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Abstract

Advances in DNA sequencing technologies allow the sequencing of whole genomes of thousands of individuals and provide several million 
single nucleotide polymorphisms (SNPs) per individual. These data combined with precise and high-throughput phenotyping enable gen-
ome-wide association studies (GWAS) and the identification of SNPs underlying traits with complex genetic architectures. The identified 
causal SNPs and estimated allelic effects could then be used for advanced marker-assisted selection (MAS) in breeding programs. But could 
such MAS compete with the broadly used genomic selection (GS)? This question is of particular interest for the lengthy tree breeding strat-
egies. Here, with our new software “SNPscan breeder,” we simulated a simple tree breeding program and compared the impact of different 
selection criteria on genetic gain and inbreeding. Further, we assessed different genetic architectures and different levels of kinship among 
individuals of the breeding population. Interestingly, apart from progeny testing, GS using gBLUP performed best under almost all simu-
lated scenarios. MAS based on GWAS results outperformed GS only if the allelic effects were estimated in large populations (ca. 10,000 
individuals) of unrelated individuals. Notably, GWAS using 3,000 extreme phenotypes performed as good as the use of 10,000 phenotypes. 
GS increased inbreeding and thus reduced genetic diversity more strongly compared to progeny testing and GWAS-based selection. We 
discuss the practical implications for tree breeding programs. In conclusion, our analyses further support the potential of GS for forest tree 
breeding and improvement, although MAS may gain relevance with decreasing sequencing costs in the future.
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Introduction
Due to the advance of next-generation sequencing technologies, 
the application of large marker sets with thousands of single nu-
cleotide polymorphisms (SNPs) to estimate genomic breeding va-
lues [genomic prediction, genomic selection (GS)] has become a 
common practice in animal and plant breeding (Misztal et al. 
2020; Sandhu et al. 2022). The effectiveness and accuracy of the 
genomic predictions have been studied with stochastic simulation 
models (Pérez-Enciso et al. 2017) and deterministic models 
(Grattapaglia and Resende 2011). In contrast to the success of 
GS, marker-assisted selection (MAS) could not fulfill the expecta-
tions in breeding programs (Grattapaglia and Kirst 2008; Kiszonas 
and Morris 2018) despite 4 decades of research and development 
(Nadeem et al. 2018). The main reason for this failure was the un-
derestimated complexity of the genetic architecture for most 
traits of interest with many causal SNPs, most of them with small 
effects. In most studies, the number of causal gene markers was 
strongly underestimated and their effect sizes were overesti-
mated (Grattapaglia 2022). Initially, the main focus of MAS was 
on the search for quantitative trait loci (QTLs), defined as regions 
of the genome associated with a particular phenotypic trait. Most 
studies used linkage mapping in biparental populations to iden-
tify QTLs (Würschum 2012). In the beginning, QTL studies were 

performed with a relatively small number (<1000) of genetic mar-
kers (RAPDs, AFLPs, and SSRs). The total amount of phenotypic 
variation explained by the QTLs was small due to the polygenic 
nature of most studied traits and due to the low proportion of 
loci segregating for the causal alleles in biparental populations. 
Further, the application of the QTLs to other unrelated material 
was a challenge. With the advance of DNA sequencing techni-
ques, many more markers, especially SNPs, have been used to de-
tect QTLs, and the first genome-wide association studies (GWAS) 
in plants were performed to detect causal SNPs in populations 
of unrelated individuals (Atwell et al. 2010). GWAS identified 
many more causal loci compared to QTL mapping. However, these 
studies were mostly done with arrays of only a few thousand 
SNPs, so again, the SNPs identified in GWAS relied on linkage to 
the true causal variants and thus were difficult to use for unre-
lated individuals. Although the proportion of SNPs identified and 
the proportion of phenotypic variation explained increased a lot, 
it was still not enough to effectively estimate individual breeding 
values for a breeding program. As demonstrated in human genet-
ics, the use of whole-genome sequencing data can have a large im-
pact on GWAS results (Wainschtein et al. 2022). Causal SNPs could 
be identified directly without relying on linkage or imputation, 
and with increasing sample sizes, more and more of the “missing 
heritability” could be recovered (Yengo et al. 2022). These results 
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raise the question of whether an advanced MAS approach, based 
on such whole-genome GWAS, would perform equal or even bet-
ter than GS in a breeding program.

