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Abstract  Since the late 1970s the international 
ICES mackerel egg survey takes place in the North-
east Atlantic to obtain an estimate of total annual 
egg production (TAEP), to assess the spawning stock 
biomass and to support the sustainable manage-
ment of the mackerel stock. However, its standard 
calculation of TAEP has some shortcomings: egg 
production is estimated from arithmetic averages of 
individual observations regardless whether they are 
extreme, rarely observed values, and has shown dif-
ficulties coping with the spatial expansion of mack-
erel spawning observed since 2007 (increasing the 
number of interpolated estimates). Various previous 

modeling efforts attempted to map the habitat of 
spawning mackerel to obtain more accurate egg pro-
duction estimates by using generalized additive mod-
els (GAMs). In this study, we review and improve 
these models by introducing new features: We model 
both the western and southern components of the 
mackerel stock with a Tweedie distribution and test 
more than 400 model forms, including new predic-
tors (like population size) and complex covariate 
interactions. We select the best model with various 
metrics, including the score of a tenfold cross valida-
tion. Our results show that environmental variables 
should be included in the model as simple functional, 
unimodal terms. This leads to a model that is more 
similar to a generalized linear mixed model than the 
typical GAM with smoothers. Models including only 
smoothers performed worse as they have a poor skill 
to extrapolate beyond the sampled region. Addition-
ally, accounting for the effect of population size on 
the spatial distribution of eggs was shown to be fun-
damental to better model performance.
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Introduction

Mackerel (Scomber scombrus, Linnaeus 1758) in the 
Northeast Atlantic represents one of the most impor-
tant fish stocks in Europe, with a total annual catch 
of currently almost 1 million tons valuing more than 
1 billion Euros (ICES 2019a). The stock is assessed 
annually based on catch at age data from commer-
cial fisheries adjusted by the results of four fishery-
independent surveys organized by the International 

Council for the Exploration of the Sea (ICES; more 
details about the assessment are given in “Total 
annual egg production” section). One of these sur-
veys is the triennial mackerel egg survey (see study 
area in Fig. 1), that commenced in 1977 (Lockwood 
et  al. 1981), providing the only fishery independent 
estimate of mackerel spawning stock biomass (SSB). 
Mackerel SSB is estimated as a function of total 
annual egg production (TAEP), fecundity per gram of 
female weight and sex ratio (ICES 2019b) and is used 
as a relative index in the assessment.

In order to cover the spatio-temporal distribution 
of the spawning season from south to north along the 
European shelf, the survey area is sampled several 
times during consecutive survey periods. The survey 
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area is divided into rectangles of 0.5° and one plank-
ton sample is taken at the midpoint of each rectangle 
(replicates are taken in some rectangles, mainly in 
past surveys like 1992 and 1995). From each sample, 
all eggs are sorted, identified to species and staged. 
For TAEP estimation, only stage 1 eggs are used. 
Eggs develop faster as water temperature increases 
and stage-1 duration usually differs from 24 h. There-
fore, a temperature dependent stage duration func-
tion from laboratory experiments (Mendiola et  al. 
2006) is used to estimate the daily egg production 
per m2. Sample replicates are averaged (arithmetic 
mean) inside each rectangle for each survey period. In 
case of unsampled rectangles inside the survey area, 
daily egg production per m2 is interpolated from the 
immediately neighboring (i.e. 2–8 adjacent) sampled 

rectangles for each survey period. Linear interpola-
tion from neighboring rectangles is undertaken for all 
unsampled rectangles that have at least two sampled 
rectangles in their immediate neighborhood. These 
values, sampled, averaged or interpolated, are then 
projected to the entire area of the sampled rectan-
gle and subsequently summed over the entire survey 
area of the respective sampling period. Multiplica-
tion with the duration of the spawning period results 
in the total egg production. For sampling periods 
that are not directly consecutive, the egg production 
of the intermediate period is also calculated by lin-
ear interpolation. The sum of the total egg produc-
tion of all periods delivers the TAEP. More details of 
this analysis are given in “Total annual egg produc-
tion” section below and in the manual of the Working 

Fig. 1   Sampling region of the ICES mackerel egg survey in 
the Northeast Atlantic. The gray area is the enclosed mapping 
region (alpha shape) for the arbitrarily chosen year 2010, con-

structed with a Delaunay triangulation of egg sampling posi-
tions. Lines joining the positions of the egg hauls (dots) are 
edges of Delaunay triangles
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Group on Mackerel and Horse Mackerel Egg Survey 
(WGMEGS; ICES 2019b).

While this standard method for TAEP is a use-
ful first approximation to the problem, its simplicity 
implies also some shortcomings: the distribution of 
egg counts are often skewed and, for skewed distri-
butions (and small subsamples), the arithmetic mean 
used for replicates and interpolation can be a poor 
estimate of central tendency in comparison to other 
statistics like the median (Le 2003; Urdan 2005; 
Shahbaba 2012) or in comparison to more advanced 
statistical methods like generalized linear or addi-
tive models (GLMs/GAMs). These methods account 
for skewness by means of an assumed distribution of 
model residuals and use of a link function. Moreo-
ver, in 2007, the mackerel spawning area started to 
expand towards the North and North West, far beyond 
the original survey boundaries. Since then, due lim-
ited survey budgets, it was not possible to cover the 
complete spawning area anymore. Failure to include 
all contributions results in a biased low (i.e. less 
accurate) egg production (EP) per sampling period. 
Additionally, the associated decrease in replicates and 
the increase of unsampled spaces between observa-
tions reduces the precision of EP. Furthermore, the 
standard method weighs every individual observation 
equally, independently of its probability of occur-
rence. Therefore, rarely observed extreme values can 
potentially inflate the total egg production if their 
magnitude is disproportionally large in comparison to 
their probability of occurrence. Finally, the standard 
method cannot extrapolate egg production estimates 
to regions beyond the survey boundaries, which 
could be useful for survey planning. GLMs/GAMs 
can extrapolate geographically  provided that ade-
quate functional forms for the response are used and 
exploiting the relation between response and environ-
mental variables (meaning an interpolation not only 
in geographical coordinates but also in the space of 
environmental variables).

Six previous studies (Borchers et al. 1997; Augus-
tin et  al. 1998; Beare and Reid 2002; Hughes et  al. 
2014; Bruge et  al. 2016; Brunel et  al. 2018; see 
also Table  S1) developed habitat models to study 
the spatio-temporal distribution of mackerel eggs 
in the Northeast Atlantic, two of them (Borchers 
et  al. 1997; Augustin et  al. 1998) with the explicit 
intention of overcoming the problems of the stand-
ard calculation of TAEP. All previous studies used 

Generalized Additive Models (GAMs; Hastie and 
Tibshirani 1986). Until now, no one had compared 
these methods or tested their performance to obtain 
a realistic estimate of TAEP beyond a single year 
(1992 in the case of Borchers et al. 1997; 1995 in the 
case of Augustin et  al. 1998). Therefore, the ability 
of previous modeling efforts to replace the standard 
method for TAEP remains unclear. The main goal 
of this study is also to use habitat modeling to map 
the spawning habitat in order to improve the calcu-
lation of TAEP over both the standard method and 
previous modeling efforts. Therefore, we review pre-
vious model configurations, evaluate their ability to 
replace the standard method and introduce various 
novel modeling approaches for improvement: Predic-
tors that have yet to be tested (like spatially resolved 
bathymetry gradient or average population size), defi-
nition of an alpha shape mapping region, use of the 
Tweedie distribution (Tweedie 1984), test of a large 
number (452) of non-linear functional forms (includ-
ing many complex interactions between predictors) 
and a model selection approach using tenfold cross 
validation.

Data

Egg production data

The Annual Egg Production Method used for the 
Northeast Atlantic mackerel stock to determine its 
spawning stock biomass, consists on the estimation 
of the TAEP. TAEP is calculated from the daily pro-
duction of recently spawned mackerel eggs over the 
entire spawning area, covering an area west of the 
Iberian Peninsula up to the Norwegian Sea, progress-
ing from South to North over the whole spawning 
season between January and July. The spawning sea-
son is partitioned into a small number of discrete sur-
vey ‘periods’, within which a reasonable proportion 
of the spawning area has been sampled.

