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A B S T R A C T   

The demand for comprehensive biodiversity assessments is increasing through the implementation of the 
ecosystem-based approach to management (EBM) of marine resources. Regional sea conventions such as the 
Oslo-Paris Commission (OSPAR) strive to implement EBM by developing an extensive status assessment program 
for the marine environment. Demersal fish communities are one ecosystem feature assessed by OSPAR through 
several ecological indicators. One of these indicators assesses the recovery in the population abundance of 
sensitive fish species, which was initially developed to report on the status of the sensitive fish community as a 
whole. However, for national reporting obligations, contracting parties of OSPAR (particularly for EU member 
states reporting to the Marine Strategy Framework Directive) prefer to have assessments for individual species. 
The previous indicator assessment relied on a suite of demersal fish species, which were caught frequently in 
scientific groundfish surveys, but did not provide assessment results for rare species caught in low frequencies. 
This study introduces a new assessment approach, the Binomial Occurrence Assessment (BOA), for the FC-1 
indicator now renamed the “Recovery of sensitive fish species”, by applying the binomial distribution to rela
tive occurrence data from scientific fisheries surveys. BOA uses occurrences in a reference period to determine 
boundaries for the expected occurrences in the recent (six year) assessment period of each survey. Significant 
changes in occurrence between the reference and assessment period, i.e. declines or recoveries, can then be 
detected when the observed occurrences in the assessment period fall outside of these boundaries. Methods to 
integrate the assessment results across multiple surveys are explored and compared since data on occurrences for 
fish species are available from more than one fisheries survey in each marine region considered by OSPAR. A case 
study on the sensitive demersal fish species in the North Sea exemplifies the applicability of BOA. Furthermore, 
assessments by BOA are compared to data from analytical stock assessments for those data-rich sensitive species 
that can support both approaches. Despite some shortcomings of BOA, such as the inability to detect declines of 
very rare species and the potential for occurrence metrics to differ from abundance metrics, the BOA allows an 
assessment of the status of a wide suite of fish species throughout the entire OSPAR region. The low data re
quirements of BOA allow its generic application to any other monitoring program that has captured occurrences 
of single species or species suites in the past and present.   

1. Introduction 

The increasing human population of the world exerts an ever- 
increasing pressure on marine ecosystems at both local and global 
scales (Halpern et al., 2008; Halpern et al., 2012; Korpinen et al., 2021). 
Impacts on marine ecosystems arise from a wide range of activities 
including fishing, shipping, aquaculture, agriculture, aggregate 

extraction, wastewater treatment, waste disposal, tourism, oil explora
tion, offshore wind power generation and other renewable energy de
velopments (Curtin and Prellezo, 2010; Borja et al., 2016; Stelzenmüller 
et al., 2022). Therefore, governance authorities worldwide are striving 
to develop ecosystem-based management plans for human activities to 
minimise impacts on marine life and achieve the sustainable use of 
marine resources (Grumbine, 1994; Arkema et al., 2006; Curtin and 

* Corresponding author. 
E-mail address: nikolaus.probst@thuenen.de (W. Nikolaus Probst).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2023.111084 
Received 16 July 2023; Received in revised form 9 October 2023; Accepted 11 October 2023   

mailto:nikolaus.probst@thuenen.de
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2023.111084
https://doi.org/10.1016/j.ecolind.2023.111084
https://doi.org/10.1016/j.ecolind.2023.111084
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 156 (2023) 111084

2

Prellezo, 2010; Katsanevakis et al., 2011; Link and Browman, 2014). 
Ecosystem-based management aims to consider the combined im

pacts of human activities on marine life, and therefore encompasses 
assessments on the status of multiple ecosystem features such as marine 
fish, birds and mammals (Levin et al., 2009; Greenstreet et al., 2012; 
Harvey et al., 2017). In Europe, the EU’s Marine Strategy Framework 
Directive (MSFD) and the Regional Seas Conventions (e.g. the Conven
tion for the Protection of the Marine Environment of the North-East 
Atlantic also known as the Oslo-Paris Commission, OSPAR, and The 
Baltic Marine Environment Protection Commission also known as the 
Helsinki Commission, HELCOM) have triggered the development of new 
assessment programs with new ecological indicators aiming to assess the 
status of different ecosystem features (Greenstreet et al., 2011; Green
street et al., 2012; HELCOM, 2013; OSPAR, 2017). 

Indicators developed for biodiversity assessments often rely on data 
from existing monitoring programmes originally designed for other 
purposes. Scientific groundfish surveys have originally been designed to 
meet the data requirements of analytical stock assessments focusing on 
commercially important target species. However, in these surveys a 
wide array of additional species are caught and recorded. Given that 
monitoring programmes have not typically been initiated or adapted to 
the broader aims of EBM, novel methods that can use existing data 
appropriately are essential to fulfil the increasing assessment re
quirements of marine policies with limited resources at hand (Edgar 
et al., 2016). 

