
1. The Denitrification Data Deficit
1.1. Importance of Denitrification (N2O and N2)

To meet the ever-increasing global demand for agricultural products, soil is often augmented using nitrogen (N) 
fertilizers (Erisman et al., 2011). This significantly impacts the N cycle of agricultural ecosystems and can cause 
N losses (Davidson, 2012; Galloway et al., 2008; Schlesinger, 2009; Six et al., 2002; Sutton & Bleeker, 2013). 
Gaseous N losses such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), as well 
as mineral N losses through nitrate (𝐴𝐴 NO3

− ) leaching, impair crop yields and N use efficiency, while contributing 
to air pollution, global warming, drinking water contamination, eutrophication and acidification of unmanaged 

Abstract Biogeochemical models simulate soil nitrogen (N) turnover and are often used to assess N losses 
through denitrification. Though models simulate a complete N budget, often only a subset of N pools/fluxes 
(i.e., N2O, 𝐴𝐴 NO3

− , NH3, NOx) are published since the full budget cannot be validated with measured data. Field 
studies rarely include full N balances, especially N2 fluxes, which are difficult to quantify. Limiting publication 
of modeling results based on available field data represents a missed opportunity to improve the understanding 
of modeled processes. We propose that the modeler community support publication of all simulated N pools 
and processes in future studies.

Plain Language Summary Biogeochemical models calculate the entire N balance to describe 
soil N turnover. However, when findings are published, they often focus solely on environmentally harmful N 
losses like N2O fluxes and 𝐴𝐴 NO3

− leaching. We argue that it is crucial to publish and communicate the complete 
N cycle as calculated by the models. This practice is vital for advancing model development, ensuring quality 
control, facilitating model intercomparison, and generating new hypotheses for empirical field studies. We 
therefore encourage ecosystem modelers to report all results, even those that cannot be fully validated due to a 
lack of measurements. We particularly emphasize the importance of denitrification and reporting modeled N2 
fluxes.
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Key Points:
•  Biogeochemical models simulate soil 

denitrification through multiple pools/
processes, but the N budgets reported 
are incomplete

•  Missing (unpublished) model outputs 
are critical for model evaluation, 
model intercomparison, and model 
development

•  Ecosystem N modelers need to 
support and encourage the publication 
of all relevant N model outputs for 
denitrification modeling
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lands and waters (Galloway et al., 2008). Gaseous soil N losses are associated with the microbial processes of 
nitrification and denitrification. Nitrification is an aerobic process that oxidizes NH3 to nitrite (𝐴𝐴 NO2

− ) and 𝐴𝐴 NO3
− , 

while denitrification is an anaerobic process that reduces 𝐴𝐴 NO3
− to 𝐴𝐴 NO2

− , NO, N2O, and finally, N2 (Groffman 
et al., 2009; Nömmik, 1956). Both processes can be a source of N2O, a strong greenhouse gas, and reactant in the 
destruction of stratospheric ozone (Butterbach-Bahl et al., 2013; Canadell et al., 2021; Ravishankara et al., 2009), 
but denitrification is generally the more substantial N2O-producing process.

Though our understanding of denitrification in terrestrial ecosystems has improved in recent decades (Galloway 
et al., 2004; Rohe et al., 2021; Singh et al., 2011; Surey et al., 2021; Zaehle, 2013), it is still far from complete. 
Agriculture is the main source of anthropogenic N2O, but we don't completely understand the complex inter-
action of factors that control how much N is denitrified in arable soils, especially concerning N2 production. 
This is a notable knowledge gap. Although N2O is a greenhouse gas, and N lost as N2O reduces N availability 
and the N-use efficiency of crops, the complete reduction to N2 is a sink for N2O that decreases the potential 
for 𝐴𝐴 NO3

− leaching and returns N to the atmosphere, thereby closing the N cycle (Davidson & Seitzinger, 2006). 
Globally, denitrification rates are associated with large uncertainties, estimated to be 109–573 Tg yr −1 (Groffman 
et al., 2006; Scheer et al., 2020; Schlesinger, 2009), and the lack of data on total denitrification is one of the 
reasons that N balances can seldom be closed (Allison, 1955). Therefore, we must reduce that uncertainty through 
a better understanding of denitrification.