The egg surveys involve collecting samples of 
ichthyoplankton from predefined rectangles. The 
survey vessels sail along latitudinal transects, col-
lecting samples at 0.5°W intervals until no more 
mackerel eggs are encountered. The ships will then 
turn around and sample a parallel transect. Each 
transect is separated by 0.5°N, so that the samples 
represent half an ICES statistical rectangle. The 
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mackerel eggs are then identified and extracted 
from the samples, staged, and counted. Only the 
number of stage I eggs are considered, which are 
freshly spawned eggs, from fertilization until first 
signs of the developing embryo, i.e. the forma-
tion of the primitive streak (Simpson 1959; Lock-
wood et  al. 1981). All other stages (i.e. stages 
II–V), characterized by growth of the embryo are 
excluded from egg production estimation. The rea-
son for this is to avoid accounting for highly vari-
able mortality rates of the developing eggs owing 
e.g. predation, cannibalism, disease, unfavorable 
temperatures and oxygen levels (Hempel 1979).

Stage I mackerel eggs were sorted from samples 
taken during ICES joint expeditions every three 
years from 1992 to 2019 (ICES 2019b), counted 
and standardized to numbers per m2 sea surface 
utilizing flowmeter data for filtered volume of 
water and maximum sampling depth, i.e. 200 m or 
5  m above the seafloor, whichever occurred first 
during sampling (ICES 2019b; data freely available 
at ICES 2019c). Data collected before 1992 had not 
been quality checked and, therefore, were not con-
sidered in the present study.

Egg production (EP) per square meter per day 
(daily egg production) was calculated using the 
model of Mendiola et al. (2006) for stage duration:

where I is the incubation time in hours of stage I and 
T is temperature in °C. These data were then divided 
into six sampling periods of roughly 30 days, defined 
by the Julian day as shown in Table  1. The regular 
sampling periods were preferred for the present mod-
elling study and still closely resembled the irregular 
survey periods used in the standard methodology. The 
spawning stock biomass (SSB) from the 2020 advice 
(ICES 2020) was used to compare the TAEP from 
the habitat model (i.e., as goodness-of-fit criterion; 
“Total annual egg production” and “Model selection” 
sections below).

Environmental data

We used data of various environmental variables to 
model the spatiotemporal variations of mackerel 
EP. When choosing these model predictors, we kept 
in mind the previous studies (Table  S1), in order to 

I = e−1.31⋅log(T)+6.9,

complement or improve them. Most previous studies 
(Borchers et al. 1997; Augustin et al. 1998; Beare and 
Reid 2002; Hughes et al. 2014) used in situ observa-
tions. However, Núñez-Riboni et  al. (2021) showed 
that the use of in  situ data in fish habitat models is 
only advisable when focusing on small-scale varia-
tions, such as the influence of eddies. As the current 
study analyses features at large spatial scales (i.e., cli-
matic variations), we intentionally did not use in situ 
data and also did not interpolate gridded environmen-
tal variables to fit to sampling sites (Núñez-Riboni 
et  al. 2021). Instead, we downsampled (i.e., filtered 
and decimated) gridded environmental variables and 
aggregated observed EP to a resolution of 1° in both, 
N–S and W–E direction, to fit the habitat model. The 
scale of 1° was chosen because it is roughly twice 
the average distance between egg sampling stations, 
while predictions were made on the original reso-
lution of the survey (0.5°; see Núñez-Riboni et  al. 
2021). The use of gridded data as predictors is similar 
to that of Bruge et al. (2016) and Brunel et al. (2018).

We tested all variables that were used as predictors 
in previous studies (see Table S1), i.e. bathymetry, sea 
surface temperature (SST), sampling position, mixed 
layer depth (MLD), surface salinity, sea surface 
height (SSH) and measures of time like Julian day 
and year. We used bathymetry (with 1’ resolution) 
from the Global Relief Model ETOPO1 (Amante and 
Eakins 2009), while SST, surface salinity, MLD, SSH 
and current speed (all with resolution 1° × 1/3°) were 
obtained from the Global Ocean Data Assimilation 
System (GODAS) from the U.S. National Centers 
for Environmental Prediction (NCEP; Behringer and 
Xue 2004; GODAS 2021). The same ocean model (or 
ocean “reanalysis”) was used by Bruge et al. (2016). 
We extracted all data in the region 23°W to 5°E and 
35° to 64°N.

We tested additional variables to fit the habitat 
model. Borchers et al. (1997), Augustin et al. (1998) 
and Beare and Reid (2002) used the distance to the 
200  m isobath as a predictor. This follows the idea 
that the European continental shelf break has an effect 
and should be used as a proxy for spawning activity 
(Beare and Reid 2002). In this study, we model this 
effect with the magnitude of the ETOPO1 bathymetry 
gradient (in geographical degrees), which is similar 
to the approach of Borchers et al. (1997) and is justi-
fied in detail in “Effect of bathymetry gradient” sec-
tion. To calculate the bathymetry gradient, it makes a 
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difference to first downsample and then calculate the 
gradient than doing it the other way round. We chose 
to first calculate the gradient from the 1′-bathymetry 
and then downsample (to 0.5° and 1.0°) because the 
inverse procedure seemed to distort the bathymetry 
gradient.

In this study we tested for the first time the asso-
ciation of two variables with egg production: Eddy 
Kinetic Energy (EKE; see Richardson 1983), which 
is a measure of current speed variance, and (rela-
tive) vorticity (Stewart 2008, his Eq. 12.2), which is 
a measure of local rotational flow. The motivation for 
testing these variables is that regions of high egg den-
sity could result from retention following high turbu-
lence, eddies or gyral circulation.

Ocean reanalyses like GODAS allow designing the 
habitat model by testing various environmental vari-
ables potentially influencing EP, with some variables 
(MLD and current speed) which cannot be observed 
at large spatial scales. As a drawback, models can 
potentially be inaccurate and, most importantly, their 
outputs are rarely updated (once a year or less). This 
contrasts with satellite imagery, which is a direct 
observation of ocean conditions and is updated daily 
or weekly. Because (as it will be shown in “Best 
model” section below) SST was the only GODAS 
variable included in the optimal model, once the 
habitat model was designed with GODAS, observed 
SST from the Operational Sea Surface Temperature 
and Ice Analysis (OSTIA; Copernicus 2021) was 
additionally incorporated in the analysis. This allows 
modeling of the recent or even current spatial distri-
bution of EP, which could be an important support 
tool for survey design.

We did not use satellite surface chlorophyll as 
a predictor as used in previous studies (Bruge et  al. 
2016), because the time series starts in 1998, i.e., it 
does not cover the entire time series of the survey. 
Additionally, Bruge et al. (2016) found that this vari-
able only explained a small amount of model devi-
ance in comparison to the other variables and that 
its temporal trends were not statistically significant 
(concluding that it did not influence the observed spa-
tial shift of the spawning area). We also did not test 
country (or, equivalently, sampling vessel) because 
this variable was not selected in the optimal model 
of Borchers et al. (1997) by their backward stepwise 
selection, which corresponds to the idea of a good 
survey design (i.e., there is no vessel bias in the sam-
pling). A summary of relevant environmental data 
and variables used as predictors in this study is shown 
in Table 2.

Methods

Modeling the mackerel spawning habitat

We modeled EP as function of environmental 
variables using various generalized additive mod-
els (GAM; Hastie and Tibshirani 1986). A novel 
approach in this study in comparison to the previous 
ones is the use of a Tweedie distribution (Tweedie 
1984). A detailed justification for the use of the 
Tweedie model over the methods used in previous 
studies (like the hurdle model of Bruge et  al. 2016) 
will be given in “Comparison with previous modeling 
efforts” section below. Further, we chose a logarith-
mic link, which is the canonical link of the Tweedie 
distribution, and which has been used in all previous 
modeling efforts of mackerel EP except for Hughes 
et al. (2014), who used a logit link. GAMs were fitted 
using the package “mgcv” (Mixed GAM Computa-
tion Vehicle; Wood 2017) from R, version 3.6.3.

