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A B S T R A C T   

Information on crop phenology is essential when aiming to better understand the impacts of climate and climate 
change, management practices, and environmental conditions on agricultural production. Today's novel optical 
and radar satellite data with increasing spatial and temporal resolution provide great opportunities to derive 
such information. However, so far, we largely lack methods that leverage this data to provide detailed infor-
mation on crop phenology at the field level. We here propose a method based on dense time series from Sentinel- 
1, Sentinel-2, and Landsat 8 to detect the start of seven phenological stages of winter wheat from seeding to 
harvest. We built different feature sets from these input data and compared their performance for training a one- 
dimensional temporal U-Net. The model was evaluated using a comprehensive reference data set from a national 
phenology network covering 16,000 field observations from 2017 to 2020 for winter wheat in Germany and 
compared against a baseline set by a Random Forest model. 

Our results show that optical and radar data are differently well suited for the detection of the different stages 
due to their unique characteristics in signal processing. The combination of both data types showed the best 
results with 50.1% to 65.5% of phenological stages being predicted with an absolute error of less than six days. 
Especially late stages can be predicted well with, e.g., a coefficient of determination (R2) between 0.51 and 0.62 
for harvest, while earlier stages like stem elongation remain a challenge (R2 between 0.06 and 0.28). Moreover, 
our results indicate that meteorological data have comparatively low explanatory potential for fine-scale 
phenological developments of winter wheat. 

Overall, our results demonstrate the potential of dense satellite image time series from Sentinel and Landsat 
sensor constellations in combination with the versatility of deep learning models for determining phenological 
timing.   

1. Introduction 

Phenology refers to the study of periodic events in the life cycle of 
organisms, which are mainly triggered and controlled by environmental 
factors (Lieth, 1974; Morisette et al., 2009). When monitoring plants and 
in particular crops, information on seasonal phenology allows under-
standing a crop's metabolic cycle, its response to meteorological drivers 
such as temperature and humidity, and its buildup of biomass, among 
others (Richardson et al., 2013). Crop phenology is hence a valuable 

input for numerous agricultural monitoring tasks, including the assess-
ment of management practices and yield estimation. Furthermore, 
phenological information is a reliable indicator for climate change 
impact analysis and of high interest in fields like ecology and global 
change biology (Ma et al., 2022; Menzel, 2002; Menzel et al., 2006). 

Meaningful and large-scale analyses of phenological patterns require 
a large amount of in-situ data, whose field-based collection is hardly 
feasible. Gerstmann et al. (2016) demonstrated the potential of meteo-
rological data to map general phenological patterns for several crops 
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based on the well-known relations between temperature, precipitation, 
and plant development. In comparison to meteorological data, Earth 
Observation (EO) satellites directly capture the condition of vegetation 
at the field level and thus provide proximate information on plant 
development. These temporal signals of vegetation development 
revealed by satellite sensors were defined as land surface phenology 
(LSP; De Beurs and Henebry, 2004). Such satellite-based observations of 
LSP allow to infer phenological changes of crops on the ground and 
derive phenological information. The field of satellite-based phenology 
research has been around for a long time, yet new methods like Deep 
Learning (DL) and possibilities of sensor fusion represent potentials that 
have not yet been fully exploited (Katal et al., 2022; Pipia et al., 2022). 
Therefore, it is of great interest for the EO research community to further 
investigate these potentials and contribute to spatially and temporally 
improved proxies from satellite data analyses for identifying crop 
phenological stages. 

Studies focusing on phenology analysis based on satellite data usu-
ally aim at identifying specific points in remote sensing time series that 
represent key events of the crop's life cycle, such as the Start Of Season 
(SOS) or End Of Season (EOS; Zeng et al., 2020). This is often achieved 
by defining thresholds for Vegetation Indices (VI) that can either be 
static or dynamic (e.g., Bolton et al., 2020; Meroni et al., 2021). Another 
way is to calculate derivatives from satellite data time series that can be 
used to identify breakpoints, turning points, or other significant changes 
in the trend of the time series, which are mainly inspired by mathe-
matical curve descriptors (Harfenmeister et al., 2021; Kowalski et al., 
2020; Schlund and Erasmi, 2020). The products resulting from these 
methods can be understood as phenological metrics that provide esti-
mates for the general progression during plants' life cycles and are, 
therefore, of great interest for various applications. However, these 
phenological metrics are rather mathematical descriptors of VI curves 
and are not necessarily linked to the sharply defined phenological events 
we can measure in the field, like stem elongation or heading of wheat 
(Zhang et al., 2017). Applications, such as biophysical plant growth or 
yield models, that need detailed information about individual pheno-
logical stages, therefore, require new methods to provide such input. 

Traditionally, optical imagery has been used as predominant data 
source for deriving phenology information from remote sensing. Time 
series of VIs and raw band measurements show characteristic patterns 
that can be attributed to changes in the plant as it progresses through the 
various phenological stages, such as the fraction of ground cover, 
chlorophyll content, and color. However, optical imagery usually comes 
with the issue of data gaps in time series introduced by clouds and cloud 
shadows. Data gaps hamper the detection of changes in a crop's temporal 
signature. Thus, there has been a trend in phenological analyses towards 
using synthetic aperture radar (SAR) data, specifically since the advent 
of operational Sentinel-1 data (e.g., Löw et al., 2021; McNairn et al., 
2018; Nasrallah et al., 2019; Schlund and Erasmi, 2020). Derived fea-
tures, like the backscatter coefficient, are sensitive to surface roughness 
and the dielectric constant. These properties depend on vegetation 
structure, leave angles, vegetation cover, and water content, which 
change during the phenological development of crops. Mainly during 
the first months after seeding, soil roughness and moisture potentially 
influence the SAR signal. 

One of the advantages of SAR data against optical data time series, is 
that they are usually not impeded by data gaps due to cloud cover. 
However, speckle noise, precipitation-induced soil moisture changes, 
and different acquisition geometries are common challenges when 
working with SAR data and limit time series quality. Consequently, 
combining spectral and textural/structural information derived from 
both optical and SAR systems can help mitigate the weaknesses of each 
data type and create synergies instead (Meroni et al., 2021; Pipia et al., 
2022). 

The suitability of optical and SAR data for phenological analyses was 
already investigated and compared in several studies (d’Andrimont 
et al., 2020; Fieuzal et al., 2013; Meroni et al., 2021; Nasrallah et al., 

2019; Veloso et al., 2017). Most of them agree on the potential arising 
from the joint use of data from both sensor types. However, studies 
presenting methods that make use of this combination were only 
introduced recently by Mercier et al. (2020) and Yeasin et al. (2022). 
Both reported improvements over single-sensor models, supporting the 
assumption of data complementarity for phenological analyses. How-
ever, Mercier et al. (2020) and Yeasin et al. (2022) were based on a 
limited number of observations, which hampers accurate inferences 
about the timing of actual stage transitions. 

