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Abstract

SNPscan breeder is a software that enables the simulation of 
breeding programs using simulated individual whole genome 
data, different genetic architectures of a trait of interest, diffe-
rent mating designs and different selection criteria, i.e. pheno-
types, breeding values from progeny tests, marker-assisted 
selection (MAS) and genomic selection (GS). The impact of 
breeding population size, mating design, selection intensity, 
genetic architecture, heritability and selection criteria on gene-
tic gains, kinship, inbreeding and genetic diversity can be eva-
luated to optimize the breeding program. A special feature is 
the possibility for post-hoc analysis of different strategies to 
identify causal SNPs and allele effects within the frame of 
genome-wide association studies (GWAS). The proportion of 
true and false positive SNPs and the correlation of estimated 
and true allelic effects can be measured and the overall impact 
of their use for MAS on the success of the breeding program 
can be tested.

Keywords: gBLUP, genetic gain, genomic selection, GWAS, mating 
design, marker-assisted selection, stochastic simulation

Introduction

Since decades, computer simulations are used to help bree-
ders to make decisions on the choice of individuals for the next 
breeding cycle and on the different options for the breeding 
strategy (Bellmann and Ahrens 1966, Sun et al. 2011). Alt-
hough, there are quite a few simulation tools and R-packages 
available to analyse different breeding strategies such as 
AlphaSimR (Gaynor et al. 2021), Xsim (Chen et al. 2022) and 
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ADAM-Plant (Liu et al. 2019), there is still a gap for a user friend-
ly windows program that enables simulations of simple geno-
me-wide SNP data, implements user-defined genetic architec-
tures and offers a broad set of selection criteria for forward 
simulations in breeding programs. Such functionalities are 
essential to optimise sample designs for the number of indivi-
duals and SNPs needed for accurate genomic predictions and 
marker-assisted selection based on GWAS results. Our program 
SNPscan breeder aims to fill this gap. In an example we use the 
program to compare the impact of different selection criteria 
in a simple tree breeding program.

Program description

With SNPscan breeder the user defines distribution parameters 
for the generation of genomes and the genetic architecture of 
the trait. Then the program generates individual genomes and 
phenotypes according to these parameters. The options 
“Mating” and “Selection” offer various alternatives for the 
mating design and the selection of parents for stochastic simu-
lations of breeding cycles. The genomes of all individuals are 
stored in separate text files and can be aggregated and expor-
ted for further downstream analyses as files in phased Hap-
Map-format (figure 1). 

Chromosomes and SNPs
SNPscan breeder assumes diploid sets of chromosomes and co-
sexual individuals (monoecious or hermaphroditic). The user 
defines the number of chromosomes, the total number of 
SNPs, the genome size and the average number of crossing-
overs per chromosome. The SNPs are equally distributed over 
all chromosomes. The chromosomes have equal sizes. E. g., a 
genome with 20 chromosomes and a total of 2 million SNPs 
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will have 100,000 SNPs per chromosome. The probability for a 
crossing-over is identical along the chromosomes. Other para-
meters to be specified by the user are the proportions of bi-
allelic, tri-allelic and tetra-allelic SNPs as well as the distribution 
of frequencies of the common alleles at the SNPs. Re-sequenci-
ng data of different tree species, specifically beech (Fagus syl-
vatica), oak (Quercus robur) and ash (Fraxinus excelsior) are used 
as default values (Plomion et al. 2016, Sollars et al. 2017, Pfen-
ninger et al. 2021).

Genetic architecture
The user defines the name of a trait, its mean phenotypic value 
in the founder or wild population, the variance of the phenoty-
pes and the heritability of the trait. Further a parameter cont-
rolling the inbreeding depression on the phenotypes as a func-
tion of the inbreeding coefficient can be specified. The program 
uses a linear relationship between inbreeding coefficient and 
trait value reduction (Durel et al. 1996). The number of causal 
SNPs is specified and one of three alternative functions for the 
distribution of the allelic effects selected: a) negative exponen-
tial distribution, b) normal distribution, or c) uniform distributi-
on. 

