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Abstract
Assessing the effects of weather and climate on agricultural
production is crucial for designing policies related to climate
change adaptation and mitigation. A large body of literature
has identified the detrimental effects of climate change on
crop yields worldwide, and farm-level adaptation has been
shown to mitigate the adverse effects on agricultural produc-
tion. In this study, we employ a structural model to examine
farm production responses to ongoing weather trends. We
investigate how farmers adjust output and input decisions by
estimating a system of output supply and input demand
functions, controlling for nonrandom crop selection. Using
panel data with 14,796 observations reflecting 1638 German
crop farms (1996–2019), we find that both the expected and
realized weather determine farmers’ production decisions. In
the event of a drought, the supply of most considered crops
and the demand for fertilizer decrease. The drought shock
has also lasting effects on farmers’ production decisions, with
a reduced supply of protein crops and an increased level of
root crops production in subsequent years. These findings
highlight the need to account for farm-level production
responses when assessing weather and climate impacts.
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1 | INTRODUCTION

Agricultural production is inherently related to weather (Ray et al., 2015). Rising mean temperatures,
along with changing precipitation patterns, have substantially altered the growing conditions of
crops (Lobell et al., 2011) and livestock (Gisbert-Queral et al., 2021). Globally, anthropogenic climate
change has already caused significant losses in agricultural productivity (Ortiz-Bobea et al., 2021).
The increasing frequency of extreme weather events, such as floods, droughts, or frost, poses an
additional threat to agricultural production (e.g., Barlow et al., 2015; Pullens et al., 2019; Schmitt
et al., 2022; Trnka et al., 2014) and hence to food supply and quality (Dalhaus et al., 2020). The abil-
ity of farms to adjust to these environmental changes is crucial for the future viability and resilience
of the agricultural sector. The analysis of farmers’ revealed adaptation and production decisions
allows us to understand their responses to (extreme) weather events, supporting the development of
targeted policies to support their adaptation to climate change.

This study examines farm production responses to weather trends. The primary goal is to quan-
tify changes in output supply and input demand in response to changes in expected and realized
weather, taking into account reactions at both the extensive and intensive margins. For this purpose,
we formulate a profit maximization problem in which farmers decide on planned output and input
levels depending on their weather expectations. During the cropping season, they respond to con-
temporaneous weather outcomes by adjusting variable inputs such as fertilizers. Based on the theo-
retical framework, we estimate the farms’ optimal output supply and input demand functions
conditioned on economic and environmental variables. We then use the estimated parameters to
simulate the immediate and lasting effects of a drought shock on farmers’ input and output choices.
Our case study relies on detailed panel data with 14,796 observations reflecting 1638 German crop
farms (1996–2019), matched with local weather data.

Previous studies on the impact of weather and climate on agricultural production have often
relied on large-scale modeling approaches (e.g., Agnolucci et al., 2020; Rosenzweig & Parry, 1994;
Webber et al., 2018) or statistical models using either panel data methods (Deschênes &
Greenstone, 2007; Schlenker & Roberts, 2009) or cross-sectional methods (Mendelsohn et al., 1994).
It has been argued that panel data models are limited in their capability to capture long-term adjust-
ments, which may overestimate the impact of climate change (e.g., Carter et al., 2018; Mérel &
Gammans, 2021).1 The Ricardian approach, on the contrary, was designed to account for long-run
adjustments to different climates by exploiting cross-sectional variations in climatic conditions and
economic farm returns but is more vulnerable to omitted variable bias (Carter et al., 2018; Ortiz-
Bobea, 2020). Recent applications include those of Bozzola et al. (2018), Ortiz-Bobea (2020), Huang
and Sim (2021), and Bareille and Chakir (2023).

Neither of the mentioned approaches reveals how farmers adjust their production to different cli-
matic conditions. For example, farmers may adjust the level of fertilizer use in the short run or
replace heat-sensitive crops under global warming (Reidsma et al., 2010). One merit of structural
models in this context is that they retain the parameter estimates that describe the farmers’ decision-
making processes. Contrary to reduced-form models focusing on the weather-yield relationship for
specific crops, our structural model is formulated at the individual farm-level as the decision-making
unit and thus allows for identifying trade-offs in the supply of different crops, which arise from
farmers’ optimal resource allocation given the expected and realized weather outcomes. In the con-
text of climate change, only few applications of structural models exist (e.g., Kaminski et al., 2013;
Kan et al., 2023; Sesmero et al., 2018; Yang & Richard Shumway, 2016).

We contribute to this literature and to the understanding of weather and climate impacts on
agriculture in at least three ways. First, we assess how ongoing weather trends affect farmers’ input
demand and output supply by incorporating both realized weather and weather expectations into a

1Recently, panel data models have also been applied to examine farm-level adaptation strategies (e.g., Cui & Xie, 2022 on growing season
adjustments, or Li, 2023 on reallocation of land and irrigation water).
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profit function. Li (2023) have investigated farm-level adaptation to expected and unexpected
weather fluctuations using several reduced-form estimations. Following recent qualitative (Wilke &
Morton, 2017) and quantitative (Ramsey et al., 2021) evidence, we assume that farmers form weather
expectations by distinguishing between the more recent and the more distant pasts. Although Ram-
sey et al. (2021) have used this approach to estimate crop choices at the field level, this study is the
first to integrate it into the estimation of output supply and input demand functions derived from a
structural profit maximization model. This allows us to provide novel insights into how the behav-
ioral aspects of farmers’ weather expectations besides weather realizations affect output supply at the
crop level, as well as input demand, in a unified framework.

Second, we use the estimated parameters of the output supply and input demand functions to
simulate farmers’ output supply and input demand responses to a weather shock and examine
potential farm heterogeneity in weather responses, which is largely underexplored in the existing lit-
erature. In this context, our study also complements previous literature that used structural models
to investigate long-term climatic effects on output and input choices (e.g., Kaminski et al., 2013;
Sesmero et al., 2018; Yang & Richard Shumway, 2016) by providing empirical evidence on farm-level
responses to weather shocks in the short and medium terms. Understanding these effects is particu-
larly important given the current and future exposure of agriculture to weather shocks (e.g., Webber
et al., 2018).

Third, we use farm-level data and disaggregated crop categories (cereals, protein crops, oilseeds,
root crops, and corn), which offers detailed insights into the decision-making processes of farmers
and facilitates the analysis of heterogeneous responses to weather trends that would be masked in
aggregated data. The aforementioned structural models in the weather and climate literature rely on
regional data (Kaminski et al., 2013; Kan et al., 2023; Yang & Richard Shumway, 2016) or use a
higher aggregation level for outputs, such as maize and non-maize crops (Sesmero et al., 2018) or
crops and livestock output (Yang & Richard Shumway, 2016). The use of farm-level data and dis-
aggregated crop categories result in corner solutions, because not all farms grow all of the considered
crops, which can bias the estimation results. We address this issue econometrically using a two-stage
regression framework that accounts for farmers’ nonrandom crop selection in response to previously
observed weather outcomes.

We find that both observed and expected weather, formed based on weather experienced in the
past, affect the output supply and input demand, and that these effects vary across crops. For exam-
ple, increasing the number of growing degree days decreases cereals supply but increases root crops
supply, ceteris paribus. By simulating the immediate and lasting effects of a drought shock on
farmers’ production decisions, we find that corn supply declines the most in the year of the shock,
along with a reduction in fertilizer usage. Although the supply of protein crops, corn, and oilseeds is
particularly reduced in the years after the shock, fertilizer demand and cereals supply quickly return
to their original levels, and roots crop supply tends to increase in subsequent years. Additionally, we
find heterogeneous responses across farm sizes, with smaller farms being affected more by the
drought shock than larger farms. These results hold under various robustness checks, that is, using
either linear or nonlinear weather effects and imposing regularity conditions on the profit function.

