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Abstract
The mapping of forest stands and individual trees affected by drought stress is a crucial step in targeted forest management, 
aimed at fostering resilient and diverse forests. Unoccupied aerial vehicle (UAV)-based thermal sensing is a promising 
method for obtaining high-resolution thermal data. However, the reliability of typical low-cost sensors adapted for UAVs is 
compromised due to various factors, such as internal sensor dynamics and environmental variables, including solar radiation 
intensity, relative humidity, object emissivity and wind. Additionally, accurately assessing drought stress in trees is a complex 
task that usually requires laborious and cost-intensive methods, particularly in field settings. In this study, we investigated 
the feasibility of using the thermal band of the Micasense Altum multispectral sensor, while also assessing the potential for 
modelling tree water deficit (TWD) through point dendrometers and UAV-derived canopy temperature. Our indoor tests 
indicated that using a limited number of pixels (< 3) could result in temperature errors exceeding 1 K. However, enlarging 
the spot-size substantially reduced the mean difference to 0.02 K, validated against leaf temperature sensors. Interestingly, 
drought-treated (unwatered) leaves exhibited a higher root mean squared error (RMSE) (RMSE = 0.66 K and 0.73 K) than 
watered leaves (RMSE = 0.55 K and 0.53 K), likely due to lower emissivity of the dry leaves. Comparing field acquisition 
methods, the mean standard deviation (SD) for tree crown temperature obtained from typical gridded flights was 0.25 K with a 
maximum SD of 0.59 K (n = 12). In contrast, a close-range hovering method produced a mean SD of 0.09 K and a maximum 
SD of 0.1 K (n = 8). Modelling the TWD from meteorological and point dendrometer data for the 2021 growth season (n = 
2928) yielded an R2 = 0.667 using a generalised additive model (GAM) with vapor pressure deficit (VPD), wind speed, and 
solar radiation as input features. A point dendrometer lag of one hour was also implemented. When predicting individual 
tree TWD with UAV-derived tree canopy temperature, relative humidity, and air temperature, an RMSE of 4.92 (μm) and 
R2 of 0.87 were achieved using a GAM. Implementing leaf-to-air pressure deficit (LVPD) as an input feature resulted in an 
RMSE of 6.87 (μm) and an R2 of 0.71. This novel single-shot approach demonstrates a promising method to acquire thermal 
data for the purpose of mapping TWD of beech trees on an individual basis. Further testing and development are imperative, 
and additional data from drought periods, point dendrometers, and high-resolution meteorological sources are required.
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1 Introduction

Trees have evolved strategies to endure moderate drought 
episodes through physiological and morphological adapta-
tions. These adaptations help maintain a balance between 

cooling mechanisms in the crown while preventing excessive 
water loss and carbon starvation. Such adaptions involve 
the regulating stomatal conductance, reducing leaf surface 
area and solar tracking [1, 2]. Additionally, certain wood 
traits enable xylem to withstand hydraulic failure [3]. Even 
moderate drought periods increase the likelihood of mortal-
ity [4] and can lead to reduced growth [5, 6] regardless of 
climate change [7]. Recent extreme drought events, such as 
those in Europe in 2018 and 2019 [8, 9] caused by climate 
change-induced warming and shifts in precipitation patterns 
[10], have raised concerns about amplified tree mortality and 
die-off across various climate zones [11].
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European beech (Fagus sylvatica), known for its high 
shade tolerance, has historically outcompeted other tree 
species in many parts of Europe [12]. However, in recent 
years, beech has shown declining growth throughout Europe 
[13–16]. Nevertheless, it may gradually acclimatise to 
drought over time [17].

Typical drought episodes can result in reduced carbon 
uptake due to decreased stomatal conductance, premature 
leaf senescence [18, 19], and a decrease in foliage in the fol-
lowing year due to reduced bud availability [20]. Prolonged 
drought episodes, especially for anisohydric plant species, 
can cause irreversible damage, including xylem embolism 
[15], resulting in permanent damage to the hydraulic system 
[21, 22].

One approach to assess drought-tolerant species involves 
classifying a tree’s hydraulic strategy along the anisohydric 
and isohydric spectrum [18, 23]. Despite numerous studies 
on tree hydric behaviour, there is no mathematical model 
describing this trait and is typically categorised based on the 
relationship between stomatal conductance gs and leaf water 
potential Ѱ1 [24]. Isohydric plants are known for reducing 
transpiration by closing stomata during water shortages, 
which reduces  CO2 assimilation [25]. Anisohydric plants, 
on the other hand, keep stomata open for longer periods 
during water shortage, making them more vulnerable to 
hydraulic failure but maintaining higher  CO2 uptake dur-
ing drought episodes [8, 26]. The anisohydric strategy, in 
essence, necessitates more water to keep leaves cool during 
extreme heat and relies on significant fluctuations in tree 
stem (xylem) water content, often relying on nocturnal refill-
ing [27]. Within each species, variations in hydric behaviour 
can also occur due to genetic variation in terms of drought 
stress tolerance [8, 10]. Species with high phenotypic plas-
ticity may allow individuals to adapt to changing climate 
conditions [15]. Categorizing tree species, and even specific 
provenances [10], into hydric behavioural classes through 
quantification of stomatal conductance with gas exchange 
measurements and leaf temperature can assist in assessing 
drought stress tolerance in the face of climate change. How-
ever, it is important not to assume such categorization and to 
adopt a comprehensive holistic approach [8] particularly in 
terms of whole-tree carbon balance [21]. In practical terms, 
central European species are rarely strictly either anisohy-
dric or isohydric, but rather they are typically evaluated in 
reference to other species. For instance, Quercus species 
tend to be more anisohydric than Fagus, while Pinus is 
often more isohydric than Fagus. A better understanding 
of hydric behaviour among species and individuals at the 
regional scale could significantly assist in focusing forest 
management goals.

An increased awareness of the impact of drought on 
tree productivity and survival [17] is essential for select-
ing appropriate species and provenances to enhance 

silvicultural practices, particularly regarding drought 
stress adaptation [28]. However, the effects of prolonged 
and extreme drought conditions on forests in the future 
remain relatively unknown, and the capacity of trees to 
acclimate is often underestimated [17, 29, 30]. Pretzsch 
et al. [17] demonstrated that during a 5-year experiment 
involving induced drought, beech acclimated faster than 
spruce, while spruce acclimatised more rapidly when 
mixed with beech. This suggests that some species could 
acclimatise to extended drought stress over time, within a 
generation, providing hydraulic failure is avoided. Detect-
ing hydric behaviour can assist in determining tree spe-
cies mixing strategies, identifying species that coexist well 
during drought, and assessing hydric variability within 
species.

The use of thermal infrared (TIR) sensors has proven val-
uable for non-destructive water content retrieval and stomata 
closure detection in plants [31–33]. Recent advancements in 
sensors mounted on unoccupied aerial vehicles (UAVs) have 
created opportunities to acquire thermal imagery from above 
crop or forest canopies. Gómez-Candón et al. [34] utilised 
UAV-based thermal imagery to detect elevated canopy tem-
peratures in non-irrigated trees while using reference ground 
targets for temperature accuracy validation. Simpson et al. 
[35] implemented UAV thermography and multispectral data 
to produce evapotranspiration maps for oak trees. However, 
achieving accuracy with low-cost thermal imagers can be 
challenging, leading to several studies aimed at assess-
ing and enhancing thermal imaging acquisition methods 
[36–43]. Challenges affecting the accuracy of thermal imag-
ing can arise from the influence of meteorological variables, 
including air temperature (AT), relative humidity (RH), solar 
radiation (SR), and wind speed (WS) which not only impact 
tree canopy temperature but also influence the sensor itself. 
Additionally, other issues can affect thermal sensors, such 
as sensor drift, internal calibration, “bad pixels”, variations 
in “spot-size”, variations in leaf angle due to solar tracking, 
and the need to exclude certain pixels through masking.

