF Gap-filled OPT + W 0.85 0.95 0.78
RF Lin. interpolated OPT + W 0.85 0.94 0.78
CNN Gap-filled OPT+SAR −W 0.83 0.86 0.80
CNN Gap-filled OPT+SAR + W 0.83 0.80 0.86
LSTM SAR + W 0.82 0.83 0.80
LSTM Lin. interpolated OPT+SAR −W 0.81 0.83 0.79
CNN Gap-filled OPT −W 0.80 0.77 0.83
LSTM Gap-filled OPT+SAR −W 0.80 0.79 0.81
LSTM Lin. interpolated OPT −W 0.80 0.80 0.81
CNN SAR + W 0.79 0.79 0.80
SVM Gap-filled OPT −W 0.79 0.72 0.88
CNN Lin. interpolated OPT −W 0.78 0.73 0.84
LSTM Gap-filled OPT −W 0.78 0.77 0.79
SVM Gap-filled OPT+SAR −W 0.78 0.67 0.93
SVM Gap-filled OPT + W 0.76 0.65 0.91
SVM Gap-filled OPT+SAR + W 0.75 0.64 0.92
RF SAR + W 0.74 0.96 0.60
SVM Lin. interpolated OPT+SAR −W 0.74 0.61 0.92
RF Lin. interpolated OPT+SAR + W 0.73 0.98 0.58
RF Gap-filled OPT+SAR + W 0.72 0.97 0.58
SVM Lin. interpolated OPT + W 0.72 0.61 0.89
SVM Lin. interpolated OPT+SAR + W 0.72 0.61 0.89
CNN SAR −W 0.68 0.64 0.72
LSTM SAR −W 0.66 0.78 0.58
SVM SAR + W 0.66 0.53 0.87
RF Lin. interpolated OPT −W 0.63 0.97 0.46
RF Gap-filled OPT −W 0.62 0.95 0.47
SVM SAR −W 0.62 0.50 0.84
RF Gap-filled OPT+SAR −W 0.28 0.97 0.16
RF Lin. interpolated OPT+SAR −W 0.25 1.00 0.14
RF SAR −W 0.07 1.00 0.04
SVM Lin. interpolated OPT −W NA NA 0

To determine whether the length of the gaps between optical scenes
ffected the classification result, we calculated the median number of
ays between acquisitions per year and study site. We plotted the F1
alues for all parameter combinations containing optical data against
he median gap sizes (see Fig. 9). The SAR model was excluded because

gaps in the optical data do not affect the SAR data. We also calculated
the Pearson correlation. There is a negative correlation between F1 and
gap length for median gaps of ten days or more (r = −0.44). This effect
is largely due to the poor results for median gaps of 20 days, caused by
a parcel in the Trenthorst study area in 2017. Excluding gap lengths of
20 still resulted in a negative correlation with r = −0.26. The negative
correlation does not occur for results with median gaps smaller than
ten days (r = 0.08).

4.2.1. Transferability
Training and testing the algorithms on independent datasets – either

temporally or spatially – still gave good performance, although the
ability of the algorithm to detect mowing events in the test data
deteriorated (see Fig. 11 and Tables A.6–A.9). Overall, the F1 score
varied between 0 and 0.79 for all models and gap handling methods.

CNN was the best overall algorithm (see Fig. 11(a)). RF was not
able to reliably predict mowing events and gave the worst results.
Although the SVM algorithm sometimes gave good and even better
results than LSTM, it lead to zero mowing event detection rate for
some feature combinations. The results for gap filling were still in-
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conclusive (see Fig. 11(b)). Although the gf models gave the best g
results, int models were more reliable. Feature combinations without
eather data (-W) gave better results than those with weather data

+W) (see Fig. 11(c)(c)). Models including both optical and SAR data
ere generally superior to OPT or SAR models, with the SAR model
eing the clearly worse of the two. Nevertheless, the best CNN models
id not need SAR data.

Spatially independent mowing events were best identified with the
NN algorithm and the OPT +W and gf model (F1 = 0.76) (see
ig. 12 and Table A.6). Extrapolation to independent years could be
est achieved with CNN, OPT+SAR -W and gf time series for the target
ear 2017 (F1 = 0.72, see Table A.7); CNN, OPT -W features and gf
ime-series for the target year 2019 (F1 = 0.79, see Table A.9); and
NN, OPT-W, gf for the target year 2018 (F1 = 0.72, see Table A.8).
he TPR was always higher than the PPV for the spatially independent
odels and the temporally independent target year 2017, meaning

hat the models tend to miss true positives. For the target years 2018
nd 2019, the PPV was mostly higher than the TPR. Thus, more true
ositive mowing events were detected but also more false positives.

We tested the spatially independent data on the three test sites
ainich (extensive), Riswick (medium intensive) and Trenthorst (ex-

ensive). The best results were obtained for Riswick and Hainich with
ean F1 = 0.70 and F1 = 0.64 respectively. Trenthorst only achieved
mean F1 = 0.51. The evaluation of spatially independent years again

howed that the results for 2017 (mean F1 = 0.66) were worse than for
018 (mean F1 = 0.75) and 2019 (mean F1 = 0.70).

.2.2. Intensity estimation
The intensity of grassland use can be defined by several factors

elated to mowing events, such as the number of cuts, the recovery time
etween cuts, or the timing of the first cut. The first two cuts and the
otal number of cuts per parcel are considered to be the most important
actors in estimating the use intensity, while the timing of the first cut
s also important for environmental measures. In this section, we focus
n analyzing the temporal and spatial accuracy of the first two cuts and
he number of cuts per plot.

Fig. 13 illustrates the accuracy of the LSTM algorithm in predicting
he number of mowing events per parcel compared to the actual
umber of mowing events. Overestimation and underestimation are
hown, differentiated by the number of actual mowing events. A further
istinction is made between the methods used to manage the gaps. The
igure shows that areas mown once or twice a year tend to be overesti-
ated, whereas sites mown more frequently tend to be underestimated.
hile the number of over- or underestimations was generally limited

o one or two events, some exceptions were observed with differences
f up to four cuts. The MAE for the number of mowing events for all
arameter combinations for LSTM and CNN was 0.67. The best overall
odel OPT +W achieved a MAE of 0.47.

The SAR +W feature combination was found to be the best pre-
ictor for plots with only one mowing operation per year, while the
PT +W and OPT -W models with gf time series performed well in

dentifying the correct number of cuts on two-cut meadows. The OPT
W - gf model gave the best results on three-cut and four-cut meadows.
lthough the OPT +W - gf model identified all mowing events on five-
ut parcels, the data for such parcels were underrepresented in the data,
nd therefore the results cannot be considered representative.

The correct detection of the first mowing event can already indicate
he use intensity of grassland by its date. The time between the first and
he second mowing events can also indicate the use intensity.

We analyzed the number of correctly classified first two mowing
vents in the test dataset (see Fig. 14). The figure shows the number
f correctly classified mowing events by feature combination and the
ut position for the LSTM method and the gap-filled time series. The
irst mowing events were correctly classified with 67% to 94%. The
un with OPT +W reached 94%. Both OPT + SAR +W and OPT + SAR
W reached 88%. Again, there is no significant difference between the

f and int models. The second mowing event of each parcel was less
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Fig. 9. Influence of the gap length between optical acquisitions on the classification results represented by the F1 measure per year and study site of classifications. The results
for all parameter combinations that include optical data are shown.
Fig. 10. Classification results by intensity of study site.
ften correctly classified, with a maximum of 71% correctly classified
OPT +W and int).

On all study sites, the first mowing event could be correctly clas-
ified by at least 67% for OPT + SAR +W and gf. For the second
owing the results were different. In the Hainich and Schorfheide

reas, less than 25% of the second cuts were found to be in the correct
osition. Aulendorf, Lindhof and Schwäbische Alb achieved 52–57%
nd in Riswick 80% of the second cuts were correctly detected. The
esults were not significantly different over the three years.

. Discussion

.1. Gap handling

Throughout the analysis, we compared whether there was an ad-
antage to infilling the optical vegetation index time series with a
achine learning approach rather than linearly interpolation. We used
armonized S2 and L8 data. The joint use of two sensors already
ncreases the availability of satellite data compared to single sensor
pproaches (Moreno-Martínez et al., 2020; Claverie et al., 2018). Fill-
ng the remaining gaps with machine learning resulted in a slight
dvantage of the predicted values over the interpolated values in the
irect comparison between the approaches. NDVI MAE of 0.044 and
MSE of 0.069 for NDVI were comparable to the results of the RNN
f Garioud et al. (2021) for grassland sites with MAE of 0.042 or 0.044
nd RMSE of 0.061 or 0.063 for their two sites. The threshold of 0.2
12
residuals is based on the assumption that this is the minimum deviation
that indicates a cut (Kolecka et al., 2018). However, Schwieder et al.
(2022) pointed out that thresholds are often not static, but should be
dynamically adjusted for years and grassland parcels. We also created
the gaps artificially by removing values from the time series. As a result,
the gaps created were longer than those actually present in the data.
For these reasons, relying solely on the extreme residuals to evaluate
the gap filling methods is less robust than analyzing the value of the
two mowing event detection methods.