MAS and GS are of particular interest to tree breeding because 
of the difficulty of phenotyping large and often heterogeneous 
breeding populations and the long duration of breeding cycles. 
Even for the fast-growing Eucalyptus species, a breeding cycle 
takes at least 8 years (Mphahlele et al. 2020); for most other tree 
species, a breeding cycle takes decades. The limitation is caused 
by the late reproductive maturity and long phenotyping phase re-
quired for growth-related traits of at least one-third of the rotation 
period. This is the reason why GS is now “climbing the slope of en-
lightenment” in tree breeding programs (Grattapaglia 2022). In 
2022, there were already 26 published GS studies for forest trees 
focusing on species of the genera Eucalyptus, Picea, and Pinus (Isik 
2022). Usually, the breeding programs of these species include a 
few dozen to a few hundred individuals as the founder population, 
which were used to generate thousands of offspring for further se-
lection in the following breeding cycles (Vidal et al. 2017; da Silva 
et al. 2019; Isik and McKeand 2019; Li et al. 2020). Modern tree 
breeding programs use SNP arrays with  5,000–150,000 SNPs as 
sources for genetic markers (Grattapaglia et al. 2011; Kastally 
et al. 2022; Nantongo et al. 2022). So far, whole-genome data 
were practically not used in forest tree breeding programs 
(Grattapaglia 2022). However, such data may enable the identifi-
cation of causal SNPs also for complex traits as a basis for MAS.

To assess the potential of different breeding strategies, simula-
tion studies can provide useful information (Liu et al. 2019). The 
simulation approaches in tree breeding used so far did not run 
on the scale of whole genomes with large numbers of markers 
(Resende et al. 2017; Grattapaglia 2022). Existing simulation stud-
ies explored the potentials of GS in tree breeding (Iwata et al. 2011; 
Resende et al. 2012; Li and Dungey 2018) but did not investigate the 
potential of whole-genome sequencing to identify causal SNPs 
and their use for advanced MAS. Here, we used our new simula-
tion program SNPscan breeder to compare the expected perform-
ance of advanced MAS, GS, and the traditional selection criteria 
phenotype and progeny testing (backward selection) in a simple 
tree breeding program. Further, we investigated in different scen-
arios the impact of the number of genotyped and phenotyped in-
dividuals, the complexity of genetic architecture, the level of 
kinship among individuals, and the GWAS algorithm on the dy-
namics of genetic gain and inbreeding in a tree breeding program.

Methods
Simulation scenarios
Here, we used our new stochastic simulation model SNPscan breed-
er (Degen and Müller 2023) to simulate a simple breeding program 
typical for a tree species with closed recurrent selection and sepa-
rated generations of a monoecious or hermaphroditic, diploid spe-
cies. The species had 10 chromosomes and a genome of 500 
million base pairs (Mbp). In all scenarios, we simulated 1 million 
SNPs equally distributed over the genome, resulting in 100,000 
SNPs per chromosome. For the proportions of bi-allelic, tri-allelic, 
and tetra-allelic SNPs as well as the distribution of minor allele 
frequencies (MAFs), we used the default values of SNPscan breeder, 
that is 95% bi-allelic, 4% tri-allelic, and 1% tetra-allelic as well as 
40% MAF 0.01–0.05, 15% MAF 0.05–0.1, and 45% MAF 0.1–0.5. 
These values were based on population resequencing data of dif-
ferent tree species, specifically beech (Fagus sylvatica), oak (Quercus 
robur), and ash (Fraxinus excelsior). For details on these genomic 
data, see Sollars et al. (2017), Pfenninger et al. (2021), and 

Plomion et al. (2016). The probability for a crossing-over was iden-
tical along the chromosomes, leading on average to 1.5 crossing- 
overs per chromosome.