The primary objective of this study is to investigate 
the feasibility of obtaining precise thermal imagery at the 
individual tree level, a topic of interest for intensive forest 
monitoring plots (i.e., ICP forests Level II). In pursuit of 
this, we developed a single-shot method using the Micasense 
Altum sensor to capture tree crown temperature data. This 
data serves the dual purpose of calculating the leaf-to-air 
vapor press deficit (LVPD) and constructing a model for tree 
water deficit (TWD). Our approach involves both indoor and 
outdoor experiments, incorporating leaf temperature sensors 
for validation purposes. The specific aims of our study are 
as follows:

 I. To determine the minimum number of pixels required 
to obtain accurate temperature measurements and to 
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investigate whether dry vegetation with lower emis-
sivity has an impact on accuracy.

 II. To evaluate the accuracy of tree crown tempera-
ture measurements in comparison to upper canopy-
mounted leaf temperature sensors across repeated 
missions under varying weather conditions through-
out the growth season.

 III. To assess the dispersion of TIR values obtained 
through grid-type acquisition methods against single-
shot acquisition techniques.

 IV. To explore the potential for modelling TWD using 
TIR tree crown data in conjunction with meteorologi-
cal data.

2  Materials and Methods

2.1  Study Area

The Britz Research Station is situated roughly 50 km north-
east of Berlin, Germany (52.87° N 13.83 ° S, 42 m above 
sea level) and under the management of the Thünen Insti-
tute for Forest Ecosystems (www.thuenen.de). Established 
in 1972, the research station was originally designed for 
forest hydrology research and has expanded over the years 
to encompass various facets of intensive forest monitoring. 
Since 2018, the research station has integrated UAV technol-
ogy in conjunction with multispectral sensors for research 
purposes, specifically for intensive forest monitoring (i.e., 
Level II). This research encompasses a wide range of activi-
ties, including comprehensive tree geometry measurements, 
phenology studies, growth assessments, leaf-area-index 
evaluations, plot mapping, drought stress analysis, and the 
validation and evaluation of multispectral sensors. An over-
view map of the research station is available in Krause et al. 
[44].

The beech stand under consideration for this study is 
approximately 50 years old. Among the trees selected for 
this study, nine are designated as long-term phenological 
observation trees and are equipped with six-point dendrom-
eters. Some of these trees also are equipped with both ana-
logue and digital band dendrometers, along with sap-flow 
sensors. Notably, two of the selected trees in this study have 

been equipped with leaf temperature sensors positioned in 
the upper tree crown.

2.2  Altum Sensor

The sensor utilised for the study was the Micasense Altum 
(micasense.com). The sensor is composed of six synchro-
nised bands, including blue, green, red, near-infrared, red-
edge, and longwave thermal infrared (LWIR). Technical 
specifications of the Altum sensor are presented in Table 1. 
Additionally, the sensor incorporates the radiometric-capa-
ble Lepton (Lepton LWIR) LWIR sensor from FLIR Systems 
(FLIR, 2022), which operates within a wavelength range 
spanning from 8 to 14 μm with a centre wavelength of 11 
μm. It also integrates thermal image processing features such 
as automatic thermal environment compensation, noise fil-
ters, and thermal non-uniform correction (NUC) [45]. The 
NUC functions automatically recalibrates the sensor every 
five minutes or 2° K changes in internal temperature. The 
manufacturer reports a thermal accuracy of ± 5 K, while the 
thermal sensitivity is noted to be less than 50 mK (0.05° K). 
In the context of this study, data derived from the thermal 
band is referred to as thermal infrared (TIR).

2.3  UAV

The UAV employed for the study was a DJI Matrice M210 
RTK, equipped with dual gimbals that simultaneously car-
ried both the Micasense Altum and Zenmuse X7 (RGB) sen-
sors. According to the manufacturer, the hovering accuracy 
in P-mode with Global Navigation Satellite System (GNSS) 
capability is approximately ± 0.5 m vertically and ± 1.5 m 
horizontally. The maximum take-off weight is 6.14 kg and 
a flying time of approximately 24 min, even when powering 
both the Altum and X7 sensors concurrently.

2.4  Flight Planning

The DJI Matrice M210 RTK was operated using the DJI 
Pilot App (www. dji. com). Flight plans were generated based 
on the central positions of tree crowns extracted from an 
existing Orthomosaic created from data obtained with the 
Zenmuse X7 and Real-Time Kinematic (RTK)-GNSS posi-
tioning. The single-tree waypoint flight plan was created 

Table 1  Parameters for the Micasense Altum sensor

Sensor Mega-pixel Focal length 
(mm)

Pixel size (μm) Sensor size 
(mm)

Sensor size 
(pixel)

Aspect File type GSD (cm) at 75 m

Micasense 
Altum

3.2 8 (multi)
1.77 (LWIR)

4.25 7.16 × 5.35 
(multi)

1.9 × 1.43 
(LWIR)

2064 × 1544
160 × 120

4:3 tif 4.33

http://www.thuenen.de/en/
http://micasense.com
http://www.dji.com
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using the R software [46], which produced a custom Keyhole 
Markup Language (KML) file conforming to the required 
DJI format. The selected flying height was set to a minimum 
of 10 m above the beech canopy, typically an altitude of 
approximately 30 m above ground level. This choice was 
determined after testing, as it was found that maintaining a 
minimum distance of 10 m from the canopy was essential 
to prevent immediate disturbance of the leaves due to the 
downward airflow generated by the propellers. The single-
image waypoint flight plan (see Fig. 1) required about 5–7 
min to execute. Each waypoint was maintained for a dura-
tion of at least 10 s, typically allowing for the capture of five 
images from the Altum sensor, with an intervalometer set at 
two-second intervals. For the trees equipped with leaf tem-
perature sensors, a separate flight plan was devised, which 
was typically repeated at least twice within a single mission.

The standard flight plan for weekly coverage of the entire 
Britz research station involved the gridded flight. In this 
flight plan, a forward- and side-overlap of 80 to 85% was 
maintained, while the UAV operated at an altitude of 75 m. 
Achieving forward overlap was accomplished by utilising a 
two-second intervalometer for the Altum sensor, allowing 
for a flying speed of three meters per second.

2.5  Research Station Sensors

The leaf temperature sensors utilised for validating leaf 
temperature were the LAT-B2 sensors [47]. These sensors 
are capable of measuring both the absolute leaf surface 
temperature and the surrounding ambient leaf temperature 

(see Fig. 2). According to the manufacturer, these leaf tem-
perature sensors offer an absolute accuracy of ± 0.2 K for 

Fig. 1  An example of a 
waypoint flight plan for single 
shot images. The UAV would 
hover over each waypoint for 
10 seconds while acquiring five 
thermal single-shot images of 
the tree crown

Fig. 2  The LAT-B2 [47] leaf temperature sensor which was posi-
tioned in the upper tree crown and used to validate the TIR imagery



279Remote Sensing in Earth Systems Sciences (2023) 6:275–296 

1 3

both leaf surface and ambient temperature measurements. 
Installation of these sensors typically takes place at the onset 
of the growth season, following the conclusion of all phe-
nological phases for this location, which usually occurs at 
the end of June.

The study employed DR1W point dendrometers [47], 
which were installed on six of the study trees. These point 
dendrometers were permanently installed before the growth 
season and are indicated by the manufacturer to exhibit an 
error of a maximum of 4.5% of the measured value. These 
dendrometers are designed to measure changes in the tree’s 
diameter at breast height (1.3 m) at a precision level of 
micrometer (μm) range and configured to record data at five-
minute intervals. For the study, five of the six trees were 
chosen based on the completeness of available data.