Nowadays, we are faced with a wealth of data from various Earth 
observation missions. However, we still need advanced methods that 
can appropriately exploit their potential to estimate phenological in-
formation on arable crops. DL has been shown to be a suitable tool for 
the combined exploitation of multivariate time series from heteroge-
neous data sources (Holtgrave et al., 2023; Lobert et al., 2021), while the 
potential of DL for multi-sensor phenological analyses is generally 
under-studied (Katal et al., 2022). We here consequently address this 
research gap by utilizing a supervised one-dimensional DL model that is 
inspired by phenology-like problems in medical time series applications 
(Jimenez-Perez et al., 2019; Perslev et al., 2019). We exploited data 
from Sentinel-1 (S1), Sentinel-2 (S2), and Landsat 8 (L8) together with 
meteorological data and a comprehensive data set on phenological field 
observations provided by the German Weather Service (DWD). Being the 
most widely grown crop in Germany, we focused on winter wheat 
(Federal Statistical Office, 2022). We compared around 16,000 
phenology observations to nearby field-level remote sensing time series 
for winter wheat between 2017 and 2020. The model was then trained to 
predict the start of seven different phenological stages at field level and 
compared against a baseline provided by a Random Forest (RF) classifier 
(Breiman, 2001). 

The presented approach contributes to innovation in the field of crop 
phenology estimation in two respects: first, the chosen architecture 
represents an “all-in-all-out” approach, i.e., time series of different fea-
tures are simultaneously fed into the model that predicts the entry data 
of multiple phenological stages at once. This extends the current state- 
of-the-art that mostly builds on separate rule sets or features for 
different stages (Zeng et al., 2020). Second, the model training enables 
us to directly search for relevant patterns in the time series instead of 
defining the key points ex-ante and matching them to field observations 
afterward. 

We hence aimed to answer three research questions:  

1. What is the performance of the proposed one-dimensional DL model 
to predict the start of phenological stages for winter wheat at field 
level based on different sets of input features and against the baseline 
model?  

2. How does the performance differ for the individual stages?  
3. How do our estimates of the start of phenological stages compare to 

spatiotemporal patterns of the ground observations across Germany? 

2. Study area and data 

2.1. Study area and reference data 

For our study, we used reference data provided by DWD. Around 
1200 trained volunteers located across Germany observe the phenology 
of nearby plants (Kaspar et al., 2015). The volunteers choose one field 
for each crop within a distance of 2 km (up to 5 km in exception) from 
their reported base location (Fig. 1; Deutscher Wetterdienst, 2015). An 
assignment to a specific field, however, is not provided. We selected the 
observations from around 700 volunteers who surveyed the start 
(reached on 50% of the field) of seven different phenological stages for 
winter wheat, always on the same field (Fig. 1; DWD, 2022a). The ob-
servations begin with the seeding of the winter wheat, followed by the 
start of leaf development, stem elongation, heading, milk ripeness, 
yellow ripeness, and lastly harvest. Our study covered four vegetation 
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periods from the seeding of winter wheat in autumn 2016 to the harvest 
in late summer 2020. The combination of 700 observation stations, 
seven stages, and four observed vegetation cycles results in over 16,000 
observations. 

The locations of the observations cover the full gradient of climate 
and topographic characteristics across Germany, from the Alpine fore-
land in the South, over regions with a continental climate in the East to a 
maritime climate in the West and the Northern German lowlands. The 
observation period (2016 to 2020) covers heterogeneous meteorological 
conditions. While the year 2017 experienced average amounts of pre-
cipitation and temperatures in Germany, 2018 was exceptionally dry 
and hot (Fig. 2). Subsequent years 2019 and 2020 were also charac-
terized by low to average moisture conditions, which prevented 
recharge of groundwater storage. 

The start of the phenological stages during the four studied years 
reflects the described climate conditions. (Fig. 3). The timing of seeding 
and leaf development throughout the study period does not show large 
deviations or outliers. The start of stem elongation occurred later in 
2018, which could be related to cold conditions at the beginning of 
2018. As of April 2018, very hot and dry conditions can be observed as 
well as a much earlier start of the heading to harvest stages compared to 
the other years. 

2.2. Field boundaries 

We used a German-wide crop type map (CTM), which was produced 
by Blickensdörfer et al. (2022) based on S1, S2, and L8 data for identi-
fying the main crop types in Germany at 10 m spatial resolution. For 
each observer location, we extracted all winter wheat pixels from the 
CTM of the respective year within a surrounding of 5 km. Adjacent pixels 
were then clustered and combined into individual fields. To enhance the 
quality of the field boundaries, we utilized a two-step buffering 
approach. First, we applied an inward buffer of 70 m to each boundary. 
This was then followed by an outward buffer of 40 m. This procedure 
imitates a morphological opening operation and removes erroneous 
connections between multiple fields. Using a higher value for inward 

Fig. 1. Locations of the phenological observations in Germany (DWD, 
2015, 2022a). 

Fig. 2. Monthly mean records of temperature and precipitation sums in Germany during the studied years and long-term average (1991–2020) (Source: DWD).  
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buffering mitigates edge effects along the field boundaries. Finally, 
fields smaller than 2 ha were discarded, to exclude excessively small 
fields from the training process. In addition, we decided to limit our 
analysis to the 10 closest fields to the observer's position to reduce the 
bias by high variations in the number of winter wheat fields and not 
weigh distant fields too much, if there are already enough fields close to 
the observer location (Fig. 4). This procedure resulted in about 22,000 
field boundaries for winter wheat that were linked to the phenological 
observations during one growing season. 

2.3. Remote sensing imagery 

2.3.1. Sentinel-1 
We used the gamma naught (γ0) backscatter coefficient from the S1A 

and S1B constellation as SAR-based input. S1 acquires data in the C-band 
(5.4 GHz, 5.5 cm), with dual polarization mainly in VV (vertical transmit 
and vertical receive) and VH (vertical transmit and horizontal receive). 
Standard acquisitions are in interferometric wide swath (IW) mode, 
which covers a swath of about 250 km (Torres et al., 2012). We used the 
Ground Range Detected (GRD) IW product. 

Since the launch of S1B in 2016 and until its unexpected failure at the 

Fig. 3. Temporal distribution of the phenological observations for winter wheat in the studied growing seasons. Points represent the median (annotated date), error 
bars show ± one standard deviation. Vertical bars in the violin plots show the 5th and 95th percentiles. 

Fig. 4. Example of a reported observer location from the reference data (white point), extracted winter wheat pixels within 5 km distance (white dashed circle), and 
resulting field boundaries in 2019 that were used for further analysis (right). Background image: monthly RGB-composite from Sentinel-2 for June 2019. 

F. Lobert et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 298 (2023) 113800

5

end of 2021, the S1 constellation acquires data at a 6-day interval. We 
used all available data from both sensors and across all orbits for Ger-
many during our study period. This resulted in 18,203 S1 scenes from 
August 2016 to October 2020. S1 accordingly delivered an observation 
every 1.8 days on average, depending on orbit overlap across Germany. 
We accessed the S1 data through the Copernicus Data and Exploitation 
Platform - Germany (CODE-DE; Benz et al., 2020). The pre-processing 
was carried out using the Sentinel Application Platform (SNAP) and 
the R package rcodede (Lobert, 2022). 