The N2O fluxes of agricultural soils have been the target of intensive worldwide measurement campaigns over the 
last 20–30 years (Bouwman et al., 2002; Reay et al., 2012; Stehfest & Bouwman, 2006). These studies show that 
N2O emissions are event-driven, with high variability both spatially and temporally, responding nonlinearly  to 
environmental parameters, for example, temperature, oxygen (O2), organic carbon (SOC), pH, freeze/thaw, and 

𝐴𝐴 NO3
− availability (Davidson & Swank, 1986; Firestone et al., 1979; Groffman et al., 2009; Rohe et al., 2021; 

Rummel et al., 2021; Surey et al., 2021; Thomas et al., 1994; Wagner-Riddle et al., 2017; Weier et al., 1993). 
That level of complexity is challenging to model. Laboratory studies under controlled conditions help isolate 
specific controlling factors' effects (Grosz et al., 2021; Müller & Clough, 2014; Weier et al., 1993), with both 
field and laboratory measurements being used to refine biogeochemical models under differing conditions (Deng 
et al., 2016; Hergoualc'h et al., 2021). However, in many cases, N2O is neither the final product nor the main prod-
uct of denitrification (Scheer et al., 2020). The end product is N2; yet there is no simple field-appropriate method 
for measuring N2 (Friedl et al., 2020). The small production from denitrification relative to the high atmospheric 
background makes measuring soil N2 fluxes difficult. Therefore, very few in situ measurements of N2 fluxes 
are available (Buchen et al., 2016; Ding et al., 2022; Liu et al., 2022; Scheer et al., 2020; Sgouridis et al., 2016; 
Zistl-Schlingmann et al., 2019).

1.2. Considering N2 Fluxes in Models

Almost all agronomic and ecological studies of N cycling include model calculations at some scale, with varying 
complexity. Models are ideally tested and calibrated using measured data, so measured N2 fluxes are important 
for model users and developers, yet such data remains limited. Nevertheless, biogeochemical models developed 
for describing the N cycle of agricultural soils do predict both N2O and N2 emissions (Del Grosso et al., 2000; Li 
et al., 1992; Nylinder et al., 2011; Parton et al., 1996; Sihi et al., 2020). Some models (Del Grosso et al., 2000; 
Parton et al., 1996) have been partly parameterized with N2 data that are no longer considered reliable (e.g., 
based on the acetylene inhibition technique (Weier et al., 1993)) and other model calibrations are simply incom-
plete. Given the lack of empirical data, approaches to describe soil N2 are mostly process-oriented, with the 
sensitivity of both N2 and N2O to controlling factors constrained based solely on N2O data (Grosz et al., 2021; 
Zhang et al., 2022). In these models, having data from frequent measurements (beyond the common weekly or 
fortnightly intervals) is crucial. In Saha et al. (2021), a statistical machine learning model was trained on a 3-year, 
high-frequency N2O data set and they were able to predict daily N2O emissions well. However, in many cases, 
models are not able to consistently and satisfactorily predict daily N2O emissions. Some models can simulate the 
cumulative annual emissions, but these approaches often fail to capture the timing and magnitude of observed 
emission peaks (Frolking et al., 1998).

The inaccuracy of predicted daily N2O fluxes by biogeochemical models is a well-known problem (Butterbach-Bahl 
et al., 2013; Zimmermann et al., 2018), partly due to the incomplete understanding of the N2/N2O product ratio of 
denitrification. Since the calibration data and approaches of different models vary, they may produce contrasting 
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results regarding N2 emissions, while still predicting similar N2O emissions. 
Grosz et al. (2021) compared measured N2 and N2O emissions from a labora-
tory experiment with the results from three models: DNDC, Coup, and DeNi. 
Note that the models were not calibrated, and that DNDC—without the 
possibility to manipulate the source code—is not ideal for modeling labora-
tory experiments. Nevertheless, the modeled N2O fluxes were not implausi-
ble from any of the three models (Table 1). In contrast, the modeled N2 fluxes 
by DNDC were almost 3,000 times smaller than the measured data, while 
those from DeNi were overestimated by a factor of more than 100. While 
model calibration would have improved the results, this example shows that 
the additional N2 flux information is critical for understanding model outputs 
and identifying potential issues in model estimates of denitrification.