The weather data was acquired from a Thies weather sta-
tion [48], which was configured to capture various meteoro-
logical parameters such as air temperature (AT), wind direc-
tion (WD), wind speed (WS), solar radiation (SR), relative 
humidity (RH), and air pressure (AP). The weather station 
is permanently situated in an open field at a height of two 
meters above ground level and situated approximately 180 
m away from the beech study plot.

2.6  Feature Selection

Working with UAV-based multispectral imagery along-
side near real-time meteorological data provides numerous 
modelling opportunities that are typically unavailable when 
solely working with pixel values. When dealing with ther-
mal imagery, comparing raw thermal values from day to 
day can often be misleading. The thermal temperature of 
plant or tree leaves can exhibit rapid variations, especially 
during hot summer days with changing cloud conditions. 
By incorporating meteorological variables such as RH, AT, 
and SR synchronised at the time of thermal data acquisition, 
it becomes possible to account for various influences stem-
ming from fluctuating weather conditions. This approach not 
only proves useful for calibrating thermal imagery but also 
for modelling tree water status, such as the TWD [49, 50].

It is essential to rigorously assess these features regarding 
their effectiveness in predicting TWD to develop the most 
accurate models using the available data. Certain features, 
such as the vapor pressure deficit (VPD), which is derived 
from RH and AT, can be employed on their own to predict 
TWD [50]. Integrating UAV-based TIR imagery into TWD 
modelling holds the potential to introduce a spatial dimen-
sion to the model’s predictions, which could prove valuable 
in enhancing the overall accuracy of the predictions.

Utilising feature engineering has the potential to enhance 
modelling performance by creating more effective data 
representations while mitigating issues related to multicol-
linearity and the impact of irrelevant predictors [51]. One 

straightforward example of altering the representation of 
a feature involves the VPD, which is derived from relative 
humidity (RH) and air temperature (AT) features. VPD has 
been demonstrated to influence atmospheric demand and sto-
matal conductance [52, 53]. Furthermore, the leaf-to-air vapor 
pressure deficit (LVPD) incorporates the difference between 
the UAV-based TIR temperature and AT, in addition to VPD. 
LVPD has the potential to serve as an input feature for TWD 
modelling, and it can also function as a standalone index that 
reflects the current status of the tree crown.

The VPD represents the disparity between the current mois-
ture content of the air and the air’s potential moisture-holding 
capacity when saturated [54]. The maximum capacity for 
moisture retention depends on the AT, where higher AT values 
correspond to greater potential saturation, a concept referred 
to as saturation vapor pressure (SVP) (see Eq. 1). When com-
bined with RH, SVP yields the active vapor pressure (AVD) 
(see Eq. 2), which represents the actual quantity of water vapor 
at a given AT. VPD is subsequently calculated by deducting 
SVP from AVP as shown in Eq. 3.

The LVPD is calculated by accounting for the difference 
between the water vapor pressure within the leaf and the water 
vapor pressure of the ambient AT, [52, 55–57]. In this calcula-
tion, the leaf surface temperature is implemented to calculate 
the leaf vapor pressure (LVP) (see Eq. 4), replacing the use 
of ambient AT as in the AVP equation (see Eq. 2). LVPD is 
subsequently derived by subtracting LVP from AVP as shown 
in Eq. 5.

In this research, leaf surface temperature was obtained 
through UAV-based TIR imagery as well as from leaf tem-
perature sensors directly affixed to the leaves. Table 2 provides 
a summary of the features and indices, along with their cor-
responding abbreviations, utilised in this study.

2.7  Tree Water Deficit as Drought Stress Validation

Daily diurnal fluctuations in stem diameter occur due to 
the depletion of the stem resulting from water loss through 
the leaves, typically during the day, and the subsequent 

(1)SVP = 0.6108 exp
(

12.27AT

AT + 237.3

)

(2)AVP = SVP
RH

100

(3)VPD = SVP − AVP

(4)LVP = SVP
RH

100

(5)LVPD = LVP − AVP
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nocturnal replenishment of the stem during the night. The 
magnitude of these variations in stem size serves as an 
indicator of the current tree water status and can be quan-
tified accurately using point dendrometers positioned at 
breast height. Point dendrometers record changes stem size 
attributable to the formation of new xylem and phloem 
tissues, which accumulate over the course of the growth 
season [49, 50], as well as the expansion and contraction 
of elastic tissues [50, 58]. Fig. 3 illustrates the pattern 
of daily fluctuations, wherein stem contraction, resulting 
from water loss through transpiring leaves during the day, 
is followed by nocturnal expansion, continuing into the 
early morning. The red dashed line indicates the timing 
of the UAV missions for TIR acquisition.

As shown in Fig. 4a, following the methodology outlined 
by Zweifel et al. [59], we established segments between suc-
cessive maximum stem radius points observed throughout 
the growth season. These segments capture the irrevers-
ible growth occurring between these maxima. Within each 
segment grouping, focusing on the reversible changes in 
stem size (TWD), involves a multi-step process. Initially, 
we detrend the data to remove the underlying growth trend, 
isolating variations primarily linked to daily water dynam-
ics. Subsequently, we normalise the data to ensure consistent 
scaling, facilitating meaningful comparisons across different 
days and trees. Finally, we invert the values, essentially flip-
ping the data to have the highest point on each curve repre-
sent the maximum stem shrinkage for that particular day, as 
illustrated in Fig. 4b. This approach enables precise capture 
and analysis of maximum daily stem shrinkage instances, 
offering valuable insights into the tree’s water status and its 
response to environmental conditions.

2.8  Image Processing

The Micasense Altum offers the capability in the co-regis-
tration of single-shot TIR imagery with synchronised mul-
tispectral bands. This co-registration process is performed 
during post-processing utilizing the Micasense “image 
processing” Python library available at www. github. com/ 
micas ense/ image proce ssing. In addition, the non-thermal 
multispectral bands undergo conversion to radiance and 
subsequent radiometric calibration. This calibration step is 
facilitated through the use of a Micasense calibrated reflec-
tance panel, which is sampled both before and after each 
flight mission. As a result of this calibration, the resulting 
images exhibit reflectance values ranging from 0 to 1. Subse-
quent to radiometric calibration, an image alignment process 
is executed, which encompasses unwarping the images via 
built-in lens calibration, applying an affine transformation, 
and cropping to eliminate extraneous pixels [60]. The full 
process was carried out in Python 3.6 and Micasense Python 
libraries (www. github. com/ micas ense/ image proce ssing). 

Table 2  Feature and indices with abbreviations and units

Feature Abbreviation Description Unit

Thermal infrared TIR Thermal data acquired from the Micasense Altum K
Masked thermal infared TIRmask TIR where ground and lower canopy pixels are removed K
Ambient air temperature AT Weather station Britz °C
Relative humidity RH Weather station Britz %
Solar radiation SR Weather station Britz W/m2

Wind speed WS Weather station Britz m/s
Vapor pressure deficit VPD Derived from AT and RH kPa
Leaf-to-air vapor pressure deficit LVPD Derived from leaf TIR, AT, and RH kPa
Tree water deficit TWD Detrending and normalisation of point dendrometer data μm

Fig. 3  A representation of the daily stem fluctuations. Nocturnal 
refilling typically initiates in the late afternoon or early evening, con-
cluding when leaf transpiration commences in the morning. TIR data 
was generally collected around solar noon, close to the time when the 
stem approaches its lowest water content (indicated by the red dashed 
line)

http://www.github.com/micasense/imageprocessing
http://www.github.com/micasense/imageprocessing
http://www.github.com/micasense/imageprocessing
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The customised Python workflow was executed in a loop 
for each corresponding calibration panel.