All variables shown in Table  2 were tested 
(together with EKE and vorticity), either as individual 
model terms (i.e., added up in the model equation) or 
combined as interactive model terms (i.e., a multipli-
cation of one or more simple functions of a variable). 
Only a few variables were not tested in combination 
because they were strongly correlated to each other. 
In this case, either one or the other variable was used, 
but not both. “Strongly correlated” was defined as 

Table 1   Definition of six sampling periods during each year 
using Julian days (JD)

Period Start (JD) >  End (JD) ≤  Length 
(days)

Month 
(approx.)

1 35 65 30 February
2 66 94 29 March
3 95 124 30 April
4 125 153 29 May
5 154 183 30 June
6 184 212 29 July
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Pearson correlation ρ ≥ 0.6. Strongly correlated vari-
ables, spatially and/or temporally, were temperature 
and salinity, temperature and SSH, bathymetry and 
MLD (only spatially), current speed and EKE, as well 
as SSH and MLD (only spatially).

In addition to the environmental variables, we 
tested a measure of population size S as a predictor. 
Although Brunel et  al. (2018) also addressed this 
issue, explicitly including the effect of population 
size in the habitat model is also a novel approach for 
mackerel eggs. For this we tested the sum, median 
and average EP of each sampling period. The use of 
population size averages as predictor should take into 
account fluctuations that apply to the entire stock (i.e. 
unlocalized) due to population dynamics (fishery and 
recruitment). Pinsky et  al. (2013) used annual aver-
age biomass as predictor while Stige et  al. (2017) 
used average individual weight (related to egg abun-
dance of the spawning stock). To account for the 
effect of population size on the spatial distribution 
of fish, a measure of population size should appear 
in the model as an interaction with spatially-resolved 
predictors such as temperature (Núñez-Riboni et  al. 
2019). More details about this are given in Section S1 
of the Supplement.

We tested 452 GAMs based on various model 
terms including all predictors described above and 
their combinations (Table  2). Some of the model 
terms were defined as penalized thin-plate spline 
smoothers (Wood 2017) of individual predictors, 
which was the common approach in previous stud-
ies (Table  S1). We also tested smoothers of the 
geographical position of EP or time with thin-plate 
(Wood 2017) and Gaussian-Process bases (Kam-
mann and Wand 2003). These smoothers should 
deal with unresolved (residual) spatial or temporal 
autocorrelation due to intrinsic factors or with geo-
graphical attachment (see for instance Planque et al. 
2011; Brunel et al. 2018; Núñez-Riboni et al. 2019). 
As in all previous studies (except Hughes et  al. 
2014), we tested smoothers with a low basis dimen-
sion k (between 3 and 7), which should be similar to 
the concept of the ecological niche of Hutchinson 
(1957), i.e. habitat suitability has a single optimum 
inside a range of environmental values, beyond 
which the suitability decreases to zero. In addition, 
we also tested large basis dimensions (as large as 
k = 150) for some of the smoothers, like the geo-
graphical attachment. The time variables like year 

or Julian day were treated as continuous variables 
(inside non-penalized spline smoothers) and not as 
factor, similar to Augustin et al. (1998).

In addition to the penalized smoothers, we also 
tested individual model terms defined as simple 
functions of one or more variables, i.e. similar to 
a generalized linear model (GLM; McCullagh and 
Nelder 1989), sometimes also in combination with 
smoothers (i.e., still a GAM by definition, in spite 
of the simple functions; Wood 2017). By exploring 
the individual scatter plots of EP against environ-
mental variables (see Figure S2 in the Supplement), 
these functional terms were chosen as combinations 
of polynomials with degree ≤ 2. Predictors were 
sometimes transformed with functions logarithmic, 
square-root or inverse multiplicative (Table  2). In 
combination with the logarithmic link, such poly-
nomials result in a unimodal relationship (possibly 
asymmetric), similar to the low-k smoothers and 
thus, also resembling Hutchinson’s ecology niche 
(Núñez-Riboni et  al. 2021). These simple func-
tions have even fewer degrees of freedom than the 
low-k smoothers and are, thus, less prone to bound-
ary problems and more appropriate for extrapola-
tion (Núñez-Riboni et  al. 2021). While some stud-
ies tested similar models (Borchers et  al. 1997; 
Augustin et  al. 1998; Beare and Reid 2002), they 
only used linear predictors. To date, no mackerel 
egg modeling study tried the quadratic polynomials 
required (in combination with the logarithmic link) 
to obtain unimodal responses.

An arbitrarily chosen example of one of the 452 
GAMs tested is:

where ÊP is the modeled egg production, ∇B is the 
bathymetry gradient, T is temperature, sGP is a Gauss-
ian-Process smooth, lon is longitude, lat is latitude 
and the αn’s the model parameters to be fitted. Before 
describing the model selection in “Model selection” 
section, we describe the calculation of total annual 
egg production (TAEP) because it was used as one 
criterion of goodness-of-fit.

log
(

ÊP
)

= �0 + �1 ⋅ log(∇B) + �2 ⋅ log
2(∇B)

+ �3 ⋅ T + �4 ⋅ T2 + sGP(lon, lat)
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Total annual egg production

For each tested model, we calculated the result-
ing total annual egg production (TAEP). To map EP 
with the model, a regular grid with the same aver-
age resolution of the ICES survey (0.5° × 0.5°) was 
constructed matching the majority of the survey’s 
sampling positions. For calculation of the TAEP, the 

exact region where the EP estimates are calculated 
is fundamental, particularly considering the poor 
extrapolation properties of spline smoothers (Núñez-
Riboni et al. 2021). Therefore, EP was predicted with 
the model only on grid points lying inside an enclosed 
region defined with the EP sampling positions. This 
so-called “alpha shape” (Edelsbrunner et  al. 1983) 
was constructed from Delaunay triangles (Swan 

Table 2   Summary of predictor variables and model terms 
used individually or combined to construct 273 GAMs (all 
models compared with metrics in our second stage of the anal-
ysis). The table is symmetric along its diagonal owing that the 

number of interactions between variables X and Y is the same 
as between variables Y and X. Therefore, only the lower-left 
half of the table is shown, while the upper-right half is shaded 
in gray

B B S R D MLD S Sal SSH T Y Model terms tested

Bathymetry (B) 304 s(B); B; B2; log(|B|); 
1/log(|B|)

Bathymetry gradient 
( B)

65 260 s( B); B; ( B)2; log( B); 
log2( B); 1/ B; 1/log( B)

Current speed (V) 9 35 48 s(V); V, V�; log(V); 1/log(V)

Geographical 
a�achment (R)

0 0 0 110
s(lon, lat) as thin plate or 
Gaussian process smooth 
or geographic regression 
model; various values of k

Julian day (D) or 
sampling period

0 8 0 2 20
s(D); D; D2

Mixed Layer Depth 
(MLD) 0 0 0 0 0 9 s(MLD); MLD

Popula�on size (S)
10 76 81 10 2 6 225 s(S); S; S; log(S+1); 1/(S+1); 

√S; year

Salinity (Sal) 0 0 0 0 0 0 0 1 s(Sal); Sal; Sal2

Sea Surface Height (SSH) 0 0 0 0 0 0 30 0 6 s(SSH); SSH; SSH2;
Sea Surface 
Temperature (T) 11 11 0 0 4 6 290 0 0 204 s(T); T; T2; log(T); log2(T)

Year (Y)
0 0 0 0 2 0 0 0 0 1 24

s(Y); also in tensor product 
splines with other 
variables

Total 399 455 173 122 38 21 730 1 36 527 27

The numbers indicate the number of times that a model term was tested (over all models). s(·) refers to a spline smother (penalized or 
not). For simplicity, interactions between three or more terms are not shown (example: Y × D × T was tested 15 times). Note that vari-
ables and model terms can appear in a model more than once. For instance, a variable can appear linear and squared, while a model 
term can appear individually (like log(|B|)) or interacting (∇B/log(|B|)). Therefore, the total number of times that a model term or a 
variable was tested can exceed the total number of models. For simplicity, model terms with sampling period were grouped in the 
same category as terms with Julian day (D) because both variables represent intra-annual changes.
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and Sandilands 1995) with all three sides smaller 
than three geographical degrees. Such mapping 
region ensures that the model estimates arise only 
from observations within the edges of the sampling 
region. Therefore, extrapolated estimates (or “bound-
ary effects” of the smoothing splines) are limited. 
Points outside the Delaunay triangulation but close 
to one observation at a distance of 0.1° or less were 
also included in the mapping grid (to include map-
ping points located on isolated tracks). Any grid point 
lying on land was excluded from the mapping grid. 
An alpha shape mapping region was constructed for 
each survey year, allowing time interpolation between 
sampling periods and some spatial extrapolation (par-
ticularly in the first and last sampling periods). An 
example of a mapping region is shown in Fig. 1.

