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Abstract

Soil microorganisms and their diversity are important bioindicators of soil carbon and nutrient cycling. Land 
use type is a major determining factor that influences soil microbial community composition in floodplain 
ecosystems. However, how the structure and diversity of soil microbial communities respond to specific 
changes in land use, as well as the main drivers of these changes, are still unclear. This study was conducted 
in the Yellow River floodplain to examine the effects of land use type on soil microbial communities. Four 
land use types (shrubland, farmland, grassland and forest) were selected, wherein shrubland served as the 
baseline. We measured soil microbial structure and diversity using phospholipid fatty acids (PLFAs). Land use 
type significantly affected total, bacterial and fungal PLFAs, and the gram-positive/negative bacterial PLFAs. 
Compared with shrubland, peanut farmland had higher total and bacterial PLFAs and forest had higher fungal 
PLFAs. Soil pH and phosphorus were the predominate drivers of microbial PLFAs, explaining 37% and 26% of 
the variability, respectively. Soil total nitrogen and nitrate nitrogen were the main factors increasing microbial 
community diversity. Peanut farmland had the highest soil carbon content, soil carbon stock, total PLFAs and 
microbial diversity, suggesting that farmland has great potential as a carbon sink. Our findings indicated that 
peanut farmland in the Yellow River floodplain is critical for maintaining soil microbial communities and soil 
carbon sequestration.

Keywords bacteria, fungi, Yellow River floodplain, microbial community diversity, soil carbon stock, land use 
type

土地利用方式对黄河漫滩土壤微生物群落结构和多样性的影响

摘要：土壤微生物群落及其多样性是土壤碳和养分循环的重要生物指标。土地利用变化是影响漫滩生态系

统土壤微生物群落组成的主要决定因素。然而，土壤微生物群落的结构和多样性如何响应土地利用变化，
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以及这些变化的主要驱动因素是什么，仍不清楚。本研究在黄河漫滩进行，以检验土地利用变化对土壤微

生物群落的影响。选取了4种土地利用类型(灌丛、农田、草地和森林)，其中以灌木地为对照，用磷脂脂

肪酸测量了土壤微生物组成和多样性。研究结果表明，土地利用变化显著影响了总细菌、真菌和革兰氏阳

性/阴性细菌。与灌丛相比，农田的总磷脂脂肪酸和细菌较高，森林的真菌较高。土壤pH值和全磷是微生

物组成的最佳预测因子，分别解释了37%和26%的变异性。土壤全氮和硝态氮是影响微生物多样性的主要

因素。花生农田的土壤碳含量、土壤碳储量、磷脂脂肪酸总量和微生物多样性最高，表明漫滩具有巨大的

碳汇潜力。这些研究结果表明，黄河漫滩的农田对于维持土壤微生物群落和土壤碳固存至关重要。

关键词：细菌，真菌，黄河漫滩，微生物多样性，土壤碳储量，土地利用类型

INTRODUCTION

Floodplains are located in ecotones at water–land 
interfaces, and can influence the local climate, water 
resource balance and biological diversity (Verones et al. 
2013). With human population growth and increases 
in farming activities, nearly half of the world’s 
floodplains have been modified (Field and Barros 
2014). Different land uses in floodplain ecosystems 
can have numerous ecological consequences, such 
as shifts in the soil microbial community structure 
as well as carbon, nitrogen and phosphorus cycling 
in the soil (Guo and Zhou 2020). Soil microbes are 
sensitive to environmental changes, which serve as 
early indicators of land use type (Shao et al. 2019a). 
In addition, microbial community diversity can 
influence the soil carbon pools where soil biotic and 
abiotic properties rapidly respond to environmental 
shifts (Liu et al. 2020). Clarifying how soil microbial 
communities respond and adapt to different land use 
types will be helpful in understanding microbially 
driven carbon sequestration (Liu et al. 2018; Márton 
et al. 2017).