Further processing was carried out in R [46] where mul-
tiple vegetation indices were calculated to facilitate testing 
and masking procedures. It is important to note that the raw 
digital number (DN) values of the TIR band, as provided 
by the sensor, are expressed in centi-Kelvin. To conform to 
common temperature units, these values were converted to 
Celsius, following the manufacturer’s recommended conver-
sion equation:

The management of images and their derivatives involved 
organizing them into layered stacks, with each stack catego-
rised by its corresponding mission ID number for clarity 
and easy access. Identifying tree crowns within individual 
images was performed manually but carried out through 
a rapid annotation method developed in R, utilizing the 
Terra package [61]. In this process, images were displayed 
in either RGB or colour-infrared (CIR), and crown poly-
gons were created by selecting the top left and bottom right 
points of the tree crown, forming the blue rectangle shown 
in Fig. 5. To establish the dimensions of this rectangle, a 
centroid point was calculated, subsequently used to define 
the length and width of the rectangle. Following this, an 
ellipsoid or, in some cases, a near circle was generated to 
accurately represent the shape of the tree crown. Given the 
considerable volume of images, a semi-automated approach 
was employed, which would systematically move to the next 
image stack following user inputs. Subsequently, polygons 

(6)TIR
◦

C =

(

DN

100

)

− 273.15

and cropped images were stored using specific naming 
conventions to ensure repeatability and consistency in the 
dataset.

During the looping process, the mean extracted tree 
crown TIR, multispectral, and vegetation index pixel values 
were appended to a table, alongside acquisition timestamps, 

Fig. 4  On the left (a), the diagram illustrates a growth segment (dot-
ted line) delineated between two instances of maximum stem radius. 
The arrows indicate the extent to which the stem deviates from the 
growth trend (GRO), highlighting the deficit in stem size. On the 
right (b), the same segment is presented following a series of trans-
formations: detrended, inversed, and normalised. These adjustments 

position the maximum shrinkage instances at the top of the graph, 
enabling the determination of TWD on an hourly basis. It's worth 
noting that the UAV missions typically occurred around solar noon, 
approximately 3 to 6 h before the stem reached its peak daily shrink-
age

Fig. 5  Illustration of the rapid annotation method employed for crown 
pixel extraction in R [46]. The ellipsoid shape is generated by the 
user's mouse clicks at the positions of the tree crown’s top-left and 
bottom-right corners
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utilising the exiftoolr package [62]. Subsequently, the times-
tamps for the extracted pixel values and dendrometer data 
were rounded to the nearest hour and then aligned with the 
corresponding hourly meteorological data obtained from the 
weather station. The original dendrometer data, collected at 
5-min intervals, were synchronised for this study to calcu-
late the TWD at the hourly level. Three different datasets 
were created to account for variations in lag regarding TWD 
calculated from the dendrometer data: no lag, one-hour lag, 
and two-hour lag.

2.9  Analysis and Modelling

Statistical analysis and modelling was carried out in R [46]. 
All datasets underwent testing for normalisation and correla-
tion, and modelling approaches were adjusted accordingly. 
Pearson correlation was employed for analysing parametric 
data, while the Spearman non-parametric rank correlation 
was used for data that did not conform to a normal distribu-
tion. To average correlation results, correlation coefficients 
were transformed using the Fischer-Z method, utilizing the 
fisherZ function from the DescTools package [63]. These 
transformed values were then averaged and converted back 
to correlation coefficients for further analysis [64]. For the 
further analysis of non-parametric data, second-order poly-
nomial regression and generalised additive models (GAM) 
were applied. GAMs were trained and validated using a 
70/30 training and validation split and evaluated using root-
mean-squared error (RMSE), mean squared error (MAE), 
and R2. Linear regression was also evaluated using RMSE, 
MAE, and R2. Models were compared using the Akaike 
Information Criterion (AIC). It is important to note that 
due to the absence of actual dendrometer data influenced by 
drought, the modelling was limited to simple curve regres-
sion models, intended for potential extrapolation and proof-
of-concept analysis rather than operational use.

3  Results

3.1  Thermal Sensor Assessment

3.1.1  Indoor Experiment

To evaluate the performance of the Micasense Altum TIR 
band, extracted TIR values were compared with leaf tem-
peratures obtained from mounted leaf temperature sensors. 
An indoor experiment was conducted using two indoor 
plants (Epipremnum aureum), each equipped with two leaf 
temperature sensors. The choice of these plants was based 
on practical considerations, as leafed-out beech, typically 
used for such experiments, is not readily available dur-
ing the winter months in central Europe. The experiments 

were carried out over a duration of 30 to 50 min, during 
which controlled variations in timing and intensity of heat 
lamps and a ventilator were applied. The temperature sen-
sor was configured with a two-second intervalometer and 
activated at the start of each experiment. Although the 
sensor was not specifically pre-warmed before the indoor 
experiments, it had been in the same room for at least 30 
min prior to operation. Both the positioning of the heat 
lamps and ventilator were carefully arranged to affect not 
only the plants but also the sensor.

Thermal values were extracted from leaves in close 
proximity to the leaf temperature sensors (see Fig. 6). 
Three different types of polygons were tested across three 
trials: extracting all pixels from the entire leaf, extracting 
approximately 10 pixels around the leaf temperature sen-
sors, and extracting approximately three pixels near the 
leaf temperature sensor. Table 3 shows the results of the 
three trials. Using approximately 10 pixels (trial 2) for 
extraction yielded a mean difference of 0.02 K. However, 
employing pixels from the entire leaf or only three pixels 
for extraction resulted in mean differences of 0.11 °C and 
1.18 °C, respectively.

In the accuracy assessment of the second trial, the 
results for the watered plant were as follows. Leaf one 
had an RMSE of 0.55 K and MAE of 0.42 K, while leaf 
two had an RMSE of 0.53 K and MAE of 0.40 K. Both 
leaves of the watered plant achieved an R2 of 0.9. For the 
unwatered plant, leaf three had a slightly higher RMSE 
of 0.66 K and an RMSE of 0.74 K for leaf four. A similar 
decrease in accuracy was observed for the MAE of the 
unwatered plant, with a MAE of 0.53 K for leaf three and 
a MAE of 0.59 K for leaf four. The R2 values for leaves 
three and four were 0.88 and 0.87, respectively. Table 4 
provides an overview of the RMSE, MAE, and R2 of both 
plants for the second trial. Fig. 7 shows the four separate 
leaves of the second trial, modelled with second-order 
polynomial regression. Similar patterns are evident among 
all four leaves due to consistent artificial environmental 
effects (i.e., heat lamps and a ventilator). However, there 
is a wider dispersion in the leaves of the unwatered plant, 
particularly for leaf four.

The second trial lasted for approximately 50 min, during 
which the plants and sensor were exposed to varying heat 
lamp and ventilator intensities. Fig. 8, visually compares 
the extracted thermal pixel values from leaf four to values 
derived from the leaf temperature sensor. The near infrared 
(NIR) band of the Micasense Altum sensor indicates the tim-
ing of the heat lamp fluctuations. The spikes observed in the 
thermal imagery (Leaf TIR 4) are likely caused by the ther-
mal non-uniform calibration (NUC) of the Micasense Altum 
sensor, which, as reported by the manufacturer, calibrates 
automatically every five minutes or when the temperature 
of the camera changes by 2 K [45].
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3.1.2  Field Experiments

During the field experiments, the thermal sensor’s perfor-
mance was further assessed by comparing the mean crown 
temperature of two trees, each equipped with a leaf tempera-
ture sensor in the upper tree crown. While validation was 
limited to a single sensor in the upper canopy of each tree, 
it provided a rough estimation of the upper tree crown tem-
perature, serving as a control for understanding how the leaf 

surface responded to varying meteorological factors. Fig. 9 
shows the results of this comparison using linear regression 
(upper) and a time-based visual representation (lower). The 
average thermal values extracted from the crown of tree 328 
over 13 acquisition days resulted in an RMSE of 3.31 K, a 
MAE of 2.95 K, and an R2 of 0.89 when compared to the 
tree crown-based leaf temperature sensor. Similarly, thermal 
values extracted from tree 347 yielded comparable results 
with an RMSE of 3.12 K, MAE of 2.78 K, and an R2of 0.93. 
Notably, there is a systematic error, indicating a consistent 
underestimation of leaf temperature, as evident in the time-
based visualisation for both trees.