Once EP was mapped with a GAM over all peri-
ods, the TAEP was calculated following the standard 
method (Sect. 10.2 of ICES 2019b). First, the area Ai 
of the ith model grid cell was calculated with:

where R is the Earth’s radius, i.e., R = 6,371,000  m 
and the cell size S = 0.5°, as mentioned above. The 
total daily EP (DEP) in the ith grid cell is: 

where the upper script c emphasizes that this is DEP 
per grid cell. Therefore, the total DEP for the whole 
mapping region, year Y and sampling period P was 
the sum over all n grid cells:

Finally, the total annual EP for year Y was 
obtained by integrating each of the individual contri-
butions EPP

Y
 over all six sampling periods:

where dDP is the length of the Pth sampling period 
(see Table 1).

To evaluate the improvement of the modeled 
TAEP over the standard method, results from both 
were converted to SSB utilizing the correspond-
ence between EP and fecundity. Female fecundity is 

dA
i
= dX

i
⋅ dY

i
= cos

(

lat
i
⋅ �∕180

)

⋅ (S ⋅ � ⋅ R∕180)2

(1)EPc
i
= ÊPi ⋅ dAi

(2)EPP
Y
=

n
∑

i=1

EPc
i

(3)EPY =

6
∑

P=1

EPP
Y
⋅ dDP,

calculated from data collected immediately prior to 
spawn and is corrected for atresia (eggs reabsorbed 
during the spawning season; ICES 2019b, d, 2021). 
Fecundity varies over time and is determined from 
adult mackerel samples taken during each survey. The 
resulting SSB estimate is compared to SSB from the 
ICES advice, called from now on SSB(assess). This 
is considered to be the most accurate estimate of SSB 
because of the many data sources used in the assess-
ment (ICES 2020).1 Therefore, estimates of SSB from 
both standard and modeled TAEP were calculated 
using the dependence between EP and fish fecundity:

where K is a correction factor (1.08) to adjust pre-
spawning to average spawning fish weight (ICES 
1987, 1993), the sex-ratio value is 0.5 assuming 
equal weight of males and females and the real-
ized fecundity is the average number of eggs per g 
female. These time series will be called SSB(TAEPst) 
and SSB(TAEPmod) for the standard and the modeled 
TAEP respectively. Equation  4 is also used to esti-
mate 68% confidence limits for SSB(TAEPst), defined 
with SSB(TAEPst ± σ), where σ is the spatial standard 
deviation of egg production in each year (the uncer-
tainty of fecundity is considered negligible).

Confidence limits for SSB(TAEPmod), accounting 
for the uncertainty in both, the model term param-
eters and smoothing parameter λ, were calculated 
following a procedure described by Wood (2017, 
Sects. 6.10 and 7.2.7): Model pseudo-parameters are 
constructed randomly according to a multivariate nor-
mal distribution centered on the fitted parameters of 
the best model. The width of the distribution is given 
by the theoretical variance–covariance matrix of the 
model parameters as calculated from their Bayesian 
posterior distribution. Following this approach, we 
generated 1000 sets of pseudo-parameters, evaluated 
the resulting models and calculated a SSB(TAEPmod) 

(4)SSB(TAEP) =
TAEP

fecundity
⋅

K

sex ratio

1  The assessment uses the state-space-assessment model 
(SAM, Nielsen and Berg 2014). Input data are age segregated 
catch, weight and maturity data from commercial landings. 
Tuning data are steel and RFID tagging-recapture data and 
three survey indices: SSB index from the MEGS (1992–2022), 
recruitment abundance indices from the IBTS surveys 1998–
2020, and from the IESSNS ages 3–11 (2010, and 2012–2022). 
Natural mortality (0.15 for all ages and years) is based on tag-
ging studies from the early 1980s.
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for each parameter set. This led to a distribution of 
1000 estimates of SSBy(TAEPmod) per year Y, which 
in turn allowed the calculation of the 0.05 and 0.95 
quantiles from their empirical histograms.

Model selection

In a first stage of our model design, we intention-
ally rejected an automatic search for the best model 
using performance metrics and went through the 
more arduous process of visually evaluating the indi-
vidual output of 179 models. A similar evaluation of 
model output was followed by Borchers et al. (1997) 
and Augustin et  al. (1998). In our case, we rejected 
a model if at least one of the following four quality 
criteria was not fulfilled:

1.	 The shape of the partial effect of at least one 
environmental predictor was unreasonable. For 
instance, the bathymetry curve did not favor shal-
low waters, bathymetry gradient or temperature 
curves were unbounded (growing up to infinity) 
or did not show an optimum within a reasonable 
range of values. These criteria follow the con-
cept of environmental niche (Hutchinson 1957) 
and the notion that biomass is always finite, as 
well as scatter plots of EP against environmental 
variables (Figure S2) which show, e.g., that EP is 
generally higher in shallow waters;

2.	 One model term was not significant with at least 
90% confidence (i.e., p value > 0.1).

3.	 TAEPmod differed from TAEPst or SSB(TAEPmod) 
from SSB(assess) in more than one order of mag-
nitude;

4.	 The modeled annual egg production curves 
remained open at the beginning or the end of the 
year, instead of converging to zero (see examples 
of this in Figure S3 in the supplement).

With this preliminary analysis, we gained insight 
into the failure of penalized smoothers to extrapolate 
or to interpolate over large regions, the importance 
of variable interactions and the explicit inclusion of 
population size S as predictor to correctly model the 
EP monthly changes. At the end of this first modeling 
stage, we selected a small number (eight) of models 
(Table S2 in the supplement) fulfilling all four qual-
ity criteria above. These eight models were compared 
and further developed, now with a semi-automated 

method using a series of performance metrics. 
Because the most realistic models do not always 
have the best performance metrics (Burnham and 
Anderson 2002) and different performance metrics 
often select different models, we did not base our 
model selection on one single metric alone but on the 
following:

1.	 Two parsimony metrics: The Akaike Information 
Criterion (AIC; Akaike 1974) and the Bayes-
ian Information Criterion (BIC; Schwarz 1978). 
Use of AIC is similar to Beare and Reid (2002), 
Hughes et  al. (2014) and Bruge et  al. (2016). 
The two metrics differ in that BIC should tend 
to select more simple models than AIC (Schwarz 
1978), while there is some evidence that AIC 
should perform better in selecting the best model 
(e.g., Sect.  6.4.3 of Burnham and Anderson 
1998);

2.	 The root mean square (RMS) difference between 
the TAEPmod and TAEPst as well as between the 
modeled SSB(TAEPmod) and the SSB(assess) 
time series;

3.	 As the most prominent performance criterion and 
novel approach for modeling mackerel egg pro-
duction, we considered a tenfold cross validation 
(CV; Hastie et al. 2011): We divided the original 
EP data into 10 randomly sampled subsets with 
10% of data per year. Afterwards, we aggregated 
the EP data in 0.5° and 1.0° scales and matched 
them to the environmental data as described in 
“Environmental data” section above. The model 
was then trained by combining nine of the 1° 
datasets (i.e., with 90% of the data) and pre-
dicted with the 0.5° dataset (i.e., 10% of the data) 
excluded from the training sets. The total devi-
ance for Tweedie distribution (see Appendix 2 of 
Candy 2004) was used as performance criterion 
(“CV score”, from now on). See Figure S4 of the 
Supplement for a descriptive diagram of the cross 
validation.

