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EXECUTIVE SUMMARY 
This report summarizes the literature in the field of linking economic and bio-physical data. 

Recent CAP reforms have introduced farm-specific measures whose uptake and economic 

effects differ significantly between individual farms. Consequently, there is an increasing 

demand for micro level assessment. While for some indicators the farm location is not an 

issue for others accurate information of bio-physical endowments of the farm is necessary, 

e.g., soil erosion, landscape diversity, biodiversity or GHG emissions. However, a general 

limitation is that although often collected, spatial location of the farms in underlying 

databases are not available due to confidentiality regulations. This is also the case for the 

predominant data base FADN used in MINDSTEP to develop single farm models and modules. 

To overcome this shortcoming researchers have developed in the past different strategies to 

adjust their models to address spatially relevant topics. This report provides a review of 

existing approaches. Particular of interest for MINDSTEP are approaches at the EU scale but 

also approaches with a more regional focus have been reviewed. For EU wide approaches, 

the locations of farms are estimated as a probability estimate in a spatial unit with 

homogenous conditions. Land use shares and expected yields from the FADN database were 

assigned to spatial unit by a statistical procedure combining observations on land use and 

herd sizes with available aggregated information on land use, animal herd sizes or number of 

farms of a particular specialization in a region. Such approaches at EU scale are 

computationally demanding but necessary to more realistically model farmers behaviour and 

to better assess economic and environmental impacts of EU policies.  
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1. INTRODUCTION 
The Common Agricultural Policy (CAP) has increasingly been adapted to integrate 

environmental concerns and one of the core objectives of the CAP is to ensure a sustainable 

way of farming and the provision of environmentally beneficial public goods and services. One 

important lesson from previous CAP evaluations is that some policy effects are difficult to 

assess at national or even regional levels. Moreover, recent CAP reforms have introduced a 

set of farm-specific measures whose uptake and economic effects differ significantly between 

individual farms. Consequently, there is an increasing demand for micro level assessment to 

fully understand farmer responses to CAP instruments and market signals and to better grasp 

the net effect of policy measures.  

 

To assess such effects, individual farm models have been developed which require detailed 

input data. For the EU the Farm Structure Survey (FSS) collects information on the whole 

population of farms each 2nd or 3rd year and publishes results for administrative regions. The 

Farm Accountancy Data Network (FADN) contains currently around 80,000 farms, 

representing a population of about 5,000.000 farms in the EU and about 90% of the total 

agricultural production. Most farm level models for the EU represent the farm population 

using a sample of individual farms recorded in FADN to enhance the capability in providing 

scientific support for CAP impact analyses at farm micro level (Offerman et al., 2005; 

Kellermann et al., 2008; OECD, 2010; De Cara and Jayet, 2011; Gocht and Britz, 2011; Gocht 

et al., 2013; Louhichi et al., 2015; Louhichi et al., 2018; Ciaian et al., 2020).  

 

Besides capturing economic impacts, those models also aim to contribute to assessing the 

environmental impacts of the CAP. Therefore, a set of agri-environmental indicators have 

been developed to enable the environmental assessment of policy measures. While for some 

agri-environmental indicators the location is not an issue (e.g. energy use), for some others, 

accurate information of bio-physical endowments of the farm is necessary (e.g. soil erosion, 

landscape diversity, or biodiversity or GHG emissions). For some indicators, such as N2O 

emissions from cultivated soils, a strong dependence on environmental conditions such as 

soil type exist. However robust data bases to develop emission factors by soil types are not 

yet available. Process-based models introduce further data demand and uncertainties, so that 

generally simple methods are preferred (Leip et al., 2011a,b). A general limitation for 

agricultural models is the non-availability of spatially explicit farm data, particularly for 

models that simulate spatially dependent ecological-economic relationships or try to capture 

decision-making of actors in a spatial context (Uthes and Kiesel, 2020). Although in the 

monitoring activities of the EU member states spatially explicit farm data are collected, they 

are not publicly available due to confidentiality regulations (Schmit et al., 2006). 
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2. LITERATURE REVIEW   
Without such data, researchers have developed different strategies to adjust their models to 

address spatially relevant topics. This problem can be addressed by combining economic and 

bio-physical modelling as bio-physical models use spatial information (such as climate, soil or 

slope …) usually available at higher spatial resolution (e.g. grids at different level of resolution 