We assumed a single target trait. The narrow-sense heritability 
(h²) was 0.5. The phenotype of each individual i (pi) was computed 
as the sum of the mean phenotype of the population at the begin-
ning ( p̅ = parameter of the model), the genetic value (gi), and an 
environmental value (ei): pi = p̅ + gi + ei.

The genetic value of individual i (gi) was calculated as the sum 
of all additive effects at each causal locus j (aij) + a correction m to 
centralize the mean of all genetic values of the initial population 
to 0 multiplied with the scale factor (sf): gi =

n
j=1 aij + m × sf.

The sf was defined as sf =
����������
(σ2

p ∗ h2)


/σg−values [σ2
p = variance of the 

phenotypes in the population (parameter of the model); h2 = her-
itability (0–1, parameter of the model); σg−values = standard devi-
ation of the genetic values of the population in the beginning].

Environmental values (ei) were sampled from a normal distri-
bution with a mean of 0 and the standard deviation of environ-
mental effects: N(0, σenv), σenv =

����
(σ2

p


− h2 ∗ σ2

p).
In each generation, 1,000 trees were generated. In scenario 1, 

we had no burn-in. In scenarios 2 and 3, we ran 20 generations 
as a burn-in, with 100% of the males contributing to the random 
mating but only 10% randomly selected trees used for the harvest 
of seeds for the next generation. This burn-in created a gradually 
varying level of kinship among the individuals, with an average of 
0.04.

In scenarios 1 and 2, the trait was encoded by 200 causal SNPs 
and in scenario 3 by 20 SNPs. The effects at these SNPs followed a 
standard normal distribution with a mean of 0 and a standard de-
viation of 1. There was random mating among all selected par-
ents. In the forward simulations, the top 10% of parents for the 
next breeding cycle were selected according to the following selec-
tion criteria (Fig. 1): 

a) Phenotype of adults => Phenotypes
b) Breeding values estimated by progeny tests (100 offspring 

per tree generated by random mating among all 1,000 trees). 
The mean phenotype of the offspring was used to rank the 
adults (estimate the genomic breeding values in a backward 
selection) => Progenies

c) Single-generation GS with gBLUP using 10,000 randomly se-
lected SNPs (excluding causal SNPs) recalculated in each 
generation. Here, all individuals provided genotypes and 
phenotypes to the analysis, and thus, there was no separ-
ation between training and test data sets. For this, 
SNPscan breeder used the function “kin.blup” integrated in 
the R package “rrBLUP” (Endelman 2011; R Core-Team 
2022). During the simulations, SNPscan breeder created a 
subdirectory “R” in the project folder in order to store the in-
put files, r-script for the calculation and the results. The gen-
otypes at the 10,000 SNPs were transformed in a −1, 0, 1 
matrix for bi-allelic markers. The Euclidian distance among 
the so-transformed genotypes served as the estimator of the 
genomic matrix. The algorithm computes “Predicted 
Genomic Breeding Values (PGBV)” for all individuals in the 
actual generation F with the help of their phenotypes and 
the kinship matrix of all individuals => gBLUP-singleG

d) Cross-generation GS with gBLUP using 10,000 randomly se-
lected SNPs (excluding causal SNPs) recalculated for each 
generation with phenotypes of Fn-1 and genotypes of Fn-1 
and Fn. Here, the kinship matrix and the phenotypes of 
Fn-1 serve as the training set and the next-generation Fn is 
the test data set => gBLUP-crossG. The cross-generation 
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GS started in the second breeding cycle. In the first breeding 
cycle, it was a single-generation GS since no training data of 
a former generation existed.