To assess the accuracy requirements for a thermal sensor 
for tree crown temperature extraction throughout the growth 
season, the mean absolute difference for tree 328 and 347 
was calculated across the full time series (n = 13). Tree 328 
resulted in a mean absolute difference of 5.27 K, while tree 
347 resulted in a similar mean absolute difference of 5.45 
K. This shows that in order to consider the day-to-day dif-
ferences at the stand level, a minimum of approximately 5 
K accuracy could be necessary.

To assess the ability to differentiate between extracted 
tree crown temperatures within a flight mission, the mean 
absolute difference was calculated for each epoch sepa-
rately across the five trees equipped with point dendrom-
eters, resulting in a minimum of 0.7 K and a maximum of 
1.3 K. Fig. 10 displays a correlation matrix for the mean 
absolute difference of extracted thermal values for the 
growth season in comparison to typically available hourly 
meteorological data. It is evident that AT and VPD exhibit 
moderate correlations with daily differences in tree crown 
temperatures, while RH and WS also play a role but with 

Fig. 6  The thermal image on the left, captured by the Micasense 
Altum during indoor experiments, displays two plants. The watered 
plant on the left of the thermal image contains leaf 1 (bottom) and 
leaf 2 (top), while the unwatered plant on the right has leaf 3 (bot-
tom) and leaf 4 (top). In the second trial, polygons were created in 

close proximity to the mounted leaf temperature sensors. These pol-
ygons consist of approximately 10 pixels each, which were utilised 
to extract the mean temperature at two-second intervals. The RGB 
image on the right shows the two plants with mounted leaf tempera-
ture sensors and the effects of the heat lamps

Table 3  The mean difference in temperature for the three separate tri-
als. The use of approximately 10 pixels created the best results while 
implementing only three pixels or less resulted in considerably more 
error

Experiment Method Mean 
difference 
(K)

Trial 1 Whole leaf 0.11
Trial 2 10 pixels 0.02
Trial 3 3 pixels 1.18

Table 4  Mean temperature differences in three separate trials. Using 
approximately 10 pixels yielded the most accurate results, while 
using only three pixels or fewer resulted in significantly higher errors

Object RMSE (K) MAE (K) R2 Treatment

Leaf 1 0.55 0.42 0.9 Watered
Leaf 2 0.53 0.40 0.91 Watered
Leaf 3 0.66 0.53 0.88 Unwatered
Leaf 4 0.73 0.59 0.87 Unwatered
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minor significance. In this case, SR does not appear to have 
been an influencing factor. The masking of thermal pixels to 
the upper tree crown to eliminate shaded parts of the lower 
crown as well as ground pixels did not show any significant 
difference in correlation, except for a slight improvement 
RH. On the other hand, the mean crown temperature from 
the thermal sensor correlates well with SR (0.68) while RH 
shows moderate correlation (0.49), and WS almost no cor-
relation. VPD, and particularly AT, demonstrate high cor-
relations with the TIR crown temperature at 0.88 and 0.98, 
respectively.

3.2  Acquisition Method Assessment

3.2.1  Flight Grid Acquisition Method

Two UAV-based acquisitions methods, flight grid and 
single-shot, were evaluated to assess the effects of various 
viewing angles and timing on thermal imaging consistency. 
Four epochs from the growth season campaign were selected 
for comparison purposes. Fig. 11 provides an overview of 

Fig. 7  Results of the indoor experiment modelled using second-order 
polynomial regression. The point distribution indicates lower R2 val-
ues and higher dispersion for the unwatered plant, particularly for leaf 

four. Variations in point clusters can be attributed to controlled heat 
lamp and ventilator fluctuations, as well as potential sensor drift

Fig. 8  Visual comparison between the extracted thermal camera 
pixel values (leaf TIR 4) and the leaf temperature sensor readings. 
The spikes observed in the thermal dataset are likely attributed to 
the Thermal Non-Uniform Calibration which occurs automatically at 
five-minute intervals
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various meteorological data acquired within an hour of the 
TIR data acquisition for each of the four epochs. Addition-
ally, Fig. 11 also shows the relationship between the acquired 
TIR imagery of a sample tree crown and the cloud cover on 

each specific day. All four days experienced varying cloud 
cover, with day 240 having the most substantial cloud cover, 
accompanied by low SR and high RH. Day 250 exhibited 
the highest VPD, which coincided with the highest mean 
absolute difference of the thermal imagery (mdTIR) and a 
relatively high TWD. On the other hand, day 257, which had 
the highest SR, showed the lowest mdTIR.

In the context of the flight grid mission, the tree crown 
temperature of a selected tree was extracted from the TIR 
imagery obtained during three separate flight lines, each 
conducted at a flying height of 75 m for each of the four 
selected epochs. The distance from the sensor to the tree 
crown varied in each image due to changing incidence 
angles. In the first flight line, the tree crown was posi-
tioned at approximately +20° from nadir, and the flight 
proceeded in the northeast direction. The second flight 
line had the tree crown positioned at nadir, while the flight 
headed in the southwest direction. The third flight had 
an incidence angle of − 20° off nadir in the X-axis. Each 
flight line comprised five images acquired at two-second 
intervals. Table 5 provides the mean and SD for each flight 
line for all four epochs. Notably, Day 250 showed the high-
est SD (0.59 K) for the flight line with a 20° off-nadir 
incidence angle, while the lowest SD was 0.06 K on Day 

Fig. 9  Linear regression and accuracy reporting (top) as well as a time-based visualisation (bottom) for tree 328 (left) and tree 347 (right)

Fig. 10  Pearson cCorrelation matrix showing the relationships 
between the extracted thermal infrared values for all of the tree 
crowns (n = 9) summarised for each acquisition day (n = 13). TIR: 
unmasked extracted TIR values; TIR Mask: masked extracted upper 
crown TIR values; Difference: the mean difference between extracted 
TIR values within an acquisition day
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257 with a − 20° angle off nadir. The overall average SD 
across all acquisition days was 0.25 K (n = 12). The high-
est SD observed on Day 250 corresponds with the highest 
mdTIR and VPD among the four epochs. It is worth noting 
that the average TIR temperature over the flight lines could 
vary almost two degrees.

Figure 12 depicts the gridded flight lines, with each individual 
tree crown extraction compared to the tree crown temperature of 
a neighbouring tree equipped with a leaf temperature sensor. It is 
important to note that the leaf temperature of the neighbouring 
tree is not intended for direct comparison but rather to illustrate 
how changing cloud cover affects the crown canopy at a given 
time. Temperature differences are apparent among all three 
incident angles, which is expected given varying cloud cover 
conditions and approximately one minute between flight lines. 
This is corroborated for the most part by similar fluctuations in 
the leaf temperature of the neighbouring tree. Notably, except 
for day 240, there is a significant dispersion in TIR SD. Day 240 
also corresponds to the lowest AT, SR, WS, VPD, mTIR, and 
mTWD, and the highest RH among the four epochs.

3.2.2  Single‑Image Acquisition Method

The single-tree acquisition method was accomplished using 
a waypoint flight planning approach, where the UAV would 
hover over each tree for 10 s, acquiring five images via 
a two-second intervals. Two passes were carried out on 
each acquisition day maintaining a distance of approxi-
mately 10 m to the tree crown for all images. The average 
SD across all acquisition days was 0.9 K (n = 8), with a 
minimum SD of 0.6 K and a maximum of 0.18 K. Apart 
from slight variations on day 257, the low SD remained 
consistent throughout the datasets (see Table 6). Notably, 
the mean temperature between passes could vary up to two 
degrees on day 203, which also had the highest WS. Aside 
from the second pass of day 257, it can be seen in Fig. 13 
that the extracted TIR values within a pass maintain a high 
consistency when applying the close-range hovering way-
point method. However, the average temperature between 
passes can vary up to two degrees during changing cloud 
cover and high winds.