Further analysis showed that there was no systematic advantage
of the RFR-filled time series for the detection of mowing events. We
expected to find a clear difference when comparing the results by
year, as the availability of optical satellite imagery varies between
years. There were sometimes longer gaps in the critical periods of May
and June — especially in 2017, a very wet year. We also assumed
that linearly interpolated time series would result in missed mowing
events if the gaps were too long (Buddeberg et al., 2016; Reinermann
et al., 2022). However, the differences between interpolated and filled
time series were often minimal in the mowing event detection results.
The TPR values, which can be an indicator of missed mowing events,
were also not very different. Due to the combined use of L2 and
L8, the median period between acquisitions only reached 20 days for
Trenthorst in 2017. Further studies on reference data with longer gaps
are recommended, also considering the study by Schmidt et al. (2014)
who found that the timing of satellite imagery can be crucial for
grassland related studies. Overall, our study suggests that interpolated
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Fig. 11. Classification measures F1, Precision (PPV) and Recall (TPR) by different factors for classifying time series sequences into mown and unmown for spatially or temporally
separated training and test data sets for extrapolation to unknown years or locations. In each case, all results were considered and only subdivided according to the corresponding
category. (b) and (c) include only the CNN algorithms. (a) shows the results for the classification algorithm, (b) shows the results grouped by gap handling method without the
pure SAR models, and (c) shows the results grouped by feature combination.
Fig. 12. Classification measures F1 for time series sequence classification into mown and unmown for the CNN method by parameter for spatially or temporally separated training
and test data sets for extrapolation to unknown years (by Year) or locations (by Study Site). The years shown are the years in the test data set.
optical time series from two different sensors could be sufficient to
detect mowing events in Germany. This is an advantage for area-wide
and recurrent application, as it is much easier to implement than a
two-step procedure with an upstream filling of gaps in the time series.
When developing classification algorithms with the aim of ensuring
their transferability over space and time, the goals of robustness and
simplicity are often sought alongside accuracy (Halabuk et al., 2015).
Nevertheless, we have not considered algorithms that can use the time
13
dimension or consider the order of variables for gap filling. These may
be more advantageous, as shown by Garioud et al. (2020, 2021).

5.2. Mowing event detection

Overall, our mowing event detection in time series sequences was
very successful. When both training and test data included all study
sites and years, the results were excellent. Optical data outperformed



Remote Sensing of Environment 295 (2023) 113680A.-K. Holtgrave et al.

f

t
t
o
s
d

t
a
(
1
(
t
s

Fig. 13. Difference between the reference and predicted number of mowing events per parcel by method, feature combination (−W: without weather features, +W: including
weather features) and total number of cuts per year per parcel. The results for the LSTM algorithm are shown. Positive differences indicate an overestimation of the frequency
and negative differences an underestimation.
Fig. 14. Share of correctly classified mowing events by their correct date and correct position with the LSTM method and gap-filled time series. The suitability of the different
eature combinations for the first and second mowing event is presented.
he combined use of optical and SAR data, and weather data supported
he classification. However, when the model was extrapolated to years
r areas not included in the training data, the results deteriorated
lightly. In terms of model transferability, SAR data improved the
etection of mowing events, while weather data worsened the results.

Our models achieved F1 values of up to 0.89, which is even higher
han the highest F1 values of 0.84 achieved by Lobert et al. (2021), 0.83
chieved by Halabuk et al. (2015) or 0.80 achieved by Taravat et al.
2019). Even with a smaller tolerance window of three days before and
2 days after the actual cut, which is the same as in Schwieder et al.
2022), the F1 values only decreased by about 0.05. These results show
hat this approach is a valuable step towards CAP control during the
eason.

For the detection of mowing events, the OPT models without SAR
data were superior to the other options in terms of detection quality and
robustness of results for models trained on all parcels and years. This
contradicts the results of Lobert et al. (2021), who found improvements
with the joint use of optical and SAR data. However, Reinermann et al.
(2022) also found that the use of optical data alone was better for
detecting mowing events. Some studies support that SAR backscat-
ter (Voormansik et al., 2020; Zalite et al., 2016) or coherence shows no
14
or at most an ambiguous relationship with mowing events (Zalite et al.,
2014; Reinermann et al., 2022). Other studies find backscatter (Grant
et al., 2015b; Taravat et al., 2019) or coherence useful (de Vroey et al.,
2021). The good results of optical data have been often stated in liter-
ature, which widely acknowledges that optical remote sensing is useful
for detecting abrupt changes in vegetation condition (Kolecka et al.,
2018; Estel et al., 2018). Although not part of the study, we looked at
the use of backscatter and coherence data alone for comparability. The
results were very similar to those of Lobert et al. (2021), with coherence
being superior to backscatter when considered alone. The combined use
of backscatter, coherence and optical data (OPT+SAR) was worse than
optical and coherence or optical and backscatter.

Weather data positively influenced the classification results when
rolling temperature and precipitation sums were included in the mow-
ing event detection classification, but only when the training data
included all study sites and years. Weather data is the same for all
parcels of a study site. Therefore, it is possible that they can be used as
grouping factors and contextual information for the parcels, which is
likely to improve the results (Li et al., 2014). Both precipitation and

temperature influence biomass development and thus the time slots
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when grassland cuts are most beneficial (Smit et al., 2008). Precipi-
tation can also determine when mowing is inappropriate, as grass is
usually cut only on days without precipitation.

In a comparison of algorithms for mowing event detection, CNN and
LSTM were far superior to the more traditional methods RFC and SVM.
They can take into account the temporal order of values (Zhao et al.,
2017). Compared to Lobert et al. (2021), our CNN model results were
more stable for different feature combinations, even though it was the
same CNN algorithm with the same configurations. This may be due to
the use of more ground truth data in this study. Although often suitable
for remote sensing tasks (Belgiu and Drăgu, 2016), the RF algorithm
did not produce consistently good results. However, both the RF and
SVM models were rather simple models and it may be possible that
parameter tuning could improve the results.

The results varied according to the regions studied and the intensity
of use. This can also be seen in the studies of Lobert et al. (2021)
or Schwieder et al. (2022). On intensively used parcels we obtained
better results. Plots with less frequent mowing are also more likely to
have unrecorded grazing. Grazing can have a large effect on the signal
and thus lead to false results (Dusseux et al., 2014a; Reinermann et al.,
2022). In addition, senescent biomass is more common in autumn on
more extensive sites and can cause distortions in the signal (Holtgrave
et al., 2020b). The results also varied between study sites. There
is evidence that sample size may have played a role, as there was
significantly more training data for the sites with the best results. This
phenomenon is known from classification tasks with classes of different
sizes (Bogner et al., 2018; Blickensdörfer et al., 2022).

Classification results differed between years, even when the models
were trained on data from all years: 2017 results were the worst and
2019 results were the best. This was also the case for Lobert et al.
(2021). Schwieder et al. (2022) also found overall better F1 scores for
2019 than for 2018 in Germany. When extrapolating from specific years
to unknown years, the results were worst for the target year 2018 and
best for the target year 2019. 2017 was a wet and cloudy year. High
soil moisture levels could have caused signal interference. Undetected
clouds in the data could have led to false positive classification of
mowing events (Griffiths et al., 2019). The inferiority of the 2017
results may also be due to the size of the gaps between two acquisitions,
due to persistent cloud cover. The median gap size for 2017 is mostly
greater than or equal to ten days. Our results indicate that the median
gap size and F1 as a measure of classification are not correlated below
a median gap size of about 10 days. Only for larger gaps we observe
a negative correlation. However, as our sample contains hardly any
observations with gaps of more than 10 days, this statement should
be treated with caution. In contrast to 2017, 2018 was a very dry year.
In many places, grassland vegetation did not regrow much after the
first cut. Differences in grass height before and after each subsequent
cut may therefore have been small and therefore difficult to detect.
This may have worsened the results compared to 2019, which was a
relatively normal year in terms of weather conditions.

The definition of use intensity of permanent grassland is ambigu-
ous. Definitions are not universally accepted, as the same number of
mowing events can be considered extensive or intensive depending on
the region in Germany and the respective yield potential based on
soil type and altitude, among other factors. In addition, the timing
of management is weather dependent and can therefore change from
year to year. The exact weather conditions at the beginning of the
year have a very large influence on the first mowing date as well
as on the time between mowing events (Schoof et al., 2020). The
number of mowing events, which determines the intensity of use,
varies regionally due to different environmental conditions. Therefore,
we classified the number of events or the date of the first mowing
event without assigning a use intensity. We showed that the number of
mowing events was mostly overestimated, which could also be due to
unreported grazing activity (Reinermann et al., 2022). Information on
15

grazing could improve the models. The overall MAE for the LSTM and
CNN models was 0.67, which is slightly higher than reported in Lobert
et al. (2021), who reported MAEs between 0.32 and 0.42 for parcels
mown one to three times and 1.44 for parcels mown four times. Our
best model (OPT +W ) achieved an MAE comparable to that of MAE =
0.47.

The LSTM models were able to detect the first cut with an accuracy
of up to 94%, allowing a tolerance of +/−12 days for correct classifi-
cation. Detection of the second cut was less reliable. The first cut was
best detected because the greatest difference in biomass occurs between
before and after the mowing (Dusseux et al., 2014b). This leads to the
most significant changes in the remote sensing signals. Later, the grass
height before and after the mowing events differs less. The timing of
the first mowing is important for biodiversity and forage production, as
well as for CAP compliance. The perfect timing for forage production
and biodiversity is very much dependent on phenology and thus on
the weather. In years with a cold spring or long periods of almost daily
rainfall, farmers may cut even very intensive meadows for the first time
a month later than in normal years. The recovery period between the
first and second mowing can also be very weather dependent. Its length
determines which plant species are able to regrow and recover, and
thus the species composition of the area in the long term (Smit et al.,
2008).

Transferability is not often tested in mowing event detection studies.
In this study, the best models achieved high F1 scores between 0.72 and
0.79 for temporally or spatially independent training and test datasets.
These results are still competitive with other studies that did not test
for transferability.

There were no clear results regarding the best model parameter
for the transferability tasks. Intensity of use had no significant effect
on the results of the spatial transferability task. Trenthorst performed
the worst, presumably because of larger gaps within the time se-
ries (Schwieder et al., 2022). The very best models for transfer to new
study sites or to 2018 or 2019 used only optical data, but the best
model for 2017 included optical and SAR data, and median F1 values
were higher for OPT+SAR than for OPT. The value of joint optical
and SAR data for mowing detection has been demonstrated in some
studies (de Vroey et al., 2022; Lobert et al., 2021). As transferability is
important for periodic monitoring of grassland, we conclude that SAR
features should continue to be considered for mowing event detection.
However, the S1-B satellite stopped providing data since December
2021, extending the SAR time grid to 12 days. Whether this is still
sufficient to complement optical data for mowing event detection needs
to be investigated.