e) MAS using estimated allelic effects of the 100 SNPs with the 
lowest P-values in a GWAS with the mixed linear model 
(MLM) using the 3,000 phenotypes and genomes of an F1. 
The individuals of the F1 were generated with random mat-
ing of all 1,000 individuals of F0. The simulated genomes of 
the offspring were stored as a HapMap file, and their pheno-
types were stored in a text file. Then, the GWAS were com-
puted with Tassel version 5.0 (Bradbury et al. 2007). During 
the simulations, the breeding values of individuals are esti-
mated as the sum of the allelic effects at all identified (true +  
false positive) associated SNPs => MLM-3000-F1

f) MAS using estimated allelic effects of the 100 SNPs with the 
lowest P-values in a GWAS with the general linear model 
(GLM) using 3,000 unrelated individuals of the founder 
population => GLM-3000-Fd

g) MAS using estimated allelic effects of the 100 SNPs with the 
lowest P-values in a GWAS (GLM) using 10,000 unrelated in-
dividuals of the founder population => GLM-10000-Fd

All scenarios were repeated 10 times.
It should be noted that in practical breeding programs, the ap-

plication of the different selection criteria results in huge differ-
ences in costs, labor requirements, and time needed to complete 
the selection (see Discussion).

Simulation outputs
Genetic gain
The genetic gain was calculated as the relative difference of the 
population mean at the target trait between 2 consecutive 
generations.

Inbreeding F (0–1)
The inbreeding coefficient F was computed as the average prob-
ability that the 2 alleles of a homozygous genotype are identical 
by descent. It was realized in the simulations by using 100 “dum-
my” loci with unique alleles for all individuals in the initial foun-
der population. In consecutive generations, homozygotes at these 
loci represent alleles that were identical by descent.

Post hoc analysis of GWAS accuracy
The Tassel (Bradbury et al. 2007) results of GWAS using the GLM 
and MLM algorithms have been loaded into SNPscan breeder for 
post hoc analysis. For user-defined thresholds of the association 
probabilities, the proportion of true- and false-positive associated 
SNPs was analyzed. Here, we selected the threshold so that 100 
SNPs are identified as significant. The estimated allelic effects 
were compared to the true effects using the Pearson correlation 
coefficient. Further, correlation coefficients between true and es-
timated individual breeding values were computed considering 
the identified SNPs and their allelic effects.

Fig. 1. Schematic presentation of the simulated tree breeding program for the first 2 breeding cycles. The breeding cycles 3–5 followed the scheme of the 
second breeding cycle.
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Results
Genetic gain
The selection based on progeny tests performed best in all tested 
scenarios, irrespective of the number of causal variants (20 vs 200) 
or the level of kinship (0 vs 0.04). The progeny tests delivered high 
genetic gains of more than 20% in the first breeding cycle and cu-
mulative genetic gains between 40 and 70% at the end of 5 cycles 
(Fig. 2a–f). In both scenarios with a burn-in phase and a resulting 
kinship structure, GS (gBLUP-singleG and gBLUP-crossG) outper-
formed the selection by phenotypes. As expected, the single- 
generation GS (gBLUP-singleG) delivered slightly better results 
compared to the cross-generation GS (gBLUP-crossG). Overall, 
MAS based on different GWAS analyses resulted in the lowest gen-
etic gains. Irrespective of the genetic architecture, MAS could not 
compete even against simple selection by phenotypes and was 
clearly outperformed by GS. The only exception where MAS 
achieved higher genetic gains than GS was the first breeding cycle 
in a population of unrelated individuals; however, here, the selec-
tion based on phenotypes was on a similar level. When the target 
trait is controlled by a small number of causal variants (such as 20 
SNPs in scenario 3), MAS can lead to rapid fixation of the identified 
alleles in the breeding population and prevent further genetic 
gains. This is illustrated by using allelic effects estimated by a 
GWAS with 3,000 individuals in an F1 (MLM-3000-F1) where no 
additional genetic gain was realized after breeding cycle 1.