The γ0 backscatter coefficient was processed by first applying border 
and thermal noise removal to the S1 GRD scenes. This was followed by 
calibration and radiometric flattening of the data to obtain the γ0 back-
scatter coefficient in VV and VH polarization in dB. Gamma naught 
represents the ratio between the incident power and the scattered power 
for a reference area that is perpendicular to the line of sight from the 
sensor to an ellipsoidal model of the ground surface (Small, 2011). The 
imagery was terrain corrected using the Shuttle Radar Topographic 
Mission (SRTM) 1 arc-second global digital elevation model (DEM; Farr 
et al., 2007)), and resampled to 10 m spatial resolution. 

We then calculated the backscatter cross-ratio (CR) to exploit the 
information content of the backscattered signal in both polarizations 

CR = γ0
VH [dB] − γ0

VV [dB] (1)  

which is strongly affected by structural changes in crops like winter 
cereals (Holtgrave et al., 2020; Nasrallah et al., 2019; Vreugdenhil et al., 
2018). Moreover, Schlund and Erasmi (2020) reported that the CR 
produces a relatively stable signal in dense time series over longer pe-
riods over agricultural areas since both polarizations react similarly to 
terrain and soil properties which reduces the impact of these factors on 
the CR signal. Meroni et al. (2021) have shown that this also allows for 
the combined use of multiple orbits and acquisition directions, enabling 
the analysis of time series consisting of up to daily observations in areas 
of orbit overlaps. 

2.3.2. Sentinel-2 & Landsat 8 
We obtained L8 as Level-L1TP and S2 as Level-1C data. We used all 

available scenes that cover Germany during our study period with a 
cloud coverage of less than 75% and corrected all data for radiometric 
and geometric effects using the Level 2 processing system in FORCE 

(Frantz, 2019). Clouds and cloud shadows were masked out using the 
improved Fmask algorithm (Frantz et al., 2018; Zhu et al., 2015; Zhu 
and Woodcock, 2012). 

We applied a spectral adjustment between S2 and L8 according to 
Scheffler et al. (2020). Spectral harmonization uses S2A as reference and 
adjusts the spectral response of S2B and L8 to S2A, including a predic-
tion of missing Sentinel bands for L8. Bands for atmospheric correction, 
as well as panchromatic and thermal bands of the optical sensors were 
not further considered. The Enhanced Vegetation Index (EVI) was 
calculated to complement the original spectral bands (Huete et al., 
2002). 

We organized the data in a tiled and reprojected data cube. We 
resampled all imagery to 20 m spatial resolution using nearest neighbor 
resampling. We ended up with an average clear sky observation (CSO) 
for our fields approximately every 7 days. Spatial and temporal patterns 
emerging from orbit overlaps or sensor availability are visualized in 
Fig. 5 and Fig. 6. 

2.4. Meteorological data 

We used daily mean temperature measurements (◦C) from 625 
weather stations across Germany (DWD, 2022b). Precipitation data was 
acquired from the German weather radar network RADOLAN, which 
provides area-wide rainfall estimates with a temporal resolution of 5 
min and a spatial resolution of about 1 km (DWD, 2022c). Data from 
DWD were accessed and preprocessed using the rdwd R package 
(Boessenkool, 2021). 

3. Methods 

The analysis concept of our study relies on the association of 
phenological observations, crop type information, and various remote 
sensing and environmental time series to train a supervised classifica-
tion model and conduct an analysis of feature importance. The detailed 
procedure is depicted in Fig. 7 and the following sections. We carried out 
all processing steps using R (R Core Team, 2022). 

3.1. Time series preprocessing & labeling 

Since the analysis centers on the field level, we transformed the areal 

Fig. 5. Average interval between two clear sky observations (CSO) for the observer locations during the years 2017–2020.  
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information from the remote sensing imagery to one-dimensional time 
series per field. This was realized by summarizing the pixel values for 
each field, date, and input feature using the field boundaries. We chose 
the median to account for outliers. We performed this for the gridded 
input data, including the optical and SAR imagery as well as the 
RADOLAN precipitation data. We interpolated the temperature mea-
surements from the ten nearest DWD weather stations for each field 
using the inverted distance weighting method (IDW) and inverse dis-
tance power set to 0.5. We acquired time series for each field starting in 
August before sowing and ending at the end of November of the 
following year. 

We then applied locally estimated scatterplot smoothing (loess) to 
account for undesirable noise and artifacts in each time series (Cleveland 
et al., 1992). A span parameter of 0.3 was visually assessed to yield the 

best trade-off between preserving enough information and suppressing 
noise. As our chosen model architecture required equidistant time steps, 
we considered a three-day interpolation interval to be apt for phenology 
monitoring. We realized this through linear interpolation of the optical, 
SAR, and temperature data, while the precipitation data were summed 
up for the last three days preceding every time step. We finally 
normalized values per feature, field, and growing season by subtracting 
the mean and dividing by the standard deviation. This improved the 
comparability across different fields and years and ensured that all of the 
features were in the same value range to ease the learning process during 
model training (Bishop, 1995). A composition of exemplarily pre- 
processed time series for a winter wheat field from the seeding in 
2017 to the harvest in 2018 is shown in Fig. 8. 

We finally added labels to each 3-day time step of our time series. For 

Fig. 6. Temporal distribution of the interval between two clear sky observations (CSO) averaged per month.  

Fig. 7. Workflow of the method proposed in this study.  
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each time series, we identified the closest time steps to each reference 
stage from the corresponding DWD observation and labeled the time 
steps accordingly. We extended these labels by +/− 3 days, resulting in 
three labeled time steps for each stage. All other time steps were labeled 
as background class, where none of the recorded stage changes took 
place. 

3.2. Deep learning model 

Convolutional Neural Networks (CNNs) are a commonly used model 
architecture in remote sensing of vegetation (Kattenborn et al., 2021). 
CNNs usually consist of multiple convolutional layers that can be con-
nected in different ways. Due to the nature of the convolution process, 
these layers are ideal for detecting changes in sequential data. For this 
reason, CNNs are prominent, e.g., for the detection of boundaries in two- 
dimensional data structures like images. Although CNNs are mainly used 
in a two-dimensional design, convolutions can also be used to analyze 
one-dimensional data, such as time series. This type of use was already 
demonstrated to be powerful for classification and event detection tasks 
when dealing with pixel- or field-based time series of satellite data 
(Lobert et al., 2021; Pelletier et al., 2019). 

Ronneberger et al. (2015) proposed the U-Net architecture, which is 
based on multiple interconnected convolutional layers that analyze data 

in different aggregation levels. Jimenez-Perez et al. (2019) and Perslev 
et al. (2019) adapted the U-Net architecture to one-dimensional data, 
transferring the U-Net's ability to delineate object borders in images to 
delineate processes and events in time series. They used their adapted 
architecture to detect and delineate cardiac illnesses from electrocar-
diograms (ECG) and sleep stages from electroencephalograms (EEG). 