Fig. 11  Four epochs from the growth season campaign were selected 
for comparison purposes. Overcast refers to when the sky is com-
pletely covered by clouds. The term Cloudy depicts a number of 
clouds which block out the sun most of the time with the possibil-
ity of short episodes which uncover the sun. Partially cloudy is when 
most of the sky is clear however some clouds could potentially block 

out the sun temporarily. Also reported is the air temperature (AT), 
relative humidity (RH), solar radiation (RH), wind speed (WS), vapor 
pressure deficit (VPD), mean TIR (mTIR), mean absolute difference 
TIR (mdTIR) and mean tree water deficit (mTWD) of the 5-point 
dendrometer-equipped trees of the pure beech stand. DOY: day of 
year
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3.3  Drought Stress Validation

3.3.1  Tree Water Deficit and Meteorological Data

Of the nine-point and band dendrometers available at 
beech study plot, five were selected for modelling and 

validation purposes. The TWD was calculated for the 
entire growth season and compared to meteorological 
data derived from the weather station located in an open 
area approximately 170 m from the beech study plot. The 
hourly growth season dataset (n = 2928) was tested for 
normality using the Shapiro-Wilk test, and the hypothesis 

Fig. 12  The extracted TIR values of the sampled tree crown from three flight lines from the gridded mission shown with timestamps, compared 
to the leaf temperature of a neighboring tree. Top right: DOY 203; top left DOY 240; bottom left: DOY 250; bottom right DOY 257

Table 5  Comparison of the mean and SD of crown temperature of a 
selected tree from various flight lines at a flying height of 75 m. The 
higher SD for the northeast direction suggests an influence due to an 

increased incidence angle from the sensor to the tree crown and pos-
sible sunspot reflections

Grid DOY: 203 DOY: 240 DOY: 250 DOY: 257

Azimuth and angle Mean SD Mean SD Mean SD Mean SD

NE +20° 22.09 0.32 15.9 0.14 19.57 0.59 18.43 0.13
SW 0° 20.88 0.25 16.19 0.17 18.08 0.27 17.22 0.43
NE − 20° 20.4 0.13 14.73 0.15 18.79 0.38 17.96 0.06

Table 6  Results displaying the 
mean and standard deviation of 
crown temperatures acquired 
with single-shot thermal 
imagery at nadir and a distance 
of approximately 10 m

Single tree DOY: 203 DOY: 240 DOY: 250 DOY: 257

Passes Mean SD Mean SD Mean SD Mean SD

Pass 1 22.72 0.09 16.92 0.09 19.35 0.09 20.05 0.05
Pass 2 20.06 0.09 15.85 0.08 20.57 0.08 20.19 0.18
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of normality was rejected. For this reason, a GAM model 
was implemented to assess which meteorological features 
or combination of features best model the TWD estimate. 
Table 7 displays the adjusted R2 for nine different varia-
tions of feature models. Each model was also created using 
a one- and two-hour lag of the TWD behind the mete-
orological data, as well as no lag. This was done for the 
purpose of assessing the temporal offset in transpiration-
regulating variables such as VPD, WS, and SR with the 
timing of lower stem fluctuations expressed by the TWD. 
The highest R2 scores are shown as bold text and show 
that a one-hour lag is, for the most part, the best explana-
tion of the physiological delay between the atmospheric 
drivers and the TWD. The best GAM model was achieved 
with an R2 of 0.667 when using a combination of WS, 
WR, and VPD as input model variables. Interestingly, WS 
and SR faired slightly better when a two-hour lag was 
implemented. Fig. 14 shows the ranking (left to right) of 
the nine models using the AIC model evaluation method. 
Here, it can be seen that the combined WS, SR, and VPD 
model resulted with the lowest AIC value in comparison 
to all other features and feature combinations (see Fig. 14).

3.3.2  Correlation Analysis Between Tree Water Deficit 
and Specific Features

Thermal data captured near solar noon (± 90 min) for each 
of the five-point dendrometer-equipped tree crowns totalled 
13 flight missions during the 2021 growth season (n = 65). 

Fig. 13  The UAV-derived thermal values acquired with two passes 
separated by a minute repeated over the four acquisition dates shown 
in conjunction to the direct leaf temperature values in the tree crown. 

Top right: DOY 203; top left DOY 240; bottom left: DOY 250; bot-
tom right DOY 257

Table 7  Overview of the generalised additive models (GAMs) where 
various meteorological features were implemented to predict the tree 
water deficit across the growth season in 2021 (n = 2928)

Significant R² values shown in bold

GAM models Adj. R2: 0 lag Adj. R2: 1h lag Adj. R2: 2h lag

AT 0.514 0.587 0.586
RH 0.557 0.622 0.606
WS 0.102 0.146 0.172
SR 0.15 0.282 0.402
VPD 0.585 0.659 0.649
AT+RH 0.585 0.657 0.646
WS+VPD 0.591 0.663 0.653
SR+VPD 0.636 0.663 0.657
WS+SR+VPD 0.643 0.667 0.66
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This dataset did not follow a normal distribution, and there-
fore, a Spearman correlation matrix was created compar-
ing the calculated TWD for each individual tree against 
the mean crown TIR temperature, meteorological data, and 
derivatives (see Fig. 15). Each matrix represents a different 
lag: no lag, a one-hour lag, and a two-hour lag. The aim here 
was to determine the physiological delay due to the temporal 
offset between current stem fluctuations and atmospheric 
drivers influencing transpiration and leaf temperature at the 
time of acquisition. Another objective of the correlation 
matrix analysis was to gauge the feasibility of differenti-
ating between individual tree water statuses, not only on 
the sampled stand level during acquisition days, but also 
to assess the heterogeneity among individuals on a given 
acquisition day. It is evident that some trees correlate less 
with the available features depending on the time delay. In 
some cases, it is also noticeable that particular features may 
influence TWD at different time delays.

In order to better evaluate the correlations over the vari-
ous lag times, the mean correlation was calculated for each 
feature across the three lag variations (see Table 8). The 
values from each matrix were first subjected to the Fisher-Z 
transformation to mitigate against bias, which can be par-
ticularly relevant for smaller datasets [65]. It is evident here 
that no single lag variation is solely responsible for the best 
correlations. The TIR imagery, arguably the most important 
feature of this study, tends to correlate best at a one-hour 
lag; however, the difference an hour before or after is not 
significant. The most noticeable difference is that SR cor-
relates best with the TWD without any lag. Additionally, 
the stand-alone LVPD also correlates better with zero lag.

3.3.3  Modelling Tree Water Deficit

The dataset derived from the 13 flight missions of the 2021 
growth season was partitioned into a 70/30 training and vali-
dation data split for use with a GAM. Three models were 
trained with varying input features, including the features 
LVPD, TIR+RH+AT, and TIR+VPD. The model variations 
were then applied with the three different time delays (0-h 
lag, 1-h lag, and 2-h lag) (see Table 9) The models were then 
used to predict the TWD for the testing datasets, where the 
RMSE, MAE, and R2 were calculated for accuracy assess-
ment. The models have not been further tested on data out-
side of the Britz research station beech plot due to a lack of 
accessible point dendrometers and accompanying TIR tree 
crown data. In terms of R2, the one-hour lag produced the 
best results across all three models where the feature combi-
nation TIR+RH+AT had the highest R2 of 0.87, an RMSE of 
4.92, and MAE of 4 (see Table 9 and Fig. 16). The one-hour 
lag model with the features VPD+TIR also resulted in a high 
R2 of 0.81 but also had a high RMSE of 9.76 and an MAE 
of 7.01. The LVPD model with a one-hour lag also shows 
promising results with an RMSE of 6.87 and MAE of 5, and 
an acceptable R2 of 0.71. Most of the models show an almost 
near-linear relationship, except for RH (see Fig. 16).