Precision of GWAS
In each scenario, we used MAS with allelic effects estimated in 3 
different GWAS subscenarios. First, we ran a MLM using the gen-
omic data and kinship information for 3,000 individuals created in 
an F1 (MLM-3000-F1). In addition, we estimated allelic effects 
using 2 GLM analyses with 3,000 (GLM-3000-Fd) and 10,000 
(GLM-10000-Fd) unrelated individuals from the founder popula-
tion before the 20 generations of burn-in. In order to estimate 

the potential for a GWAS using extreme phenotypes, we selected 
from 10,000 simulated phenotypes the largest 1,500 and smallest 
1,500 and repeated the GLM (GLM-3000-extreme). The probability 
thresholds were set so that for each of the 9 GWAS, the top 100 
SNPs were selected (Table 1). Generally, the use of unrelated indi-
viduals in the GWAS outperformed the use of related individuals 
in terms of the proportion of true-positive SNPs and cumulative 
genetic gains after the 5 breeding cycles (Table 1). For the scen-
arios with 200 causal SNPs, the increase in the number of indivi-
duals in the GWAS led to a higher number of identified SNPs, 
more precise estimates of the allelic effects, and higher genetic 
gains. Interestingly, nearly the same proportions of identified 
true-positive SNPs and genetic gains were realized with a GWAS 
using only the 3,000 extreme phenotypes (GLM-3000-extreme). 
The correlation between the estimated and true allelic effects var-
ied between 0.60 and 0.96 and exceeded 0.9 in all subscenarios 
using 10,000 individuals or extreme phenotypes (“r allele effects” 
in Table 1).

Inbreeding
In all tested scenarios, the inbreeding increased in each breeding 
cycle (Fig. 3a–c). However, the increase was different depending 
on the selection criteria. In scenario 1 with 200 causal variants 
and no burn-in, inbreeding values between 0.051 and 0.117 were 
observed in the fifth breeding cycle with an average ΔF per breed-
ing cycle of 0.010–0.023 (Fig. 3a). In scenarios 2 and 3 with 200 and 
20 causal variants and a burn-in, inbreeding reached values be-
tween 0.072 and 0.122 (ΔF per breeding cycle of 0.007–0.017) in 
scenario 2 and values between 0.065 and 0.117 in scenario 3 (ΔF 
per breeding cycle of 0.006–0.017). The large genetic gains of the 
GS are linked to a stronger increase of inbreeding (Fig. 4). The se-
lection based on progeny tests had the best combination of high 
genetic gains and low levels of inbreeding. The selection based 
on GWAS resulted in lower levels of inbreeding compared to GS 

Fig. 2. Genetic gains achieved by different selection criteria over 5 generations in 3 simulated breeding populations. a–c) Average cumulative genetic 
gains (n = 10) over 5 breeding cycles are shown for selection based on gBLUP, i.e. GS (blue), GWAS, i.e. MAS (green and yellow), phenotypes (orange), and 
progeny tests (red). d–f) Average genetic gains (n = 10) per breeding cycle (generation) are shown for the different selection criteria. Error bars represent 
the standard deviation of the mean. The 3 simulated breeding populations exhibit different genetic architectures, with 200 a, b, d, e) vs 20 c, f) causal 
variants, and different levels of kinship, with unrelated individuals a, d) vs average kinship values of approximately 0.04 b, c, e, f).
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but was in most cases not as effective in terms of genetic gains, as 
detailed above.