– from few meters for the elevation to several kilometres for the climate). A spatial allocation 

of farms would make it possible to extend the analytical capabilities to agri-environmental 

evaluation, replacing some proxy indicators with more direct calculation and improving the 

aggregation of the results to more representative environmental zones. 

 

In the literature for non-EU countries several approaches were developed to link both the 

farm unit with the spatial location. Kruska et al. (2003) describe a methodology for mapping 

livestock-oriented agricultural production systems for the developing world. Since statistical 

data on livestock production are often completely missing, the location was assigned based 

on expert rules and allocated using spatially explicit climate, soil and socio-economic criteria. 

Neumann et al. (2008) proposes a modelling approach spatially distributing regional livestock 

data using an expert-based approach defining allocation rules, and compared the results with 

an empirical approach. Van der Steeg et al. (2010) presented a methodology to derive a 

spatially explicit distribution of farming systems in the Kenyan Highlands. Their approach 

starts with the definition of farming systems based on a sample of about 3.000 farms. The 

advantage of this approach was that the exact location of each holding was known. A 

regression model was estimated to predict the probability to observe a farming system based 

on relevant environmental and socio-economic drivers. The estimated model was used to 

predict the farming systems for the out of sample area. 

For EU related studies authors have developed different techniques for downscaling 

economic model results to lower spatial scales for larger regions such as the entire EU and 

smaller regions such as specific NUTS 3 regions.  

 

Kempen et al. (2011) developed a method to link the farms in the FADN sample to their 

environmental endowment (climate, soil attributes …) at the EU-wide scale using a constraint 

optimization approach (CO). The locations of farms from the FADN are estimated using small-

scale spatial units with homogenous conditions for farming also known as Farm Mapping units 

(FMU). The spatial unit was defined as an aggregation of the so-called Homogenous Mapping 

Units (HSMU) defined as areas within an administrative unit with homogeneous location 

factors (Leip et al., 2008). The dataset of HSMU was developed in the CAPRI-DynaSpat project. 

Within this project Homogeneous Spatial Mapping Units (HSMUs) were defined using a 

Geographical Information System (Kempen et al., 2007 and Leip et al., 2008). Land use shares 

and expected yields were assigned to each HSMU by a statistical procedure combining grid 

observations on land use with available aggregate information at regional level. Information 

on less favoured areas (LFA) and altitude zones (ALTZ) can be added by overlaying HSMU 
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boundaries with specific thematic maps. Kempen et al. (2011) aggregated the relevant 

attributes of the HSMUs to approximately 15,000 FMUs for the EU-15. The estimation 

allocates farms with the same ALTZ and LFA status. They estimated a matrix, indicating the 

percentage of a farm located in a FMU. As a single farm in the FADN sample represents many 

similar farms, this percentage can also be understood as the share of these farms being 

allocated to a specific FMU. The farm production mix and yields in FADN should match with 

the highest possible consistency with those of the spatial units using an optimisation 

approach by maximizing the probability. For the estimation of the probability, whether or not 

a farm is located in a certain FMU, Kempen et al. (2011) applied a constrained optimization 

model. This approach first measures the statistical fit between similar variables (e.g. yields for 

wheat (py0), share of wheat (ps0)) in FADN and the corresponding land mapping unit. The 

second step ensures consistency by maximising the similarity over all farms and the spatial 

unit. For this purpose, a Bayesian highest posterior density concept (see Heckelei et al., 2008) 

is applied allowing to measure “similarity” with respect to several criteria simultaneously 

satisfying regional consistency constraints. The resulting spatial allocation of FADN holdings 

including spatially dependent environmental indicators, extend the analytical capabilities to 

agri-environmental evaluation and improves the aggregation of the results to more 

representative environmental zones (e.g. Nitrate Vulnerable Zones, Areas with Natural 