The remainder of this paper is organized as follows. The conceptual framework introduces
farmers’ decision-making processes in the context of expected and realized weather outcomes. The
next section describes the econometric framework, including nonrandom crop selection and the sim-
ulation exercise, before farm and weather data are introduced. Subsequently, the results are pres-
ented and discussed, and the final section concludes with implications for policy and future research.

2 | CONCEPTUAL FRAMEWORK

The study aims to assess farmers’ input and output decisions in response to local weather trends, taking
into account extensive and intensive margin adjustments. Naturally, the relationship between weather
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and agricultural yields is crop specific. For example, sugar beets and potatoes require high precipitation
and cannot be grown in dry regions without irrigation (Döll & Siebert, 2002; Siebert et al., 2013). Precipi-
tation is also a limiting factor for winter wheat, whereas temperature is considered a limiting factor for
corn and sugar beet production in Germany (Lotze-Campen et al., 2009). Cachorro et al. (2018) find that
rising temperatures negatively affect summer crop yields, especially sugar beets and potatoes. Crop
models by Agnolucci et al. (2020) predict that increasing temperatures in Germany benefit canola yields
but reduce the yield of pulses. Considering extreme weather events, Webber et al. (2020) found that
drought is an important driver of yield losses in corn for silage and, to a lesser extent, barley and wheat
in eastern Germany. In the same study, heat is found to have negative effects on wheat yields, whereas
canola and corn for silage are less affected by unusually high temperatures.

However, to assess the effects on total production, it is important to look beyond pure weather-
yield effects and consider farmers’ responses to local weather trends. The effect of weather on farmers’
production decisions depends not only on individual yield effects but also on the relative profitability
of each crop under different weather conditions. For example, if one crop suffers more from dry condi-
tions than another, it may be rational to allocate more resources to the less-affected crop. Furthermore,
experiencing a weather shock may alter farmers’ weather expectations, which in turn affects optimal
production choices not only in the year of the shock but also in subsequent years. Hence, accounting
for farmers’ behavioral responses (and the heterogeneity therein) to weather trends and shocks is
important for assessing the role of weather trends and shocks on agricultural production. Additionally,
agronomic aspects of crop rotation affect the adjustment of crop portfolios. Thus, farmers’ production
responses to changing weather patterns are difficult to assess a priori and remain empirical questions.

2.1 | Weather and production decisions

Following Chambers and Just (1989), we model farmers’ decision making process at the beginning
of the crop season in two stages, assuming risk-neutral decision makers. In the first stage, farmers
maximize the expected profit from each crop given the allocations of fixed resources. The
corresponding crop-specific profit function is expressed as

E πc E pc
�� �

,r,zc ,s,E w½ �� �� ¼ max
xc ,E qc½ �

E pc
� �

E qc
� �� r0xc : E qc

� �
�Qc xc,zc,s,E w½ �ð Þ� �

, ð1Þ

where E πc½ � is the expected maximum profit from producing crop c, E pc
� �

is the expected price for
crop c, r is a vector of variable input prices, xc is a vector of variable inputs used for the production
of crop c, zc is a vector of fixed but allocatable inputs used for the production of crop c, s is a vector
of site-specific characteristics, and E w½ � is a vector of expected weather outcomes. The technology
constraint ensures that the production plan for producing the expected output E qc

� �
is feasible,

given, for instance, the expected weather conditions as denoted by technology Qc �ð Þ. In the second
stage, the allocatable fixed inputs are allocated across individual crops to maximize the expected total
profit. The multicrop profit function for producing C crops is defined as

E π E p½ �,r,z,s,E w½ �ð Þ½ � ¼ max
x,E½q�

XC
c¼1

E pc
� �

E qc
� �� �� r0x : E½q��Q x,z, s,E w½ �ð Þ

 !
: ð2Þ

According to standard results, the well-behaved profit function is nondecreasing in output prices,
nonincreasing in input prices, and linearly homogeneous and convex in prices (Chambers, 1988).
The optimal allocation of allocatable fixed inputs (e.g., land or labor) made at the beginning of the
crop season depends on the expected weather, because weather affects the profitability of each indi-
vidual crop, as shown by Qc �ð Þ in Equation (1).

4 FARM-LEVEL RESPONSES TO WEATHER TRENDS
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During the crop season, farmers can adjust variable inputs (e.g., fertilizers) in response to actual
weather realizations.2 Hence, if the realized weather deviates from the expected weather, the
observed input use can deviate from the assumed input use at the beginning of the season. Moreover,
planned output levels may be adjusted, because it is economically rational to allocate more resources
to crops for which the realized weather conditions are the most favorable. In addition, realized out-
put levels can of course deviate from planned output levels through the direct effects of realized
weather on crop yields, and this direct response can depend on past weather by influencing past
adaptations. For example, a farmer in a generally dry region may be better prepared for another
drought than one in a generally wetter region (Dell et al., 2014; Mérel & Gammans, 2021; Schlenker
et al., 2013).

For these reasons, and following Sesmero et al. (2018), we express the farms’ profit as a function
of both expected and realized weather:

π¼ f E p½ �,r,z,s,E w½ �,wð Þ ð3Þ

The primary goal of this study is to evaluate farmers’ responses to weather trends in terms of
output supply and input demand. Having specified the profit function in (3), we can derive the
farms’ profit-maximizing output supply functions for each crop c and input demand functions for
each input k by taking the first derivatives with respect to the output and input prices
(Hotelling, 1932):

qc ¼
∂f E p½ �,r,z, s,E w½ �,wð Þ

∂pc
, �xk ¼ ∂f E pc½ �,r,z,s,E w½ �,wð Þ

∂rk
ð4Þ

We use the output supply and input demand functions in (4) to empirically assess farmers’
responses to expected weather E w½ � while controlling for realized weather w. Their functional forms
depend on the assumed functional form of the profit function. To account for past adaptation deci-
sions as explained above, we follow Dell et al. (2014) and include a multiplicative interaction term
between past weather and realized weather in the empirical estimation to ensure that the marginal
effects of experienced weather on output supply and input demand are functions of past weather.

In summary, the described decision-making process highlights that weather affects farmers’ pro-
duction decisions at the extensive and intensive margins through two channels. The first channel is
through the adjustment of allocatable fixed inputs based on farmers’ weather expectations, which
carry a behavioral component and define the expected profitability of individual crops. The second
channel is the direct influence of the observed weather on yields while allowing for short-term input
adjustments during the crop season and past adaptation decisions.

2.2 | Formation of weather expectations

Following Ramsey et al. (2021), we express the farmers’ expectations for the j-th weather variable as

E wjit
� �¼ω0þωsW wji,t�1,wji,t�2,…,wji,t�T�

� �þωlW wji,t�T��1,wji,t�T��2,…,wji,t�T
� �

, ð5Þ

where ω0 is a reference expectation, ωs and ωl reflect the farmers’ weighting on the recent and more
distant past, and W �ð Þ is a weighing function. The subscripts i and t denote the farm and year,

2A similar argument may hold for price expectations. However, prices are often revealed after harvest and farmers may fix prices early with
commodity traders (Anastassiadis et al., 2014). If this is the case, there is less scope to respond to price changes than to weather changes in the
course of the crop season.