The advantages or disadvantages of weather data for transferring
models to unknown years or locations were also inconclusive. Transfer-
ring models to the years 2017 and 2019 usually worked better without
weather data. This could be because all three years from 2017 to 2019
had very different weather conditions, making the information less
useful. The benefit of weather data for extrapolation to unknown study
areas depended on the satellite data used. When OPT models were used,
weather data were helpful, but when OPT+SAR models were used, they
were useless. This was unexpected as it was assumed that weather
data would improve the results, especially when combined with SAR
data (Zalite et al., 2014; Garioud et al., 2021). But adding more features
with low explanatory potential can introduce more noise and decrease
the results.

6. Conclusion

In conclusion, this study demonstrates the reliable detection of
mowing events throughout the growing season using CNN and LSTM
models applied to optical and SAR satellite time series data. These
models exhibit high accuracy, even for areas and years not included
in the training dataset. While LSTM performs slightly better on known
study sites and years, CNN shows superior transferability. The detection

of the first mowing event with high accuracy highlights the relevance of
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this research for grassland monitoring tasks outlined in European and
German agricultural and environmental policies.

Furthermore, our findings suggest that advanced gap filling methods
may not be necessary for time series analysis in Germany when using
both L8 and S2 images. The impact of different gap handling methods,
such as linear interpolation and random forest gap filling, was minimal
and can be disregarded. This practical advantage allows for widespread
application, saving both processing time and computing power.

Regarding feature selection for mowing event detection, the litera-
ture lacks consensus, and our study reaffirms this ambiguity. The choice
of feature combination depends on whether the model is applied to
known data in terms of time and space or for transferability. Optical
data proves advantageous for known study sites and years, while the
inclusion of both optical and SAR data yields favorable results for
transferable models. Additionally, weather data was found to play a
significant role in classifying mowing events for known study sites
and years. However, caution is necessary when incorporating weather
data into transferable models, as it may reduce their performance on
unknown sites or years.

For transferable models specifically applicable to CAP monitoring,
this study suggests utilizing a CNN model with optical and SAR data,
excluding weather data. But it is important to acknowledge that while
the results partially support this approach, further research is necessary
to obtain more conclusive findings in this regard.

In summary, our study provides valuable insights for researchers
and practitioners in selecting appropriate methods and feature combi-
nations tailored to their specific study requirements. By improving the
accuracy and applicability of models in diverse contexts, these findings
enhance the effectiveness of mowing event detection and contribute to
advancements in related fields.
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Appendix. Tables

See Tables A.6–A.9.

Table A.6
Transferability by Testsite: Classification metrics for mowing event classification by
algorithm, gap handling and features. F1, Recall (TPR) and Precision (PPV) are shown.
The list is ordered by descending F1.

Method Gap-handling Feature Weather F1 PPV TPR

CNN Gap-Filled OPT + W 0.76 0.66 0.90
CNN Gap-Filled OPT+SAR −W 0.74 0.62 0.91
CNN Lin. interpolated OPT+SAR −W 0.73 0.65 0.84
CNN Lin. interpolated OPT + W 0.70 0.66 0.73
CNN Gap-Filled OPT −W 0.69 0.63 0.77
LSTM Gap-Filled OPT+SAR + W 0.69 0.61 0.78
LSTM Lin. interpolated OPT+SAR −W 0.69 0.60 0.82
CNN Gap-Filled OPT+SAR + W 0.68 0.61 0.78
LSTM Gap-Filled OPT+SAR −W 0.68 0.60 0.79
SVM Lin. interpolated OPT+SAR −W 0.68 0.53 0.93
SVM Lin. interpolated OPT −W 0.68 0.56 0.85
CNN Lin. interpolated OPT+SAR + W 0.67 0.64 0.69
CNN Lin. interpolated OPT −W 0.67 0.64 0.69
LSTM Lin. interpolated OPT+SAR + W 0.67 0.58 0.78
SVM Gap-Filled OPT+SAR −W 0.65 0.49 0.96
SVM Gap-Filled OPT −W 0.65 0.49 0.97
CNN SAR −W 0.62 0.54 0.72
LSTM Gap-Filled OPT −W 0.62 0.54 0.72
LSTM Gap-Filled OPT + W 0.61 0.55 0.68
SVM Lin. interpolated OPT+SAR + W 0.61 0.49 0.81
LSTM Lin. interpolated OPT −W 0.60 0.58 0.62
SVM Gap-Filled OPT+SAR + W 0.59 0.45 0.85
SVM Gap-Filled OPT + W 0.59 0.46 0.84
SVM Lin. interpolated OPT + W 0.59 0.46 0.81
LSTM Lin. interpolated OPT + W 0.58 0.61 0.55
LSTM SAR −W 0.55 0.48 0.65
SVM SAR −W 0.55 0.40 0.89
LSTM SAR + W 0.52 0.49 0.55
SVM SAR + W 0.51 0.37 0.81
RF Gap-Filled OPT −W 0.45 0.81 0.31
CNN SAR + W 0.30 0.35 0.26
RF Lin. interpolated OPT −W 0.30 0.86 0.18
RF Gap-Filled OPT + W 0.27 0.88 0.16
RF Lin. interpolated OPT + W 0.21 0.82 0.12
RF Gap-Filled OPT+SAR −W 0.12 0.83 0.06
RF Lin. interpolated OPT+SAR −W 0.07 0.75 0.04
RF SAR −W 0.02 0.67 0.01
RF Gap-Filled OPT+SAR + W NA NA 0.00
RF SAR + W NA NA 0.00
RF Lin. interpolated OPT+SAR + W NA NA 0.00
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Table A.7
Transferability by Year, target 2017: Classification metrics for mowing event classifi-
cation by algorithm, gap handling and features. F1, Recall (TPR) and Precision (PPV)
are shown. The list is ordered by descending F1.

Method Gap-handling Feature Weather F1 PPV TPR

CNN Gap-Filled OPT+SAR −W 0.72 0.68 0.77
CNN Gap-Filled OPT −W 0.72 0.62 0.84
CNN Lin. interpolated OPT+SAR −W 0.72 0.68 0.77
CNN Lin. interpolated OPT+SAR + W 0.71 0.63 0.80
SVM Gap-Filled OPT −W 0.70 0.58 0.89
CNN Gap-Filled OPT+SAR + W 0.69 0.65 0.73
CNN Lin. interpolated OPT −W 0.69 0.62 0.78
SVM Gap-Filled OPT+SAR −W 0.69 0.56 0.90
SVM Lin. interpolated OPT+SAR −W 0.69 0.56 0.89
LSTM Gap-Filled OPT −W 0.67 0.61 0.75
LSTM Lin. interpolated OPT+SAR −W 0.67 0.66 0.68
CNN Gap-Filled OPT + W 0.66 0.64 0.68
LSTM Gap-Filled OPT+SAR −W 0.66 0.65 0.67
SVM Gap-Filled OPT + W 0.64 0.52 0.86
SVM Lin. interpolated OPT −W 0.64 0.53 0.81
LSTM Lin. interpolated OPT+SAR + W 0.63 0.66 0.60
CNN SAR + W 0.62 0.58 0.67
CNN SAR −W 0.62 0.56 0.69
LSTM Gap-Filled OPT+SAR + W 0.61 0.59 0.62
CNN Lin. interpolated OPT + W 0.60 0.58 0.62
LSTM Lin. interpolated OPT −W 0.60 0.63 0.57
SVM Lin. interpolated OPT + W 0.59 0.47 0.77
LSTM Gap-Filled OPT + W 0.55 0.60 0.51
LSTM Gap-Filled SAR −W 0.54 0.56 0.53
LSTM Lin. interpolated OPT + W 0.54 0.61 0.49
SVM SAR + W 0.54 0.42 0.77
LSTM SAR + W 0.47 0.51 0.45
RF Gap-Filled OPT −W 0.35 0.76 0.22
RF Lin. interpolated OPT −W 0.29 0.87 0.18
RF Lin. interpolated OPT + W 0.08 0.81 0.04
RF Gap-Filled OPT+SAR −W 0.05 0.79 0.03
RF Gap-Filled OPT + W 0.05 0.85 0.03
RF Lin. interpolated OPT+SAR −W 0.02 0.80 0.01
RF SAR −W 0.00 1.00 0.00
RF Gap-Filled OPT+SAR + W NA NA 0.00
RF SAR + W NA NA 0.00
RF Lin. interpolated OPT+SAR + W NA NA 0.00
SVM Gap-Filled OPT+SAR + W NA NA 0.00
SVM SAR −W NA NA NA
SVM Lin. interpolated OPT+SAR + W NA NA 0.00

Table A.8
Transferability by Year, target 2018: Classification metrics for mowing event classifi-
cation by algorithm, gap handling and features. F1, Recall (TPR) and Precision (PPV)
are shown. The list is ordered by descending F1.

Method Gap-handling Feature Weather F1 PPV TPR

CNN Gap-Filled OPT −W 0.72 0.72 0.71
CNN Gap-Filled OPT+SAR −W 0.71 0.82 0.62
SVM Gap-Filled OPT −W 0.71 0.63 0.81
CNN Lin. Interpolated OPT+SAR −W 0.70 0.76 0.64
CNN Lin. Interpolated OPT+SAR + W 0.68 0.80 0.59
SVM Gap-Filled OPT+SAR −W 0.68 0.60 0.79
SVM Lin. Interpolated OPT −W 0.66 0.56 0.79
SVM Lin. Interpolated OPT+SAR −W 0.65 0.55 0.79
CNN Lin. Interpolated OPT −W 0.64 0.59 0.70
LSTM Gap-Filled OPT −W 0.64 0.68 0.60
CNN Lin. Interpolated OPT + W 0.63 0.81 0.52
LSTM Lin. Interpolated OPT −W 0.63 0.65 0.61
CNN Gap-Filled OPT + W 0.61 0.77 0.50
LSTM Gap-Filled OPT+SAR −W 0.61 0.69 0.56
LSTM Lin. Interpolated OPT+SAR −W 0.61 0.66 0.56
CNN SAR −W 0.60 0.57 0.62
LSTM Gap-Filled OPT + W 0.60 0.74 0.50
SVM Gap-Filled OPT + W 0.60 0.57 0.64
SVM Lin. Interpolated OPT+SAR + W 0.60 0.58 0.62
CNN Gap-Filled OPT+SAR + W 0.59 0.88 0.44
SVM Gap-Filled OPT+SAR + W 0.59 0.57 0.61
CNN SAR + W 0.58 0.65 0.52
LSTM Lin. Interpolated OPT+SAR + W 0.58 0.62 0.55
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Table A.8 (continued).
Method Gap-handling Feature Weather F1 PPV TPR