Constraints).The authors of the study concluded that the used prior information was 

insufficient to allocate certain farm types and proposed to further develop the spatial unit 

such that it represents homogenous regions of farming systems, instead of single production 

systems. Results showed that the suitability of prior information seems to depend on the 

characteristics of the farm as the prior information on land use shares improves the allocation 

results for arable and dairy systems, which have a strong land dependence and land use share. 

However, for farming systems with low or no link to land-use (e.g. pigs, poultry) or farm types 

with low UAA per farm (horticulture, permanent crops), results were quite weak.  

 

The approach by Kempen et al. (2011) has been used by other studies at EU-scale. Andersen 

(2017) investigates the scope of perceiving the agricultural landscapes of the European Union 

as patterns of different farming systems and landscape elements in homogeneous biophysical 

and administrative endowments. The link of the spatial framework and the typology of 

farming systems is based on the constrained optimisation approach, matching farm attributes 

and spatial characteristics subject to consistency constraints. In this study farming systems 

are a group of farms with the same size, intensity and land use class within an area with 

homogenous administrative, climatic and soil conditions for farming which can is used to map 

the farming component of the European agricultural landscapes, to describe the pattern of 

farming systems in each landscape and to calculate indicators of the spatial organisation of 

the farming systems. 

 

The mentioned shortcomings in Kempen et al. (2011) have been addressed in several projects 

for the European Commission conducted by the JRC, Eurocare and Thuenen-Institute to 
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further improve the allocation mechanism. Major improvements to the study of Kempen et 

al. (2011) include the usage of the statistical representation factor attached to each FADN 

farm to allocate them to the spatial units instead of allocation of a particular FADN farm 

exclusively to the one spatial unit. Instead of HSMU a new initial spatial unit HSU 

(Homogeneous Spatial Unit) is used to define farm mapping untis (FMU). HSUs have a finer-

scale spatial clustering driven by the search for homogeneity with regard to selected 

environmental factors (see Lamboni (2016) for further details). In addition, data from Eurostat 

containing information about the share of UAA (utilised agricultural area) per farm type on a 

10km² grid level is integrated as an additional constraint and used as prior information in the 

CO model. The estimation results for the whole EU were compared with data from FSS to 

validate the modified allocation procedure. Results showed that the additional prior 

information on farm types greatly improved the allocation for farm types particularly for 

“land-independent” farm types with low UAA per farm throughout whole Europe.   

 

Also using the data calculated with the method from Leip et al. (2008) as a basis, Hutchings 

et al. (2012) developed an approach to extend the data to field operation timelines. Briefly, 

the crop shares per HSMU were processed by a ‘crop rotation generator’ estimating plausible 

crop sequences. Livestock density time series were generated using FAOSTSAT trends. Using 

climate data weather data and crop phenology data from the MARS meteorological 

database 1 , a timeline model calculated for each spatial unit tillage, sowing, fertilizer 

application, grazing and cutting, and harvesting dates. This information was then used by 

process-based biophysical models running at (sub) daily time steps.  