Based on the performance metrics of the initial 
eight models, the selected best model was further 
developed by combining it with other model terms, 
resulting in further new models. In each case we 
considered our four quality criteria from above, 
further rejecting models which did not comply 
with one of them. At the end, we compared a total 
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of 273 models (including the visually tested mod-
els 452 models in total). The best model was cho-
sen as the one with the lowest CV score that met all 
four quality criteria and had values of the other four 
performance metrics below their median over all 
tested models. More details about this will be given 
in “Modeled TAEP and SSB” section. In addi-
tion to the best model, the choice of a single GAM 
(Hughes et al. 2014; Bruge et al. 2016; Brunel et al. 
2018) or a series of one GAM per year (Beare and 
Reid 2002) was also cross-validated.

A model selection criterion tested by others (Bruge 
et  al. 2016; Brunel et  al. 2018), i.e., maximizing the 
explained deviance, was intentionally rejected here 
because it can lead to partially explaining noise with 
the model (i.e., model over-fitting).

Once the best model was chosen, the spatial distribu-
tion of eggs was mapped for all sampling periods of the 
survey. Fisher normalized absolute differences between 
observations and model output were used to evaluate 
the skill of the model to reproduce the observed distri-
bution of eggs. This analysis allowed the identification 
of specific time periods and geographical regions where 
the model performed particularly well or poorly.

Comparison with previous modeling efforts

A detailed, quantitative comparison with previous 
studies by testing the exact models used and calculat-
ing metrics is extremely challenging given the large 
variety of data distributions, input data, response data 
and different methods used to match them (interpola-
tion or aggregation). Such a comparison is probably 
even impossible, considering that some input data prod-
ucts have been discontinued (as seems to be the case 
of PSY3V3 of Brunel et al. 2018). Since the common 
denominator of all these studies is the use of spline 
smoothers with low basis dimension k (Table  S1), 
we compare here with a similar model, namely that 
of the most recent study, Brunel et al. (2018, see their 
Table 1):

where the variable names are defined in our Table 2 
and the basis dimension is constrained to k = 4. All 
other model characteristics (including response 
variable and distribution) were kept identical to our 

(5)log
(

ÊP

)

= s(lon) + s(lat) + s(B) + s(MLD) + s(Sal) + s(V),

optimal model (“Modeling the mackerel spawning 
habitat” above and “Best model” sections below).

Results

Best model

The cross validation showed that the best results were 
obtained with a single GAM (not with individual 
annual GAMs). Therefore, only the results of the sin-
gle-GAM approach will be described and discussed.

Scatter plots between the performance metrics 
against each other (Fig. 2) show that they are broadly 
consistent with each other, with values of one metric 
generally increasing in proportion to the values of all 
the others. AIC and BIC (panel j) as well as the RMS 
metrics (panel e) stand out with clear linear relation-
ships. The large scatter between the metrics means 
that the absolute minimum of one metric is not nec-
essarily associated with the minimum of another. 
Therefore, selecting the best model is not straightfor-
ward. To select a model that performs well across all 
metrics, we chose the model with the lowest CV score 
that met all four quality criteria of “Model selection” 
section and had values of the other four metrics (AIC, 
BIC and RMS differences) below their median over 
all tested models. Given the large spatial auto-corre-
lation of fish distributions, it is possible that selecting 
an optimal model by using the minimum CV score 
may not lead to the model that is closest to nature 
(Roberts et al. 2017). This is one of the reasons why 
this study selected the optimal model based on vari-
ous performance metrics (e.g., the RMS differences), 
not only on a CV score. This model (gray square in 
all panels of Fig. 2) is in most cases close to the lower 
left corner of the scatter plots, indicating that it is 
roughly evaluated as a good model under most met-
rics. The only exception is the AIC, which shows an 
intermediate value for the selected model (panels f, h 
or j).

The model selected as the best was:
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with B bathymetry, ∇B bathymetry gradient, T tem-
perature, S the average DEP per m2 over all sampled 
stations for each fixed model period (i.e., S = DEP is 
a proxy of population size), sGP a Gaussian-Process 
smooth (with range of 2°) and the αn’s the model 
parameters. The dependence of ÊP on S in Eq. 6 fol-
lows the idea of modeling the effect of changes in 
population size (over sampling periods and years) 
on the spatial distribution of spawning mackerel. A 
general justification for using S as model predictor is 
given in Section S1 and a more detailed discussion of 
the role of S in our specific model is given in “Effect 
of population size” section below. Note also that S 
enters the model equation in a logarithmic transfor-
mation, which is consistent with our logarithmic link 
function.

Examples of the spatial distribution of EP from 
this model are shown in Fig. 3. Based on the Fisher 
normalized absolute differences between observations 
and model output, we selected three sampling peri-
ods for which the model performed well (top panels), 
averagely (middle panels) and poorly (bottom panels). 
The example of average performance (middle panels) 
illustrates the capability of the model to effectively 
interpolate data over large regions of the Bay of Bis-
cay and the continental slope. The example of poor 
performance (bottom panels) illustrates the limitation 
of the model to predict zero EP at the beginning of 
the year in the north-western part of the study region 
(where there are no observations).

Modeled TAEP and SSB

The SSB(TAEPmod) resulting from Eqs.  4 and 
6 is shown in Fig.  4 (black continuous curve) 
together with SSB(TAEPst) (light gray curve) and 
SSB(assess) (dashed black curve). The shaded 
areas around the SSB curves represent the uncer-
tainty estimates. There are conspicuous differ-
ences between SSB(TAEPmod) and SSB(TAEPst): 
SSB(TAEPmod) reached its minimum in 2001 and 
then strongly increased to its maximum in 2010. 

(6)

log
(

ÊP

)

= �0 + �1 ⋅ B + �2 ⋅ log(∇B) ⋅ log(S + 1)

+ �3 ⋅ log
2(∇B) + �4 ⋅ T ⋅ log(S + 1)

+ �5 ⋅ T
2
⋅ log(S + 1) + �6 ⋅ log(S + 1)

+ s
GP(lon, lat),

SSB(TAEPst) reached its minimum later (in 2004) 
while oscillating around 4000 ktons, and the maxi-
mum was found in 2013, but without the previous 
strong increase seen in both SSB(TAEPmod) and 
SSB(assess). These differences are, however, within 
the uncertainty range of SSB(TAEPst). Of the 
two time series, SSB(TAEPmod) is most similar to 
SSB(assess): RMS differences and correlation coef-
ficient between SSB(assess) and SSB(TAEPst) are 
1276 ktons and 0.1, while for SSB(TAEPmod) they 
are 1122 ktons and 0.7.

Nowcasts and forecasts of EP distribution

To exemplify how Eq. 6 can be used in an operational 
way, we predicted the most likely region of high EP 
for an arbitrarily chosen month of April, 2021. This 
is a “future” month, which was not used to calibrate 
the model (the last survey took place in 2019). This 
prediction (Fig.  5) was calculated with Eq.  6 by 
replacing T with a map of satellite SST from OSTIA 
for April 2021 (roughly the 3rd sampling period; 
Table 1). Two scenarios, for a low (dark gray) and a 
high (light gray) mackerel population (S in Eq.  6), 
were estimated based on the average EP of 2001 and 
2010, respectively (see Fig. 4). To isolate the effect of 
(inter-annual) population size changes on the fish spa-
tial distribution from the effect of seasonal changes, 
the interactive S terms (i.e., those multiplying model 
terms with T and ∇B in Eq. 6) were replaced by their 
average annual values in each of the years 2001 and 
2010. To eliminate the year effects, the averaged all-
record S was used in the independent term log(S + 1). 
Values of ÊP inside the gray regions are larger than 
the 0.05 percentile of all EP observations over all 
years and sampling periods, roughly represent-
ing regions with a 95% probability of finding eggs. 
Similar graphics can be used to plan upcoming sur-
veys. For instance, once the survey budget and the 
maximum possible number of sampling stations are 
known, they could be uniformly distributed through-
out the region where spawning activity is predicted.

Discussion

The aim of this study was to model the spatiotempo-
ral distribution of spawning mackerel in the North-
east Atlantic in order to improve estimates of TAEP. 
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A model predicting realistic egg production should 
potentially improve both the survey design and the 
sustainable management of the mackerel stock. Such 
a model could also further improve our understanding 
of the mechanisms driving the spatial distribution of 
spawning mackerel. We discuss all of these topics in 
this section, also in the light of previous studies. Only 
two relatively new aspects of the dynamics of spawn-
ing mackerel (i.e., population size effect and bathym-
etry gradient) will be discussed here, while other 
aspects that have been widely considered previously 
(like temperature and bathymetry) are discussed in 
Section S3 of the supplement.