Microbes, which directly influence ecosystem 
carbon turnover and nutrient mineralization, are 
necessary for primary production and affect overall 
ecosystem sustainability (Ho et al. 2018; Pan et al. 2021; 
Shao et al. 2019b). Previous studies have demonstrated 
that land use significantly affects various ecosystems 
by changing the compositions of soil microbial 
communities (Ho et al. 2018; Lu et al. 2019), thereby 
changing the carbon cycling capacity of the soil (Chen 
and Sinsabaugh 2021; Ji et al. 2020). Evidence from 
the Central China Plain region has shown that the 
transformation of shrubland into farmland alters 
soil microbial community composition (bacteria and 
fungi) and soil carbon sequestration capacity (Zhang 
et al. 2016). Furthermore, old-growth forests converted 
to human-planted forests or grassland significantly 

increased the abundance of gram-negative (G−) 
bacteria in Southwest China (Luo et al. 2020). Despite 
the research demonstrating the connection between 
land use and microbial communities, little is known 
about how land use types affect the structure and 
diversity of soil microbial communities in floodplains. 
Therefore, an accurate assessment of how land use 
change effects soil microbial biomass and community 
composition is critical to better understand soil carbon 
sequestration in floodplains. However, the fatty acids 
of soil microbial communities have not yet been 
fully characterized, which could lead to incomplete 
results and inaccurate conclusions. The phospholipid 
fatty acids (PLFAs) method, which covers a wide 
range of microbiota, has been used in similar studies 
to characterize the structural diversity of microbial 
communities (Guo et  al. 2018; Micaela et  al. 2021). 
Therefore, this study utilized the PLFA method as 
it is best suited for the overall analysis of microbial 
communities (Luo et al. 2020; Micaela et al. 2021).

The physical and chemical properties of soil are 
the main factors affecting microbial community 
structure and diversity (Liu et al. 2020; Yu et al. 2021; 
Zeng et al. 2022). When ecosystems transition from 
natural to disturbed, environmental conditions across 
all the distinct microbial habitats found in soil can be 
altered considerably. For example, a change in land 
use from natural forest to degraded forest led to a 
decrease in soil carbon and nitrogen, which reduced 
microbial activity and diversity (Kumar and Ghoshal 
2017). Microbial community structure and diversity 
can be altered by changes in environmental variables 
such as phosphorus (Zhang et al. 2021), which is used 
by gram-positive (G+) bacteria to synthesize cell walls 
(Dong et al. 2014; Liu et al. 2020). Similarly, land use 
change can lead to mycelial growth and alter soil pH 
and bulk density (BD), which are vital soil parameters 
that can determine ecosystem function (Almeida 
et al. 2020; Vitali et al. 2016; Wang et al. 2018).
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Floodplains are riparian areas where massive 
amounts of carbon and nitrogen are exchanged, and 
are highly sensitive to global change (Urbanová et al. 
2015). Land use change, particularly the conversion 
from natural shrub covered floodplains to farmland 
or forest, has been a common occurrence in many 
areas (Sala et al. 2000). The Yellow River floodplain 
has natural and artificial land use types, making it 
an ideal location to investigate the effects of land use 
change on soil microbial community structure and 
diversity. In the present study, we conducted a survey 
covering four land use types, including shrubland, 
farmland, grassland and forest, in the floodplain 
of the Yellow River in Henan Province, China. The 
objectives of the study were: (i) to examine the 
structure and diversity of soil microbial communities 
in relation to land use; and (ii) to evaluate how 
soil physical–chemical factors drive changes in soil 
microbial community structure and diversity in the 
Yellow River floodplain.

MATERIALS AND METHODS

Study site

The study was conducted in a floodplain near the 
Yellow River, located in Henan Province, China 
(34°58′26″ N, 113°24′57″ E, 100 m a.s.l., Fig. 1). 
The area experiences a monsoon climate, with 
mean annual average temperature of 14  °C and 
mean annual precipitation of 562  mm (2000–18, 
local meteorological station). The soil is a sandy 
loam structure (76% sand, 20% silt and 4% clay in 
the 0–10 cm of soil layer) and was developed from 
alluvium parent material of the Yellow River.

In the studied area, shrubland represents the 
natural undisturbed ecosystem. All the land area was 
formed from bare riverbeds after the construction 
of the Xiaolangdi Dam in 2001. However, human 
activities had repurposed much of the land, 
transforming it from partial shrubland to farmland, 
grassland and forest around 2012. The land use 
history was investigated based on field interviews 
with the local farmers.