3.2.1. Implementation 
Inspired by these developments, we implemented our own one- 

dimensional U-Net architecture to predict the start of different pheno-
logical stages of winter wheat at the field level. Starting from the classic 
architecture of the U-Net by Ronneberger et al. (2015), our first major 
change was to adapt the input layer to read our time series of 152 3-day 
time steps and multiple features. This corresponds to the time series 
length over the extended winter wheat growing season and the different 
input features derived from remote sensing and meteorological data. As 
a second major modification, we replaced every second convolutional 
layer in the down- and upsampling path of the U-Net with a Long Short- 
Term Memory layer (LSTM; Hochreiter and Schmidhuber, 1997). These 
recurrent layers allow for more powerful exploitation of the temporal 
domain of data that is beyond the length of the convolutional filter 
kernels. The final architecture of our model including the filter numbers 
of the convolutional layers and the amount of LSTM cells is depicted in 

Fig. 8. Time series of different exemplary features for a winter wheat field from seeding in 2017 to harvest in 2018. Vertical lines show the observed start of the 
phenological stages. 
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Fig. 9. The final output of our model is a time series of the same length as 
the input for the respective phenological stage. The output values pro-
vide the probability of each time step to be the start of the respective 
stage. We used the rectified linear unit (ReLu) activation function for 
convolutional layers and hyperbolic tangent (tanh) activation for LSTM 
layers to speed up the training process on a graphical processing unit 
(GPU) and activated the model output using softmax. We implemented 
our model using Keras (Chollet, 2015) with TensorFlow (Abadi et al., 
2016) as backend on the R interface to Keras (Allaire and Chollet, 2021). 

3.2.2. Training 
We used three independent data sets, i.e., training, validation, and 

test data for building our model. We used the training data to train the 
model and perform the backpropagation. After each training epoch, the 
model was applied to the validation data to provide insights into the 
generalization ability and to allow for the adaptation of optimization 
parameters during training. In a subsequent step, the model was eval-
uated using the test data that were previously unseen by the model. 

We used categorical cross-entropy as loss function, to respect not 
only the correctness of the predicted classes but also the certainty of the 
predictions. For the calculation of the loss function, we used temporal 
sampling weights to weigh those errors higher that were closer to 
phenological stage transitions. We employed Adam (Kingma and Ba, 
2015) as optimization algorithm with an initial learning rate of 1e− 3 and 
a batch size of 28. We performed 200 training epochs but applied an 
early stopping mechanism to end the training when the loss function did 
not decrease for 50 epochs. All other parameters remained as Keras 
defaults. 

3.3. Evaluation 

Our study aimed to evaluate the performance of the proposed model 
for detecting phenological stages given different sets of input features. 
We, therefore, defined five different feature sets that were tested during 
our validation (Table 1). 

Fig. 9. Schematic architecture of the model used in our study adapted from the initial U-Net design by Ronneberger et al. (2015). Here, an example with 12 input 
features and eight output classes is shown (7 phenological stages plus background class). In contrast to the U-Net model, every second convolutional layer in the up- 
and downscaling layers is replaced by an LSTM layer. 

Table 1 
Feature sets that were tested in this study.  

feature set input features number of features 

SAR γ0 backscatter coefficient VV [dB] 
γ0 backscatter coefficient VH [dB] 
backscatter cross-ratio [dB] 

3 

optical blue (496.6 nm) [− ] 
green (560.0 nm) [− ] 
red (664.5 nm) [− ] 
red edge 1 (703.9 nm) [− ] 
red edge 2 (740.2 nm) [− ] 
red edge 3 (782.5 nm) [− ] 
near-infrared (835.1 nm) [− ] 
shortwave infrared 1 (1613.7 nm) [− ] 
shortwave infrared 2 (2202.4 nm) [− ] 
enhanced vegetation index [− ] 

10 

meteorological precipitation sum [mm] 
mean temperature [◦C] 

2 

SAR & optical SAR features 
optical features 

13 

all SAR features 
optical features 
meteorological features 

15  
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To get an estimate of our overall model performance, we decided to 
conduct our evaluation based on 10-fold cross-validation (CV). We 
randomly sampled our input data into 10 equally sized folds, thereby 
ensuring that all time series belonging to the same phenological obser-
vation ended up in the same fold. We went for random CV since spatial 
CV approaches can lead to overly pessimistic accuracy estimates. This is 
because whole geographic regions and with this, environmental condi-
tions and also regionalized agricultural management practices are left 
out during the training process in each cycle of the CV. This was shown 
by Wadoux et al. (2021), who observed no improvement in spatial CV 
over random strategies in their comparative study. Furthermore, 
random CV is less of an issue if the model is not intended to extrapolate 
but to be applied within the environmental range of the training data 
(Kattenborn et al., 2022). Here, we used each of the folds as test data for 
one training cycle, while the remaining folds became the training data 
(80%) and validation data (20%). 

We transformed the predicted probabilities for each field, time step, 
and phenological stage into discrete predicted dates for their start before 
finally evaluating the model results. This was realized by first searching 
for the time step with maximum probability for each phenological stage. 
We then selected the five preceding and following time steps and 
calculated the mean of the dates, weighted by their probabilities. This 
procedure allowed making predictions with a finer temporal resolution 
than the temporal interval of our time series. The output was rounded to 
a (full) day of year (DOY) and finally formed our discrete predictions. An 
example of the transformation from probabilities to discrete predictions 
is shown in Fig. 10. 

DWD field measurements are conducted on the same winter wheat 
field throughout the growing season but the provided dataset lacks 
assignment to a specific field (section 2.1). We identified up to ten 
candidate fields for each measurement during preprocessing (section 
2.2). Obtaining individual predictions for each candidate field, leads to 
the need for a strategy to evaluate model performance. Averaging the 
predictions for all candidate fields eliminates the variance of the model 
predictions across different fields, potentially resulting in an overly 

pessimistic performance estimate. To address this, we adopted the 
minimum bias approach proposed by Ye et al. (2022). We calculated the 
absolute error for each candidate field across all 7 phenological stages, 
identifying the field with the overall least bias. However, the minimum 
bias method may lead to overly optimistic results as the prediction se-
lection is not completely independent of the reference data. Therefore, 
we evaluated our results using both approaches and discuss their dif-
ferences. The first approach is referred to as mean prediction, while the 
second approach is referred to as minimum bias prediction. 

For the validation, we first compared the performance of the 
different feature sets. We determined the accuracy of our predictions by 
considering them correct if they were made within a six-day window 
from the reference date. This measure, defined as prediction accuracy, 
represents the proportion of correctly predicted outcomes in relation to 
the total predictions made. We chose this time frame for technical rea-
sons with respect to our time series interval and expected label noise. We 
compared the performance of the models trained with different features 
sets and performed McNemar's test to test for significance (McNemar, 
1947). Based on the prediction accuracy, we identified the best- 
performing feature set, for which we then conducted a more in-depth 
analysis of the model performance. Calculating the mean absolute 
error (MAE) and the coefficient of determination (R2) enabled us to 
compare the different phenological stages. We mapped spatial and 
temporal distributions of the predictions and analyzed emerging pat-
terns. Furthermore, the temporal transferability of the model and dif-
ferences between the years were assessed by performing an additional 
temporal cross-validation, where in each cycle one year was left out for 
training and instead used for testing. 

To provide a baseline for comparison of the proposed DL model, we 
also tested a RF regression model for our task (Breiman, 2001). Since 
multidimensional input and output are not supported by RF, we flat-
tened our input features and trained one model for each stage, using the 
DOY as the target variable. The R package caret (Kuhn, 2020) was used 
with the corresponding default parameters, and the same cross- 
validation scheme as for the U-Net. To ensure a more focused and 

Fig. 10. Predicted probabilities for each time step to be the start of each phenological stage as predicted by the model for an exemplary field. The vertical dashed 
lines show the derived discrete predicted date. 
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efficient analysis, we limited our model comparisons to the best- 
performing feature set identified by the U-Net model, avoiding an 
excessive number of comparisons. 