LSTM Lin. Interpolated OPT + W 0.54 0.67 0.45
SVM Lin. Interpolated OPT + W 0.54 0.47 0.65
LSTM Gap-Filled OPT+SAR + W 0.53 0.62 0.46
LSTM SAR + W 0.49 0.56 0.44
LSTM SAR −W 0.41 0.44 0.38
RF Gap-Filled OPT −W 0.38 0.90 0.24
RF Lin. Interpolated OPT −W 0.26 0.9 0.15
RF Lin. Interpolated OPT + W 0.15 0.64 0.09
RF Gap-Filled OPT + W 0.10 1.00 0.05
RF Gap-Filled OPT+SAR −W 0.06 1.00 0.03
RF Lin. Interpolated OPT+SAR −W 0.05 1.00 0.02
RF Gap-Filled OPT+SAR + W NA NA 0.00
RF SAR + W NA NA 0.00
RF SAR −W NA NA 0.00
RF Lin. Interpolated OPT+SAR + W NA NA 0.00
SVM SAR + W NA NA 0.00
SVM SAR −W NA NA NA

Table A.9
Transferability by Year, target 2019: Classification metrics for mowing event classifi-
cation by algorithm, gap handling and features. F1, Recall (TPR) and Precision (PPV)
are shown. The list is ordered by descending F1.

Method Gap-handling Feature Weather F1 PPV TPR

CNN Gap-Filled OPT −W 0.80 0.74 0.87
CNN Gap-Filled OPT+SAR −W 0.79 0.76 0.82
LSTM Gap-Filled OPT+SAR −W 0.77 0.79 0.75
CNN Lin. interpolated OPT+SAR + W 0.76 0.71 0.82
SVM Gap-Filled OPT −W 0.76 0.66 0.90
CNN Lin. interpolated OPT+SAR −W 0.75 0.67 0.85
CNN Lin. interpolated OPT −W 0.75 0.70 0.81
CNN Gap-Filled OPT+SAR + W 0.74 0.79 0.70
SVM Gap-Filled OPT+SAR −W 0.74 0.61 0.95
LSTM Gap-Filled OPT −W 0.73 0.68 0.78
SVM Lin. interpolated OPT+SAR −W 0.73 0.61 0.93
SVM Lin. interpolated OPT −W 0.73 0.64 0.87
SVM Gap-Filled OPT + W 0.72 0.60 0.92
LSTM Gap-Filled OPT+SAR + W 0.71 0.78 0.65
LSTM Lin. interpolated OPT+SAR −W 0.71 0.74 0.69
LSTM Lin. interpolated OPT+SAR + W 0.70 0.79 0.62
LSTM Lin. interpolated OPT −W 0.69 0.71 0.67
CNN Gap-Filled OPT + W 0.68 0.75 0.62
LSTM Gap-Filled OPT + W 0.68 0.73 0.63
LSTM Lin. interpolated OPT + W 0.67 0.77 0.60
CNN Lin. interpolated OPT + W 0.66 0.71 0.61
SVM Gap-Filled OPT+SAR + W 0.66 0.53 0.87
SVM Lin. interpolated OPT + W 0.66 0.54 0.85
CNN SAR + W 0.64 0.68 0.60
SVM Lin. interpolated OPT+SAR + W 0.63 0.5 0.84
SVM SAR −W 0.61 0.48 0.83
CNN SAR −W 0.55 0.50 0.60
SVM SAR + W 0.55 0.42 0.79
LSTM SAR + W 0.54 0.68 0.45
LSTM SAR −W 0.54 0.59 0.50
RF Gap-Filled OPT −W 0.46 0.92 0.30
RF Lin. interpolated OPT −W 0.45 0.97 0.30
RF Gap-Filled OPT + W 0.13 1.00 0.07
RF Gap-Filled OPT+SAR −W 0.10 1.00 0.05
RF Lin. interpolated OPT+SAR −W 0.05 1.00 0.02
RF Lin. interpolated OPT + W 0.02 0.8 0.01
RF Gap-Filled OPT+SAR + W NA NA 0.00
RF SAR + W NA NA 0.00
RF SAR −W NA NA 0.00
RF Lin. interpolated OPT+SAR + W NA NA 0.00

References

Allaire, J., Cholle, F., 2021. Keras: R interface to ’keras’: R package version 2.7.0.
Belda, S., Pipia, L., Morcillo-Pallarés, P., Rivera-Caicedo, J.P., Amin, E., de Grave, C.,

Verrelst, J., 2020. DATimeS: A machine learning time series GUI toolbox for gap-
handling and vegetation phenology trends detection. Environ. Model. Softw. 127,
104666. http://dx.doi.org/10.1016/j.envsoft.2020.104666.

Belgiu, M., Drăgu, L., 2016. Random forest in remote sensing: A review of applications

and future directions. ISPRS J. Photogramm. Remote Sens. 114 (Part A), 24–31.

http://refhub.elsevier.com/S0034-4257(23)00231-6/sb1
http://dx.doi.org/10.1016/j.envsoft.2020.104666


Remote Sensing of Environment 295 (2023) 113680A.-K. Holtgrave et al.
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011.
Bermudez, J.D., Happ, P.N., Feitosa, R.Q., Oliveira, D.A.B., 2019. Synthesis of

multispectral optical images from SAR/Optical multitemporal data using condi-
tional generative adversarial networks. IEEE Geosci. Remote Sens. Lett. 16 (8),
1220–1224. http://dx.doi.org/10.1109/LGRS.2019.2894734.

Bisphop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press,
USA.

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., Hostert, P.,
2022. Mapping of crop types and crop sequences with combined time series of
Sentinel-1, Sentinel-2 and landsat 8 data for Germany. Remote Sens. Environ. 269,
112831. http://dx.doi.org/10.1016/j.rse.2021.112831.

Bogner, C., Seo, B., Rohner, D., Reineking, B., 2018. Classification of rare land cover
types: Distinguishing annual and perennial crops in an agricultural catchment in
South Korea. PLoS One 13 (1), e0190476. http://dx.doi.org/10.1371/journal.pone.
0190476.

Bolton, D.K., Gray, J.M., Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A., 2020.
Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2
imagery. Remote Sens. Environ. 240 (6), 111685. http://dx.doi.org/10.1016/j.rse.
2020.111685.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. http://dx.doi.org/10.
1023/A:1010933404324.

Brown, L.J., Nocera, J.J., 2017. Conservation of breeding grassland birds requires local
management strategies when hay maturation and nutritional quality differ among
regions. Agric. Ecosys. Environ. 237, 242–249. http://dx.doi.org/10.1016/j.agee.
2016.11.004.

Buddeberg, M., Bach, H., Hodrius, M., Paulik, F., Migdall, S., Kuhn, G., 2016. Potentials
and limitations of optical and radar satellite imagery for grassland monitoring. In:
Ouwehand, L. (Ed.), Proceedings of Living Planet Symposium 2016. In: ESA SP,
ESA Communications, Noordwijk, The Netherlands.

Bundesanstalt für Landwirtschaft und Ernährung, 2017. Agrarmeteorologie. Bonn.
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: Synthetic

minority over-sampling technique. J. Artificial Intelligence Res. 16, 321–357. http:
//dx.doi.org/10.1613/jair.953.

Chen, Y., He, W., Yokoya, N., Huang, T.Z., 2019. Blind cloud and cloud shadow
removal of multitemporal images based on total variation regularized low-rank
sparsity decomposition. ISPRS J. Photogramm. Remote Sens. 157 (2), 93–107.
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.003.

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.C., Skakun, S.V.,
Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data
set. Remote Sens. Environ. 219 (2), 145–161. http://dx.doi.org/10.1016/j.rse.2018.
09.002.

Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., García Millán, V.E.,
Strasser, T., Vanden Borre, J., Toon, S., Michael, F., 2015. Remote sensing for
mapping natural habitats and their conservation status – New opportunities and
challenges. Int. J. Appl. Earth Obs. Geoinf. 37 (3), 7–16. http://dx.doi.org/10.1016/
j.jag.2014.11.005.

Courault, D., Hadria, R., Ruget, F., Olioso, A., Duchemin, B., Hagolle, O., Dedieu, G.,
2010. Combined use of FORMOSAT-2 images with a crop model for biomass and
water monitoring of permanent grassland in Mediterranean region. Hydrol. Earth
Syst. Sci. 14 (9), 1731–1744. http://dx.doi.org/10.5194/hess-14-1731-2010.

Cresson, R., Ienco, D., Gaetano, R., Ose, K., Tong Minh, D.H., 2019. Optical image gap
handling using deep convolutional autoencoder from optical and radar images.
In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing
Symposium. IEEE, pp. 218–221. http://dx.doi.org/10.1109/IGARSS.2019.8900353.

Dahiya, N., Gupta, S., Singh, S., 2022. A review paper on machine learning applications,
advantages, and techniques. ECS Trans. 107 (1), 6137–6150. http://dx.doi.org/10.
1149/10701.6137ecst.

de Carvalho, O.A., Guimaraes, R.F., Trancoso Gomes, R.A., da Silva, N.C., 2017.
Time series interpolation. In: IEEE International Geoscience and Remote Sens-
ing Symposium. IEEE, pp. 1959–1961. http://dx.doi.org/10.1109/IGARSS.2007.
4423211.

de Vroey, M., de Vendictis, L., Zavagli, M., Bontemps, S., Heymans, D., Radoux, J.,
Koetz, B., Defourny, P., 2022. Mowing detection using Sentinel-1 and Sentinel-
2 time series for large scale grassland monitoring. Remote Sens. Environ. 280,
113145. http://dx.doi.org/10.1016/j.rse.2022.113145.

de Vroey, M., Radoux, J., Defourny, P., 2021. Grassland mowing detection using
Sentinel-1 time series: Potential and limitations. Remote Sens. 13 (3), 348. http:
//dx.doi.org/10.3390/rs13030348.

de Vroey, M., Radoux, J., Defourny, P., 2023. Classifying sub-parcel grassland man-
agement practices by optical and microwave remote sensing. Remote Sens. 15 (1),
181. http://dx.doi.org/10.3390/rs15010181.