The dominant plant species in the natural 
shrubland were Tamarix (Tamarix ramosissima), 
Cynodon (Cynodon dactylon) and Calamagrostis 
(Calamagrostis epigeios). Grassland was dominated by 
Cynodon (C. dactylon) and Calamagrostis (C. epigeios). 
The primary crop planted on the farmland was 
peanut (Arachis hypogaea). The primary plant species 
in the artificial forest was the common Privet 

(Ligustrum vulgare, Table 1). The floodplain in the 
Yellow River experiences 2–3 floods every year due 
to the Xiaolangdi Dam releasing water from July to 
October.

Experimental design and sampling

In the studied site, the four land use types (shrubland, 
farmland, grassland and forest) were sampled in 
November 2020. In each land use type, five plots 
were sampled. Each plot had an area of 20 m × 20 
m, with at least 200 m buffer between any two plots 
to avoid pseudo-replication (Li et al. 2020). In each 
plot, 0–10 cm depth soil samples were collected with 
a soil auger according to the cross-sampling method, 
including cores at each of the four corners and the 
middle of each plot. A  total of 25 soil subsamples 
were obtained from each land use type, and the 
subsamples from each plot were pooled. Each plot 
served as a replicate sample, and the five replicate 
plot samples were kept separate. In total, there were 
five replicates for each of the four land use types.

To measure aboveground biomass for each land 
use type, we sampled 1 m × 1 m subplots. All biomass 
was collected at a height of 1 cm above the ground 
and placed in a paper bag for transportation to the 
laboratory. The aboveground vegetation was then 
dried at 105 °C in an oven, and then dried at 65 °C 
until constant weight to calculate aboveground 
biomass. The aboveground biomass of the artificial 
forest was evaluated using the binary power function 
by measuring tree diameter at breast height, tree 
height and crown width (Zi et al. 2017):

BM = a(DBH)b

where the independent variable is DBH, which is the 
diameter at breast height; and a and b are coefficients.

Each sample was divided into two subsamples, 
which were placed in self-sealing plastic bags in an 
icebox and transported to the laboratory for chemical 
and microbial analyses. After removing all visible 
roots and stones, one subsample was air-dried and 
passed through a 0.25-mm mesh in order to measure 
the chemical composition of the soil, and the other 
subsample group was stored at −20  °C for PLFA 
measurements.

Soil analysis

The soil pH was determined in a solution with a soil–
water ratio of 1:2.5 using a pH meter (Sartorius PT-21, 
Shanghai, China). The soil BD was measured with the 
volumetric ring method. Soil total carbon (TC) and 
total nitrogen (TN) were measured using a Vario Max 
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CNS elemental analyzer (Elementar Analysensysteme 
GmbH, Hanau, Germany). In addition, total 
phosphorus (TP), nitrate nitrogen (NO

3
-N) and 

ammonium nitrogen (NH
4
-N) were determined using 

an Auto Analyzer (AA3, Norderstedt, Germany). The 
total soil carbon stock (SCS) was calculated according 
to the following equation (Luo et al. 2020):

SCS =
n∑
i=1

(Ci × BD× hi)/10

where n is the number of soil layers, C
i
 is the soil total 

carbon content (g/kg) of the ith layer and h
i
 is the 

thickness of soil (cm).

Figure 1: Maps and schematic diagram of land use types in the Yellow River floodplain. Soil TC (g/kg), TN (g/kg), TP (g/
kg), NO

3
-N (mg/kg), pH, soil BD (g/cm3) and gram-positive (G+) bacterial PLFAs. The up arrows indicate significant increase 

and the down arrows indicate significant decreases in the listed indicators between shrubland and other land use types.
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Analysis of PLFAs

The soil microbial PLFAs were determined by gas 
chromatography (Agilent Technologies 7890A, Zhao 
et al. 2016). PLFAs were extracted from fresh soil (8 g 
dry weight equivalent) with a single-phase mixture 
(1:2:0.8, v/v/v) containing chloroform, methanol 
and phosphate buffer. Using 19:0 methyl esters as the 
internal standard. The fatty acid fractions of PLFAs 
were analyzed separately on a gas chromatograph 
with a flame ionization detector (FID) (GC6890, 
Agilent Technologies, Bracknell, UK) by automatic 
injection of samples. Characteristic fatty acids were 
grouped into biomarkers, as shown in Supplementary 
Table S1.

Microbial community diversity was calculated 
using the Shannon–Weiner diversity index (H), the 
Pielou evenness index (J) and the Margalef richness 
index (R) (Wang et al. 2012; Zak et al. 1994).