WIMMER ET AL. 5
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respectively, and the recent and more distant past are separated by year T� and defined over the
horizon of T years. Thus, the effect of a weather event in past growing seasons on farmers’ expecta-
tions for the current growing season depends on the magnitudes of ωs and ωl. Approximating
weather expectations in this way is based on the assumption that farmers form adaptive expectations
(Nerlove, 1958); that is, past experiences drive farmers’ weather expectations (see also Cui &
Xie, 2022; Li, 2023).3 Furthermore, this approach allows the more recent and the more distant pasts
to have different impacts on farmers’ formation of weather expectations (Shafran, 2011; Wilke &
Morton, 2017). Although T� (that is, the cutting point between the more recent and the more dis-
tance pasts) must be chosen a priori, the weights placed on the more distant and on the more recent
pasts are determined by the data without any prior assumptions.

3 | EMPIRICAL FRAMEWORK

3.1 | Structural equations

We approximate the farms’ profit function in Equation (3) using a normalized quadratic functional
form.4 In line with the theoretical framework, the profit function includes expected and realized
weather outcomes as profit shifters, and the weather variables are interacted with output and input
prices (see also Sesmero et al., 2018), so that the marginal effects of individual crop prices on farm
profits depend on weather outcomes. The functional form of the profit function with C crops, K vari-
able inputs, M fixed inputs, and J weather variables is presented in the Data S1. With error terms (ε)
added, the output supply and input demand functions are obtained by taking the first derivatives of
this parameterized profit function with respect to the output and input prices (Hotelling, 1932):

qc ¼
∂~π

∂~pc
¼ βpc þ

XC
c0¼1

βppcc0~pc0 þ
XK
k¼2

βprck~rkþ
XM
m¼1

βpzcmzmþ
XJ
j¼1

βpwcj wjþ
XJ
j¼1

βpE w½ �
cj E wj

� �þ εqc ð6Þ

�xk ¼ ∂~π

∂~rk
¼ βrkþ

XC
c¼1

βprck~pcþ
XK
k0¼2

βrrkk0~rk0 þ
XM
m¼1

βrzkmzmþ
XJ
j¼1

βrwkj wjþ
XJ
j¼1

βrE w½ �
kj E wj

� �þ εxk ð7Þ

To maintain readability, farm- and time-specific subscripts are not reported here. The tilde over
a variable indicates that the variable has been normalized by the price of the first variable input, for
example, ~π¼ π=r1, which makes the profit function linearly homogeneous in prices. As the data
cover a long period, which coincides with a trend toward warmer weather, we add linear and
squared time trends to the regression equations to minimize the risk of a spurious relationship
between weather variables and output supply or input demand.

Estimating the system of equations in Equations (6) and (7) identifies the effect of expected and
realized weather on farmers’ choices of output supply and input demand, and the parameters can be
used to simulate farmers’ responses in input and output choices in the event of a particular weather
event.5 In our main model, we estimate the structural Equations (6) and (7) in an unrestricted form to
assess economic consistency. As a robustness check, we also estimate a restricted version in which the

3Previous studies have shown that farmers’ experienced weather plays an important role in their production decisions (e.g., Alem
et al., 2010; Ding et al., 2009).
4This functional form is locally flexible and allows for a straightforward imposition of price homogeneity. Contrary to the translog profit
function, curvature can be maintained globally without sacrificing its flexibility.
5Equations (6) and (7) could be estimated jointly with the profit function. However, this approach often results in multicollinearity problems
(Arnade & Kelch, 2007). Although (6) and (7) identify many but not all parameters from the original profit function, the identified parameters
are sufficient for our purposes, as they allow evaluating price elasticities of supply and demand as well as the marginal effects of weather
variables on profit-maximizing output and input levels.

6 FARM-LEVEL RESPONSES TO WEATHER TRENDS
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theoretical property of convexity is imposed on the profit function using Cholesky factorization
(Diewert & Wales, 1987; Lau, 1978). We also estimate a model with interaction terms between the
weather variables and the fixed land input in the output supply and input demand functions to
account for possible heterogeneity in behavioral responses to weather effects. Finally, we assess the
robustness of the results with respect to the formation of weather expectations and functional form
assumptions.

3.2 | Nonrandom crop selection

Farmers typically do not grow all of the crops considered in every year. The decision to grow a cer-
tain crop in a specific year depends on its relative expected profitability, which is, in turn, influenced
by weather expectations, as well as economic, agronomic, and political factors. Thus, from an econo-
metric perspective, farmers self-select into different cropping schemes. Estimating the output supply
functions for the entire sample without considering this self-selection would result in biased parame-
ter estimates, as we only observe farms’ production levels for crops with a profitability above a cer-
tain (latent) threshold. The output supply functions in Equation (6) with censored dependent
variables qcit for farm i in year t can be written as (Lacroix & Thomas, 2011)

qcit ¼ dcit�q�cit,dcit ¼ I d�cit > 0
� � ð8Þ

q�cit ¼X0
citβcþαciþνcit ð9Þ

d�cit ¼Z0
citδcþηciþucit ð10Þ

where q�cit and d�cit are the latent variables for the structural (i.e., output supply functions) and selec-
tion equations, respectively, and νcit and ucit are the corresponding error terms. Vectors Xcit and Zcit

contain the explanatory variables for the structural and selection equations, respectively, and can
share common elements. Vectors βc and δc contain the corresponding (unknown) parameters. I is
an indicator function, such that d equals one if d�cit > 0. Finally, αci and ηci are farm- and crop-specific
fixed effects. To obtain consistent estimates of the output supply and input demand functions, we
follow the two-step approach developed by Shonkwiler and Yen (1999).6 In the first step, we estimate
the probability that a farm grows a specific crop as a function of fixed inputs, lagged land shares,
price and weather expectations, and a nonlinear time trend with probit regressions. By considering
previous land-use choices in the crop selection equations, we account for agronomic constraints and
the influence of crop rotations (Lacroix & Thomas, 2011).7 Using the probability density function
ϕ Z0

cit
bδc� �

and the cumulative distribution function Φ Z0
cit
bδc� �

of the estimated crop-specific selec-
tion equations, we then estimate the system of equations in the second step as

qcit ¼Φ Z0
cit
bδc� �

�X0
citβcþμcϕ Z0

cit
bδc� �

þξcit, ð11Þ

6Studies using this approach in the agricultural economics literature include, among others, Sckokai and Moro (2006), Laukkanen and Nauges
(2014), and Roosen et al. (2022). Lacroix and Thomas (2011) propose an extension of the approach to account for correlations between the
choice of one crop and the error term of the supply function of another crop, but the required statistical properties (i.e., uncorrelated error
terms between individual crop selection functions) were not satisfied in our empirical case.
7Hendricks, Smith, and Sumner (2014) show theoretically and empirically that the short-run response to price changes is larger than the long-
run response, using the case of corn and soybean production in the US corn belt. This difference between long-run and short-run responses
arises from the conversion of monocultures to crop rotations. It is unlikely that such dynamics affect our results on German crop farms, where
monocultures are rarely observed.
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where μc is another parameter to be estimated and ξcit is an error term with E ξcit½ � ¼ 0 (Shonkwiler
& Yen, 1999).