Phenotypes
The phenotypes of each individual i (pi) are computed as the 
sum of the mean phenotype of the population at the start (𝑝̅𝑝  
= parameter of the model), the genetic value (gi) and an envi-
ronmental value (ei) using the following formula: 

𝑝𝑝𝑖𝑖 = 𝑝̅𝑝 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 

Genetic value (genomic breeding value)
The genetic values of each individual i (gi) are calculated as the 
sum of all additive effects at each causal locus j (aij) plus a cor-
rection m used to centre the mean of all genetic values of the 
starting population to zero, multiplied with the scale factor sf: 

𝑔𝑔𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑚𝑚 𝑥𝑥 𝑠𝑠𝑠𝑠
𝑛𝑛

𝑗𝑗=1
 

The scale factor (sf) is   defined  as: 𝑠𝑠𝑠𝑠 = √(𝜎𝜎𝑝𝑝2 ∗ ℎ2)
σ𝑔𝑔−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

𝜎𝜎𝑝𝑝2  = variance of the phenotypes in the population (parameter 
of the model)
h2 = heritability (parameter of the model)
𝜎𝜎𝑔𝑔−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  = standard deviation of the genetic values of the 
population at the start

Environmental values
Environmental values (ei) are sampled from a normal distributi-
on with a mean of zero and a standard deviation of environ-
mental effects: N(0,𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒), 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = √(𝜎𝜎𝑝𝑝2 − ℎ2 ∗ 𝜎𝜎𝑝𝑝2) 

Mating design
Common mating designs of plant breeding programs (Eriksson 
et al. 2013) have been implemented in SNPscan breeder:

●	 Diallel
●	 Half-diallel
●	 Disconnected half-diallel
●	 Factorial matings (common tester)

Further the user can select “Random mating” and specify the 
number of top ranked seed contributors (N top females) and 
pollen donors (N top males).

Selection 
The user can specify different options on how to select the 
parents for the next mating cycles:

“Phenotypes of adults”: Adults are ordered according to 
their phenotypes and the defined proportion of individuals are 
selected.

“Phenotypes of progenies”: For each adult a given number 
of offspring (“N progenies”) are simulated. The mating is ran-
dom among all adults. The mean phenotype of the offspring is 
then used to rank the adults (estimate the genomic breeding 
values; backwards selection). 

“GWAS estimates of allele effects”: This option is possible if 
a genome-wide association study (GWAS) has been performed 
on the simulation results and the estimated allelic effects 
stored. The program will ask for the according file. During the 
simulations, the breeding values of the adult individuals are 
estimated as the sum of the allelic effects at all identified asso-
ciated SNPs. 

“Genomic selection (gBLUP) single generation”: SNPscan 
breeder uses the function “kin.blup” integrated in the R-packa-
ge “rrBLUP” (Endelman 2011, R-Core-Team 2022). The algo-
rithm computes “Predicted Genomic Breeding Values (PGBV)“ 
for all individuals in the actual generation F using a selected 
proportion of phenotypes as training data and the kinship 
matrix of all individuals. The user can choose the number of 
SNPs used for the predictions. Optionally, the causal SNPs can 
be excluded. During the simulations, SNPscan breeder creates a 
subdirectory “R” in the project folder to store the input files, the 
R-script and the results. 

“Genomic selection (gBLUP) cross generations”: Again, the 
phenotypes of a selected proportion of individuals of generati-
on F1 are used as a training population and the individuals of 
the generation F are used as the test population. The algorithm 
computes “Predicted Genomic Breeding Values (PGBV)“ for all 
individuals in generation F using the phenotypes of generati-
on F1 and the kinship-matrix of all individuals in both genera-
tions. 
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Figure 1 
Scheme on the different elements and features of the simulation program SNPscan breeder
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Figure 2 
Genetic gains in a simulated simple tree breeding program using different criteria to select the mating partners of the next 
breeding cycle: phenotypes (Phenotypes), breeding values of progenies-tests (Progenies, backwards selection), and single 
generation genomic selection with 50 % training and 50 % test data (Genomic selection), the error bars indicate the standard 
deviation of 10 repetitions.