Dierschke, H., Briemle, G., Kratochwil, A., 2002. Kulturgrasland: Wiesen, Weiden Und
Verwandte Staudenfluren. In: Ökosysteme Mitteleuropas aus geobotanischer Sicht,
Verlag Eugen Ulmer, Stuttgart.

Döhler, H., 2009. Faustzahlen für die Landwirtschaft, 14. Aufl. ed. KTBL, Darmstadt.
Dusseux, P., Gong, X., Hubert-Moy, L., Corpetti, T., 2014a. Identification of grassland

management practices from leaf area index time series. J. Appl. Remote Sens. 8
(1), 083559. http://dx.doi.org/10.1117/1.JRS.8.083559.

Dusseux, P., Vertès, F., Corpetti, T., Corgne, S., Hubert-Moy, L., 2014b. Agricultural
practices in grasslands detected by spatial remote sensing. Environ. Monit. Assess.
186 (12), 8249–8265. http://dx.doi.org/10.1007/s10661-014-4001-5.
18
DWD Climate Data Center, 2021a. Annual regional averages of air temperature (annual
mean) in ◦C (2 mabove ground), version v19.3. Last accessed 10 May 2021.

DWD Climate Data Center, 2021b. Annual regional averages of sunshine duration
(annual sum) in hours,version v19.3. Last accessed 10 May 2021.

DWD Climate Data Center, 2021c. DWD climate data center (CDC): Annual regional
averages of precipitation height (annual sum) in mm,version v19.3. Last accessed
10 May 2021.

Ernst, p., Loeper, E.G., Temperaturentwicklung und Vegetationsbeginn auf dem
Grünland. Das Wirtschaftseigene Futter (22), 5–12.

Estel, S., Mader, S., Levers, C., Verburg, P.H., Baumann, M., Kuemmerle, T., 2018.
Combining satellite data and agricultural statistics to map grassland management
intensity in europe. Environ. Res. Lett. 13 (7), 074020. http://dx.doi.org/10.1088/
1748-9326/aacc7a.

European Commission, 2018. Modernising the CAP: Satellite Data Authorised to
Replace On-Farm Checks. Brussels, Belgium, URL: https://ec.europa.eu/info/news/
modernising-cap-satellite-data-authorised-replace-farm-checks-2018-may-25_en.

European Union, 2021a. Regulation (EU) 2021/2115 of the European Parliament and
of the Council of 2 December 2021 establishing rules on support for strategic
plans to be drawn up by Member States under the common agricultural policy
(CAP Strategic Plans) and financed by the European Agricultural Guarantee Fund
(EAGF) and by the European Agricultural Fund for Rural Development (EAFRD)
and repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013: Regulation
(EU) 2021/2115. Off. J. Eur. Union L 435 (64), 1–186.

European Union, 2021b. Regulation (EU) 2021/2116 of the European Parliament and
of the Council of 2 December 2021 on the financing, management and monitoring
of the common agricultural policy and repealing Regulation (EU) No 1306/2013:
Regulation (EU) 2021/2116. Off. J. Eur. Union L 435 (64), 187–261.

Eurostat, 2018. Land cover overview by NUTS 2 regions.
Fabel, D., Allaire, J., RStudio, Tang, Y., Eddelbuettel, D., Golding, N., Kalinowski, T.,

Google Inc., 2022. tensorflow: R interface to ’TensorFlow’. URL: https://cran.r-
project.org/web/packages/tensorflow/tensorflow.pdf.

Filipponi, F., 2019. Sentinel-1 GRD preprocessing workflow. Proceedings 18 (1), 11.
http://dx.doi.org/10.3390/ECRS-3-06201.

Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D., Korte, G.,
Nieschulze, J., Pfeiffer, S., Prati, D., Renner, S., Schöning, I., Schumacher, U.,
Wells, K., Buscot, F., Kalko, E.K., Linsenmair, K.E., Schulze, E.D., Weisser, W.W.,
2010. Implementing large-scale and long-term functional biodiversity research: The
biodiversity exploratories. Basic Appl. Ecol. 11 (6), 473–485. http://dx.doi.org/10.
1016/j.baae.2010.07.009.

Fischer, C., Tischer, J., Roscher, C., Eisenhauer, N., Ravenek, J., Gleixner, G., At-
tinger, S., Jensen, B., de Kroon, H., Mommer, L., Scheu, S., Hildebrandt, A., 2015.
Plant species diversity affects infiltration capacity in an experimental grassland
through changes in soil properties. Plant Soil 397 (1–2), 1–16. http://dx.doi.org/
10.1007/s11104-014-2373-5.

Frantz, D., 2019. FORCE—Landsat + Sentinel-2 analysis ready data and beyond. Remote
Sens. 11 (9), 1124. http://dx.doi.org/10.3390/rs11091124.

García-Feced, C., Weissteiner, C.J., Baraldi, A., Paracchini, M.L., Maes, J., Zulian, G.,
Kempen, M., Elbersen, B., Pérez-Soba, M., 2015. Semi-natural vegetation in agri-
cultural land: European map and links to ecosystem service supply. Agron. Sustain.
Dev. 35 (1), 273–283. http://dx.doi.org/10.1007/s13593-014-0238-1.

Garioud, A., Valero, S., Giordano, S., Mallet, C., 2020. On the joint exploitation of
optical and SAR satellite imagery for grassland monitoring. ISPRS - Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3-2020, 591–598. http://dx.doi.
org/10.5194/isprs-archives-XLIII-B3-2020-591-2020.

Garioud, A., Valero, S., Giordano, S., Mallet, C., 2021. Recurrent-based regression of
sentinel time series for continuous vegetation monitoring. Remote Sens. Environ.
263, 112419. http://dx.doi.org/10.1016/j.rse.2021.112419.

German Weather Center, 2020. Climate data of the dwd; synop data from the time
series 1960–2020; averaged from original single data.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
Grant, K., Siegmund, R., Wagner, M., Hartmann, S., 2015a. Satellite-based assessment

of grassland yields. ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
XL-7/W3, 15–18. http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-15-2015.

Grant, K., Siegmund, R., Wagner, M., Kluß, C., Herrmann, A., Taube, F., Hartmann, S.,
2015b. Regionalisierte Erfassung von Nutzungsintensitäten im Grünland mittels
Radartechnik. In: Francke-Weltmann (Ed.), Multifunktionale Agrarlandschaften -
Pflanzenbaulicher Anspruch, Biodiversität, Ökosystemdienstleistungen, Vol. 27.
Verlag Liddy Halm Göttingen, Göttingen, pp. 113–114.

Griffiths, P., Nendel, C., Pickert, J., Hostert, P., 2019. Towards national-scale character-
ization of grassland use intensity from integrated Sentinel-2 and landsat time series.
Remote Sens. Environ. 111124. http://dx.doi.org/10.1016/j.rse.2019.03.017.

Hajduch, G., Bourbigot, M., 2022. Sentinel-1 Product Specification. S1-RS-MDA-52-
7441, European Space Agency.

Halabuk, A., Mojses, M., Halabuk, M., David, S., 2015. Towards detection of cutting
in hay meadows by using of NDVI and EVI time series. Remote Sens. 7 (5),
6107–6132. http://dx.doi.org/10.3390/rs70506107.

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with
neural networks. Science 313 (5786), 504–507. http://dx.doi.org/10.1126/science.
1127647.

http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1109/LGRS.2019.2894734
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb5
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb5
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb5
http://dx.doi.org/10.1016/j.rse.2021.112831
http://dx.doi.org/10.1371/journal.pone.0190476
http://dx.doi.org/10.1371/journal.pone.0190476
http://dx.doi.org/10.1371/journal.pone.0190476
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.agee.2016.11.004
http://dx.doi.org/10.1016/j.agee.2016.11.004
http://dx.doi.org/10.1016/j.agee.2016.11.004
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb11
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb12
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.003
http://dx.doi.org/10.1016/j.rse.2018.09.002
http://dx.doi.org/10.1016/j.rse.2018.09.002
http://dx.doi.org/10.1016/j.rse.2018.09.002
http://dx.doi.org/10.1016/j.jag.2014.11.005
http://dx.doi.org/10.1016/j.jag.2014.11.005
http://dx.doi.org/10.1016/j.jag.2014.11.005
http://dx.doi.org/10.5194/hess-14-1731-2010
http://dx.doi.org/10.1109/IGARSS.2019.8900353
http://dx.doi.org/10.1149/10701.6137ecst
http://dx.doi.org/10.1149/10701.6137ecst
http://dx.doi.org/10.1149/10701.6137ecst
http://dx.doi.org/10.1109/IGARSS.2007.4423211
http://dx.doi.org/10.1109/IGARSS.2007.4423211
http://dx.doi.org/10.1109/IGARSS.2007.4423211
http://dx.doi.org/10.1016/j.rse.2022.113145
http://dx.doi.org/10.3390/rs13030348
http://dx.doi.org/10.3390/rs13030348
http://dx.doi.org/10.3390/rs13030348
http://dx.doi.org/10.3390/rs15010181
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb24
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb24
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb24
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb24
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb24
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb25
http://dx.doi.org/10.1117/1.JRS.8.083559
http://dx.doi.org/10.1007/s10661-014-4001-5
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb28
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb28
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb28
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb29
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb29
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb29
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb30
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb30
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb30
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb30
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb30
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb31
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb31
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb31
http://dx.doi.org/10.1088/1748-9326/aacc7a
http://dx.doi.org/10.1088/1748-9326/aacc7a
http://dx.doi.org/10.1088/1748-9326/aacc7a
https://ec.europa.eu/info/news/modernising-cap-satellite-data-authorised-replace-farm-checks-2018-may-25_en
https://ec.europa.eu/info/news/modernising-cap-satellite-data-authorised-replace-farm-checks-2018-may-25_en
https://ec.europa.eu/info/news/modernising-cap-satellite-data-authorised-replace-farm-checks-2018-may-25_en
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb34
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb35
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb36
https://cran.r-project.org/web/packages/tensorflow/tensorflow.pdf
https://cran.r-project.org/web/packages/tensorflow/tensorflow.pdf
https://cran.r-project.org/web/packages/tensorflow/tensorflow.pdf
http://dx.doi.org/10.3390/ECRS-3-06201
http://dx.doi.org/10.1016/j.baae.2010.07.009
http://dx.doi.org/10.1016/j.baae.2010.07.009
http://dx.doi.org/10.1016/j.baae.2010.07.009
http://dx.doi.org/10.1007/s11104-014-2373-5
http://dx.doi.org/10.1007/s11104-014-2373-5
http://dx.doi.org/10.1007/s11104-014-2373-5
http://dx.doi.org/10.3390/rs11091124
http://dx.doi.org/10.1007/s13593-014-0238-1
http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020
http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020
http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020
http://dx.doi.org/10.1016/j.rse.2021.112419
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb45
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb45
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb45
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb46
http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-15-2015
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb48
http://dx.doi.org/10.1016/j.rse.2019.03.017
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb50
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb50
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb50
http://dx.doi.org/10.3390/rs70506107
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647