To account for possible correlations between individual heterogeneity and the error terms of the
crop selection and outcome equations, we use a fixed-effects estimation following Chamberlain
(1984) and Mundlak (1978) by adding the farm-level averages of each independent variable to the
vectors Xcit (i.e., in the structural equations) and Zcit (i.e., in the selection equations). After linearizing
Equation (11), the system of output supply and input demand functions can be estimated using seemingly
unrelated regressions (Zellner, 1962). As discussed above, we also estimate a restricted version of the profit
system to impose convexity. Owing to the nonlinearity of the parameters for the Cholesky factorization, the
restricted profit system is estimated using feasible generalized nonlinear least squares. Finally, to consider
the uncertainty in the parameters obtained from the first-stage probit regressions, standard errors and con-
fidence intervals are obtained using nonparametric bootstrapping with 1000 replications.

Because weather and price expectations are included in both the selection (whether to grow a
specific crop) and structural (how much to produce from a certain crop) equations, the marginal
effects in both stages must be accounted for when estimating production responses (Su &
Yen, 2000). For example, the semi-elasticity of crop c with respect to the expected weather outcome
E wj
� �

is calculated as

εqcit ,E wj½ � ¼
∂E qcitjX0

cit,Z
0
cit

� �
∂E wjit
� � �100

qcit

¼ Φ Z0
cit
bδc� �

�
∂ X0

cit
bβc� �

∂E wjit
� � þ

∂Φ Z0
cit
bδc� �

∂E wjit
� � � f Xcit,bβc� �

þbμc� ∂ϕ Z0
cit
bδc� �

∂E wjit
� �

0@ 1A�100
qcit

¼ Φ Z0
cit
bδc� �

�bβpE w½ �
cj þϕ Z0

cit
bδc� �

�X0
cit
bβc�bδE w½ �

cj �bμc� Z0
cit
bδc� �

�bδE w½ �
cj �ϕ Z0

cit
bδc� �� �

�100
qcit

ð12Þ

The semi-elasticity in (12) quantifies the percentage change in qcit in response to a one-unit
change in E wjit

� �
, considering changes in both the crop selection probability and the optimal pro-

duction level of qcit.

3.3 | Simulation of production responses to an extreme weather event

It is not straightforward to interpret the (semi-) elasticities of various weather variables in isolation. For
example, the ceteris paribus interpretation of the effect of the number of dry days requires holding total
precipitation fixed, which can be an unreasonable condition in practice. In such a situation, simulation
exercises can help better understand the effects of specific weather outcomes on production choices. In
addition, transformative events, such as droughts, may impact farmers’ behavior differently from incre-
mental events, such as gradual changes in temperature (Wilke & Morton, 2017). Hence, we assess the
immediate and lasting effects of a particular weather event by simulating farm-level responses to a one-
year drought shock over a period of 10 years, motivated by Ramsey et al. (2021),8 based on the estimated
parameters from the selection equations and the output supply and input demand functions.

As an exemplary case, we use the 2018 European drought for the simulation, which led to severe
crop losses in Germany and other European countries (Webber et al., 2020). We consider a

8Ramsey et al. (2021) use crop choice data at the individual plot level but without information on farm-level decisions on input and output
quantities.
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2018-like drought shock occurring in period t¼ 0. At t¼�1, we set all weather variables to their
sample averages, which we define as the long-term average weather.9 This period serves as the base-
line for subsequent years. At t¼ 0, the realized weather variables are set to the German average
values for the drought year 2018, whereas the lagged variables are still equal to their long-term aver-
ages. In subsequent years, the experienced drought shock influences the lagged variables from the
more recent and more distant pasts. The detailed formula for computing these variables and their
values are presented in the Data S2.

The simulated levels of output supply and input demand are obtained in two steps. First, we plug
the simulated values of the weather variables for each year from t¼�1 to t¼ 10 into the estimated
selection equations to compute the simulated values for the probability density and cumulative dis-
tribution functions for each farm observation. Second, the simulated weather values are plugged into
the structural equations, along with the values for the probability density and cumulative distribution
functions from t¼�1 to t¼ 10. In both the selection and structural equations, all other variables,
such as prices, are held fixed to isolate the production responses to the weather shock.

4 | DATA

4.1 | Farm production data

We employ accountancy data from German crop farms for the period 1996–2019.10 The sample is
from the German Farm Accountancy Data Network (FADN) provided by the German Federal Min-
istry of Food and Agriculture (BMEL) and constitutes Germany’s contribution to the European
FADN, which is widely used in the literature (e.g., Ang, 2019; Baldoni & Esposti, 2020; Moore &
Lobell, 2014). This dataset is a rotating unbalanced panel stratified according to region, type of spe-
cialization, and economic size to ensure its representativeness of commercial agricultural holdings.
Farmer participation is voluntary but encouraged by federal state committees following selection
plans based on the Farm Structure Survey results. Farmers benefit from participation through mone-
tary compensation and more effective farm consultation service. We do not expect systematic differ-
ences between farmers who enter, remain, or exit the farm survey (i.e., no attrition bias) but
emphasize that the sample is representative of commercial and forward-looking farms, and not the
full farm population.

To be able to account for unobserved farm heterogeneity, we retain farms that have remained in
the sample for at least three consecutive years (1 year will be dropped from the estimation because
of the inclusion of lagged variables). The resulting sample consists of 14,796 observations from 1638
farms. On average, 8.5% (7.1%) of farms enter (exit) the panel per year, and the average sample
period of a farm is 9.0 years. For the empirical analysis, we merge the produced crops into five cate-
gories: cereals except corn (mainly wheat, barley, and rye); protein crops (beans and peas); oilseeds
(mainly canola); root crops (sugar beets and potatoes); and corn (both for grain and silage produc-
tion). The crops are categorized such that individual crop categories have similar agronomic charac-
teristics, such as water and nutrient demands, or soil requirements. Cereals and oilseeds are
primarily used as winter crops in Germany (i.e., planted in the fall and harvested in the summer and
fall of the following year), whereas protein crops, root crops, and corn are spring crops (i.e., planted
in the spring and harvested in the summer and fall of the same year).

Table 1 presents the means and standard deviations of the main variables used in the analysis
averaged over the entire sample period (1996–2019), along with the within- and between-farm

9We also used the long-term averages from 1965 to 1995 as benchmark values, but this resulted in unrealistic values due to out-of-sample
prediction, as growing degree days and other weather variables have considerably changed between the period 1965 to 1995 and our sample
period 1996 to 2019.
10The year 1995 is also covered in the data but dropped from the analysis due to the inclusion of lagged values for land shares and crop prices
in the regression equations.
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standard deviations.11 Additional descriptive statistics for individual years are presented in the
Data S3. Averaged over all years, cereals are grown on 99% of all farms in our sample of specialized
crop farms, followed by root crops (71%), and oilseeds (59%). Corn (25%) and protein crops (16%)
are grown on a smaller number of farms, underscoring the need to address nonrandom crop selec-
tion in econometric estimations.

The expected prices for each crop category are computed as lagged regional (NUTS 2)-level weighted
averages by dividing the sum of the crop revenues in a specific region by the region’s total quantity. We
use lagged prices as a proxy for expected prices because farmers have no other information about prices
to be achieved at the end of the crop year when making their production decisions at the beginning of
the crop year. Although several approaches exist for modeling price expectations (see Wu et al., 2004 for
an overview), Chavas et al. (1983) showed that using lagged market prices or futures prices makes little
difference because they reflect similar market information. Future markets in Germany are only available
for canola, corn, and wheat, and they are rarely used by the farmers (Adämmer et al., 2014; Michels
et al., 2019). We choose regional average prices over farm-level prices for two reasons. First, farm-level
prices include quality premiums and discounts, and therefore mask quality differences in the production
quantity (e.g., Dalhaus et al., 2020; Reinhard et al., 1999). Second, in our dataset, farm-level prices are
reported only for farms producing a specific crop, whereas the crop choice also depends on the price of
alternative crops. Regional prices, by contrast, implicitly consider quality differences and are available for
every farm. As reported by the descriptive statistics in Table 1, oilseeds achieve the highest price per deci-
sion on average in our sample, followed by protein crops, cereals, root crops, and corn.