 

 

For the EU-15 based on FADN data from 2002, Cantelaube et al. (2012) use geographical 

downscaling to map outputs provided by an economic optimization model AROPAj (Galko and 

Layet, 2011; Jayet 2020) by estimating FADN farm-group probabilities within EU-regions. The 

definition of farm groups is based on altitude level, farm type and economic size unit. To 

downscale results from AROPAj a two-step procedure is used. The FADN regions are divided 

into 100 x 100 m grid cells. In the first step remote sensing data for land from Corine Land 

Cover (CLC) is combined with land use survey data from the ‘Land Use and Coverage Area 

frame Survey’ LUCAS carried out by Eurostat 2 , weather data from the European MARS 

meteorological database3 and soil characteristics from the European Soil Database4. Then a 

multinomial logit model (MLN) is estimated separately for every FADN region relating the land 

cover/type of crops with the other physical data, consisting of the CLC classes (altitude, slope, 

 

1 https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx 

2 https://ec.europa.eu/eurostat/web/lucas  

3 https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx 

4 https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data  

https://ec.europa.eu/eurostat/web/lucas
https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data
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climatic parameters and soil characteristic parameters) resulting in prior estimates of crop 

location. In this step information provided by the FADN database such as the regional 

proportion of land cover related to the various crops is not considered. The second step 

consists of estimating the likely location of regional farm-groups through prior estimates for 

crop location in the preceding stage by minimising the difference between the estimated land 

use share, derived from probabilities by the MLN model and the observed land use share 

which is derived from the FADN data. For this, a cross-entropy approach is used so that 

probabilities of presence of different crops are attributed to each grid cell (see Chakir  (2009) 

for further details). The mapping of the farm groups and hence the linkage between farm-

groups and geo-referenced indicators of activities is based on the area devoted to the 

different agricultural activities (crop categories) for each farm group. In other words, the 

probability of a farm group to be located in a specific grid cell refers to the relative 

contribution of a farm-group (within a region) to the share of agricultural activities present 

into one specific cell belonging to the regional territory (with convenient altitude restriction). 

In contrast to Kempen et al.(2011) focusing on agricultural activities mapping from 

homogeneous soil mapping units (HSMU) influenced by economic agents, the approach of 

Cantelaube et al. (2012) focuses on the mapping of economic agents representative of 

agricultural activities observed at a certain period. However, the approach of Cantelaube et 

al. (2012) in comparison to Kempen et al. (2011) does not provide information about the 

quality of results for “land-independent” farm types with low UAA per farm and the approach 

has not been evaluated with regard to the actual distribution of farm types using the FSS data 

base. 

 

In the literature many case specific studies not aiming at developing general spatial allocation 

methods for farms in the EU exist. Temme and Verburg (2011) proposed a disaggregation 

approach for assessing changes in agricultural land use intensity for changes in the CAP 

between 2000 and 2025. In this study the LUCAS data on nitrogen inputs are related from 

outputs of the CAPRI model as a first step. Afterwards nitrogen inputs are spatially 

disaggregated using 49 environmental co-variates at 1 km × 1 km. In a study of Guiomar et al. 

(2018) a map of Europe has been developed showing regions where small farms have 

different degrees of importance, in relation to the regional context of agriculture and the 

territorial characteristics on a NUTS-3 level. In contrast to previous studies estimating the 

distribution of different farm types in Europe (e.g. Kempen et al., 2011; Andersen, 2017) this 

study aims at better considering the particular context of each region for small farms in the 

EU.  

 

The discussed studies how that different options are available for relating spatial and 

economic scales. Uthes and Kiesel (2020) state that the usefulness of different approaches 

depends on the focus and the geographical scale of analysis. They argue that from an EU 

perspective, it is tolerable to create homogenous entities and to assume that a region is 

managed by one representative FADN farm type (e.g. Kempen et al., 2011; Andersen, 2017). 
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However, for lower scale spatial analyses the differences within these entities, differences in 

the behaviour of farm types as well as the interactions between farms become increasingly 

relevant. Particularly for smaller regions, studies use a synthetic landscape approach (Saura 

and Martinez-Millan, 2000; Li et al., 2004; Kellermann et al., 2008). Farms are placed on a grid 

of the area under study by ensuring that the localization of the farms fulfils the area claims of 

the farms e.g. using the share of land of a particular type in the total area of farms or farm 

types (Happe et al., 2006). The synthetic landscape approach was used in the literature for 

estimating the relationship between on-farm compliance costs and environmental effects of 

grassland extensification for a regional farm population in Germany (Uthes et al., 2010), or to 

assess the impacts of changes in the direct payment regime of the EU’s agricultural policy on 

the land market activities of farm populations in different EU regions (Happe et al., 2008; 

Uthes et al., 2011).  