Remote Sensing of Environment 295 (2023) 113680A.-K. Holtgrave et al.
Ho, T.K., 1995. Random decision forests. In: Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition. IEEE Comput. Soc. Press, pp. 278–282.
http://dx.doi.org/10.1109/ICDAR.1995.598994.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Holtgrave, A., Ackermann, A., Röder, N., Kleinschmit, B., 2020a. Towards a dual-
polarisation radar vegetation index for Sentinel-1 for grassland monitoring. In:
Meeting the Future Demands for Grassland Production. pp. 596–598.

Holtgrave, A.K., Röder, N., Ackermann, A., Erasmi, S., Kleinschmit, B., 2020b. Compar-
ing Sentinel-1 and -2 data and indices for agricultural land use monitoring. Remote
Sens. 12 (18), 2919. http://dx.doi.org/10.3390/rs12182919.

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., 2002. Overview
of the radiometric and biophysical performance of the MODIS vegetation in-
dices. Remote Sens. Environ. 83 (1–2), 195–213. http://dx.doi.org/10.1016/S0034-
4257(02)00096-2.

Jankowska-Huflejt, H., 2006. The function of permanent grasslands in water resources
protection. J. Water Land Dev. 10 (1), http://dx.doi.org/10.2478/v10025-007-
0005-7.

Jin, X., Tang, P., Houet, T., Corpetti, T., Alvarez-Vanhard, E.G., Zhang, Z., 2021.
Sequence image interpolation via separable convolution network. Remote Sens. 13
(2), 296. http://dx.doi.org/10.3390/rs13020296.

Julien, Y., Sobrino, J.A., 2019. Optimizing and comparing gap-handling techniques
using simulated NDVI time series from remotely sensed global data. Int. J. Appl.
Earth Obs. Geoinf. 76 (7), 93–111. http://dx.doi.org/10.1016/j.jag.2018.11.008.

Kalinowski, T., Fabel, D., Allaire, J., Chollet, F., RStudio, Google Inc., Tang, Y., van
der Bijl, W., Studer, M., Keydana, S., 2023. R interface to ’Keras’.

Kandasamy, S., Baret, F., Verger, A., Neveux, P., Weiss, M., 2013. A comparison of
methods for smoothing and gap handling time series of remote sensing observations
– application to MODIS LAI products. Biogeosciences 10 (6), 4055–4071. http:
//dx.doi.org/10.5194/bg-10-4055-2013.

Karim, F., Majumdar, S., Darabi, H., Harford, S., 2019. Multivariate LSTM-FCNs for
time series classification. Neural Netw. Off. J. Int. Neural Netw. Soc. 116, 237–245.
http://dx.doi.org/10.1016/j.neunet.2019.04.014.

Kent, A., Berry, M.M., Luehrs, F.U., Perry, J.W., 1955. Machine literature searching
VIII. Operational criteria for designing information retrieval systems. Am. Doc. 6
(2), 93–101. http://dx.doi.org/10.1002/asi.5090060209.

Ketzer, D., Rösch, C., Haase, M., 2017. Assessment of sustainable grassland biomass
potentials for energy supply in Northwest Europe. Biomass Bioenergy 100, 39–51.
http://dx.doi.org/10.1016/j.biombioe.2017.03.009.

Kleijn, D., Kohler, F., Baldi, A., Batary, P., Concepcion, E., Clough, Y., Diaz, M.,
Gabriel, D., Holzschuh, A., Knop, E., Kovacs, A., Marshall, E., Tscharntke, T.,
Verhulst, J., 2009. On the relationship between farmland biodiversity and land-
use intensity in Europe. Proc. R. Soc. Lond. [Biol.] 276 (1658), 903–909. http:
//dx.doi.org/10.1098/rspb.2008.1509.

Klimek, S., Richter gen. Kemmermann, A., Hofmann, M., Isselstein, J., 2007. Plant
species richness and composition in managed grasslands: The relative importance
of field management and environmental factors. Biol. Cons. 134 (4), 559–570.
http://dx.doi.org/10.1016/j.biocon.2006.09.007.

Kolecka, N., Ginzler, C., Pazur, R., Price, B., Verburg, P., 2018. Regional scale mapping
of grassland mowing frequency with Sentinel-2 time series. Remote Sens. 10 (8),
1221. http://dx.doi.org/10.3390/rs10081221.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T.,
Mayer, Z., Kenkel, B., R Core Team, Benesty, M., Lescarbeau, R., Ziem, A.,
Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2021. caret: Classification and regression
training: Version 6.0-86. URL: https://CRAN.R-project.org/package=caret.

Li, J., Huang, X., Gong, J., 2019. Deep neural network for remote-sensing image
interpretation: status and perspectives. Natl. Sci. Rev. 6 (6), 1082–1086. http:
//dx.doi.org/10.1093/nsr/nwz058.

Li, Z.L., Leng, P., Zhou, C., Chen, K.S., Zhou, F.C., Shang, G.F., 2021. Soil moisture
retrieval from remote sensing measurements: Current knowledge and directions
for the future. Earth-Sci. Rev. 218, 103673. http://dx.doi.org/10.1016/j.earscirev.
2021.103673.

Li, M., Zang, S., Zhang, B., Li, S., Wu, C., 2014. A review of remote sensing image
classification techniques: the role of spatio-contextual information. Eur. J. Remote
Sen. 47 (1), 389–411. http://dx.doi.org/10.5721/EuJRS20144723.

Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine learning
in agriculture: A review. Sensors (Basel, Switzerland) 18 (8), http://dx.doi.org/10.
3390/s18082674.

Ling, C.X., Li, C., 1998. Data mining for direct marketing: problems and solutions. In:
Agrawal, R. (Ed.), Proceedings / the Fourth International Conference on Knowledge
Discovery and Data Mining. AAAI Press, Menlo Park, Calif., pp. 73–79.

Lobert, F., Holtgrave, A.K., Schwieder, M., Pause, M., Vogt, J., Gocht, A., Erasmi, S.,
2021. Mowing event detection in permanent grasslands: Systematic evaluation of
input features from Sentinel-1, Sentinel-2, and Landsat 8 time series. Remote Sens.
Environ. 267 (309), 112751. http://dx.doi.org/10.1016/j.rse.2021.112751.

Lu, J., Tan, L., Jiang, H., 2021. Review on convolutional neural network (CNN) applied
to plant leaf disease classification. Agriculture 11 (8), 707. http://dx.doi.org/10.
3390/agriculture11080707.
19
Mazza, A., Gargiulo, M., Scarpa, G., Gaetano, R., 2018. Estimating the NDVI from
SAR by convolutional neural networks. In: IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium. pp. 1954–1957. http://dx.doi.org/10.
1109/IGARSS.2018.8519459.

McIntosh, D.W., Bates, G.E., Keyser, P.D., Allen, F.L., Harper, C.A., Waller, J.C.,
Birckhead, J.L., Backus, W.M., 2016. Forage harvest timing impact on biomass
quality from native warm-season grass mixtures. Agron. J. 108 (4), 1524–1530.
http://dx.doi.org/10.2134/agronj2015.0560.

Mitsch, W.J., Gosselink, J.G., 2000. The value of wetlands: Importance of scale and
landscape setting. Ecol. Econom. 35 (1), 25–33. http://dx.doi.org/10.1016/S0921-
8009(00)00165-8.

Moreno-Martínez, Á., Izquierdo-Verdiguier, E., Maneta, M.P., Camps-Valls, G., Robin-
son, N., Muñoz-Marí, J., Sedano, F., Clinton, N., Running, S.W., 2020. Multispectral
high resolution sensor fusion for smoothing and gap-handling in the cloud. Remote
Sens. Environ. 247, 111901. http://dx.doi.org/10.1016/j.rse.2020.111901.

Mountrakis, G., Im, J., Ogole, C., 2011. Support vector machines in remote sensing: A
review. ISPRS J. Photogramm. Remote Sens. 66 (3), 247–259. http://dx.doi.org/
10.1016/j.isprsjprs.2010.11.001.

Nasirzadehdizaji, R., Balik Sanli, F., Abdikan, S., Cakir, Z., Sekertekin, A., Ustuner, M.,
2019. Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop
height and canopy coverage. Appl. Sci. 9 (4), 655. http://dx.doi.org/10.3390/
app9040655.

O’Shea, K., Nash, R., 2015. An introduction to convolutional neural networks. http:
//dx.doi.org/10.48550/arXiv.1511.08458.

Peeters, A., 2009. Importance, evolution, environmental impact and future challenges of
grasslands and grassland-based systems in europe. Grassland Sci. 55 (3), 113–125.
http://dx.doi.org/10.1111/j.1744-697X.2009.00154.x.

Reinermann, S., Asam, S., Kuenzer, C., 2020. Remote sensing of grassland production
and management—A review. Remote Sens. 12 (12), 1949. http://dx.doi.org/10.
3390/rs12121949.

Reinermann, S., Gessner, U., Asam, S., Ullmann, T., Schucknecht, A., Kuenzer, C.,
2022. Detection of grassland mowing events for Germany by combining Sentinel-1
and Sentinel-2 time series. Remote Sens. 14 (7), 1647. http://dx.doi.org/10.3390/
rs14071647.