We consider two variable inputs (fertilizer and other material inputs) and three fixed inputs
(land, labor, and capital). The price of fertilizer is measured at the country level based on country-
level application rates and the unit prices of nitrogen, phosphate, potash, and calcium oxide,
obtained from BMEL (2021). We divide farm-level fertilizer expenses by the country-level fertilizer
price to measure fertilizer quantities at the farm level. For other material inputs (e.g., seed, pesticides,
material, energy, contract services, and water use), we calculate implicit quantities by dividing total
expenses by a Tornquist price index12 (e.g., Henry de Frahan et al., 2011; Koutchadé et al., 2021)
constructed at the regional (NUTS 2) level. Following Lacroix and Thomas (2011), we chose other
material inputs as the numeraire in our estimation procedure, because no physical quantity for this
input can be obtained from the accountancy data set. As a result, the input demand function is esti-
mated for fertilizer quantities but not for other material inputs. For fixed inputs, we consider land
(measured in hectares), labor (annual working units), and capital use (deflated depreciation).

4.2 | Weather data

Weather data were officially provided by the Deutscher Wettedienst (DWD, engl. German Meteorological
Service) at 1 � 1 km grid cells for the period 1960–2019 (DWD, 2021). To match weather records with
farm-level data, we aggregated them at the municipality (LAU 2, formerly NUTS 5) level.13 With more
than 11,000 municipalities in Germany, the average size of each municipality is approximately 33 km2,
allowing for a good approximation of weather outcomes at the farm level. Following Ramsey et al. (2021),
we consider the following weather variables: growing degree days between 10 and 30�C (GDD), growing
degree days above 30�C (HighGDD), sum of precipitation in mm (PREC), and the number of dry

11Between-standard deviation is calculated as SDb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
yi:�y

¼
::ð Þ2

n�1

r
and within-standard deviation is calculated as SDw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

PT

t¼1
yit�yi:ð Þ2

n T�1ð Þ

r
,

where y
¼
:: is the arithmetic mean of all observations, yi: is the arithmetic mean of one individual farm, and n is the total number of farms.

12The Tornquist price index for input k in NUTS 2 region n in year t is given by rknt ¼
Q
k’ � k

rk’t
rk’s

� �gk’ntþgk’ns
2

with gk’nt ¼
P

i � n
Vk’itP

k’’ � k

P
i � n

Vk’’it
, where -s is

the basis year, rk’t is the country-level price index of item k’ belonging to input category k in year t, and Vk’it is the expenditure on input item k’
of farm i in year t.
13We used the municipalities of the year 2007 because of border adjustments during the period of the study.
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T A B L E 1 Descriptive statistics for variables used in the analysis, 1996–2019.

Statistic
Mean
(all years) (1)

St. dev.
(all years) (2)

Within-st.
dev. (3)

Between-st.
dev. (4)

Cereals quantity (dt) 8405.772 14983.158 1862.405 14267.201

Protein crops quantity (dt) 147.344 672.089 209.905 595.109

Oilseeds quantity (dt) 1091.398 2422.868 601.108 2109.782

Root crops quantity (dt) 10108.685 17292.825 3228.567 16267.449

Corn quantity (dt) 1746.158 8946.501 3721.890 7334.818

Fertilizer quantity (kg pure nutrients) 72.065 130.568 32.442 115.511

Other material input (const. EUR) 1020.085 1434.456 197.834 1375.054

Cereals price (EUR/dt) 12.383 3.475 1.655 2.539

Protein crops price (EUR/dt) 14.502 6.828 3.060 5.221

Oilseeds price (EUR/dt) 28.131 8.975 4.301 7.222

Root crops price (EUR/dt) 6.669 2.741 0.880 2.560

Corn price (EUR/dt) 6.032 38.334 22.707 13.265

Fertilizer price (EUR/t) 382.098 86.537 44.996 60.047

Other materials price (index) 84.938 15.333 6.982 13.432

Cereals quantity >0 (yes or no) 0.987 0.112 0.040 0.113

Protein crops quantity >0 (yes or no) 0.161 0.367 0.150 0.294

Oilseeds quantity >0 (yes or no) 0.585 0.493 0.163 0.439

Root crops quantity >0 (yes or no) 0.712 0.453 0.112 0.442

Corn quantity >0 (yes or no) 0.254 0.435 0.170 0.375

Share cereals area (%) 0.665 0.169 0.061 0.161

Share protein crops area (%) 0.015 0.046 0.019 0.036

Share oilseeds area (%) 0.118 0.128 0.048 0.108

Share root crops area (%) 0.147 0.170 0.031 0.180

Share corn area (%) 0.054 0.134 0.042 0.134

Total area (ha) 205.304 311.999 23.155 303.311

Labor (annual working unit) 2.298 4.205 0.544 3.953

Depreciation (EUR) 419.020 673.203 137.960 617.650

Number of growing degree
days (10–30�C), Mar-Aug (GDD)

953.762 126.674 51.916 108.064

Precipitation (mm), Mar-Aug (PREC) 314.266 79.430 38.733 52.587

Number of growing degree
days >30�C, Mar-Aug (GddHigh)

3.527 4.171 2.232 2.636

Number of dry days
(precipitation <1 mm), Mar-Aug (DD)

118.992 11.348 5.891 7.368

GDD1to3 940.385 99.542 22.786 97.226

PREC1to3 314.132 58.541 18.938 54.372

GddHigh1to3 3.241 2.587 1.055 2.184

DD1to3 119.435 8.368 3.521 7.204

GDD4to10 923.448 95.678 14.949 95.010

PREC4to10 305.999 50.674 9.531 49.027

GddHigh4to10 2.728 1.751 0.515 1.624

DD4to10 120.410 6.531 1.654 5.963

Note: Number of observations: 14,796. GDD1to3 indicates growing degree days averaged over years t � 1 to t � 3, GDD4to10 over years t � 4
to t � 10, and so on.
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days with less than 1mm precipitation (DD).14 Growing degree days are calculated by fitting a sine
curve over the daily minimum and maximum temperatures, as suggested by D’Agostino and
Schlenker (2016), who followed Snyder (1985) and Schlenker and Roberts (2009). All weather vari-
ables are measured during the growing season (March–August). The four weather variables are
selected to describe the average climatic conditions (growing degree days and precipitation) as well
as extreme weather conditions (growing degree days above 30�C and the number of dry days).

Table 1 shows that, averaged over all farms and years, the growing degree days from March to
August amount to 953.8 days, and the average sum of precipitation is 314.3 mm. Furthermore, farms
in the sample observe, on average, 119.0 dry days and 3.5 growing degree days above 30�C. As
described above, we include the averages of more recent and more distant weather observations to
approximate farmers’ weather expectations. Specifically, we add a lag structure that measures each
variable based on years t�1 to t�3, denoted by GDD1to3 for growing degree days, and based on
years t�4 to t�10, denoted by GDD4to10, for instance. As expected, the main variation in the
weather variables (as well as in the production variables) arises from between-farm variability. Nev-
ertheless, there is also substantial within-farm variation in most variables, as shown in Column (3).
As our estimation approach uses a fixed-effects procedure, a lack of within-farm variability would
result in inflated standard errors but would not bias the results. The cross-sectional and temporal
variations in growing degree days are visualized in Figure 1 for three selected years, and the
corresponding figures for all other weather variables are reported in the Data S3.