4  Discussion

4.1  Thermal Sensor Assessment

Results of the indoor test showed that using a limited num-
ber of pixels (< 3), despite being directly adjacent to the leaf 
temperature sensor, could introduce errors over 1 K. How-
ever, the indoor plant experiment provides only an indication 
of potential error. Different values may occur when testing 
with beech trees due to their unique leaf morphology and 
physiology but still support the notion of the importance 
of a minimum pixel spot size [66, 67]. The spot-size effect 
occurs when a limited number of pixels are used (i.e., < 3) 
to extract the temperature of an object. In this context, the 
object’s temperature can be influenced by nearby surfaces 
[66] and may also be susceptible to “bad pixels”. It is com-
monly advertised that TIR array sensors will have no lower 
than 0.37–1% bad pixels, depending on the manufacturer’s 
reporting [68, 69]. This implies that a thermal sensor size of 
160 × 120 could potentially have up to 192 (from 32,768) 
faulty pixels. Therefore, it is crucial to work with a minimum 
spot-size or minimum number of pixels to ensure a suffi-
cient number of “good” pixels from which to average. We 
tested a minimum of 10 pixels within an extraction polygon; 
however, FLIR [66] recommends a spot-size with a 10-pixel 
diameter, which would, in effect, result in an area more than 
10 pixels.

Fig. 14  The nine models were compared using the Akaike Informa-
tion Criterion (AIC) mathematical method to evaluate how well the 
model fits the data. A combination of WS, SR, and the VPD pro-
duced the best results
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Fig. 15  Spearman correlation 
matrix comparing the TWD 
calculated from five-point 
dendrometers with the TIR 
imagery, meteorological data 
and derivatives. Each section of 
the matrix from top to bottom 
coincides with no lag, a one-
hour lag, and a two-hour lag



291Remote Sensing in Earth Systems Sciences (2023) 6:275–296 

1 3

In terms of accuracy, the indoor experiments showed an 
RMSE ranging from 0.55 to 0.73 K, where interestingly, the 
dryer leaves from the unwatered plant showed lower accu-
racy. This aligns with the concept that dryer leaves will typi-
cally have a lower emissivity (see Table 10), and it is known 
that objects with lower emissivity can affect measurement 
accuracy [66, 68, 69, 71].

As for the sensor’s general accuracy, we showed an 
RMSE of below 1 K during the indoor experiments, which 
is below the typical commercial thermal sensor accuracy ± 
2 K or ± 2% as reported by Vollmer and Möllmann [69]. 
Accuracy in the field, however, proved otherwise and was 
more challenging to assess.

Temperature measurement accuracy assessment in the field 
was somewhat challenging as we had limited possibilities to 
determine and validate leaf temperature within the upper tree 
crown. Over the 13 acquisition days, we reported an RMSE 
of 3.22 K (average of both trees), which is higher than the 
previously mentioned typical accuracy of 2 K. It is worth not-
ing that the flight missions were carried out under varying 
weather conditions, including high winds, extreme midday 
temperatures, changing cloud cover and an onset of autumn 
senescence near the end of the campaign. Additionally, in both 
the indoor and field experiments, it was evident that the TIR 
sensor consistently underestimated the validation measure-
ment, suggesting that a potential offset correction could be 
alongside, along with further calibration using high-resolution 

meteorological data. Once again, it should be emphasised 
that the limitation of having only one leaf temperature sensor 
located in the upper crown served as a rough estimation but 
should not be considered a reliable validation source. Our goal 
is to increase the amount of upper crown leaf temperature sen-
sors for future studies to at least four, while still staying within 
practical limitations for maintaining a biological validation 
source. What is crucial is that the sensors are positioned at 
well-representative spots within the upper tree crown and cap-
ture temperature values that the TIR imaging also detect. One 
question that remains is to what extent typical shade leaves 
found in the lower tree crown will contribute to the estima-
tion of the TWD. Further testing in this area could assist in 
developing an improved masking strategy for pixel extraction.

Additional research is essential for utilising leaf tem-
perature sensor in the tree crowns both for validation and 
to explore calibration techniques. We plan to introduce two 
more validation trees at the Britz research station, with a 
minimum of four leaf temperature sensors installed in the 
upper crown. Additionally we aim to develop and affordable 
outdoor blackbody to further assess aspects like sensor drift, 
pre-operational warming, and internal periodic NUC calibra-
tion [38, 42] as future areas of inquiry.

4.2  Acquisition Method Assessment

The grid acquisition method for flight missions is the con-
ventional approach capturing TIR imagery via UAVs. In this 
process, a mosaicked dataset is assembled for the targeted 
area of interest. Often, RGB imagery is captured simultane-
ously for better image matching and positional accuracy. 
Ground control points [72] or onboard RTK systems are 
also employed for enhanced accuracy [73]. Having a co-
registered thermal dataset alongside an RGB or multispec-
tral dataset aids in identifying individual tree crowns, which 
might otherwise indistinguishable in aerial TIR imagery 
alone. However, the gridded method presents challenges, 
as it is time-consuming and requires prior knowledge of the 
terrain for effective flight planning. Moreover, extended mis-
sion durations may necessitate battery changes and could be 
hindered by line-of-site restrictions [74]. Our results indicate 
that TIR temperature dispersion can have a SD of up to 0.59 
K within a single flight line. Temperature variations can also 

Table 8  The mean correlation derived from the Pearson correlation matrix at various time delays compared to the TWD at three different time 
delays. Correlation values were first transformed to Fisher-z values to mitigate against bias

Values in bold indicate significant correlations between the parameter and the respective time lag

Lag TIR AT RH SR WS VPD LVPD Mean

0h 0.81 0.8 − 0.53 0.74 0.34 0.81 0.83 0.54
1h 0.83 0.84 − 0.42 0.64 0.28 0.8 0.77 0.53
2h 0.82 0.81 − 0.54 0.46 0.38 0.82 0.81 0.51

Table 9  Overview of the GAMs tested with the three lag variations

Lag 0 (none) LVPD TIR + RH + AT VPD + TIR

RMSE 6.21 4.56 7.53
MAE 5.1 3.95 5.72
R2 0.48 0.75 0.26
Lag 1 h
RMSE 6.87 4.92 9.76
MAE 5.1 4 7.01
R2 0.71 0.87 0.81
Lag 2 h
RMSE 6.84 7.32 6.37
MAE 5.65 6.02 4.99
R2 0.46 0.37 0.53
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be several K between flight lines and when acquisitions span 
more than a minute These discrepancies in TIR temperature 
readings could become even more pronounced during bat-
tery changes, influenced by fluctuating weather conditions.

The single-shot acquisition strategy showcased in this 
study offers a relatively novel approach. Unlike traditional 
methods requiring structure-from-motion (SfM) process-
ing, individual images from the Micasense Altum sensor 
are radiometrically calibrated and affinely transformed. 
Furthermore, the multispectral bands not only facilitate 
the segmentation of tree crowns but also the differentia-
tion between sunlit and shaded leaves, as well as woody 
parts of the tree crown and ground pixels. This single-
image acquisition method also offers several advantages. 
It significantly cuts down on processing time and reduces 

the duration of flight missions. The centre point of each 
image serves as a reference, and, using a footprint predic-
tion derived from flying height, azimuth, and sensor intrin-
sic parameters, it becomes possible to estimate the ground 
footprint [75]. This estimation then serves as a valuable 
dataset for ground truthing purposes.