TAEP

Because of logistics, bad weather and the climate-
driven shift of the spawning area, the sampling peri-
ods and the spatial distribution of observations of the 
mackerel egg survey vary from year to year. How-
ever, statistical methods such as GAMs and GLMs 
are specifically designed to deal with inhomogenei-
ties and biases in the sampling. For this reason, they 
have become popular tools for standardizing data in 
fisheries studies (e.g., Venables and Dichmont 2004). 
Therefore, the use of a habitat model (such as ours) to 
estimate the TAEP is an obvious advantage over the 
standard method.

In general, differences between the three time 
series, SSB(TAEPmod), SSB(TAEPst) and SSB(assess) 

Fig. 2   Scatter plots of performance metrics of 273 tested 
GAMs. Specific models are shown with gray symbols: best 
model (square), model with only smoothers (triangle), model 

with smallest CV score (cross), model including S as only pre-
dictor (diamond) and model excluding S as predictor (disk)
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(Fig. 4), cannot be easily and fully explained because 
all three methods have their own uncertainties and 
errors. From the three time series, it is expected that 
SSB(assess) is the most accurate, considering the var-
ious sources of information used in the ICES advice 
(together with the standard TAEP, also biomass esti-
mates from commercial fisheries and an independent 
scientific survey). Therefore, a comparison of both 
SSB(TAEPmod) and SSB(TAEPst) with SSB(assess) 
seems to be a reasonable approach to assess the 
potential improvement of our model over the stand-
ard method for TAEP. Such an analysis is similar to 
a cross-validation where the validating data are only 
partially independent, a situation not uncommon in 
ecology due to spatial and temporal auto-correlations 
(e.g., Roberts et al. 2017).

Therefore, SSB(TAEPmod) being more similar to 
SSB(assess) than SSB(TAEPst) (see RMS differences 
and Pearson correlation in Fig. 4), clearly shows that 
the habitat model used to estimate SSB(TAEPmod) is 
an improvement over the standard method for TAEP. 
It seems that the use of environmental variables in the 
modelling of egg production can partially compensate 
for the lack of information (i.e., commercial fishery 
and biomass survey data) compared to the assess-
ment. This is an encouraging result, although there is 
still room for improvement. Most multi-year trends in 
SSB(TAEPmod) match either those of SSB(TAEPst) or 
of SSB(assess) (Fig. 4). For instance, SSB(TAEPmod) 
changes in 2001–2004–2007 differ from the stand-
ard method but match those of SSB(assess). The 
increase of SSB(TAEPmod) in 2016–2019 is the 
only one that does not agree with both SSB(TAEPst) 
and SSB(TAEPst). The disagreement between 
SSB(TAEPst) and SSB(assess) in 2016–2019 may not 
be very serious given that the uncertainty estimates 
for this period overlap completely. One reason for 
the disagreement appears to be the model’ prediction 
of suitable spawning areas in the unsampled region 
northeast of the United Kingdom during the second 
sampling period in 2019 (Fig. 3, bottom panels). As 
indicated by Fig.  3, the performance of the model 
tends to decline over time, being better in the early 
years of the survey than in more recent years. This 
time-dependence of model performance suggests that, 
as the spawning area expands northwards, a factor 
poorly captured by the model becomes more impor-
tant. If the sampling design copes with the northward 

displacement of fish in the future surveys, it is 
expected that the accuracy of the model will improve.

Characteristics of the TAEP error bars (like its 
asymmetry) and the methodology used to calculate 
them are discussed in Section S4 of the Supplement.

Comparison with previous modeling efforts

The utilization of habitat models in the analysis of 
spawning stock dynamics in space and time dates 
back to the late 1980s/early 1990s (e.g. MacCall 
1990; Mangel and Smith 1990). Based on presence/
absence or total counts only, these models were rather 
probabilistic without explicitly taking into account 
environmental covariates such as temperature, salin-
ity, depth or production data. Such models are, there-
fore, unable to respond to changes in the physical 
environment. More recent habitat modelling includes 
such data in order to analyze dynamics of marine fish 
egg production in space and time (e.g. Maynou et al. 
2020; Mbaye et al. 2020; Erauskin-Extramiana et al. 
2019; Gordó-Vilaseca et  al. 2021) and are poten-
tially able to forecast egg production habitats under a 
warming climate. Our approach attempted to achieve 
both the analysis of egg production dynamics in space 
and time as well as the estimation of daily and total 
annual egg production to determine spawning stock 
biomass thus facilitating management advice.

For the specific case of mackerel eggs in the 
Northeast Atlantic, we were aware of at least six pre-
vious peer-reviewed studies focusing on the spatial 
modeling of mackerel eggs, all of them using GAMs 
(Table  S1). In “Data” and “Methods”  sections, we 
have already provided ample justification for accept-
ing or rejecting elements of previous model con-
figurations. The main differences between our and 
previous studies are the modeling of the mackerel 
spawning stock (both southern and western compo-
nents together) with spatially resolved bathymetry 
gradient, stock size, use of the Tweedie distribution, 
use of an alpha shape mapping region with a Delau-
nay triangulation and the analysis of a large number 
(more than 450) of non-linear functional forms for 
habitat (including complex interactions). Further-
more, standard TAEP, SSB and cross validation were 
used as criteria for model selection. While previous 
studies tested some predictor interactions, they were 
limited to first-order linear interactions. In the present 
study we included also more complex interactions, 
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like division between variables and multiplications 
with quadratic terms and with logarithms. In addition, 
Bruge et  al. (2016) also performed cross validation 
(as described in their supplement), but did not use it 
for model selection. We are confident that all of these 
measures constitute a considerable improvement of 
the model and its predictive ability.

The use of the Tweedie distribution (Tweedie 
1984) over the previous approaches (Table  S1) was 
motivated in our study by a number of reasons. The 
Tweedie distribution is a natural representation for 
fisheries-related data (Peel et al. 2013), similar to the 

hurdle (or delta) model used in Bruge et  al. (2016). 
The hurdle model is a popular approach to model fish-
ery data due to their zero-inflation (Maunder and Punt 
2004), where the habitat is modeled as the multiplica-
tion of a “presence/absence” model (usually a bino-
mial model) and a “biomass” or “abundance” model 
(usually a log-normal, Gamma or Poisson model). In 
comparison, an advantage of the Tweedie model is its 
simplicity, as no transformation to presence/absence 
data is required and only one model (instead of two) 
is fitted and used to predict from. Note also that in 
the hurdle model, the binomial part represents the 

Fig. 3   Examples of the 
spatial distribution of mack-
erel EP (egg counts/day/m2; 
left panels) and their mod-
eled counterparts (Eq. 6; 
right panels) for selected 
sampling periods (see 
Table 1) illustrating good 
(top panels), average (mid-
dle panel) and poor (bottom 
panel) performances of the 
model
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probability of catching (or encountering) fish, which 
is influenced not only by the amount of fish but also 
by the aggregation of fish in clusters or schools (the 
larger the aggregation, the lower the probability 
of encounter). While the relationship between fish 
aggregation and habitat suitability is unclear, there is 
a general agreement that fish abundance or biomass 
is a good proxy for habitat suitability. The Tweedie 
model, which is only related to fish abundance or 

biomass, therefore appears to be a better representa-
tion of fish habitat suitability than the hurdle model. 
Another advantage of the Tweedie distribution is 
its generality, as it can be reduced to other distribu-
tions such as normal, Gamma and (discrete) Pois-
son. Therefore, the Tweedie distribution is suitable 
for modeling both continuous data (as we do in our 
study) and count data that would commonly be mod-
eled with a Poisson distribution. Wood and Fasiolo 

Fig. 4   SSB estimates per year calculated with Eq. 4, from the 
best GAM (Eq. 6; SSB(TAEPmod); black continuous curve) and 
from the standard method (SSB(TAEPst), gray curve), as well 
as from the 2020 ICES advice (SSB(assess); dashed curve). 
Error bars of SSB(TAEPmod) are 0.05 and 0.95 quantiles 
from bootstrapping (1000 iterations; dark gray shaded area), 
for SSB(assess) (medium gray shaded area) the 95% confi-
dence intervals are calculated according to ICES (2020) (see 

their Table  8.7.3.1) and for SSB(TAEPst) (light gray shaded 
area) they correspond to 68% interval as obtained by using the 
spatial standard deviation of egg production in Eq. 4. RMSD 
stands for root means square difference and ρ is the Pearson 
cross-correlation, both calculated against SSB(assess) consid-
ering only the egg survey years (dots; i.e. no interpolation in 
time has been performed for TAEP)
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(2017) even state that Tweedie provides a much bet-
ter fit to egg count data than Poisson, for which the 
egg and fishery data tend to be highly over-dispersed. 
Other studies modeling fish habitat with the Tweedie 
distribution have been Candy (2004), Shono (2008), 
Augustin et al. (2013), Berg et al. (2014) and Núñez-
Riboni et al. (2021).