H = −
s∑

i=1

Pi ln Pi

where s is the number of characteristic fatty acids and 
P

i
 is the measure of ith species proportional to the 

total number of species.

J = H/ln S

R = (S− 1)/lnN

where N is the total number of individuals and S is 
the total number of species in each sample.

Statistical analyses

The soil variable and soil microbial PLFAs were 
examined for normality and transformed using log10 
to satisfy the assumptions of the statistical analyses. 
The effects of land use type on soil variables (BD, TC, 
TN, TP, C/N ratio, pH, NH

4
-N and NO

3
-N) and soil 

microbial PLFAs (total PLFAs, bacterial and  fungal 
PLFAs, bacteria/fungi ratio, gram-positive and 
-negative bacterial PLFAs, gram-positive/negative 

bacteria ratio, Actinomycetes, Shannon–Weiner 
index, Pielou index and Margalef index) were 
examined by one-way analysis of variance (ANOVA). 
The least significant difference (LSD) multiple 
comparisons (P < 0.05) was used to identify significant 
effects. The Spearman’s correlation coefficient and 
redundancy analysis were performed to quantify 
the correlations between the soil microbial structure 
and diversity and soil variables in the R software 
environment (version 3.2.2, R Core Team 2015).

RESULTS

Soil physical–chemical characteristics

Land use significantly affected the soil TC, TN, TP, 
NO

3
-N, pH, soil BD and soil carbon density (P < 0.05, 

Table 2). Compared with shrubland, soil TC content 
was significantly lower in grassland and significantly 
higher in farmland (P < 0.05). The SCS in farmland 
was significantly higher than shrubland, the mean 
values increased 29% (P  <  0.01). The TN and TP 
contents in farmland were significantly higher than 
those in shrubland and grassland soils (P  <  0.05). 
Land use change also significantly affected soil 
NO

3
-N content; increases of 712% were observed 

in farmland compared with shrubland, and values 
increases 211% for artificial forest compared with 
shrubland (both P < 0.01). There was no significant 
difference in NO

3
-N content between shrubland and 

grassland soils (P > 0.05). Additionally, the mean soil 
pH values of farmland and forest plots were 8.11 and 
8.22, which was lower than that in the shrubland 
(both P < 0.05, Table 2).

PLFAs and diversity of soil microbes

Compared with shrubland, farmland had a higher 
total PLFA content (P < 0.05, Fig. 2a). Furthermore, 
the amounts of bacterial PLFAs in farmland and 
grassland soils were 7% and 5% higher than in 
forest soil (both P < 0.05). The highest amounts of 

Table 1: Dominant plant species and aboveground biomass in shrubland, farmland, forest and grassland

  Dominant plant species Aboveground biomass (g/m2) 

Shrubland Tamarix ramosissima, Cynodon dactylon, Calamagrostis epigejos 468.9 ± 56.02 C

Farmland Arachis hypogaea 889.6 ± 15.41 B

Forest Ligustrum vulgare 5197.7 ± 47.16 A

Grassland Cynodon dactylon, Calamagrostis epigeios 350.2 ± 44.31 D

Values are the means ± standard error (n = 5). Different capital letters indicate significant differences (P < 0.05) among the 
different land use types.
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fungal PLFAs were observed in forest soil, which was 
significantly higher than that of shrubland soil (Fig. 
2c) by an average of 19% (P  <  0.05). The highest 
soil bacteria/fungi ratio was observed in shrubland, 
which was significantly higher than that of forest 
(Fig. 2d).

The amounts of G+ bacteria PLFAs in the 
farmland and forest were significantly higher 
than that of shrubland by averages of 38% and 
35%, respectively (P  <  0.05, Fig. 2e). The G+/
G− bacterial ratio observed in the forest soil was 
significantly higher than in the shrubland and 
grassland (Fig. 2g). The amount of Actinomycete 
PLFAs in the farmland was significantly higher 
than in the grassland (Fig. 2h). Farmland and 
artificial forest exhibited high Shannon–Weiner 
diversity index and Pielou evenness index values, 
which were significantly higher than for shrubland, 
but no differences among four land use types were 
observed in the Margalef index (Fig. 3a–c).