5 | RESULTS AND DISCUSSION

We first present the results from the first-stage probit models given their economic meaning, before
discussing price and weather elasticities, and finally, the results from the simulation exercise.15 All
estimations were performed using the statistical software R (R Core Team, 2020). The seemingly
unrelated regressions were estimated using the systemfit package (Henningsen & Hamann, 2007)
and feasible generalized nonlinear least squares were estimated using the nlsur package
(Garbuszus, 2021). We obtained 95% confidence intervals by taking the empirical quantiles of the
bootstrapped distribution of parameter estimates and resampled entire clusters to obtain cluster-
robust confidence intervals (Cameron et al., 2008). For the main results, we clustered at the farm
level, because we expect unexplained variation in the dependent variables that is correlated across
time, whereas unobserved time-invariant spatial variation across farms is accounted for by the fixed
effects. We also tested the sensitivity of the confidence intervals to clustering at the regional (NUTS
2) level. Although the confidence intervals increase slightly with the level of clustering, the levels of
significance remain unaffected in most cases. For example, 28 of the 31 weather semi-elasticities that
are statistically significant at the 95% level when clustering at the farm level are statistically signifi-
cant at the same level when clustering at the regional level (see Data S4).

5.1 | First-stage regression results: Crop choice

The results of the first-stage regressions show how the expected weather outcomes, prices, and fixed
inputs affect the crop choice. The full parameter estimates from the probit regressions are reported

14As noted by Ramsey et al. (2021), the thresholds for growing degree days are likely to vary across crops and across climatic regions. For
example, Schmitt et al. (2022) found that heat thresholds for wheat, barley, canola, and maize in Germany vary between 29 and 34�C during
the flowering phase. Our choice is a conservative one that aims to capture production responses across all crops.
15We validated the model by excluding the final year of the data (year 2019) and compared the predicted values for this year with the observed
values. As reported in Data S7, the root mean squared errors and mean absolute errors are only slightly larger for the year 2019 than for the
years that were included in the estimation. In addition, the correlation between observed and predicted values in 2019 varies between 0.575 for
oilseeds and 0.944 for cereals, indicating a reasonable predictive power of the model.

12 FARM-LEVEL RESPONSES TO WEATHER TRENDS
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in Table A1 in the appendix along with their 95% confidence intervals. Economic theory implies that
the probability of growing a specific crop is nondecreasing in its own price. Consistent with expecta-
tions, the estimated coefficients of own prices are positive for all five crop categories and statistically
significant at the 5% level for oilseeds and root crops. The lagged shares of crop areas are strong pre-
dictors of current crop decisions. Of the 40 estimated coefficients of the lagged weather variables, 12
are statistically significant at least at the 5% level. As there are both linear and quadratic terms for
these variables, and the coefficients of the probit model do not represent marginal effects, we quan-
tify the effect of weather expectations on the probability of growing a certain crop by computing the
average partial effects.

For interpretation, we add the partial effects of the more recent and more distant pasts to assess
the net effect of weather expectations (Ramsey et al., 2021). The resulting average partial effects are
shown in Figure 2. Evaluated at the sample mean, the farm-level decision to grow cereals does not

F I G U R E 1 Temporal and cross-sectional variation in growing degree days (GDD).
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respond to changes in any of the four weather variables. This result is expected, because nearly all
farm observations in our sample engage in cereals production. Similarly, the decision to grow root
crops is not sensitive to changes in weather expectations. This result can be explained by the specific
machinery requirements for potatoes and sugar beets, as well as the existence of nontradable delivery
rights for sugar beets (see, e.g., Wimmer & Sauer, 2020).16 For the selection of the remaining crops,
statistically significant weather effects are found. Higher expected precipitation but also a higher
expected number of dry days increase the probability to plant protein crops. For example, at the
sample mean, expecting 1 cm more precipitation increases the probability to plant protein crops by
1.3 percentage points, ceteris paribus. Oilseeds choice is negatively affected by expected growing
degree days, precipitation, and dry days, and positively affected by the expected number of degree
days above 30�C. Corn is less likely to be planted under an increased expected number of dry days.

5.2 | Second-stage regression results: Price and weather elasticities

The model fit and full parameter estimates of the system of output supply and input demand func-
tions are presented in Tables A.2 and A.3 in the Appendix A. As indicated by the R2 values, the
explanatory variables explain between 31% (corn supply) and 91% (cereals supply) of the variation
in the observed output and input quantities, indicating a reasonable fit of the econometric model.
Coefficients of the selection terms included in the structural equations are all statistically significant
at the 1% level, except for cereals, implying that controlling for nonrandom crop selection is neces-
sary.17 The parameter estimates also confirm that both realized weather and weather in the recent as
well as in the more distant past affect the profit-maximizing output supply and input demand, as
indicated by statistically significant coefficients of observed and lagged weather variables. In several
cases, responses to recent and distant weather changes revert in sign (e.g., Prec1to3 and Prec4to10 in
the cereals supply function). This result can be attributed to the expectation-formation process of
the farmers. The mentioned example suggests that changes in precipitation in the recent past lead to
different expectations of precipitation for the current year, compared with the same change in pre-
cipitation in the more distant past.

To assess the economic consistency of our model, we report the estimated own-price elasticities
of crop supply and variable input demand in Table 2, which are again evaluated at the sample mean.
Economic theory dictates that profit-maximizing output quantities are nondecreasing in own prices
and profit-maximizing input quantities are nonincreasing in own prices. This is the case for all the
considered outputs and inputs.18 For example, evaluated at the sample mean, cereals supply
increases by 0.43% if cereals prices increase by 1%, and fertilizer demand declines by 0.12% in
response to a 1% increase in fertilizer price.

The estimated own-price elasticities of protein crops and corn supply are not statistically signifi-
cant and are smaller in magnitudes than the remaining crops, indicating that the output levels of
these crops are not highly influenced by their prices in the short run. Protein crops may be primarily
grown for environmental and agronomic reasons, and corn is often grown for biogas production
and animal feed (although our sample does not include farms with livestock production). Thus, the
energy price may be a more important determinant of corn supply for these farms. Contrary to
own-price elasticities, cross-price elasticities can take either sign because there may be synergies
between crops or crop-rotational requirements. In this case, the optimal supply of one crop increases

16We note that the results represent the partial effects evaluated at the sample mean. There may be more pronounced changes in the crop
portfolio with a larger shift of the climate, but this is beyond the scope of our data and analysis.
17Data S8 presents results from a model that ignores the nonrandom crop selection. Results from the simulation of the weather shock are
qualitatively similar, except for the medium-term response in root crops production. Both price and weather elasticities differ in magnitudes
and, in some cases, in signs from the original model.
18This result applies to all observations as the second-order derivatives of the quadratic profit function are constants.
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with an enhanced supply of the other crop. For example, increasing cereals prices not only enhances
cereals production, but also oilseeds and corn production, at the expense of protein crops.

Next, we evaluate how the optimal output supply and input demand respond to changes in the
expected and realized weather outcomes. Analogous to the interpretation of the crop-selection equa-
tion, we calculate the net effect of expected weather by adding the marginal effects of weather out-
comes in the more recent and more distant pasts. Table 3 shows the semi-elasticities of the crop
supply and input demand with respect to the four weather variables considered. We recall that these
elasticities do not represent pure weather-yield effects. Instead, they indicate how profit-maximizing
supply and demand change under different weather expectations and realizations. If the yield of a
particular crop is not affected by a certain weather change but the yields of other crops planted on
the same farm are negatively affected, it can be economically rational for the farmer to allocate more
resources (e.g., labor or fertilizer) to the crop that is not affected, as the relative profitability of this
crop has increased. Thus, we would observe a positive effect on the supply of this particular crop,
without any direct weather effect on the yield.