Discussion
Good performance of GS and moderate gains from 
MAS based on GWAS
In our simulation study, the GS performed better in almost all 
cases compared to MAS scenarios using allelic effects estimated 
with GWAS. The cross-generation GS (gBLUP-crossG) provided 
nearly the same genetic gains as the single-generation GS 
(gBLUP-singleG) in most cases. This is of high relevance for prac-
tical breeding programs with trees because it suggests that an ef-
fective selection of future parents can be done without 
phenotypes and thus several years earlier. The MAS based on 
GWAS with large sample sizes of unrelated individuals outper-
formed GS (first breeding cycle in scenario 1) only when there 
was no or only a weak kinship structure. Our results on GWAS 
using extreme phenotypes indicate that a strong reduction of 
sample size is possible without losing much performance. It 
should be noted that the GWAS results not only can be used for 
MAS but also provide information on the genetic architecture of 
traits, which can be implemented in GS models to improve predic-
tion accuracy (Morgante et al. 2018), as well as underlying candi-
date genes and biological processes, which can serve as a 
starting point for trait improvement via gene editing or smart 
breeding (Wei et al. 2021).

Our findings are in accordance with many other publications 
showing the usefulness of GS in breeding programs. This has 
been demonstrated with simulation studies on trees several times 
(Grattapaglia and Resende 2011; Iwata et al. 2011; Li and Dungey 
2018) and successfully implemented in practical breeding opera-
tions first in dairy cattle breeding programs (Su et al. 2010), then 
in agricultural crops (Robertsen et al. 2019), and little later in for-
estry species (El-Kassaby et al. 2012; Grattapaglia et al. 2018; 
Grattapaglia 2022; Isik 2022).

So far, the application of MAS in forest breeding programs 
could not be successfully established. Grattapaglia et al. (2018)
stated that while MAS was mostly fruitless, GS has been proven 
to be very successful. More positive conclusions on the application 
of GWAS results in breeding have been drawn from crop (Cortes 
et al. 2021; Saini et al. 2022) and animal breeding (Gutierrez-Reinoso 
et al. 2021). The main explanation for the difficulties in the applica-
tion of MAS has been the undiscovered complexity of the genetic 
architectures of the target traits with many causal loci with 

small effects and low frequencies. SNPs with larger effects and 
SNPs with moderate effects but higher allele frequencies are 
picked up in our simulations by GWAS. These alleles become fixed 
in the first breeding cycles and thereby limit additional genetic 
gains in the following cycles. With high numbers of unrelated in-
dividuals (>10,000), more causal SNPs can be identified, but be-
cause of their small allelic effects and low frequencies, their 
impact on the genetic gain is small. In most practical breeding 
programs, phenotyping is much cheaper than whole-genome re-
sequencing. We did some first promising simulations on GWAS 
with extreme phenotypes (e.g. the 15% edges of the phenotypic 
distribution). Here, we observe higher genetic gains even with 
relatively small sample sizes of 3,000 individuals; however, these 
scenarios need to be studied in more detail.

Critical increase of inbreeding
In the simulated breeding program, the increase of inbreeding per 
breeding cycle (ΔF) varied in the different scenarios between 0.006 
and 0.023. The highest ΔF values were observed for the scenarios 
with GS. It should be noted that we did not include the negative 
effects of inbreeding on the target trait and the tree fitness in 
our simulations and thus overestimated the growth of inbred in-
dividuals and potentially the expected genetic gains. This is also 
true for all other simulations on GS in trees that we are aware 
of. It is known that inbreeding in trees leads to a higher proportion 
of homozygotes and thus to inbreeding depression for many traits 
(Durel et al. 1996; Sorensen 1999). Higher mortality and lower 
growth performance of individuals with higher levels of inbreed-
ing would keep the level of inbreeding lower in real tree breeding 
programs. Nevertheless, lower growth performance of highly in-
bred individuals would also be picked up by GS. Thus, we probably 
overestimated in our simulations the level of inbreeding more 
than the expected genetic gains.