Correlations between microorganisms and 
environmental factors

The Spearman’s correlation analysis showed that 
the Actinomycetes PLFAs, Shannon–Weiner index 
and Pielou index were significantly positively 
correlated with soil TC content (P  <  0.05, Table 
3). The bacteria, gram-positive bacteria, Shannon–
Weiner index and Pielou index were significantly 
positively correlated with soil TN content (P < 0.05). 
The total amount of PLFAs, gram-positive bacteria 
and Pielou index were positively correlated with 
soil TP content (P < 0.05). The Actinomycetes PLFA, 
gram-positive bacteria, Shannon–Weiner index and 
Pielou index had significant positive correlations 
with NO

3
-N content (P < 0.05). The fungal PLFAs 

were significantly positively correlated with soil BD 
(P < 0.05). Gram-positive bacteria, gram-positive/
negative ratio and Shannon–Weiner diversity 
index were negatively correlated with soil pH (P 
< 0.05).

Redundancy analysis between the compositions of 
soil microbial communities and soil physical–chemical 
properties showed that the first axis explained 
26% of the total variance in the soil microbial 
communities, and the second axis explained 24% 
of the total variance (Fig. 4). The forward selection 
of the variables in the redundancy analysis showed 
that soil microbial community composition across 
these four land use types were primarily affected by 
pH and TP, which explained 37% and 26% of the 
variability, respectively.T
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Figure 2: Soil total PLFAs (a), bacterial PLFAs (b), fungal PLFAs (c), bacteria/fungi ratio (d), gram-positive bacterial 
PLFAs (e), gram-negative bacterial PLFAs (f), gram-positive/negative ratio (g) and Actinomycetes PLFAs (h) in shrubland, 
farmland, grassland and forest. Values are the means ± standard errors (n = 5). Significant difference among the four land 
use types is denoted with different capital letters (P < 0.05).
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DISCUSSION

Soil microbial PLFAs under different land uses

Soil microbial community structure and diversity 
differed between land use types, indicating that active 
microbial communities are sensitive to different land 
uses in the Yellow River floodplain. The differences 
in soil physical–chemical characteristics may be 
attributed to different types of vegetation and field 
management practices (degrees of soil disturbance 
and nutrient additions), which can alter soil microbial 
communities and soil nutrient dynamics.

Previous studies have observed decreases in the 
PLFAs of bacterial, gram-positive bacteria and fungi 
when natural vegetation transitions into farmland, 
reducing carbon sequestration capacity (Deng et al. 2015; 

Katulanda et al. 2018; Zhang et al. 2016). We observed 
that total PLFAs, and bacterial and gram-positive PLFAs, 
were higher in farmland than in shrubland, which 
was inconsistent with previous studies (Schroeder 
et  al. 2020; Wei et  al. 2020). One explanation could 
be that fertilizer in farmland led to the increase in 
microbial biomass (Ma et al. 2022), which fixed more 
carbon in soils and increased microbial necromass that 
accounted for a large proportion of the soil carbon 
pool (Bwa et al. 2021; Ma et al. 2022). A meta-analysis 
showed that fertilizer has a positive effect on the 
total PLFA and microbial biomass, which are related 
to the soil nitrogen and phosphorus increases in the 
farmland (Alicia et al. 2022). In addition, peanuts are 
legumes and were cultivated as the main crop in the 
farmland of our study area; they are known to increase 
soil organic carbon sequestration potential compared 

Table 3: Spearman’s correlation coefficients among microbial PLFAs and environmental variables across the four land use 
types

 
Total 
PLFA 

Gram-
negative 
bacteria 

Gram-
negative 
bacteria Actinomycetes Bacteria Fungi Pielou 

Shannon–
Weiner Margalef 

TC 0.06 −0.48* 0.43 0.55* 0.11 −0.14 0.71** 0.72** 0.02

TN 0.02 −0.28 0.57* 0.29 0.17 −0.10 0.49* 0.63** 0.16

TP 0.58* −0.10 0.48* 0.36 0.69** 0.18 0.36 0.39 0.19

NH
4

+ 0.33 −0.22 0.23 0.43 0.51* −0.07 0.03 0.04 −0.02

NO
3

− 0.21 −0.40 0.55* 0.52* 0.15 0.16 0.67** 0.69** 0.05

pH −0.27 0.32 −0.72** −0.19 −0.18 −0.31 −0.58* −0.61** −0.11

C/N 0.07 0.34 −0.55* −0.19 0.06 −0.03 −0.51* −0.58** −0.03

BD −0.01 −0.37 0.31 0.38 0.21 −0.55* 0.34 0.34 −0.22

Note: Soil TC (g/kg), TN (g/kg), TP (g/kg), NH
4

+ (mg/kg), NO
3

− (mg/kg), pH, the ratio of TC to TN (C/N) and soil BD (g/cm3). 
Bold values indicate significant effects. *P < 0.05, **P < 0.01.