 

In the literature current synthetic landscape approaches use a relatively coarse resolution 

(1ha x 1ha) and simple techniques by considering only the grassland share in the total area of 

farms or farm types (e.g. Uthes et al., 2010, Uthes et al., 2011).  

 

In a recent study of Uthes and Kiesel (2020) the authors aim at improving the synthetic 

landscape approach in terms of resolution (25m x 25m), by considering landscape parameters 

in the allocation of farms as well as allocation quality indicators that allow for an assessment 

of the overall allocation result. The main data source is the Integrated Administration and 

Control System (IACS) by the State Office for Consumer Protection, Agriculture and Land Re-

Planning in Brandenburg. This dataset includes an identification system for all farms in an 

administrative area, covering information on the type of farming, type of business, 

aggregated spatial information (such as total area, arable area, grassland area, individual crop 

areas etc.). In addition, it contains the Land Parcel Identification System (LPIS) covering all 

agricultural land parcels managed by these farms. For the spatial allocation procedure various 

variables are used such as the total arable area, total grassland area, average arable land 

quality (measured by the German Ackerzahl) and grassland quality (measured by the German 

Grünlandzahl), number of hectares located in protected areas for meadow birds and Natura 

2000, and the Landbaugebiet to which a farm belongs which is a larger area with similar 

conditions for farming e.g. soil for agricultural use is suitable for wheat and sugar beets. Based 

on the actual spatial distribution of the IACS farm parameters it is assumed that a farm can 

only be located within a certain circle, in which the real landscape parameters are highly 

consistent with those reported in the IACS farm data set. Each pixel of the arable and 

grassland is assumed to be a potential centre point for each farm. As a first step in the 

allocation procedure all spatial data were converted to raster format (25 x 25 m), separately 

for arable and grassland and 30 radii were predefined representing the frequency distribution 

(quantiles) of farm sizes in the study area. For each pixel of arable land and grassland, and 

each of the predefined radii, the area shares of the landscape parameters from the IACS farm 

data set in the resulting circles were calculated. In the second step quality indicators are 
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calculated which express the degree of equivalence between aggregated spatial farm 

characteristics reported in the IACS farm data set with the landscape parameters assigned to 

the farms through their spatial allocation. In this step the optimal arable land and grassland 

radii for each pixel and farm is identified by choosing the radii with the highest equivalence 

between area of arable and grassland observed in the circles with data reported in the IACS. 

Following this principle additional quality indicators are calculated by comparing allocated 

landscape parameters with those reported in the IACS farm data set. As a last step the 

weighted allocation quality for each pixel and farm is calculated by summation of the 

individual quality indicators multiplied by their assigned weights which sum up to one. Based 

on the pre-calculated weighted allocation quality the spatial allocation of the farms to the 

land is an iterative process. The allocations are carried out with decreasing potential weighted 

allocation quality. For each farm, the potential centre points are grouped according to their 

weighted allocation quality and sorted in descending order which reduces the available area 

for subsequent farms. The overall allocation quality was relatively high for the considered 

German case study region Ostprignitz-Ruppin (NUT3 level).The authors conclude that this 

approach is well suited for smaller regions with sufficient data quality and  suitable to link 

farm data and spatial data to generate a more realistic synthetic landscape of farm locations 

for use by agro-economic models, such as mathematical optimization models and/or agent-

based models, compared to other studies that used simpler spatial allocation procedures. 

However the computational time of this approach is high and it has not been tested yet in 

other regions.  