Our results show that our optimal model Eq.  6 
performs better than the general model representing 
previous modeling approaches, i.e., the model with 
only smoothers of Brunel et al. (2018) (Eq. 5; see also 
“Model selection” section above). Most of the per-
formance metrics (the CV score, AIC and BIC) are 
below the median from all tested models (triangle in 
Fig.  2). Particularly, Eq.  5 matches both the stand-
ard estimate of TAEP and the SSB(assess) (panel e) 
worse than our best model (square). While Brunel 

et  al. (2018) used another data product (PSY3V3), 
response variable (egg counts) and distribution (nega-
tive binomial), the comparison of model functional 
forms shows that our model is a step forward com-
pared to previous approaches.

These results clearly indicate that the classi-
cal approach to modelling the spatial distribution of 
mackerel eggs, i.e., the spline smoothers (Table S1), 
is not the best method. With environmental vari-
ables appearing in simple functional forms instead 
of smoothers, our model (Eq.  6) is more similar to 
a Generalized Linear Mixed Model (GLMM) than 
to the typical GAM. While some studies have tested 
GLM-similar models (Borchers et al. 1997; Augustin 
et al. 1998), these models have been limited to linear 
predictors, and none have attempted the quadratic pol-
ynomials needed in combination with the log link to 

Fig. 5   Prediction of areas 
where spawning takes place 
in April 2021 (correspond-
ing to the third survey 
sampling period) using our 
habitat model (Eq. 6). The 
solid areas represent regions 
with 95% probability of 
finding eggs assuming a low 
(dark gray) and high (light 
gray) population size S
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obtain a unimodal response (see “Modeling the mack-
erel spawning habitat” section). When designing the 
model, we realized that such simple functions consid-
erably increased the model’s ability to extrapolate in 
space in comparison to spline smoothers. This agrees 
with Waldock et  al. (2022), who observed a better 
performance of GLMs compared to GAMs (and Ran-
dom Forest) when transferring models to unknown 
conditions. The improved extrapolation ability of our 
model is an important improvement: Augustin et  al. 
(1998) and Beare and Reid (2002) addressed the 
poor extrapolation capabilities of smoothers by con-
straining the modeled EP by inserting artificial zeros 
beyond the sampling region. Using our unimodal 
responses based on simple functions represents a bet-
ter alternative, as it does not subjectively modify the 
response variable.

Only two previous studies had the explicit goal 
of improving the estimation of the TAEP, but they 
focused only on the single years 1992 (Borchers et al. 
1997) and 1995 (Augustin et  al. 1998) rather than 
calculating time series over several years. Moreover, 
none of the previous studies have compared their 
results with SSB(assess), which (due to the addi-
tional information that it contains) is a (partially) 
independent source for measuring goodness-of-fit. 
Therefore, the ability of all previous studies to replace 
the standard method has remained unclear. Here, we 
clearly show a general improvement of our modeling 
approach in comparison to previous ones, making it a 
better candidate to replace the standard method one 
day. In addition, a major reason why none of the mod-
eling approaches to date have been able to replace 
the standard method for TAEP seems to be the lack 
of expertise in the application of such methods in 
the ICES working group responsible for the survey 
(WGMEGS). Achieving one day better methods to 
estimate the TAEP should be aided now by the regu-
lar participation of some of the coauthors of the pre-
sent study in the annual meetings of the WGMEGS.

Metrics for model selection

While the performance metrics were generally con-
sistent with each other, none of them were consist-
ent over all aspects evaluated. Therefore, if a single 
metric were to be used, it is highly probable that a 
deficient model would be selected, showing poor 
results when evaluated under another metric. A 

good example is the model that yielded the small-
est CV score (cross in Fig.  2). This model is based 
on a tensor product spline, which yielded excellent 
EP distributions for sampling periods when the data 
availability was high. However, that model extrapo-
lated large (non-existing) EP values onto the northern 
region in the first sampling period (where there were 
no observations). Thus, after the modeled EP has 
been integrated in space, the resulting TAEPmod dif-
fered significantly from TAEPst and SSB(TAEPmod) 
from SSB(assess) (Fig. 2e). Since high and unrealis-
tic modeled values outside the sampled area had no 
observational counterparts, the CV score could not 
indicate poor model performance. In other words: 
The CV is unable to evaluate a model’s ability to 
extrapolate because it is impossible to cross-validate 
what has not been measured. This underlines the 
importance of using other (even if more extenuating) 
quality criteria, like observing if the response func-
tions or the production curves are open. Alternatively, 
some authors suggest CVs specifically designed to 
test the extrapolation capacity of the model (Roberts 
et al. 2017; Waldock et al. 2022).

Effect of population size

Our results showed that an important predictor of 
the spatial distribution of mackerel eggs is the size 
of the spawning stock, here represented by the proxy 
S = DEP . To understand how S modifies the pre-
dicted spatial distribution of spawning mackerel, it is 
important to consider the model construction. Note 
that all model terms of Eq. 6 behave as interactions 
because of the logarithmic link and the additive prop-
erty of the exponential function (exp (A + B) = exp(A) 
· exp(B)). Therefore, habitat suitability is high only at 
the intersection of the regions where all four model 
partial effects are large (Fig. 6). Similarly, it decreases 
to zero in any region where one model term is near-
zero (like B in deep waters or ∇B in flat topographic 
regions).

The effect of S on the spatial distribution of mack-
erel is modeled through its interactions with temper-
ature T and bathymetry gradient ∇B (Eq.  6). These 
interactions represent how population size S modi-
fies the preference of fish for each environmental 
variable and associated region. As the year progresses 
and the number of spawning individuals increases, 
the relative importance of environmental variables 
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and, hence, habitat preference changes. The largest 
contribution to EP is given by temperature during 
sampling period (SP) 2 (Fig. 6a), with an amplitude 
about three times that of the other variables. For this 
SP, waters with temperatures ranging from 9 to 17 °C 
(covering nearly the complete study area) are as suit-
able as shallow waters or the shelf break. Because of 
its large spatial range of action in comparison to the 
other environmental variables, temperature seems 
to play a limiting (physiological) effect, except for 
extremely cold (< 9 °C) and warm (> 17 °C) waters. 
While the seasonal warming opens a wider area with 
suitable spawning temperatures, starting in SP 3, the 
importance of temperature reduces below the one of 
∇B (Fig. 6b) and bathymetry B (Fig. 6c), which then 
become the two main driving variables of the spatial 
distribution.

For SP 1, B is the most important variable (i.e., 
fish favor shallow waters), while ∇B has a weak 
effect with a maximum near zero (i.e. fish favor flat 
topography like the continental shelf). Therefore, dur-
ing this period of low fish densities, fish show a high 
preference for coastal waters. During SP 2, the effect 
of the bathymetry gradient increases considerably, 
reaching an asymptotic maximum and indicating a 
shift towards the shelf break. This situation slowly 
reverses during SP 3 to 5 and, in SP 6 the situation 
is again similar to SP 1, i.e. fish move back towards 
the coast. These changes suggest that fish preference 
for the shelf break increases as fish density and hence 
competition increases near the coast.