Figure 3: Shannon–Weiner (a), Pielou (b) and Margalef (c) indexes of soil microbial PLFAs in shrubland, farmland, 
grassland and forest. Different capital letters indicate significant differences among the four land use types (P < 0.05).

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article/16/1/rtac075/6650205 by Johann H

einrich von Thünen-Institut,Bundesforschungsinstitut für Ländliche R
äum

e, W
ald und Fischerei user on 09 O

ctober 2023



Copyedited by: DS

9JOURNAL OF PLANT ECOLOGY | 2023, 16:rtac075

with other cropping systems (Ahmad et  al. 2022). 
Moreover, the carbon and nitrogen content of the 
Yellow River floodplain was lower than in comparable 
studies (Barreiro et al. 2015; Schroeder et al. 2020; Tian 
et al. 2010; Wei et al. 2020; Yang et al. 2020), but these 
values are context-dependent and initial conditions 
can have a large influence. Therefore, both fertilizer 
and crop choice (peanuts) may be the main reasons for 
the differences observed in the Yellow River floodplain 
farmland compared with other farmlands.

Another reason for the observed differences 
between the land use types may have been the soil 
pH, which has previously been identified as the best 
predictor of microbial community composition (Qin 
et al. 2017; Wang et al. 2020). The difference in soil 
pH can be due to fertilizer input, which can interfere 
with a microorganism’s habitat in farmland. Indeed, 
the addition of chemical fertilizer during farming can 
acidify the soil (Hao et al. 2022; Kimmel et al. 2020). 
The pH of bacterial cytoplasm is close to neutral, 
and if it shifts toward being more alkaline or acidic, 
there can be a negative effect on intracellular PLFA 

(Eldor 2007). In this study, the soil was alkaline, 
so the decrease in pH brought it closer to neutral, 
which may have been conducive to microbial growth 
(Wang et al. 2020).

Fungal PLFAs were higher in the forest than in 
the shrubland, which is consistent with previous 
studies (Guo et al. 2018). This is likely a consequence 
of higher nutrient transformation rates and better 
litter quality and quantity (Collado et  al. 2021). In 
our study, the forest had the highest aboveground 
biomass (Table 1), which should translate into much 
more litter that can have a positive effect on microbial 
growth, especially fungi (Urbanová et  al. 2015). 
The increased fungal PLFAs in the forest compared 
with the shrubland could have potentially resulted 
from fungi infecting the roots of the young privet 
trees (Grayston et  al. 2004; Wakelin et  al. 2008). 
Arbuscular mycorrhizal fungi enhance nutrient 
availability to plants, particularly phosphorus, due to 
their extensive mycorrhizal mycelium networks that 
increase the surface area available for phosphorus 
acquisition (Eldor 2007). This may be one of the 
reasons why forest and grassland soils had the lowest 
phosphorus contents, but relatively high fungal 
biomass. Compared with shrubland, the higher fungal 
biomass in forest soil was related to the lower soil BD. 
This result was consistent with the observations of 
Wang et al. (2017), who found that soil disturbance 
had an important effect on fungal biomass. The high 
total PLFAs and bacterial and gram-positive bacterial 
biomass in farmland can be an effect of the high soil 
nitrogen and phosphorus supplied by fertilization. 
Overall, fertilizer may have enhanced the bacterial 
abundance in the farmland, especially in nitrogen-
poor areas such as the Yellow River floodplain (Chen 
et al. 2022; Tian et al. 2010).

Microbial diversity under different land uses

Microbial diversity has been shown to contribute to 
carbon use efficiency (Chen et al. 2015; Domeignoz-
Horta et  al. 2020; Wu et  al. 2022). Differences in 
soil microbial community diversity due to land 
use changes may influence the stability of the soil 
carbon pool (Wang et al. 2018; Zheng et al. 2020). The 
changes in physical–chemical properties are strongly 
related to changes in microbial PLFAs and diversity of 
floodplain soils (Dhandapani et al. 2020). Increasing 
soil TN, TP and NO

3
-N supply, which are sources of 

nutrients and energy, can stimulate microbial activity 
(Zhou et  al. 2019) by providing more sustenance 
for underground microbial communities (Chu et al. 
2010; Djighaly et al. 2020; Zhang et al. 2022).