Richtlinie KULAP, 2020. Richtlinie des Ministeriums für Landwirtschaft, Umwelt
und Klimaschutz des Landes Brandenburg zur Förderung umweltgerechter land-
wirtschaftlicher Produktionsverfahren und zur Erhaltung der Kulturlandschaft der
Länder Brandenburg und Berlin (KULAP 2014) - II D 2.

Richtlinie NiB-AUM, 2019. Richtlinie über die Gewährung von Zuwendungen
für Niedersächsischeund Bremer Agrarumweltmaßnahmen -NiB-AUM- (Fassung
15.3.2019) Gem.RdErl. d. MLu. d. MUv.15.7.2015 - GL 2.

Rieder, J., 1997. Extensive Bewirtschaftung von Dauergrünland. In: AID, vol. 1287,
AID, Bonn.

Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E., Gold-
stein, R.M., 2000. Synthetic aperture radar interferometry. Proc. IEEE 88 (3),
333–382. http://dx.doi.org/10.1109/5.838084.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring the Vernal
Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation.
Progress Report RSC 1978-1, Texas, USA.

Scarpa, G., Gargiulo, M., Mazza, A., Gaetano, R., 2018. A CNN-based fusion method
for feature extraction from sentinel data. Remote Sens. 10 (2), 236. http://dx.doi.
org/10.3390/rs10020236.

Schlund, M., Erasmi, S., 2020. Sentinel-1 time series data for monitoring the phenology
of winter wheat. Remote Sens. Environ. 246 (22), 111814. http://dx.doi.org/10.
1016/j.rse.2020.111814.

Schmidt, T., Schuster, C., Kleinschmit, B., Forster, M., 2014. Evaluating an intra-
annual time series for grassland classification—How many acquisitions and what
seasonal origin are optimal? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (8),
3428–3439. http://dx.doi.org/10.1109/JSTARS.2014.2347203.

Schmitt, M., Hughes, L.H., Zhu, X.X., 2018. The sen1-2 dataset for deep learning in
sar-optical data fusion. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-1,
141–146. http://dx.doi.org/10.5194/isprs-annals-IV-1-141-2018.

Schoof, N., Luick, R., Beaufoy, G., Jones, G., Einarsson, P., Ruiz, J., Stefanova, V.,
Fuchs, D., Windmaißer, T., Hötker, H., Jeromin, H., Nickel, H., Schumacher, J.,
Ukhanova, M. (Eds.), 2020. Grünlandschutz in Deutschland: Treiber der Bio-
diversität, Einfluss von Agrarumwelt- und Klimamaßnahmen, Ordnungsrecht,
Molkereiwirtschaft und Auswirkungen der Klima- und Energiepolitik : Ergebnisse
des F+E-Vorhabens ‘‘Auswirkungen der neuen Rahmenbedingungen der Gemein-
samen Agrarpolitik auf die Grünland-bezogene Biodiversität’’ (FKZ 3515 88 0100),
2. Auflage ed. In: BfN-Skripten, vol. 539, Bundesamt für Naturschutz, Bonn - Bad
Godesberg.

Schuster, C., Ali, I., Lohmann, P., Frick, A., Förster, M., Kleinschmit, B., 2011. Towards
detecting swath events in TerraSAR-X time series to establish NATURA 2000
grassland habitat swath management as monitoring parameter. Remote Sens. 3
(12), 1308–1322. http://dx.doi.org/10.3390/rs3071308.

Schwieder, M., Wesemeyer, M., Frantz, D., Pfoch, K., Erasmi, S., Pickert, J., Nendel, C.,
Hostert, P., 2022. Mapping grassland mowing events across Germany based on
combined Sentinel-2 and Landsat 8 time series. Remote Sens. Environ. 269, 112795.
http://dx.doi.org/10.1016/j.rse.2021.112795.

http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb55
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb55
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb55
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb55
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb55
http://dx.doi.org/10.3390/rs12182919
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.2478/v10025-007-0005-7
http://dx.doi.org/10.2478/v10025-007-0005-7
http://dx.doi.org/10.2478/v10025-007-0005-7
http://dx.doi.org/10.3390/rs13020296
http://dx.doi.org/10.1016/j.jag.2018.11.008
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb61
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb61
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb61
http://dx.doi.org/10.5194/bg-10-4055-2013
http://dx.doi.org/10.5194/bg-10-4055-2013
http://dx.doi.org/10.5194/bg-10-4055-2013
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://dx.doi.org/10.1002/asi.5090060209
http://dx.doi.org/10.1016/j.biombioe.2017.03.009
http://dx.doi.org/10.1098/rspb.2008.1509
http://dx.doi.org/10.1098/rspb.2008.1509
http://dx.doi.org/10.1098/rspb.2008.1509
http://dx.doi.org/10.1016/j.biocon.2006.09.007
http://dx.doi.org/10.3390/rs10081221
https://CRAN.R-project.org/package=caret
http://dx.doi.org/10.1093/nsr/nwz058
http://dx.doi.org/10.1093/nsr/nwz058
http://dx.doi.org/10.1093/nsr/nwz058
http://dx.doi.org/10.1016/j.earscirev.2021.103673
http://dx.doi.org/10.1016/j.earscirev.2021.103673
http://dx.doi.org/10.1016/j.earscirev.2021.103673
http://dx.doi.org/10.5721/EuJRS20144723
http://dx.doi.org/10.3390/s18082674
http://dx.doi.org/10.3390/s18082674
http://dx.doi.org/10.3390/s18082674
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb74
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb74
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb74
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb74
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb74
http://dx.doi.org/10.1016/j.rse.2021.112751
http://dx.doi.org/10.3390/agriculture11080707
http://dx.doi.org/10.3390/agriculture11080707
http://dx.doi.org/10.3390/agriculture11080707
http://dx.doi.org/10.1109/IGARSS.2018.8519459
http://dx.doi.org/10.1109/IGARSS.2018.8519459
http://dx.doi.org/10.1109/IGARSS.2018.8519459
http://dx.doi.org/10.2134/agronj2015.0560
http://dx.doi.org/10.1016/S0921-8009(00)00165-8
http://dx.doi.org/10.1016/S0921-8009(00)00165-8
http://dx.doi.org/10.1016/S0921-8009(00)00165-8
http://dx.doi.org/10.1016/j.rse.2020.111901
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.3390/app9040655
http://dx.doi.org/10.3390/app9040655
http://dx.doi.org/10.3390/app9040655
http://dx.doi.org/10.48550/arXiv.1511.08458
http://dx.doi.org/10.48550/arXiv.1511.08458
http://dx.doi.org/10.48550/arXiv.1511.08458
http://dx.doi.org/10.1111/j.1744-697X.2009.00154.x
http://dx.doi.org/10.3390/rs12121949
http://dx.doi.org/10.3390/rs12121949
http://dx.doi.org/10.3390/rs12121949
http://dx.doi.org/10.3390/rs14071647
http://dx.doi.org/10.3390/rs14071647
http://dx.doi.org/10.3390/rs14071647
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb87
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb88
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb88
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb88
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb88
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb88
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb89
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb89
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb89
http://dx.doi.org/10.1109/5.838084
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb91
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb91
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb91
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb91
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb91
http://dx.doi.org/10.3390/rs10020236
http://dx.doi.org/10.3390/rs10020236
http://dx.doi.org/10.3390/rs10020236
http://dx.doi.org/10.1016/j.rse.2020.111814
http://dx.doi.org/10.1016/j.rse.2020.111814
http://dx.doi.org/10.1016/j.rse.2020.111814
http://dx.doi.org/10.1109/JSTARS.2014.2347203
http://dx.doi.org/10.5194/isprs-annals-IV-1-141-2018
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb96
http://dx.doi.org/10.3390/rs3071308
http://dx.doi.org/10.1016/j.rse.2021.112795


Remote Sensing of Environment 295 (2023) 113680A.-K. Holtgrave et al.
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P.,
Homayouni, S., 2020. Support vector machine versus random forest for remote
sensing image classification: A meta-analysis and systematic review. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 13, 6308–6325. http://dx.doi.org/10.1109/
JSTARS.2020.3026724.

Siegmund, R., Grant, K., Wagner, M., Hartmann, S., 2016. Satellite-based monitoring of
grassland: assessment of harvest dates and frequency using SAR. In: Neale, C.M.U.,
Maltese, A. (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology
XVIII. In: SPIE Proceedings, SPIE, 999803. http://dx.doi.org/10.1117/12.2240947.

Smit, H.J., Metzger, M.J., Ewert, F., 2008. Spatial distribution of grassland productivity
and land use in europe. Agricult. Sys. 98 (3), 208–219. http://dx.doi.org/10.1016/
j.agsy.2008.07.004.

Smith, R.S., Shiel, R.S., Millward, D., Corkhill, P., 2000. The interactive effects of
management on the productivity and plant community structure of an upland
meadow: an 8-year field trial. J. Appl. Ecol. 37 (6), 1029–1043. http://dx.doi.
org/10.1046/j.1365-2664.2000.00566.x.

Socher, S.A., Prati, D., Boch, S., Müller, J., Klaus, V.H., Hölzel, N., Fischer, M.,
Wilson, S., 2012. Direct and productivity-mediated indirect effects of fertilization,
mowing and grazing on grassland species richness. J. Ecol. 100 (6), 1391–1399.
http://dx.doi.org/10.1111/j.1365-2745.2012.02020.x.

Soussana, J.F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T.,
Arrouays, D., 2004. Carbon cycling and sequestration opportunities in temperate
grasslands. Soil Use Manag. 20 (2), 219–230. http://dx.doi.org/10.1111/j.1475-
2743.2004.tb00362.x.

Statistisches Bundesamt, 2019. Land- und Forstwirtschaft, Fischerei: Bodennutzung der
Betriebe (Landwirtschaftlich genutzte Flächen) 2019. Fachserie 3 Reihe 3.1.2.