According to the estimation results, a higher number of growing degree days between 10 and
30�C during the current growing season decreases the supply of cereals, protein crops, and oilseeds
but increases the supply of root crops. For example, ceteris paribus, an increase in the number of
growing degree days by 1 day results in 0.07% less cereals supply. Higher realized precipitation
reduces the supply of cereals and oilseeds; more growing degree days above 30�C increase cereals,
protein crops, and oilseeds supply but decrease root crops and corn supply; and more dry days in
the current year are detrimental for cereals, protein crops, and oilseeds. All other weather variables
being equal, fertilizer demand is reduced under a larger number of growing degree days and
increased under more precipitation, more growing degree days above 30�C, and more dry days. With
respect to past weather, based on which weather expectations are formed, Table 3 shows that statisti-
cally significant results carry the same sign in most cases, except for dry days with respect to protein
supply and growing degree days above 30�C with respect to fertilizer supply. A likely explanation is
that changes in the expected weather affect the relative profitability of crops, which leads farmers to
reallocate resources across crops.

As previously discussed, these weather effects must be interpreted with care, because the ceteris
paribus interpretation is not always sensible. For example, if a heavy precipitation event occurs in a
particular year and the total amount of total precipitation is held constant, the number of dry days
must increase, even though the year was overall not drier than usual. Furthermore, drought years are
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F I G U R E 2 Average partial effects of weather expectations on crop choice. Vertical bars indicate 95% confidence intervals
obtained from nonparametric bootstrapping (n = 1000).
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often characterized not only by little precipitation but also by a comparatively higher number of
growing degree days. Therefore, it is challenging to disentangle the individual supply effects of both
variables. To obtain a better understanding of how different weather outcomes, both in the past and
in the current year, affect farmers’ production decisions, we simulate the production outcomes of a
weather shock in the following section.

5.3 | Simulation results

We simulate the response to a weather shock over 10 years to cover the entire time span of the
weather variables. To simulate the effect of a drought event on the output supply and input demand,
we set the weather variables to hypothetical values as explained in Section 3.3. All other observed
variables (e.g., prices and fixed inputs) are held fixed in this simulation exercise.19 When interpreting
these results, it must be noted that fixed inputs (land, labor, and capital) may be adjusted in the
course of weather trends (see, e.g., Yang & Richard Shumway, 2016) or shocks. To determine
whether the level of fixed inputs affects farm-level responses to weather shocks, we investigate het-
erogeneous responses across farm sizes below.

Figure 3 shows the change in output supply for the different crops and input demand for the fer-
tilizer input in the year of the drought shock (t¼ 0), as well as 10 years after the shock
(t¼ 1,2,…10), with t¼�1 (i.e., the long-term average) as the base year. In the drought year, supply
of all crops, except for root crops, and fertilizer demand decline. Of all the considered crop catego-
ries, corn supply suffers the most from the shock (�20% below average levels), in line with the crop’s
comparatively high water demand. Although root crops are also characterized by high water
demand, they are often grown under irrigation, which can explain why they barely respond to the
drought shock. However, we cannot test this hypothesis in this empirical study because the data do
not include crop-specific information on irrigation.20
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F I G U R E 3 Simulated changes in crop supply and fertilizer demand after a drought occurring in t¼ 0.

19We focus on changes in weather variables while holding prices fixed, as price–yield correlations are very low at the individual farm level
(Finger, 2012).
20Overall, less than 5% of agricultural land in Germany is equipped for irrigation (Schmitt et al., 2022; Siebert et al. 2015). The lack of crop-
specific irrigation use in our data implies that that we cannot account for the fact that irrigated crops respond differently to weather shocks
than rainfed crops (e.g., Wang et al., 2021) in the supply and demand functions. Hence, our results reflect the average response of farms to
weather changes, given the current state of irrigation and other management practices. It is well possible that future irrigation investments will
increase the resilience of crop production to drought shocks.
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Furthermore, the simulation reveals that a drought shock has long-lasting effects on output sup-
ply. Corn production remains at reduced levels in the few years after the shock, whereas the output
levels of oilseed crops and, in particular, protein crops remain at reduced levels in the longer term.
By contrast, cereals production is only marginally affected by the drought and returns to nearly orig-
inal levels immediately in the following year, and root crops supply tends to increase over time.
Moreover, although oilseeds and protein crops supplies respond only slightly in the year of the
drought (close to 10%), their decline is more pronounced in subsequent years (�14% and �17%,
respectively). As discussed above, protein crops are primarily grown for environmental and agro-
nomic reasons in Germany and do not constitute a major source of income. After a drought year,
farmers may reduce their protein crops production to financially compensate for the losses caused
by the drought.

Finally, Figure 3 shows that farmers respond to the lower growth potential of crops during and
in the direct aftermath of an extreme weather year by reducing fertilizer demand. This effect lasts for
several years before returning to the baseline level. The fact that input use depends on weather con-
ditions in the current year has also been reported by Möhring et al. (2022) and Alem et al. (2010).
These simulation results demonstrate the importance of considering the dynamic nature of farmers’
responses to extreme weather, with respect to both crop-specific output supply and input demand.

5.4 | Heterogeneous responses to weather trends

Previous studies have shown that farm size plays an important role in adaptation capacity, although
its impact varies across countries (Reidsma et al., 2009). Considering the observed structural change
in agriculture toward fewer but larger farms (e.g., Neuenfeldt et al., 2019), we here explore heteroge-
neous responses to weather trends across different farm sizes, approximated by the area of farmed
land. To allow for heterogeneous responses in our model, we add interaction terms between weather
variables and the land variable in the structural and selection equations. Hence, the weather elastici-
ties of output supply and input demand as well as the simulated response to the drought shock vary
across farm sizes. The full parameter estimates for the extended model, estimated price elasticities,
and estimated weather semi-elasticities are presented in Data S5. In both the selection and structural
regression results, several interaction terms between the weather variables and agricultural land are
statistically significant, indicating heterogeneous responses to weather trends across farms of differ-
ent sizes. Figure 4 shows the simulation results at the sample mean as well as averaged over farms
endowed with fewer and more hectares of land than the median number of hectares. In our empiri-
cal case of German crop farms, smaller farms are more affected by the weather shocks than larger
farms. This finding is in line with Spiegel et al. (2021) who found that smaller farms are more con-
cerned about short-term shocks. A possible explanation for our results is that large farms may have
greater personal and technological capacities to absorb shocks. Based on this result, we can infer that
adjustments in fixed inputs and the trend toward larger farms may increase the resilience of the farm
sector to weather shocks; however, further research is needed to explore the underlying mechanisms.

5.5 | Robustness

We estimated a range of additional models to test the robustness of our results to alternative specifi-
cations for the weather variables. First, we tested the sensitivity of the results to changes in the time
periods that define the more recent and more distant past. The estimation results, price and weather
elasticities and simulation results for alternative periods (t � 1 to t � 5 and t � 6 to t � 10; t � 1 to
t � 5 and t � 6 to t � 20; t � 1 and t � 2 to t � 10) are presented in the Data (S6.1–6.3). The price
and weather elasticities at the sample mean are similar to the main specification, both in magnitude
and in statistical significance. Although the speed of adjustments varies with the choice of lag
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structure, the relative changes and medium-term adjustments in crop supply and fertilizer demand
are robust across all specifications.