The optimization of a maximum genetic gain and minimal in-
breeding and thus low loss of genetic diversity has been a chal-
lenge for most breeding programs. Wu et al. (2016) studied the 
impact of inbreeding depression in a detailed simulation study 
for various tree breeding strategies. Although they did not directly 
cover the impact of GS, they found for all simulated breeding 
strategies a “considerable fixation of unfavorable alleles rendered 
the purging performance of selfing…” Generally, changes in the 
selected individuals for the mating and particular crossing 
schemes using mathematical algorithms are applied to achieve 
an optimization (Woolliams et al. 2015). Usually, breeding pro-
grams, especially animal breeding programs, mitigate inbreeding 

Table 1. Results of a post hoc analysis of the number and proportion of true-positive SNPs (N true SNPs, % true SNPs) in the simulated 
GWAS, the Pearson correlation coefficient between estimated and true allelic effects (r allele effects), and the mean cumulative genetic 
gain after 5 breeding cycles [cumulative genetic gain F5 (%)].

No. Scenario Name GWAS
P threshold (−log 10) for the top 100 

SNPs
N true 
SNPs

% true 
SNPs

r allele 
effects

Cumulative genetic gain F5 
(%)

1 1 MLM-3000-F1 4.0017 11 5.5 0.88 20.7
2 2 MLM-3000-F1 4.2420 5 2.5 0.60 32.0
3 3 MLM-3000-F1 7.9000 4 20.0 0.96 17.2
4 1 GLM-3000-Fd 4.3800 28 14.0 0.87 42.2
5 2 GLM-3000-Fd 4.5410 23 12.5 0.79 30.6
6 3 GLM-3000-Fd 4.8717 12 60.0 0.84 28.2
7 1 GLM-3000-extreme 5.7800 44 22.0 0.94 50.5
8 2 GLM-3000-extreme 6.0700 43 21.5 0.96 44.3
9 3 GLM-3000-extreme 9.9100 11 55.0 0.96 25.8
10 1 GLM-10000-Fd 7.1800 45 22.5 0.91 51.8
11 2 GLM-10000-Fd 7.6800 45 22.5 0.96 45.0
12 3 GLM-10000-Fd 11.9000 11 55.0 0.95 30.0
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by optimum contribution selection (OCS). This method aims to 
keep the average coancestry of the selected parents at a certain le-
vel and thus controls the short-term and long-term inbreeding. 
The OCS approach has been improved in several steps, and the 
most recent methods also consider different levels of genetic 
introgression (Kohl et al. 2020).

Our simulated ΔF values are similar to real tree breeding pro-
grams with comparable census numbers and selection intensity 
in the breeding population. For example, the breeding program 
of Pinus taeda in North Carolina started with 935 selected trees 
and controlled the inbreeding not to exceed 0.0625 (Isik and 
McKeand 2019). The optimal balance between the benefits of in-
creased genetic gains and the drawbacks of elevated levels of in-
breeding needs to be carefully considered for each specific 
breeding program.

Implications for practical tree breeding programs
We found in our simulations that the traditional concept of pro-
geny testing (backward selection) would lead to higher genetic 
gains compared to pure phenotypic selection, GS, and MAS. The 
main drawbacks of this approach are the enormous workload, 
time, and costs to establish and phenotype the many different 
progenies. In our simulations for each of the 1,000 potential par-
ents, a progeny test was performed. For that, the trees first need 
to reach reproductive maturity, and second, the phenotypes 
must exhibit a sufficiently stable age–age correlation in order to 
estimate the breeding values of the mother trees. For most traits, 
this is the case at one-third of the rotation period (Xie and Ying 
1996; Hanaoka and Kato 2022). The simple forward selection 
based on phenotypes does not come with additional costs for 
genotyping or the extra time and workload of progeny testing 
(backward selection), but still, at least one-third of the rotation 
period is needed to make an accurate measure of the phenotypes, 

and for traits with low heritability, the selection by phenotypes is 
imprecise.