4. Results 

4.1. Comparison of input features 

The overall results of our feature set comparison are visualized in 
Fig. 11. On average, SAR and optical data performed similarly. Only a 
slightly higher prediction accuracy of 49.9% and 65.1% (mean and 
minimum bias) for SAR compared to 49.0% and 64.2% for the optical 
data was observed. However, we found differences between the indi-
vidual stages. The highest differences occured for the minimum bias 
predictions for seeding with 62.6% prediction accuracy for the SAR data 
set as compared to 56.4% for optical data, which is supported by a high 
level of significance according to McNemar's test. Heading also showed 
notably higher accuracies based on SAR data, especially for the mean 
predictions (SAR: 64.1%, optical: 59.6%) and significant differences. 
Yet, there were stages where optical data showed higher prediction 
accuracies, although not being significant. This was the case, especially 
for harvest with 58.2% and 73.7% (mean and minimum bias) for SAR 
compared to 60.7% and 75.6% for optical data. For the yellow ripeness 
stage, optical data only performed better when considering the mean 
prediction (SAR: 53.6%, optical: 55.7%) and for milk ripeness only when 
considering the minimum bias prediction (SAR: 62.6%, optical: 63.8%). 
Overall, radar data were performing better for the early phases, while 
optical data were ahead for the late phases. 

Combining SAR and optical data did not show a clear improvement 
in the general model performance compared to solely using SAR data. 
On average, the prediction accuracy only increased from 49.9% (SAR) to 
50.1% (SAR & optical) and 65.1% (SAR) to 65.5% (SAR & optical) for 
the mean and minimum bias predictions without significant differences. 
However, compared to optical data, the combination resulted in higher 
accuracies (mean: 49.0% to 50.1% and minimum bias: 64.2% to 65.5%) 
and significant differences in the predictions. Predictions for leaf 
development improved most, yet only for the minimum bias predictions 
with 55.8% for SAR and 58.2% for both features combined. The harvest 
stage also improved with 62.7% and 76.9% for the combination of SAR 
and optical data compared to optical data with only 60.7% and 75.6%, 
for mean and minimum bias predictions. Some stages, however, 
decreased in performance when both data sets were combined. This 
applies to seeding and heading, where SAR data alone performed better. 

The meteorological feature set showed less explanatory power 
compared to the remote sensing-based data sources. This feature set 
yielded the lowest prediction accuracy both on average as well as for the 
individual stages and showed significant differences in all comparisons. 
This applies equally to the mean and minimum bias predictions. Adding 
meteorological data to the input features only improved the prediction 
accuracy for seeding (mean: 38.9% to 39.2% and minimum bias: 60.1% to 
62.7%) and heading (mean: 59.7% to 63.8%). Yet, SAR data alone still 
performed better for seeding (mean: 41.4%) and heading (mean: 77.9%). 
Generally, the accuracies for the minimum bias predictions were higher 
than the mean predictions for all stages and feature sets. However, the 
difference was smaller for the meteorological feature set. 

Based on this comparison, we identified the combination of SAR and 

Fig. 11. Prediction accuracy separated by feature set and phenological stage. Brackets indicate significant differences between feature sets according to McNemar's 
test (McNemar, 1947). All comparisons with the meteorological feature set were significant and therefore excluded for improved readability. Significance was 
classified as follows: *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. 
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optical data as the best feature set and focused our further evaluation on 
it. An example prediction of the model based on the SAR and optical 
feature set is included in the appendix (Fig. A1). 

4.2. Model baseline 

In Fig. 12, we compare the baseline RF model trained on the SAR and 
optical feature set with our one-dimensional U-Net model. While the RF 
model showed better mean predictions for all phenological stages, only 
three stages (seeding, heading, and harvest) exhibited significant dif-
ferences based on McNemar's test. However, except for heading, the one- 
dimensional U-Net model significantly outperformed the RF model in 
minimum bias predictions across all stages. This significant and consis-
tent advantage in minimum bias predictions led us to choose the one- 
dimensional U-Net model for further analysis. This decision was 
further supported by the relevance of minimum bias predictions in our 
study, as they may better account for the nature and associated un-
certainties in the reference data. 

4.3. Evaluation of phenological estimates 

The predicted start of the phenological stages based on the SAR and 
optical feature set and the MAE and R2 regarding the reference data are 
shown in Fig. 13. Among the seven phenological stages, the predictions 
for harvest agreed best with the reference data. For both mean and 
minimum bias predictions, harvest showed the highest R2 (0.51 and 0.62) 
and lowest MAE (5.3 and 4.4). The stage of heading, which reached the 
highest prediction accuracy (see Fig. 11), showed the second-best MAE 
(5.4 and 4.5 for mean and minimum bias) while being in the middle range 
in terms of R2 (0.21 and 0.35). Predictions for stem elongation corre-
lated least with an R2 of 0.06 and 0.28 and an MAE of 9.7 and 7.8, for 
mean and minimum bias predictions. 

In line with the results for the different feature sets, R2 and MAE 
generally improved from mean to minimum bias predictions. For stem 
elongation and leaf development, R2 varied most, with 0.06 compared to 

0.28 and 0.09 to 0.44, respectively. Stages with higher R2 for mean 
predictions improved less, e.g., yellow ripeness showed an R2 of 0.35 
and 0.52 for the mean and minimum bias predictions. 

4.4. Exploration of spatial and temporal patterns 

We visualized spatial patterns of our predictions and the reference 
data for two exemplary phenological stages. For the maps, we decided 
on the stages with the highest and lowest agreement between the 
reference data and our model predictions, i.e., harvest (Fig. 14) and stem 
elongation (Fig. 15). Maps for the other stages including difference maps 
are shown in the appendix (Fig. A2-Fig. A13). 

Reference dates for harvest show a general pattern over the four 
observed years from an earlier harvest in the south of Germany to a later 
harvest in the north. Besides this general gradient, we identified regional 
patterns. An example here is the upper Rhine Valley in the southwest 
along the border to France, which showed a comparably early harvest in 
both the reference data and the predictions for the four studied growing 
seasons 

Our model was able to reproduce these patterns both in the mean and 
minimum bias predictions. Trends on a national scale (e.g., overall earlier 
harvest in 2018) were also reproduced by the model. An evident dif-
ference was the significantly higher fine-scale variation in the spatial 
patterns of the reference data compared to the model predictions. The 
minimum bias predictions better reflected this variation. Yet, both pre-
dictions were much smoother and showed remarkably less variance. 
Predictions for stem elongation showed similarly smooth patterns and a 
longitudinal gradient, albeit weaker. Yet, reference data showed a much 
higher level of variance and hardly any trend or pattern for this stage. 