The lower SD for the single-shot acquisition method 
may be a result of the closer proximity to the tree crown, 
which can reduce atmospheric interference, particularly 
on warm and humid days were the RH is high [66]. In 
addition, being closer to the object of interest allows for a 
greater number of pixels within the tree crown to be cap-
tured. This increases the pool of pixels that can be aver-
aged and facilitates more complex masking procedures. 
Consistency in the incidence angle could also contribute 
to minimising outliers, as it helps control variations in 
emissivity.

Further research should focus on identifying and mitigat-
ing sources of error in field operations. Minkina and Dudzik 
[71] demonstrated through error modelling, the most sig-
nificant error sources often arise from a combination of 
object emissivity, RH, and camera-to-object distance (see 

Fig. 16  The three generalised additive models (GAMs) tested over a lag variation of one hour. a GAM using LVPD. b GAM using TIR, AT, and 
RH. c GAM using TIR and VPD

Table 10  Emissivity ranges for green healthy vegetation and dry veg-
etation [70]

Material Ɛ over 8–14 μm

Green vegetation 0.96–0.99
Dry vegetation 0.88–0.94
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Table 11). From a technical standpoint, object emissivity 
error can be minimised by reducing the incidence angles, 
especially at extreme angles. Similarly, errors due to RH 
can be diminished by maintaining closer proximity to the 
object, which also increases the number of pixels available 
for averaging. This could help mitigate the impact of outli-
ers, such as those arising from senor “bad pixels” or areas 
of the crown affected by sun glint. Integrating near-real-time 
local meteorological data, such as RH, AT, and WS synchro-
nously with thermal data acquisition could offer a viable 
strategy for calibrating thermal imagery under fluctuating 
environmental conditions. The key challenge remains in reli-
ably obtaining such data during field campaigns.

4.3  Drought Stress Validation

The challenge with detecting drought-induced stress in 
beech trees lies not only in developing a consistent method 
for TIR image acquisition but also in finding a practical and 
reliable approach to validate the extent to which a tree is 
experiencing drought stress. The TWD can be moderately 
well explained throughout the growth season by VPD (R2 
> 0.659) as well as derivates RH and AT (R2 > 0.659). 
Drew et al. [49] found that daily variations in TWD were 
mainly influenced by soil water availability; however, RH 
and AT also contributed to variability during some peri-
ods. Although soil moisture is an important factor for esti-
mating TWD, it was not included in this study due to the 
impracticality of collecting soil moisture data during field 
campaigns. Nevertheless, it will be considered in future 
experiments.

The best modelling results we obtained when using one-
hour lag, which was relevant for all variables except for WS 
and SR, which showed a higher R2 at a two-hour lag. This 
lag in the TWD and VPD relationship was also reported 
by Zweifel et al. [59] among spruce, pine, and ash where 
modelling efficiency was maximised by shifting the VPD 
in 30-min increments. Interestingly, this was not the case 
for beech which contrasts with our findings. This suggests 
that it could recording high-resolution meteorological data 
like RH and AT, along TIR image acquisition, could help 
identify appropriate lag parameters. Factors like wind gusts 

and changing cloud cover make it essential to acquire TIR 
imagery and meteorological data at that are more representa-
tive of that day’s conditions. For instance,, a sudden increase 
in SR and VPD due to clouds abruptly clearing may not 
necessarily affect the TWD for that day or even that hour 
if such occurrences are infrequent. Yet, TIR measurement 
can be significantly influenced by such rapid changes. Over 
the 13 missions, this concept was somewhat neglected in 
this study and mitigating such factors is not always prac-
tical or feasible due to time constraints and limited UAV 
battery life. Despite these challenges, we demonstrated that 
TWD is highly correlated with the TIR Imagery (r > 0.81) 
irrespective of lag time and prevailing weather conditions 
during flight missions. This is promising for the detection 
of drought at the stand level but does not necessarily imply 
that within-stand heterogeneity can be reliably obtained for 
a single acquisition epoch.

With respect to the relationship between TWD and fea-
ture variables on an individual tree basis, it is evident that 
some individuals correlate less at varying lag times (see 
Fig. 15). This could be interpreted as some individuals hav-
ing slower reaction times to environmental variables, or it 
could indicate that the point dendrometer is positioned at a 
location where stem fluctuations are not well-pronounced. 
This latter issue can be particularly problematic for larger 
tree stems, where it is recommended to use multiple point 
dendrometers to account for potential differences [76]. As 
for individual feature variables reacting at different lag 
times, this warrants further research. Modelling could be 
susceptible to overfitting, especially when accounting for 
particular microclimates.

The resulting models in this study should be interpreted 
with caution. In 2021, the research station in Britz did not 
experience any particular drought stress conditions, espe-
cially compared to what was observed from 2018 to 2020. 
It is important to note is that we are lacking in a full range of 
TWD data, particularly for beech trees, where TWD values 
did not exceed 60 μm for the year 2021. Zweifel et al. [50] 
reported TWD values of up to 500 μm for oak, suggesting 
that in a drought year, we could observe potentially higher 
values than 60 μm which would broaden the range. Until 
then, evaluating our resulting RMSE values remains chal-
lenging. However, the current results could prove relevant 
for establishing within-stand heterogeneity if maintained 
with a broader dataset range. The GAM was chosen spe-
cifically to maintain simple curves, which would be more 
conducive to extrapolation [77] compared to typical decision 
tree machine learning algorithms. Nevertheless, extrapola-
tion should be avoided [78], and improvements in TWD 
modelling will only be possible with more data, especially 
data ranges obtained during drought stress conditions.

Special care was taken to avoid features repetition within 
a model [51]. For instance, when VPD was implemented as 

Table 11  Ranges of potential errors during simulations (adapted from 
[71])

Input 
parameter

Object 
emissivity 
(Ɛob)

Ambient 
tempera-
ture (To, 
K)

Atmos-
pheric 
tempera-
ture (Tatm, 
K)

Relative 
humidity 
(ω)

Camera-
to-object 
distance 
(d)

Error 
range

± 30% ± 3% ± 3% ± 30% ± 30%
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a feature, RH and AT were excluded to prevent redundant 
inclusion, as VPD is derived from both. Another consid-
eration is the potential need for limited feature engineer-
ing when modelling TWD. Allowing ML algorithms to 
discover specific feature weightings may require avoiding 
complex transformations like VPD or LVPD, as these could 
mask specific weightings and lag differences among feature. 
LVPD performed moderately well within the TWD model. 
However, the possibility of using LVPD as a stand-alone 
index could also be of interest, particularly if an absolute 
range representing quantifiable drought stress among beech 
trees for specific region were established.

5  Conclusion

In this study, we introduced the novel approach of using 
single-shot TIR imaging to obtain promising results for cal-
culating LVPD and estimating TWD. Even in the absence of 
actual drought events, we successfully modelled variations 
in TWD during the 2021 growing season using close-range 
single-shot thermal imaging in conjunction with synchro-
nous meteorological data. Unlike typical UAV-based gridded 
flight plans and orthomosaic derivatives, close-range single-
shot thermal imaging can mitigate the effects of variations of 
RH and emissivity. This is achieved by reducing incidence 
angles and sensor-to-object distance, and by increasing the 
number of pixels available for thermal data extraction. Fur-
ther field trials are necessary, particularly those that incorpo-
rate high-resolution meteorological data synchronised with 
thermal imaging for calibration purposes. Additionally, there 
is a need to improve the validation of thermal imaging accu-
racy. This can be accomplished by increasing the number 
of crown-based leaf temperature sensors and employing a 
field-based blackbody. This research serves as an impor-
tant stepping stone towards incorporating thermal imaging 
for quantifying drought stress, among other applications, at 
intensive monitoring sites.
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