Stendardi, L., Karlsen, S., Niedrist, G., Gerdol, R., Zebisch, M., Rossi, M., Notarnicola, C.,
2019. Exploiting time series of Sentinel-1 and Sentinel-2 imagery to detect meadow
phenology in mountain regions. Remote Sens. 11 (5), 542. http://dx.doi.org/10.
3390/rs11050542.

Tamm, T., Zalite, K., Voormansik, K., Talgre, L., 2016. Relating Sentinel-1 interfer-
ometric coherence to mowing events on grasslands. Remote Sens. 8 (10), 802.
http://dx.doi.org/10.3390/rs8100802.

Taravat, A., Wagner, M., Oppelt, N., 2019. Automatic grassland cutting status detection
in the context of spatiotemporal Sentinel-1 imagery analysis and artificial neural
networks. Remote Sens. 11 (6), 711. http://dx.doi.org/10.3390/rs11060711.

Thales Alenia Space Team, 2022. Sentinel-2 Product Specification: S2-PDGS-TAS-DI-
PSD. URL: https://sentinel.esa.int/documents/247904/685211/S2-PDGS-TAS-DI-
PSD-V14.9.pdf.

United States Geological Survey, 2019. Landsat 8 (L8): Data users handbook.
Vapnik, V.N., 2000. The Nature of Statistical Learning Theory, second ed. In: Statistics

for Engineering and Information Science, Springer, New York, NY, URL: https:
//ebookcentral.proquest.com/lib/kxp/detail.action?docID=3086234.

Vogt, J., Klaus, V.H., Both, S., Fürstenau, C., Gockel, S., Gossner, M.M., Heinze, J.,
Hemp, A., Hölzel, N., Jung, K., Kleinebecker, T., Lauterbach, R., Lorenzen, K., Os-
trowski, A., Otto, N., Prati, D., Renner, S., Schumacher, U., Seibold, S., Simons, N.,
Steitz, I., Teuscher, M., Thiele, J., Weithmann, S., Wells, K., Wiesner, K., Ayasse, M.,
Blüthgen, N., Fischer, M., Weisser, W.W., 2019. Eleven years’ data of grassland
management in Germany. Biodivers. Data J. 7, e36387. http://dx.doi.org/10.3897/
bdj.7.e36387.
20
Voormansik, K., Jagdhuber, T., Olesk, A., Hajnsek, I., Papathanassiou, K.P., 2013.
Towards a detection of grassland cutting practices with dual polarimetric TerraSAR-
X data. Int. J. Remote Sens. 34 (22), 8081–8103. http://dx.doi.org/10.1080/
01431161.2013.829593.

Voormansik, K., Zalite, K., Sünter, I., Tamm, T., Koppel, K., Verro, T., Brauns, A.,
Jakovels, D., Praks, J., 2020. Separability of mowing and ploughing events on
short temporal baseline Sentinel-1 coherence time series. Remote Sens. 12 (22),
3784. http://dx.doi.org/10.3390/rs12223784.

Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdi-
ger, C., Strauss, P., 2018. Sensitivity of sentinel-1 backscatter to vegetation
dynamics: An Austrian case study. Remote Sens. 10 (9), 1396. http://dx.doi.org/
10.3390/rs10091396.

Wang, J., Xiao, X., Bajgain, R., Starks, P., Steiner, J., Doughty, R.B., Chang, Q., 2019a.
Estimating leaf area index and aboveground biomass of grazing pastures using
Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens.
154, 189–201. http://dx.doi.org/10.1016/j.isprsjprs.2019.06.007.

Wang, L., Xu, X., Yu, Y., Yang, R., Gui, R., Xu, Z., Pu, F., 2019b. SAR-to-optical image
translation using supervised cycle-consistent adversarial networks. IEEE Access 7,
129136–129149. http://dx.doi.org/10.1109/ACCESS.2019.2939649.

Wang, Z., Yan, W., Oates, T., 2017. Time series classification from scratch with deep
neural networks: A strong baseline. In: 2017 International Joint Conference on
Neural Networks. IJCNN, IEEE, pp. 1578–1585. http://dx.doi.org/10.1109/IJCNN.
2017.7966039.

Waramit, N., Moore, K.J., Fales, S.L., 2012. Forage quality of native warm-season
grasses in response to nitrogen fertilization and harvest date. Anim. Feed Sci.
Technol. 174 (1–2), 46–59. http://dx.doi.org/10.1016/j.anifeedsci.2012.02.008.

Weiner, C.N., Werner, M., Linsenmair, K.E., Blüthgen, N., 2011. Land use intensity
in grasslands: Changes in biodiversity, species composition and specialisation in
flower visitor networks. Basic Appl. Ecol. 12 (4), 292–299. http://dx.doi.org/10.
1016/j.baae.2010.08.006.

Wrage, N., Strodthoff, J., Cuchillo, H.M., Isselstein, J., Kayser, M., 2011. Phytodiversity
of temperate permanent grasslands: Ecosystem services for agriculture and livestock
management for diversity conservation. Biodivers. Conserv. 20 (14), 3317–3339.
http://dx.doi.org/10.1007/s10531-011-0145-6.

Zalite, K., Antropov, O., Praks, J., Voormansik, K., Noorma, M., 2016. Monitoring
of agricultural grasslands with time series of X-Band repeat-pass interferometric
SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9 (8), 3687–3697. http:
//dx.doi.org/10.1109/JSTARS.2015.2478120.

Zalite, K., Voormansik, K., Praks, J., Antropov, O., Noorma, M., 2014. Towards
detecting mowing of agricultural grasslands from multi-temporal COSMO-SkyMed
data. In: 2014 IEEE International Geoscience & Remote Sensing Symposium. IEEE,
Piscataway, NJ, pp. 5076–5079. http://dx.doi.org/10.1109/IGARSS.2014.6947638.

Zhang, W., Tang, P., Zhao, L., 2019. Remote sensing image scene classification using
CNN-CapsNet. Remote Sens. 11 (5), 494. http://dx.doi.org/10.3390/rs11050494.

Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D., 2017. Convolutional neural networks for
time series classification. J. Syst. Eng. Electron. 28 (1), 162–169. http://dx.doi.org/
10.21629/JSEE.2017.01.18.

Zhao, W., Qu, Y., Chen, J., Yuan, Z., 2020. Deeply synergistic optical and SAR
time series for crop dynamic monitoring. Remote Sens. Environ. 247, 111952.
http://dx.doi.org/10.1016/j.rse.2020.111952.

Zou, J., Han, Y., So, S.S., 2008. Overview of artificial neural networks. Methods Mol.
Biol. (Clifton, N.J.) 458, 15–23. http://dx.doi.org/10.1007/978-1-60327-101-1_2.

http://dx.doi.org/10.1109/JSTARS.2020.3026724
http://dx.doi.org/10.1109/JSTARS.2020.3026724
http://dx.doi.org/10.1109/JSTARS.2020.3026724
http://dx.doi.org/10.1117/12.2240947
http://dx.doi.org/10.1016/j.agsy.2008.07.004
http://dx.doi.org/10.1016/j.agsy.2008.07.004
http://dx.doi.org/10.1016/j.agsy.2008.07.004
http://dx.doi.org/10.1046/j.1365-2664.2000.00566.x
http://dx.doi.org/10.1046/j.1365-2664.2000.00566.x
http://dx.doi.org/10.1046/j.1365-2664.2000.00566.x
http://dx.doi.org/10.1111/j.1365-2745.2012.02020.x
http://dx.doi.org/10.1111/j.1475-2743.2004.tb00362.x
http://dx.doi.org/10.1111/j.1475-2743.2004.tb00362.x
http://dx.doi.org/10.1111/j.1475-2743.2004.tb00362.x
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb105
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb105
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb105
http://dx.doi.org/10.3390/rs11050542
http://dx.doi.org/10.3390/rs11050542
http://dx.doi.org/10.3390/rs11050542
http://dx.doi.org/10.3390/rs8100802
http://dx.doi.org/10.3390/rs11060711
https://sentinel.esa.int/documents/247904/685211/S2-PDGS-TAS-DI-PSD-V14.9.pdf
https://sentinel.esa.int/documents/247904/685211/S2-PDGS-TAS-DI-PSD-V14.9.pdf
https://sentinel.esa.int/documents/247904/685211/S2-PDGS-TAS-DI-PSD-V14.9.pdf
http://refhub.elsevier.com/S0034-4257(23)00231-6/sb110
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=3086234
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=3086234
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=3086234
http://dx.doi.org/10.3897/bdj.7.e36387
http://dx.doi.org/10.3897/bdj.7.e36387
http://dx.doi.org/10.3897/bdj.7.e36387
http://dx.doi.org/10.1080/01431161.2013.829593
http://dx.doi.org/10.1080/01431161.2013.829593
http://dx.doi.org/10.1080/01431161.2013.829593
http://dx.doi.org/10.3390/rs12223784
http://dx.doi.org/10.3390/rs10091396
http://dx.doi.org/10.3390/rs10091396
http://dx.doi.org/10.3390/rs10091396
http://dx.doi.org/10.1016/j.isprsjprs.2019.06.007
http://dx.doi.org/10.1109/ACCESS.2019.2939649
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1016/j.anifeedsci.2012.02.008
http://dx.doi.org/10.1016/j.baae.2010.08.006
http://dx.doi.org/10.1016/j.baae.2010.08.006
http://dx.doi.org/10.1016/j.baae.2010.08.006
http://dx.doi.org/10.1007/s10531-011-0145-6
http://dx.doi.org/10.1109/JSTARS.2015.2478120
http://dx.doi.org/10.1109/JSTARS.2015.2478120
http://dx.doi.org/10.1109/JSTARS.2015.2478120
http://dx.doi.org/10.1109/IGARSS.2014.6947638
http://dx.doi.org/10.3390/rs11050494
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.1016/j.rse.2020.111952
http://dx.doi.org/10.1007/978-1-60327-101-1_2

	Grassland mowing event detection using combined optical, SAR, and weather time series
	Introduction
	Material
	Study Sites
	Reference Data
	Satellite Data
	Weather data
	Features

	Methods
	Gap Handling
	Mowing Event Detection

	Results
	Gap Handling
	Mowing Event Classification
	Transferability
	Intensity Estimation


	Discussion
	Gap Handling
	Mowing Event Detection

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Tables
	References