We further analyzed the temporal distribution of both the model 
predictions and the reference data (Fig. 16). The distributions provided 
insights into the model's capabilities to cover the full temporal spectrum 
of the reference data. For harvest and heading, e.g., the distribution of 
the predictions matched the reference data well during nearly all four 
years. Milk ripeness and yellow ripeness also resembled the 

Fig. 12. Prediction accuracy for the RF and U-Net models based on the combination of SAR and optical data. Brackets indicate significant differences between the 
models according to McNemar's test (McNemar, 1947). Significance was classified as follows: *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. 
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distributions, but with gaps towards the extremes of the distribution. For 
seeding, leaf development, and stem elongation the model predictions 
had less variation and larger gaps. 

The leave-one-year-out cross-validation showed differing results for 
the minimum bias predictions between four analyzed years (Fig. 17). On 
average, transferring the model to 2017 and 2019 did not show a dif-
ference, 2020 showed an overall above-average, and 2018 an overall 
reduced R2. When looking into the individual phases, however, more 
details can be found. Remarkable is, e.g., the decreased performance for 

the phases seeding, heading, and yellow ripeness in 2018 and leaf 
development and stem elongation in 2019. Next to a decrease, we could 
also observe higher performance for leaf development and stem elon-
gation in 2020 and seeding and milk ripeness in 2019. 

Fig. 13. Density plots of the predicted start of the phenological stages and corresponding reference data for all years based on the combined optical and SAR feature 
set. Solid lines give the identity (prediction = reference) and regression line. Dashed lines show a deviation of ±6 days from a perfect prediction, which corresponds 
to the prediction accuracy reported in Section 4.1. 
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5. Discussion 

5.1. Comparison of input features 

5.1.1. Individual input features 
We evaluated the performance of different remote sensing input 

features for deriving field-level phenology for winter wheat. Here, we 
directly aimed to estimate the start of specific phenological stages. This 
approach distinguishes our study from the common approach of calcu-
lating phenological metrics from time series and comparing them with 
phenological field measurements - sometimes even on a highly aggre-
gated level. Therefore, a direct comparison with other studies is not 
always straightforward. 

The tested feature sets showed different performances. Yet no feature 
set significantly outperformed the others across all phenological stages. 
On average, SAR data only performed slightly better than optical data. 
This supports the findings by Meroni et al. (2021) who compared 

different LSP metrics derived from S1 and S2 for winter cereals to 
aggregated phenological observations from DWD. For winter wheat, 
they found better agreement with the ground observations for metrics 
derived from S1 backscatter cross-ratio compared to S2 NDVI. Yet, their 
overall conclusion was that SAR and optical data perform similarly well, 
which resembles our findings. Mercier et al. (2020) reported different 
findings. They used data from both S1 and S2 and compared several 
optical vegetation indices as well as backscatter coefficient and polari-
metric indices to map phenological stages of winter wheat targeting 
eight acquisition dates. In opposite to our results, they found optical data 
to yield higher accuracies compared to SAR data. However, their 
approach considerably differs from our work since it completely omits 
the temporal domain of satellite data. Other studies reported differences 
between the performance of optical and SAR data, yet did not reach a 
general conclusion (e.g., Harfenmeister et al., 2021; Veloso et al., 2017). 

Looking at the individual stages, radar data tended to work better for 
earlier stages (seeding to heading). This is consistent with the 

Fig. 14. Maps of predicted and reference dates for the harvest of winter wheat in Germany between 2017 and 2020.  
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observations of Jia et al. (2013) who conducted a ground-based radar 
backscattering experiment in different frequencies and polarizations for 
different phenological stages of winter wheat. Overall, they found the 
backscatter coefficient to be more sensitive to changes during the early 
growing period, followed by a decline towards the maturity of the crop. 
For seeding, the superior performance of SAR data might be due to the 
sensitivity of the SAR signal for soil roughness. Seeding is usually closely 
accompanied by tillage practices, that significantly change the soil 
structure and hence the SAR signal, while the multispectral, optical 
signal might experience less change. Another potential reason for SAR 
being more sensitive to subtle changes might relate to the high obser-
vation density compared to optical data during this time. Seeding is 
usually done in fall, which is a season with frequent cloud cover in 
Germany (see Fig. 6). 

SAR data also outperformed optical data for leaf development. This 
supports previous findings on C-band SAR data for detecting thin wheat 
seedlings, even though different incidence angles will yield different 

results (Jia et al., 2013). Fieuzal et al. (2013) reported SAR being more 
sensitive to stem elongation compared to NDVI. Here, our results are not 
clear and show differences between mean and minimum bias predictions. 
For heading, differences in SAR and optical data can mainly be 
explained by structural changes of the wheat plant during this period. 
The heads emerging from the leaf sheet may have less influence on the 
spectral signature compared to the SAR backscatter. Meroni et al. (2021) 
also raised this hypothesis after observing a clearer signal in the back-
scatter cross-ratio compared to the NDVI during heading. 

For later phenological stages (milk ripeness to harvest) we 
conversely found that optical data outperformed radar data. While this 
was also stated by Mercier et al. (2020), who observed optical data being 
better suited for detecting the end of ripening, Meroni et al. (2021) 
found the opposite for the stage of yellow ripeness. The transition from 
milk ripeness to yellow ripeness comes with clear changes in color as 
well as a decline in photosynthetic activity. Both highly influence the 
spectral signature and could explain the advantage of optical data. 

Fig. 15. Maps of predicted and reference dates for the stem elongation stage in Germany between 2017 and 2020.  
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However, simultaneously the water content decreases during this time 
which influences the plant's dielectricity and hence may also influence 
the SAR signal. 

We did not observe a significant difference between optical and SAR 
data for detecting the harvest, although optical data showed better ac-
curacies on average. Meroni et al. (2021) observed clearer changes in 
NDVI compared to cross-ratio around harvest and mentioned the simi-
larity of fully mature plants and stubble in the SAR signal as possible 
explanation. This may highly depend on the harvesting practice. Other 
studies, however, do not report such findings (e.g., Fieuzal et al., 2013; 
Nasrallah et al., 2019). Harfenmeister et al. (2021) argue that the very 
low photosynthetic activity directly before harvest also does not have to 
result in major differences in NDVI before and after harvest. Beyond 
NDVI, we also know that especially Shortwave Infrared (SWIR) reflec-
tance is suitable for distinguishing dry biomass and soil which supports 
our findings (Daughtry, 2001). Using coherence data could further 
improve harvest detection, as it was observed to be useful to detect the 
harvest of cereals and mowing of grasslands in other studies (Kavats 
et al., 2019; Lobert et al., 2021). 

The meteorological variables showed the least explanatory power 
among our tested input features. Gerstmann et al. (2016) demonstrated 
that an approach based solely on meteorological data yielded great 
explanatory potential for the timing of crop phenological development. 
Yet, they studied phenological development on a 1 km2 grid size. In our 
study, we could identify high variation of phenological development on 
a fine scale from the mapped reference dates for harvest (Fig. 14) and 
stem elongation (Fig. 15). Micro-relief, soil properties, and management 
practices are potential influencing factors. Meteorological data, espe-
cially of the spatial resolution used in our study, cannot represent these 
variations. For example, the timing of management may vary vastly 
between fields belonging to an in-situ observation, while the meteoro-
logical conditions can be similar. This also becomes evident from the 
small increase in performance when comparing mean and minimum bias 
predictions for the meteorological feature set, which indicates that the 

individual predictions for the fields belonging to the same observation 
create similar predictions. 