With GS and MAS, the selection of individuals for the next 
breeding cycle can be done in the seedling stage without pheno-
typing. In order to make use of the saved years, 2 strategies are 
possible: (a) the selected individuals could be treated with meth-
ods to accelerate the reproductive maturity (phytohormones, 
top grafting, and in-house seed orchards), and (b) the top selected 
individuals could be vegetatively propagated and used as deploy-
ing clones for plantations after field testing (Li and Dungey 2018). 
Both the GS and the phenotypic selection rely on repeated pheno-
typing of the breeding population. In our simulations using MAS, 
we computed a GWAS only once for a diverse founder population 
of unrelated individuals. The results from this single GWAS were 
then used during the entire simulated breeding program. 
Depending on the target species, this methodological difference 
can have a profound impact on the feasibility of the whole pro-
gram. Thus, the repeated phenotyping needed in GS to keep the 
training population accurate will delay the breeding program by 
several years compared to selection by MAS. Moreover, there is 
the advantage of MAS to be more suitable for the integration of 
new unrelated material into a breeding program and whenever 
phenotyping is limiting.

Besides the technical considerations, cost–benefit analyses are 
important for a successful tree breeding strategy (Chamberland 
et al. 2020). GS and potentially MAS save years of a breeding pro-
gram and thus enlarge the genetic gain per unit time. They further 
save costs for phenotyping. But on the other side, the genotyping 
of SNP arrays comes with costs of about 20–30 US dollars (USD) per 
individual (Grattapaglia 2022) and whole-genome resequencing of 
species with the reference genome and small genome size with 
costs of 100–150 USD per individual, although prices may consid-
erably decrease in the next years. For GS, the optimal training 
population that needs to be phenotyped and genotyped has a 

Fig. 3. Inbreeding dynamics under different selection criteria over 5 generations in 3 simulated breeding populations. a–c) Average cumulative inbreeding 
values (n = 10) over 5 breeding cycles are shown for selection based on gBLUP, i.e. GS (blue), GWAS, i.e. MAS (green and yellow), phenotypes (orange), and 
progeny tests (red). d–f) Average inbreeding values (n = 10) per breeding cycle (generation) are shown for the different selection criteria. Error bars 
represent the standard deviation of the mean. The 3 simulated breeding populations exhibit different genetic architectures, with 200 a, b, d, e) vs 20 c, 
f) causal variants, and different levels of kinship, with unrelated individuals a, d) vs average kinship values of approximately 0.04 b, c, e, f).
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size of a few thousand individuals and should be updated every 
breeding cycle (Isik 2022). Thus, successful identification of a suf-
ficient proportion of causal SNPs in a GWAS for MAS requires a 
large investment at the beginning of a breeding program but 
no further cost later, while GS would require regular investments 
for the updating of the training data set. With decreasing costs for 
whole-genome resequencing, the calculation could be in favor of 
GWAS and MAS. The calculation of genotype–environment asso-
ciations based on whole-genome data may be another strategy 
to identify causal SNPs relevant for MAS (Sang et al. 2022; 
Mueller et al. 2023). With this approach, breeding for traits that 
are difficult to phenotype such as drought tolerance may be pos-
sible. This should be further explored in simulation and experi-
mental studies.

Conclusions
Using simulations of different breeding populations and strat-
egies, our results further support the potential of GS for forest 
tree breeding and improvement. Nevertheless, using whole- 
genome data of large sample sizes or extreme phenotypes for 
GWAS may provide advantages over GS under certain conditions 
and could revive efforts for MAS, especially when phenotyping re-
presents a bottleneck. We will study in more detail the possibil-
ities of MAS based on GWAS with extreme phenotypes. 
Considering the implementation of GS methods in the field of for-
est tree breeding in the last decade, it will be exciting to follow the 
impacts on the actual forest ecosystems and further develop 
strategies to adapt forest tree species to the rapidly changing en-
vironmental conditions. In forestry, the genomic revolution has 
only just begun.

Data availability
SNPscan breeder has been programmed with Visual Studio 2019 as a 
.NET application (Framework 4.7.2) and compiled as 64-bit ver-
sions for the operating system Microsoft Windows (Windows 

11). The program, user manual, and different videos that explain 
the program are available on our website: https://www.thuenen. 
de/en/institutes/forest-genetics/software/SNPscan.
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