Genetic diversity
Using 100 “dummy” loci with unique alleles for all individuals in 
the initial founder generation SNPscan breeder computes 
important population genetic parameters: 

“Inbreeding F (0-1)”: This is the inbreeding coefficient F 
defined as the probability that the two alleles of a homozygous 
genotype are identical by descent.

“Kinship (0-1)”: This is defined as the average probability 
that alleles at a locus of pairs of individuals are identical by 
descent.

“Rep.pop.size (Np)”: The reproductive effective population 
size is the effective number of parents contributing to the actu-
al generation of offspring weighted by the relative fitness: 

1 ≤ 𝑁𝑁𝑝𝑝 =
1

∑𝑤𝑤𝑖𝑖2
≤ 𝑁𝑁  with (wi) = proportion of successful 

male and female gametes of each individual.
“Inbreed. Pop. size (Ne)”: The inbreeding effective popula-

tion size: 1 ≤ 𝑁𝑁𝑒𝑒 = 1
2× ∆F, , with ∆F  = difference of inbreeding 

coefficient of current and last generation (Falconer and Mackay 
1996).

Genome-wide association studies (GWAS)
SNPscan breeder simulates parents and offspring that can be 
used for genome-wide association studies (GWAS). For this, 
simulated genomes of parents or offspring are stored as a Hap-
Map-file and their phenotypes are stored in a text file. There are 
many different programs and R-scripts available to run GWAS. 
For the interaction with SNPscan breeder we have selected the 
program Tassel Version 5.0 (Bradbury et al. 2007). The Tassel 
results on GWAS using the GLM and MLM algorithm can be loa-
ded into SNPscan breeder for post-ex analysis. For user defined 
thresholds of the association probabilities, the proportion of 
true and false positive associated SNPs are analysed. The esti-
mated allelic effects are compared to the true effects using the 
Pearson’s correlation coefficient. Further correlation coeffici-
ents between true and estimated individual breeding values 
are computed considering the identified SNPs and their allelic 
effects. Finally, the user can store the allelic effects of all SNPs 
above the probability threshold as a file used for marker-assis-
ted selection (MAS) in forward simulations with SNPscan bree-
der. 
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“Ancestor diversity (Av)”: This is the effective number of 
genetically unrelated ancestors contributing to the actual 
generation of offspring. During the generation of the parent 
genomes, each individual is assigned unique alleles at 100 loci 
i. Thus, in the beginning of the simulation the diversity at these 
“ancestor alleles” is equal to the initial number of parents (N). Av 
is computed as the average diversity at all 100 ancestor loci:

𝐴𝐴𝑣𝑣 =
∑ 1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖2𝑁𝑁
𝑗𝑗=1

100
𝑖𝑖=1

100  
 

Example

We simulated a simple tree breeding program and tested the 
impact of different selection criteria on the genetic gain. In the 
scenarios it was a hermaphroditic tree species with 10 chromo-
somes, a genome size of 500 megabase pairs (Mbp) and ave-
rage crossing over of 1.5 per chromosome. The trait of interest 
had a heritability of 0.3 and 2000 causal SNPs with exponenti-
ally distributed allelic affects according to the default settings 
of SNPscan breeder.

We simulated 1 million SNPs and used five generations of 
random mating with 10 % of the individuals as seed trees as a 
burn-in phase to produce the founder generation. This proce-
dure created an average kinship between the individuals of the 
founder generation of 0.015. Then we simulated two breeding 
cycles. In each breeding cycles the top 30 individuals were 
selected as mating partners. With these 30 trees a half-diallel 
(selfing excluded) was used as mating design. So, we simulated 
435 different parent combinations. In each combination 5 
seeds were produced, summing up to 2,175 seeds per genera-
tion. As selection criteria of the top 30 trees (1.4 % of all indivi-
duals) we used: a) the phenotypes, b) the estimated breeding 
values from progeny tests (backwards selection), and c) single 
generation genomic selection based on 10,000 SNPs and the 
gBLUP algorithm (50 % training individuals). Each scenario was 
repeated 10 times. 