Figure 4: Redundancy analysis (RDA) of associations 
among soil microbial community components (as indicated 
by PLFAs) with environmental factors. Total PLFAs, 
bacterial PLFAs (Ba), fungal PLFAs (Fu), ratio of bacteria 
to fungi (B/F), gram-positive bacteria (G+), gram-negative 
(G−) bacteria, ratio of gram-positive to -negative bacteria 
(G+/G−), Actinomycetes (Ac); three microbial indexes 
(Shannon–Weiner diversity index, Pielou evenness index 
and Margalef richness index), and eight environmental 
variables: soil TC, TN, TP, NO

3
-N, NH

4
-N, ratio of TC to 

TN (C/N), pH and soil BD. Circles: grassland; diamonds: 
farmland; squares: shrubland; triangles: forest.
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The high Shannon–Weiner diversity index 
values for farmland and forest were consistent 
with previous studies (Cui et  al. 2021; Yang et  al. 
2020), i.e. the microbial diversities in the modified 
ecosystems, i.e. farmland, artificial forest and 
grassland, were significantly higher than the natural 
ecosystems, i.e. shrubland. In our study, the soil TC 
and TN were significantly correlated with Shannon–
Weiner diversity index. The application of fertilizer 
in the modified ecosystems can potentially increase 
microbial diversity. Microbes mainly prevent release 
of carbon by stabilizing it into a form i.e. not easily 
decomposed (Liang et  al. 2017). Therefore, higher 
microbial diversity plays an important role in carbon 
sequestration in artificial ecosystems.

Our results were inconsistent with some previous 
studies that have observed the destruction of soil by 
mechanized planting and changes in soil pH caused 
by fertilizer to destroy the microorganism habitat 
in farmland (Guo et  al. 2018; Leeuwen et  al. 2017; 
Qin et  al. 2017). This may have been because the 
cultivation of peanuts in farmland led to increased 
fixation of rhizobia, which will fix nitrogen from 
the atmosphere to the soil, resulting in an abundant 
supply of nutrients for microbes, thereby increasing 
diversity (Xie et  al. 2019). It may also have been 
because the selection of specific microorganisms 
by different plant communities, such as legumes’, 
facilitates certain types of bacteria and leads to 
increased microbial diversity in farmland (Huang 
et  al. 2020). Indeed, the different crops grown on 
farmland can produce differences in microbial 
diversity. A  meta-analysis showed that cultivating 
legumes has a higher carbon sequestration potential 
than other crops, such as wheat and cotton (Jian et al. 
2020). These results indicated that there is likely to 
be significant variability in structural and functional 
responses of microbial communities to land use 
change, with potential consequences in terms of soil 
carbon cycling.

Despite the clear evidence provided here that land 
use type significantly affects soil microbial community 
composition, there are several uncertainties and 
limitations that should be mentioned. First, the fact 
that the species composition of each land use type 
was relatively simple dampens the potential of carbon 
sequestration in Yellow River floodplain. Second, we 
only investigated the response of microorganisms 
to shifts in land use over a short-term period (from 
2012 to 2020), but the microbial response to land 
use was time dependent. Therefore, to better clarify 
the impact of different land use types on soil carbon 

and to provide reliable evidence, long-term and 
continuous monitoring of multiple land use types 
should be carried out.

CONCLUSIONS
Land use significantly influenced the total PLFAs, 
bacterial PLFAs and Shannon–Weiner diversity 
index, which were highest in peanut farmland. The 
peanut farmland had the largest total soil carbon 
content and SCS (0–10 cm). Soil TN, TP and NO

3
-N 

were positive indicators of microbial biomass and 
diversity, and pH was a negative indicator. These 
findings suggested that altering the land use type 
changed the physicochemical characteristics of the 
soils, which affected the composition of microbial 
communities.

Supplementary Material
Supplementary material is available at Journal of 
Plant Ecology online.
Table S1: Biomarkers for microbial grope.
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