5.1.2. Feature combinations 
Combining SAR and optical data did not significantly improve the 

model performance in our study. Even if we observed an increase in 
prediction accuracy over one of both sensors alone, we could not clearly 
confirm the findings by Mercier et al. (2020), who found an improve-
ment by combining S1 and S2 data for their phenology classification 
algorithm. This synergy was also suggested by Harfenmeister et al. 
(2021), Veloso et al. (2017), and Yeasin et al. (2022) who found vastly 
different but also complementary performances of SAR and optical time 
series for analyzing the phenology of winter wheat, barley and sugar-
cane. The improvement for some stages could be attributed to un-
certainties and ambiguities in the predictions with SAR or optical data 
alone, respectively, that could be resolved by combining both. When 
precipitation-induced noise in the SAR signal or data gaps in the optical 
data hamper the precise delineation of the event in the time series, 
combining both enables our proposed model to refine the predictions. 

For some stages, a decrease in accuracy was observed when 
combining optical and SAR data. Including data with low or redundant 
information content can make it harder for the model to identify pat-
terns in the increased amount of data. The noise introduced by such data 
can hinder the model's ability to extract meaningful information, leading 
to decreased performance and accuracy (Bellman, 2003). This hypoth-
esis is supported by our observation that the largest decrease occurred 
when the performance difference between single-sensor (optical, radar) 
feature sets was particularly large, i.e., mean predictions for heading and 
minimum bias for seeding. 

Considering the combination of remote sensing imagery with mete-
orological information, we observed an increase in model performance 
for the seeding stage. When heavy rainfall events have just occurred or 
are forecasted, the farmer might reschedule the seeding date due to, e.g., 
non-accessible soils. Including such information could have enabled the 

Fig. 16. Temporal distribution of the predicted start of the phenological stages and corresponding reference data.  
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model to account for such events. For the heading stage, adding mete-
orological to SAR and optical data also improved the predictions. This 
matches the findings from Gerstmann et al. (2016) who observed the 
best performance for the heading stage compared to other stages using 
meteorological data only. However, only the mean predictions improved 
for heading, which does not support a high explanatory power for field- 
based estimates, since the resolution of the temperature data we used 
provides only limited variations between the fields. Overall, our results 
suggest that meteorological data do not add significant value to dense 
remote sensing time series for phenological monitoring. 

5.2. Model baseline 

While the one-dimensional U-Net model demonstrated significantly 
superior performance for the minimum bias predictions, we have also 
seen Random Forest to achieve similar to even better results in mean 
predictions. Although we put more weight on the minimum bias pre-
dictions for the model choice and thus decided for the U-Net, this 
nevertheless demonstrates the potential that already exists in state-of- 
the-art machine learning algorithms for phenology analysis. However, 
besides accuracies and statistical significance, it is essential to also 
consider the practical implications of model choice. Our chosen U-Net 
architecture provides a significant advantage for phenology monitoring 
by offering highly detailed output with assigned probabilities for each 
time step, indicating the start of the seven phases (see Fig. 10). This 
multidimensional granularity enables comprehensive research into 
winter wheat's phenological development. In comparison, models like 
Random Forest typically predict a single target value per input sample. 
Replicating the U-Net's output using alternative models would require 

training multiple models and implementing auxiliary preprocessing 
steps, such as generating moving windows. This approach would be 
time-consuming and prone to errors. In contrast, the U-Net architecture 
offers an efficient and streamlined solution for full-season phenology 
predictions without the need for an extensive ensemble of models or 
complex preprocessing, which is especially important for long-term 
monitoring tasks. 

5.3. Evaluation of phenological estimates 

For the best model (SAR & optical), prediction accuracies increased 
from early towards later phenological stages. This is in line with 
Gerstmann et al. (2016). Later stages are associated with almost com-
plete plant coverage. They are accompanied by significant structural 
changes (e.g., heading), vast changes in color and water content (yellow 
ripeness), or a combination of changes (harvest). These changes affect 
signals from both optical and radar sensors and indicate good detect-
ability. Milk ripeness shows less obvious or abrupt changes that could be 
detectable by SAR or optical sensors, which is also reflected by the 
relatively low R2 compared to the other late stages. Zeng et al. (2020), 
however, reported that the estimation of phenology information during 
the vegetation's senescence is a greater challenge compared to the green- 
up. Comparable limitations for later stages were also reported by Har-
fenmeister et al. (2021) and Shang et al. (2020) for SAR-based methods. 

During the early stages crop cover is not present at all (e.g., seeding) 
or is still low (e.g. stem elongation). This leads to a high proportion of 
soil signal in the remote sensing imagery and only little signal attrib-
utable to vegetation. Despite the aforementioned sensitivity of radar 
data to small seedlings or tillage, these stages apparently provide less 
distinctive features in the time series that could be recognized by our 
model. 

For all feature sets and phenological stages, we have seen an increase 
in the prediction accuracy, a decrease in MAE, as well as an increase in 
R2 from the mean towards the minimum bias method. This increase was 
also observed by Ye et al. (2022). Especially for the stages with the 
highest differences (e.g., seeding), this observation indicates that our 
model predictions cover some temporal range - even between the can-
didates for one field observation - and can also predict the phenology of 
fields that differ from the mean in a given area. 

The low slope of the regression lines indicates that the predictions do 
not cover the full temporal range and variation of the reference data. 
However, the aggregated nature of the predictions also plays a role here, 
making them more likely to tend towards the average of a region as 
opposed to the reference data, which comes from only one field and thus 
could be both representative or an outlier compared to the surrounding 
fields. 

5.4. Exploration of spatial and temporal patterns 

Mapping the predictions and reference dates for the phenological 
stages provided us with valuable insights into their spatial distribution. 
The consistent pattern of the predictions throughout the years indicates 
that our method generates regionalized results that reflect the overall 
environmental conditions in Germany well. 

The similarity between the distributions of predicted and reference 
dates for later phenological stages indicates that our model covers both 
the spatial and temporal gradients of these stages across Germany. The 
model could, therefore, also predict fields where the phases began 
sooner or belated. This finding also suggests that the model is well suited 
for the area-wide prediction of these stages in Germany. For earlier 
phenological stages, the model's limitation in covering the temporal 
distribution of the reference data may indicate that the model predicts 
also based on seasonal trends. This explains the concentration of the 
distribution towards the distribution means (Fig. 16) and the narrow 
ranges of estimation (Fig. 13). 

For stem elongation, the high level of variance in the reference data 

Fig. 17. Results of the leave-one-year-out cross-validation for the seven 
phenological stages as well as the average for all stages for minimum bias 
predictions. Vertical line shows the mean for the respective phase over the four 
years. Directions of the arrows are indicating if the performance for a specific 
year was above or below the average of all four years, and lengths are indi-
cating the magnitude of the difference. 
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could not be reproduced. This may be explained by the combination of 
different sensor types still not providing sufficient information to pre-
cisely detect such subtle variations in spectral or backscatter behavior. 
Another factor for the limited predictions could be the reference data. 
On the one hand, these could be affected by uncertainties (compare 
Section 5.5). On the other hand, the sampled field itself could be a sta-
tistical outlier compared to the surrounding fields, which is difficult to 
account for with our methodology. 