Unfortunately, although many models estimate N2 fluxes, there are only a few publications presenting modeled 
N2 flux results (Del Grosso et al., 2000; Grosz et al., 2021; Leip et al., 2008; Parton et al., 1996). We argue that 
the publication of total denitrification rates (both N2 and N2O), even if N2 fluxes are not validated, would signif-
icantly improve our understanding of different model approaches and aid model development. Models are often 
used under soil, climate or management conditions that are not fully covered by data sets used for model training 
and evaluation. Especially in these cases, publishing modeled N2 fluxes would help to assess the quality and 
improve the comparability of process descriptions. Presenting only one metabolic intermediate of denitrification, 
namely N2O flux, while neglecting N2 flux, compromises data reliability. Moreover, in the future, as more meas-
ured N2 and N2O fluxes from field experiments become available, already published simulations of N2 fluxes will 
facilitate the uptake and incorporation of new insights.

2. Additional Uncertainties in N Cycle Modeling
2.1. Unknown N-Balances

The inaccuracy of predicted daily N2O fluxes by biogeochemical models (Butterbach-Bahl et  al.,  2013; 
Zimmermann et al., 2018) is not only due to uncertainties in N2 fluxes, but also due to a lack of knowledge 
regarding other processes within the N cycle. N2O fluxes are an integral part of the N cycle, but only represent 
0.1%–3.1% of N losses during ecosystem N cycling (Bolan et al., 2004; Bouwman, 1996; Cameron et al., 2013; 
Clough et  al.,  2005; Firestone,  1982; Mosier et  al.,  1998; Thomson et  al.,  2012). Therefore, they are highly 
sensitive to other components of the N cycle, including N pools (𝐴𝐴 NH4

+ , 𝐴𝐴 NO3
− or organic N), plant and microbial 

N immobilization, decomposition, and related N losses like NH3, NOx, and 𝐴𝐴 NO3
− leaching. Without going into 

extensive detail, we emphasize the importance of publishing the full modeled N balance in modeling studies.

Publishing modeled N sources for N2O fluxes provides information on what pathways the model is simulating 
(e.g., nitrification or denitrification). Under certain environmental conditions, a model may provide accurate N2O 
fluxes even though the underlying processes are incorrect (i.e., be right for the wrong reason); a high degree of 
equifinality has been shown in previous studies (He et al., 2016). Nitrification is particularly important in this 
context because in addition to being a source of N2O, it provides substrate (𝐴𝐴 NO2

− and 𝐴𝐴 NO3
− ) for denitrifica-

tion. David et al. (2009) simulated an intensively cropped watershed in Illinois using measured water drainage 
and 𝐴𝐴 NO3

− concentration and compared denitrification from six different models. Most of the models accurately 
simulated the measured 𝐴𝐴 NO3

− leaching, but the denitrification rates varied widely among the models. This high 
variation in 𝐴𝐴 NO3

− lost through denitrification would then impact each model's availability of soil 𝐴𝐴 NO3
− for plant 

and microbial uptake, leaching, and later denitrification. These key differences between models do not become 
visible without publishing the complete N balance. Finally, having a complete picture of N pools and processes 
within a model exercise makes it possible to recognize knowledge gaps. In Giltrap et al. (2014), the APSIM and 
NZ-DNDC models were used for estimating water drainage, 𝐴𝐴 NO3

− leaching, and plant N-uptake from a lysimeter 
experiment (Giltrap et al., 2014). An important conclusion of their work was that 𝐴𝐴 NO3

− adsorption, a process that 
was not captured by the models, could influence the whole N cycle and the calculated N balance.