Use of S as predictor might give the wrong idea 
that our model is tautological in the logical sense, i.e., 
a model where independent and dependent variables 
are the same. This deserves clarification because 
there is little value in predicting a variable in a model 
if the very same variable is used as predictor. First, 
we would like to stress again that the predictor S is 
fundamental for the model to “distinguish” variations 
of EP related to population size from those related to 
the spatial distribution of environmental characteris-
tics. Previous studies following a similar approach are 
Pinsky et  al. (2013), Stige et  al. (2017) and Núñez-
Riboni et al. (2019). More details justifying the role 
of a measure of population size in habitat models 
are given in Section S1. In addition, note also that, 
while the model predicts the spatial distribution of EP 
(i.e., a two-dimensional field), S is only a single sca-
lar with no spatial structure. Thus, while the ability 

of the model to predict the spatial distribution of EP 
is supported by S, this alone is not the key factor. To 
explore the relative importance of S for model per-
formance, we compared metrics of a model includ-
ing S  as only predictor (diamond in Fig.  2) with a 
model similar to Eq.  6 but excluding S as predictor 
(disk in Fig. 2). The CV score and, particularly, both 
AIC and BIC indicated a better performance of the 
excluded-S model in comparison to the only-S model 
(for instance, panels c and j). These metrics indi-
cated that the excluded-S model performs similar to 
the best model, with even smaller AIC and BIC val-
ues (probably because it has fewer parameters). This 
suggests that the main factor contributing to model 
performance is not S, but the spatial distribution of 
environmental variables.

However, best results (i.e., Eq.  6) can only be 
achieved if both aspects (population size and spa-
tial distribution of environmental variables) are con-
sidered. Particularly, the only-S model yields better 
RMS metrics than the excluded-S model (Fig.  2e). 
Because the RMS metrics reflect the ability of the 
model to extrapolate (“Metrics for model selection” 
section), use of S as predictor seems fundamental to 
correctly model the annual EP onset (see an example 
of this in Figure S3). Other proxies of population size 
(like the annual EP or SSB averages) resulted in wide, 
open annual production curves and were, thus, less 
appropriate.

Although Brunel et al. (2018) discussed the role of 
population size on the spatial distribution of spawn-
ing mackerel, the present study is the first modeling 
effort including a measure of population size as a pre-
dictor. Finding a replacement for S in terms of envi-
ronmental variables is appealing but does not seem 
a trivial task. The average surface temperature over 
the whole study area, lagged by two months, yielded 
a good proxy for S (correlation ρ = − 0.7), but still a 
poorer model performance.

Effect of bathymetry gradient

Borchers et  al. (1997), Augustin et  al. (1998) and 
Beare and Reid (2002) used the distance to the 200 m 
isobath as predictor based on the idea that the Euro-
pean continental shelf break is a proxy for spawning 
location (Beare and Reid 2002). The main morpho-
logical characteristic of the shelf break is a strong 
change in depth in a short distance, i.e., at the shelf 
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break the bathymetry gradient is at its maximum. 
Therefore, a simpler and more natural variable repre-
senting the effect of the shelf break is the bathymetry 
gradient, which we chose as predictor in the present 
study. The importance of the bathymetry gradient on 
the spatial distribution of mackerel eggs is evident 
when comparing a map of this variable (Fig. 7) with 
an observed egg distribution (e.g., Fig. 3).

Hughes et al. (2014) rejected the 200 m-isobath as 
predictor arguing that features like the Rockall Bank 
imply a second 200 m contour, which makes a defini-
tion of distance to the shelf edge problematic. Instead, 
they argued that the distance to the 200  m isobath 
could be replaced with a smoother in eastings and 
northings. This idea is confirmed by (Brunel et  al. 
2018) (who did not include the bathymetry gradient 
as predictor) because our bathymetry gradient (Fig. 7) 
is similar to their smoother s(lon, lat) for geographi-
cal attachment (their Fig. 3). However, smoothers of 
position can include the effect of any variable not 
explicitly considered in the habitat model, i.e., in this 
particular case, the effect of factors other than the 
shelf edge. Moreover, correctly identifying variables 
playing a role in a process is key to understanding 
the mechanisms behind the process. Therefore, the 
use of the bathymetry gradient in a habitat model is 
to our understanding a clear advantage and should 
be encouraged. The first modeling study of mackerel 
eggs, Borchers et al. (1997), is the only one using a 
similar variable, but it was unfortunately not consid-
ered in the subsequent studies.

The influence of the shelf break or bathymetry 
gradient on the distribution of spawning mackerel 
could result from hydrodynamic processes. The 
European Slope Current (ESC; Neves et  al. 1998) 
is one of the known important driving forces for 
egg and larval drift to prospective nurseries (Bar-
tsch and Coombs 2004). We found here that cur-
rent speeds explain little variance in comparison to 
the bathymetry gradient, in agreement with Brunel 
et  al. (2018)—the only previous modeling study 
also using current speeds. However, and similar 
to the case of MLD, this could be an indication of 
poor modeling of the currents rather than a lack of 
influence. While a direct observation of surface cur-
rents is possible over SSH from satellite altimetry, 
the ESC is driven either by wind or density differ-
ences and bottom relief (Huthnance 1984; Neves 
et al. 1998) and is, thus, “invisible” to SSH, which 

can only identify geostrophic currents. This would 
explain, in turn, why in this study SSH explained lit-
tle variance, in agreement with Bruge et al. (2016). 
The ESC underlies a strong seasonality, weakening 
between spring and summer due to changes in the 
general wind field (Mohn 2000), which may also 
explain the weakening influence of the bathymetry 
gradient on egg production during sampling periods 
later in the year.

Forecasting the spawning region

We briefly discuss here two last issues about fore-
casting spawning areas (Fig.  5). Firstly, when this 
study was carried out, April 2021 had already 
passed. However, real future predictions of SST 
could also be made. Such SST predictions can be 
obtained using ocean forecasting models or calcu-
lated statistically using past temperature data, either 
with a spatially resolved seasonal composite or 
with auto-regressive models. Secondly, in addition 
to their operational potential, maps like those of 
Fig.  5 reveal the effect of population size on habi-
tat preferences (see “Effect of bathymetry gradient” 
section): During periods of low population size, a 
suitable habitat for spawning mackerel (dark gray 
region in Fig. 5) is mostly found at the shelf break 
and in regions of high ∇B. During periods of high 
abundance (light gray), fish are widely dispersed.

Conclusions

We reviewed previous spatio-temporal modeling 
approaches of mackerel’s EP in the Northeast Atlantic 
aiming to improve TAEP estimates. Our results outper-
form both the standard method (compare RMS differ-
ences and correlation coefficient in Fig.  4) and previ-
ous modeling efforts with spline smoothers (compare 
triangle and square in Fig. 2). While spline smoothers 
were so far the typical approach to model the spatial 
distribution of mackerel EP (Table S1), our results indi-
cate that such an approach is not the best solution. Our 
metrics showed that environmental variables should 
appear in simple functional forms that resemble uni-
modal responses (“Modeling the mackerel spawning 
habitat” section), yielding a best model (Eq. 6) which 
is more similar to a GLMM than to the typical GAM 
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with smoothers. Additionally, taking into account the 
effect of population size on the spatial distribution of 
eggs (through interactions with environmental vari-
ables) proved to be a fundamental advantage for model 
performance, particularly for modeling the seasonality 
of EP. Despite the efforts made in the present study and 

the improvements over previous studies, the resulting 
model still has some shortcomings. Future modeling 
efforts for mackerel eggs should focus on the model’s 
ability to extrapolate beyond survey boundaries without 
subjectively inserting artificial zeros.

Fig. 6   Partial effects of temperature (a), bathymetry gradient 
(b), bathymetry (c) and geographical attachment sGP(lon, lat) 
(d) of the best model (Eq. 6), together with scatter plots of egg 
production (dots in panels a–c). Year effects were eliminated 
by averaging the independent S term over the complete sam-

pling record, whereas interactive S terms were averaged over 
corresponding sampling periods. Numbered curves in panels 
(a) and (b) identify partial effects for each sampling period 
and, thus, for different population sizes. Note that the y-axis in 
(a) has been constrained to 140 egg/day/m.2
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