After two breeding cycles the highest cumulative genetic 
gain with about 31 % was realised in the simulated selection 
based on the backwards selection using progeny tests (figure 
2). A good performance was also observed for the single gene-
ration genomic selection with an accumulated genetic gain of 
more than 18 %. The selection based on phenotypes ended 
with a cumulative genetic gain less than 14 %. The conclusions 
for practical tree breeding programs should consider the extre-
mely different workloads, costs and time needed for the diffe-
rent selection strategies to generate a certain genetic gain per 
unit time (Chamberland et al. 2020). The example illustrates 
the potential of SNPscan breeder to optimise tree breeding pro-
grams.

Discussion

What makes SNPscan breeder special?
Although there are quite a few other simulation programs and 
R-packages available to simulate breeding strategies and to 
study sample strategies, SNPscan breeder has special features 
that make it a useful tool. For example, it is a user-friendly win-
dows application that allows unexperienced users to get star-
ted quickly. This offers also the possibility to use the program 
for teaching purposes. Possible disadvantages of a windows 
application in terms of computing speed are compensated by 
the broad use of parallel programming that enables a maxi-
mum number of CPU cores at the same time.

The main focus of the program is on the simulation of 
selection with many different criteria to identify the parents 
used for the next breeding cycle. To this end, selection by phe-
notypes, breeding values from progenies tests (backwards 
selection), genomic selection and MAS based on allelic effects 
estimated by GWAS are implemented. Import and export 
options are available to directly interact with the widely used 
software TASSEL (Bradbury et al. 2007) and the R-package 
rrBLUP (Endelman 2011). A unique feature is the post-hoc ana-
lysis of GWAS performance and the conclusions that can be 
drawn on the effectiveness of a given sample strategy and 
used GWAS algorithm to identify SNPs and estimate allelic 
effects for user-defined genetic architectures.

Compared to other software such as GeneEvolve (Tahmas-
bi and Keller 2017) SNPscan breeder makes strong simplifica-
tions of the genome but still maintains important characteris-
tics such as total genome size, number of SNPs, segregation 
and crossing-over that allow the study of different sample stra-
tegies. The software XSim version 2 (Chen et al. 2022) and 
ADAM-Plant (Liu et al. 2019) are more sophisticated with 
regard to the simulation of genomic selection in a breeding 
program and complex crossing schemes but they do not 
implement MAS based on actual GWAS results. 

Outlook

We will focus future work on the integration of real genomic 
data with SNPscan breeder to enable the simulation of more 
realistic breeding programs such as breeding programs with 
infusion of unrelated individuals and the sub-division into 
several breeding populations. For further testing the potential 
of MAS we will create additional links to other GWAS analysis 
programs such as GAPIT (Wang and Zhang 2021) for more 
advanced GWAS algorithms such as BLINK (Huang et al. 2019). 
Additionally, we will study in more detail the possibilities of 
MAS based on GWAS with extreme phenotypes, that is selec-
ting only the edges of the phenotypic distribution. The use of 
genomic selection methods in the field of forest tree breeding 
is rapidly increasing. It will be interesting to assess the actual 
impacts on tree growth and quality considering different levels 
of inbreeding depression. Other aspects to be covered in 
future developments are breeding programs with multiple 
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traits and complex selection indices, genotype-environment 
interactions, pleiotropy and epistatic effects. 

Data availability

SNPscan breeder has been programmed with Visual Studio 
2019 as a .NET application (framework 4.8) and compiled as 
64-bit versions for the operating system Microsoft Windows 
(Windows 11). The program, the user manual and different 
videos that explain the program are available on our website:
https://www.thuenen.de/en/institutes/forest-genetics/soft-
ware/SNPscan
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