The leave-one-year-out cross-validation revealed the temporal 
transferability of our proposed model in dependence on the individual 
phenological stages. The decreased below-average performance when 
leaving out 2018 could be explained by exceptional weather conditions 
(see Fig. 2). Starting with wet conditions during seeding and leave 
development in 2017, 2018 started with a relatively cold period fol-
lowed by comparably high temperatures and little precipitation for the 
whole vegetation period. While this reduces the impact on optical time 
series through scarce cloudiness and SAR time series through low soil 
moisture influence, the whole phenological timing was exceptional in 
that year as becomes apparent from Fig. 3. In contrast, shorter dry pe-
riods as in June and July 2019 show above-average performance 
exemplified by milk ripeness that occurred at that time. The same ap-
plies to seeding in 2019. However, above-average performance for, e.g., 
leaf development in 2020 cannot solely be explained by weather phe-
nomena and suggests that other factors are also influencing the model 
predictions. 

5.5. Limitations and outlook 

We based our study on a reference data set from a national phenology 
network. As discussed in detail by Ye et al. (2022), such data have their 
strengths but also provide some challenges. While covering broad 
geographical and ecological extents, using such data for training and 
validating predictive models might be hampered by noise and errors in 
the reference data related to the way observers report phenology. Such a 
volunteer-based approach may result in differences between the actual 
and reported start of the stages if volunteers are not visiting fields on a 
daily basis. For example, the “weekend bias” is a known phenomenon 
described by Courter et al. (2013). Furthermore, even if the observers 
are trained, misclassifications of phenological stages are possible. 

A major challenge discussed by Ye et al. (2022) is the missing link 
between in-situ observations conducted on a single plant or field and 
mixed pixels in remote sensing data. Using an LSP product with 500 m 
spatial resolution from the Visible Infrared Imaging Radiometer Suite 
(VIIRS), Ye et al. (2022) suggested several methods to upscale multiple 
in-situ observations to the VIIRS pixels. We adopted and inverted this 
approach to aggregate multiple field predictions to match one in-situ 
observation using the mean and minimum bias methods. Using both 
methods, we were able to validate our model predictions and also gain 
insights into prediction variations by comparing the results of both 
methods. Our approach was well-suited as a reference for comparing 
different input features. However, metrics resulting from the minimum 
bias predictions should be interpreted with caution, as they are not 
completely independent from the reference data (Ye et al., 2022). 

Our field boundary generation allowed us to relate the field mea-
surements to field-based remote sensing time series. However, two 
differently managed, neighboring winter wheat fields may be lumped 
into the same boundary. Especially for management-related stages, i.e., 
seeding and harvest, this can lead to a mixture of temporal profiles, 
where patterns for the corresponding stages could occur twice or blend 
into each other. A possible solution for future work would be the use of 
more sophisticated field delineation approaches that can account for 
management practices (e.g., Tetteh et al., 2021). 

The proposed method using DL enabled us to combine and simulta-
neously exploit time series of different remote sensing sensors and 
meteorological measurements. The great flexibility of DL models en-
ables to adapt their architecture to any given problem. Here, it allowed 

us to predict the start of several phenological stages at the same time 
based on a variety of feature sets and assess the performance of different 
combinations with a single streamlined model. Further research should 
focus on extending model architectures with a spatial dimension and 
testing more data sources that provide additional information (e.g., 
coherence) or come with higher spectral or temporal resolution. 

6. Conclusion 

We demonstrated the overall capability of a one-dimensional tem-
poral U-Net model to simultaneously predict the start of the major 
phenological stages for winter wheat based on SAR and optical remote 
sensing time series for individual fields. Even if we observed an increase 
in accuracy our results could not undoubtedly confirm the synergistic 
potential of optical and SAR remote sensing data for such purposes. We 
also did not find a general improvement in our results when adding 
meteorological variables to the model. We conclude that precipitation 
data (e.g. from a rainfall radar network) or interpolated temperature 
measurements alone are not able to explain fine-scale differences of 
phenology at the field level that are rather related to farmers' decisions 
on cropping practices. The strengths of radar data especially supported 
analyses at the earlier stages of plant development between seeding and 
heading. After the complete formation of the stand and in the subse-
quent phases of maturity and senescence, the optical data gained 
importance. 

This study is a step forward towards directly targeting explicit 
phenological stages when dealing with vegetation analyses from remote 
sensing data. Despite well-known limitations of national-scale pheno-
logical observations, we proposed a calibration scheme that enables to 
combine such data with field level time series. Although we were able to 
make field-level predictions, a field-level validation in the strict sense 
was not possible here. However, based on an adapted validation strat-
egy, we were able to valorize the unique and Germany-wide phenology 
reference dataset and to underline the additional value and necessity of 
field-level reference data for future model optimization. We further 
demonstrated that DL models provide great flexibility that allows 
adapting them to a broad range of problems and tasks. 

Overall, this study adds to our knowledge base on remote sensing- 
based high-resolution mapping of vegetation productivity from space. 
The proposed method is ready to be applied for area-wide assessments of 
vegetation phenology at the national level and beyond. It can next be 
tested for investigating management-related influences on crop 
phenology at the field level and, thus, cropland use intensity. Ultimately, 
it may be used for the evaluation of agricultural and environmental 
policies. 
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Appendix A

Fig. A1. Predicted start of the different phenological stages for an exemplary winter wheat field with a selection of optical and SAR-based input features. Dashed 
vertical lines show the prediction, segments in the background give the reference date including a buffer of 6 days.  
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Fig. A2. Maps of predicted and reference dates for the seeding of winter wheat in Germany between 2017 and 2020.   
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Fig. A3. Maps of predicted and reference dates for the leaf development of winter wheat in Germany between 2017 and 2020.   
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Fig. A4. Maps of predicted and reference dates for the heading of winter wheat in Germany between 2017 and 2020.   
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Fig. A5. Maps of predicted and reference dates for the milk ripeness of winter wheat in Germany between 2017 and 2020.   
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Fig. A6. Maps of predicted and reference dates for the yellow ripeness of winter wheat in Germany between 2017 and 2020. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A7. Difference of predictions and reference dates for the seeding of winter wheat in Germany between 2017 and 2020.  

Fig. A8. Difference of predictions and reference dates for the leaf development of winter wheat in Germany between 2017 and 2020.   

F. Lobert et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 298 (2023) 113800

25

Fig. A9. Difference of predictions and reference dates for the stem elongation of winter wheat in Germany between 2017 and 2020.  

Fig. A10. Difference of predictions and reference dates for the heading of winter wheat in Germany between 2017 and 2020.   
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Fig. A11. Difference of predictions and reference dates for the milk ripeness of winter wheat in Germany between 2017 and 2020.  

Fig. A12. Difference of predictions and reference dates for the yellow ripeness of winter wheat in Germany between 2017 and 2020. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A13. Difference of predictions and reference dates for the harvest of winter wheat in Germany between 2017 and 2020.  
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Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., 
Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., 
Nordli, Ø., Peñuelas, J., Pirinen, P., Remǐsová, V., Scheifinger, H., Striz, M., 
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