Second, we changed the functional forms of the weather variables and included squared terms
for observed and past growing degree days and precipitation (see Data S6.4). Again, the price and
weather elasticities at the sample mean are similar to those in the main specification. A slight differ-
ence is observed in the simulation results, in which protein production is not detrimentally affected
in the drought year. Overall, adjustments in crop supplies and input demand in the years following
the drought shock are not affected by the inclusion of the squared weather terms.

Third, we tested the robustness of the results to the imposition of curvature on the profit func-
tion. As already discussed, the unrestricted estimation of the system of output supply and input
demand functions resulted in output supply functions that are nondecreasing in own prices and
input demand functions that are nonincreasing in own prices, as required by economic theory. How-
ever, the unrestricted model does not fulfill the convexity condition of the profit function, as indi-
cated by a non-semi definite Hessian matrix. The convexity of the profit function reflects that
farmers can take advantage of favorable price changes by adjusting output and input combinations
for the profit to increase more than proportionally to price changes. To check whether our results
are sensitive to the imposition of convexity, we estimated a restricted version of the model, in which
convexity is imposed using Cholesky factorization. For this purpose, the Hessian matrix B of the
normalized quadratic profit function with respect to prices is rewritten as B¼ LL’, where L is the
lower triangular matrix holding the parameters to be estimated. As four of the six eigenvalues of the
Hessian matrix are non-negative in the unrestricted version, we estimated the Cholesky factorization
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F I G U R E 4 Simulated changes in crop supply and fertilizer demand after a drought occurring in t¼ 0, across
heterogeneous farm sizes. Small (large) farms are defined as farms endowed with less (more) than the median number of
hectares (106 ha) in our sample.
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with rank= 4 (Diewert & Wales, 1988; Moschini, 1998). To facilitate convergence of this highly
nonlinear model, we divided all variables by their sample mean prior to the estimation. Furthermore,
we had to drop the interaction terms between the observed and past weather variables to keep the
estimation and bootstrapping within a manageable time. As shown in Data S6.5, the estimates of
price elasticities and weather semi-elasticities are similar across both models, confirming that the
imposition of convexity is in accordance with the data. The simulation exercise shows that the pro-
duction responses to a drought shock based on the restricted estimation are very similar to those
indicated by the unrestricted estimation.

6 | CONCLUSION

This study assessed farmers’ responses in crop supply and input demand to weather trends. The the-
oretical framework shows that expected weather affects production choices through the allocation of
fixed inputs, whereas realized weather affects output directly through yield effects and indirectly
through farmers’ input adjustments. Based on this conceptual framework, we empirically estimated
the farms’ output supply and input demand as functions of both expected and realized weather. This
structural modeling approach captures the trade-off in the production of different crops, which
arises from farmers’ optimal resource allocation across individual crops. Optimal resource allocation
depends on the relative profitability of the crops, which is influenced by expected and realized
weather outcomes. The estimated parameters were then used to simulate the immediate and lasting
effects of drought events on farmers’ production decisions.

The results reveal heterogeneous effects of weather trends on the supply of individual crops. For
instance, an increase in the number of growing degree days shifts production from cereals and oil-
seeds toward root crops. The simulation exercise suggests that drought events result in a reduced
supply of protein crops, cereals, oilseed crops, and corn, as well as in reduced fertilizer use. Corn is
the crop that suffers the most (�20% based on our baseline model) in the drought year. In subse-
quent years, the supply of protein crops reduces to less than 20% below the original levels, and roots
crop production tends to increase. Fertilizer demand is decreased both in the year of the shock and
in subsequent years. Hence, an extreme weather event has immediate and lasting effects on farmers’
production choices. We also found that smaller farms are more affected by the drought shock than
larger ones, both in the year of the extreme event and in subsequent years.

A limitation of our study is the assumption of risk neutrality of farmers in the profit maximiza-
tion approach. Although this assumption is commonly made in the agricultural economics literature,
it may be challenged, as farmers have been found to be generally risk and loss averse (Rommel et al.,
2022). Chambers and Quiggin (2000) showed that the duality between farmers’ profit and produc-
tion functions holds under risk and uncertainty in a state-contingent framework. However, the
empirical assessment of farmers’ decisions in this framework requires data under different states of
nature (e.g., Serra et al., 2010; Sidhoum et al., 2020), although only one state of nature is observed in
reality. Hence, we focused on the profit maximization approach in this study and leave the extension
to flexible risk preferences for future work. We also note that profit maximization can be a reason-
able assumption if farmers have access to functioning financial markets and off-farm work
(Chambers & Voica, 2017), which might well be the case in our empirical case of Germany.

The results of this study have several important policy implications. First, they provide evidence
that changes in both realized and expected weather are important determinants of crop-specific out-
put supply as well as input demand. This finding underscores that the evaluation of the impact of
weather and climate on agricultural production must go beyond pure yield effects and consider
farm-level adjustments in output supply and input demand. Second, transformative events
(e.g., droughts) have lasting effects on farmers’ production decisions. In our empirical application,
the supply of protein crops decreased considerably after a simulated drought shock and remained
below previous levels. However, it is an important topic on the policy agenda of the EU and other
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regions to enhance domestic protein crop production due to their environmental benefits (Bues
et al., 2013). Extreme events, which become more frequent under climate change (e.g., Robinson
et al., 2021), may undermine such policy goals, and therefore, additional incentives may be neces-
sary. More generally, this result implies that transformative events must be considered in addition to
gradual changes in temperature and precipitation when assessing the effects of climate change on
agricultural production.

Third, extreme weather affects fertilizer use, which has significant environmental implications.
In particular, we found that farmers respond to drought events by reducing fertilizer application.
This behavior is economically rational, as the ability of plants to take up nitrogen is reduced under
suboptimal growing conditions. Therefore, the provision of detailed and real-time information about
the growth potential of crops can help farmers align fertilizer usage with nitrogen uptake, which is
important from both economic and ecological perspectives.

Although this study focused on the net effect of weather trends on farm-level output supply and
input demand, further research in this area may disentangle the yield effects from the reallocation of
fixed allocatable inputs. Such insights can inform researchers and policy makers about the relative
importance of yield impacts and adaptation behavior. On the variable input side, our study focused on
fertilizer use. An extension of this model could focus on pesticide use, which has been found to be
affected by extreme weather events (Möhring et al., 2022). For this purpose, pesticide use could be
incorporated into the profit maximization problem as a damage-control agent (see, e.g., Chatzimichael
et al., 2022; Lichtenberg & Zilberman, 1986). Finally, further research is required with respect to the
heterogeneous effects of weather and climate, not only across farm sizes in terms of area of farmed
land as in this study but also across different farm types (e.g., crop farms vs. livestock farms) and
regions. Understanding the heterogeneity of farm vulnerability and adaptation capacities is essential
for policymakers and other stakeholders to minimize the detrimental effects of weather shocks and cli-
mate change on agricultural production.
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T A B L E A 2 Regression diagnostics of the profit system.

Dependent variable Estimated parameters Root mean square error R2

Cereals supply 64 4512.04 0.91

Protein crops supply 64 382.95 0.68

Oilseeds supply 64 1078.46 0.80

Root crops supply 64 10912.57 0.60

Corn supply 64 7432.71 0.31

Fertilizer demand 63 60.30 0.79

Note: Estimation is based on 14,796 observations.
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