 

3. CONCLUSION 
In MIND STEP the method of Kempen et al. 2011 will be used as it is the only approach 

covering the whole EU-27, particularly land-independent farm types (pig poultry) and farm 

types with low UAA per farm (horticulture, permanent crops) and where the results have been 

evaluated with European FSS data. Other studies using methods such as the synthetic 

landscape approach (e.g. Uthes and Kiesel 2020) for a specific region could be better suited 

for smaller regions but require highly dissaggregated data with sufficient data quality and 

have not been tested yet in other regions throughout Europe. The CO model used in Kempen 

et al. 2011 will be further improved in MIND STEP by updating the FADN data from 2012 to 

2018 and replacing the HSU (Homogeneous Spatial Unit) with a new initial spatial unit FSU 

(Farm structure unit) which are part of exactly one FSS 10 km2 grid cell and provide detailed 

information about nutrients flows. The prior data for the CO approach containing information 

about the share of UAA per farm type on a 10km² grid level will be based on FSS data from 

2010. The computed probabilities for a specific FADN farm to be located in a spatial unit 

allows to link economic behaviour to climatic, soil and landscape information and will be used 

by other models like IFM-CAP in task 2.6 as well as for spatial econometric or machine learning 

approaches.  
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CONSORTIUM DESCRIPTION 
The consortium of MIND STEP consists of 11 partners from 7 countries in Europe (the Netherlands, 
Germany, Austria (IIASA), Italy, France, Spain (JRC-Seville), Norway and Hungary). It includes partners 
from the private and public sector representing: 

• Academia and higher education (UBO, UCSC, WU). 

• SME dealing with research consultancy, data collection, strategic advice, 

normalization and policy in the field of energy, environment and sustainable 

development. This SME has also a strong track record in the field of communication, 

stakeholder engagement and exploitation (GEO) 

• Public government bodies dealing with agricultural and environmental research and 

data collection and building agricultural models at different scales (WR, IIASA, IAMO, 

THUENEN, INRA, NIBIO, JRC) 

 
The consortium has been carefully constructed in such a way that it is capable of jointly managing all 
activities and risks involved in all project stages. Each partner contributes its own particular skills, 
(inter) nationally wide network and expertise, and has a critical role in MIND STEP. Partner expertise 
smoothly complements each other and all together form the full set of capabilities necessary to lead 
MIND STEP to a success. Achieving the overall objective is determined by all partners in the consortium 
as well as their ability to involve other interested stakeholders in the process of developing, validating 
and disseminating the IDM models, indicators and methodologies (WR, UBO, IAMO, UCSC, WU, 
THUENEN and INRA) and linking IDM models to current agricultural policy models (WR, IIASA, UBO) 
included in the MIND STEP model toolbox. Dissemination and communication activities are steered by 
partner GEO who has graphic design, IT and marketing communication teams to deliver out-of-the-
box and novel solutions for dissemination and communication and JRC who has a large network with 
policy makers. GEO has experience in leading comparable activities in H2020 projects as UNISECO and 
COASTAL. The coordinator WEcR is part of Stichting Wageningen Research (Wageningen Research 
Foundation, WR). WR consists of a number specialised institutes for applied research in the domain 
of healthy food and living environment. WR collaborates with Wageningen University (WU) under the 
external brand name Wageningen University & Research. One of the strengths of Wageningen 
University & Research (including WR) is that its structure facilitates and encourages close cooperation 
between different disciplines. The institutes Wageningen Economic Research (proposed coordinator 
of MIND STEP, WEcR) and Wageningen Environmental Research (WEnR) are involved in this proposal. 
The One-Wageningen approach will also be applied to MIND STEP. WEcR has a long standing 
reputation of leading large scale EU projects, such as SUPREMA, Foodsecure, SUSFANS, FLINT, SAT-
BBE, and SIM4NEXUS.  