Unlike N2, there are methods available for the measurement of the other N pools and processes mentioned 
here. However, given the cost and time that would be necessary to include such a wide array of supporting 
measurements, few studies (Delon et  al.,  2017; Janz et  al.,  2022 are exceptions) can realistically measure all 

Measured DNDC Coup DeNi

N2 (g N ha −1) 52.63 0.019 155.8 4,607

N2O (g N ha −1) 638.5 345.4 70.15 2,460

Note. The presented results in Table 1 did not cover the statements and results 
of the entire study by Grosz et al. (2021).

Table 1 
The Measured (Laboratory Experiment With  15N Labeling) and Modeled 
(DNDC, Coup, and DeNi) Average, Cumulative N2, and N2O Fluxes 
(g N ha −1), for an Arable Sandy Soil From Fuhrberg, Germany (Grosz 
et al., 2021)
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N fluxes in parallel, instead focusing on specific N pools and processes of interest. This makes it difficult to 
compare different studies and to use them for model calibration and evaluation. In a mass balance system, any 
changes in at one point within the system can significantly affect the entire calculation. This means that we cannot 
effectively model one or two selected elements of the N cycle separately, but require the whole N balance. And 
most models calculate the full N balance. We argue here, as we argued above for N2 fluxes, that publishing unval-
idated model output may provide valuable insights into model processes and support the development of models 
or sub-processes for N cycling.

2.2. Additional Soil Information and Sources of Uncertainty

Ecosystem N cycling does not exist in isolation. Other factors, such as the soil oxygen availability and distri-
bution (Zhang et al., 2022) and labile organic carbon (Philippot et al., 2007), also affect denitrification mode-
ling. Whether a model relates transport functions to water-filled pore space or soil gas diffusivity in order 
to understand and model soil aeration, can have a significant effect on the simulated N2O and N2 production 
(Balaine et al., 2013, 2016). Similarly, soil gas diffusivity may be used by the model to predict when N2O and 
N2 become entrapped in the soil, rather than released (Clough et al., 2000, 2001; Ding et al., 2022). Availa-
ble C can strongly influence losses of N and N2O emissions (Philippot et al., 2007), but accounting for the 
effects of labile C on N cycling is still a knowledge gap and needs to be better addressed in denitrification 
modeling (Grosz et  al.,  2021). Therefore, reporting both model carbon dioxide (CO2) simulations as well 
as soil aeration, in addition to N cycling, would considerably improve our understanding of model outputs. 
Beyond that, we argue that modeling studies with a focus on the C cycle—as with N cycling studies—should 
report all of the modeled C stocks in soil and vegetation, even without validation (e.g., changes in microbial 
biomass C and N, rapid dynamics of DOC and DON), for transparency and for future studies. Moreover, 
in view of the coupling of elemental cycles (Gruber & Galloway,  2008) it is recommended to report not 
only results of one but rather of all modeled elements, since this would allow cross-checking of elemental 
mass balances and, for example, verify whether modeled changes in carbon stocks agree with associated 
mineralization-immobilization of N.

3. Recommendations
We argue that reporting the entire N balance, including unvalidated results like N2 and other related parameters, 
should become standard when publishing the results of N model studies. Based on what we outlined above, this 
would: (a) illustrate the diversity and uncertainty of different modeling approaches, (b) show the robustness 
of modeled N balances, (c) identify data gaps, and (d) enhance future model development. We assume that 
the scarcity of “complete” modeled N balances in the soil denitrification literature stems from the reluctance 
of the scientific community to support the publication of unvalidated modeled output, especially given that 
the simulation results of these “neglected” N pools may be unrealistic. But this self-censorship of authors has 
resulted in a missed opportunity to share knowledge and improve our understanding of modeled processes. We 
recommend that future studies exercise transparency in publishing model outputs. We encourage authors to 
focus on the aspects of their model that were of particular interest (i.e., validated model developments), but, 
while clearly stating which variables were not validated by measurements, to include all related pools and 
parameters to the fullest extent possible. Presenting such results does put additional pressure on the authors, 
as the presented model outputs have to be sufficiently robust and coherent for publication. However, the publi-
cation of the modeled N-balance simulations is crucial for future model development; it would fundamentally 
improve the robustness of models, speed up fine-tuning, and ultimately advance our understanding of the N 
cycle.
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