In this study, we present a novel approach to detect the decline or 
recovery in populations of species based on occurrences in scientific 
survey data. We assess change in the frequency of occurrence of pop
ulations between two time-periods using the binomial distribution to 
test for significant deviations in an assessment period versus expected 
occurrences observed in a reference period. We illustrate this novel 
approach for selected demersal fish species in the North Sea, which are 
sensitive to anthropogenically induced mortality (Greenstreet et al., 
2012; Gascuel et al., 2014). Furthermore, we propose and contrast 
methods to integrate the outcomes of assessments when multiple data
sets exist for the same population. This approach was the basis for the 
assessments in the OSPAR Quality Status Report 2023 for the indicator 
“Recovery of sensitive fish species” (known as Fish and Cephalopod 
indicator number one, FC-1). This methodology was based on an earlier 
version of FC-1 developed by Greenstreet et al. (2012), who used time 
series of abundance of demersal fish in scientific fisheries surveys to 
provide an overall status assessment for the sensitive fish component of 
the demersal fish community. A key aim of the indicator is to identify 
those populations of sensitive species that are not assessed elsewhere (e. 
g. by fish stock assessment) and are potential management concerns (i.e. 
declining). 

2. The binomial occurrence assessment (BOA) 

2.1. Methodological development of FC-1 indicator “Recovery of sensitive 
fish species” 

The OSPAR indicator FC-1 was derived from the original work of 
Greenstreet et al. (2012), which focused on a suite of demersal fish 
species considered to be sensitive to anthropogenically induced mor
tality. The approach by Greenstreet et al. (2012) was based on the time 
series of catch-rates per species (abundance per hour data). Only species 
that occurred in at least 50 % of all the years, by the International 
Bottom Trawl Survey in Quarter 1, were included in the suite of assessed 
species. The temporal changes in this suite of selected species were 
considered to be representative for the entire sensitive demersal fish 
community. After assessing the status of single species, Greenstreet et al. 
(2012) employed the binomial distribution, with a probability of success 
from a random walk model, to determine the number of species that 
would by chance achieve a species-specific assessment target, i.e. a catch 
rate at or above the upper 25th percentile of all annual catch rates. This 

approach was used to derive an assessment threshold to test whether 
significantly more species were increasing in abundance than would be 
expected by chance and hence whether the sensitive fish community as a 
whole could be considered to be recovering. 

The OSPAR Intermediate Assessment in 2017 (IA2017) implemented 
the approach by Greenstreet et al. (2012) for multiple surveys in mul
tiple regions. The integrated outcomes across multiple species in each 
survey were tested to identify whether recovery was occurring per sur
vey. The outcomes (recovery overall or not) for multiple surveys were 
then integrated also by the application of the binomial distribution to 
provide a single outcome per OSPAR Region. However, the indicator 
was criticised for not providing status information per species, i.e. 
assessment results were presented following aggregation for the sensi
tive fish community per survey and overall per region. Following the 
IA2017, several EU member states requested species status assessments 
for the use in their national reporting for the MSFD. Consequently, 
OSPAR requested that the assessment protocol of FC-1 was further 
developed by ICES who commissioned a workshop on the production of 
abundance estimates for sensitive species (WKABSENS) to provide in
formation on individual species and to include previously omitted spe
cies where data allowed (ICES, 2021). 

The new Binomial Occurrence Assessment (BOA) for sensitive fish 
populations conceived within WKABSENS (ICES, 2021) is similar to the 
original FC-1 by OSPAR (2017) and Greenstreet et al. (2012) in that it 
utilises the binomial distribution to contrast data and test for significant 
deviations from expected values. Whereas Greenstreet et al. (2012) used 
this technique to integrate species outcomes from time series data within 
a single fisheries survey, BOA uses the approach to contrast the proba
bility of occurrence of species between two assessment periods. BOA can 
distinguish between significant declining, recovering or stable occur
rence patterns and it is also appropriate for rare and data-poor species 
for which other methods, such as time series-based assessments of 
abundance, may not be applicable (Gröger et al., 2011; Greenstreet 
et al., 2012; Lindegren et al., 2012; Probst and Stelzenmüller, 2015). 

2.2. The new FC1-approach to identify population status changes 

To allow for the assessment of populations from a wide array of 
species, including those that are rare and/or caught irregularly by sur
veys and in low frequencies, we developed a new assessment method
ology that compares the number of positive occurrences in an 
assessment period to the number of occurrences in a previous reference 
period and correcting for changes in sample size. The limit specified by 
Greenstreet et al (2012) and subsequently OSPAR (2017) that each 
species must be detected in at least 50 % of years in the survey to provide 
reliable catch-rates of abundance is relaxed within BOA to a minimum 
threshold of 5 occurrences of each species in the entire survey time se
ries. This simple comparison provides all relevant parameters for the 
binomial distribution, including the probability of capture (i.e., fre
quency of occurrence) during the reference period and the known 
number of samples taken during the assessment period and the known 
number of successes (positive occurrences in the assessment period). 
Given chosen probability levels (i.e. significance), the associated quan
tiles from the cumulative distribution function can be considered as 
thresholds for occurrence in the assessment period that indicate signif
icant increases or decreases in the occurrence of a species in the 
assessment period (Fig. 1). 

The binomial model predicts the probability of n successful outcomes 
of a Bernoulli experiment that has two possible outcomes (e.g. the toss of 
a coin). The binomial distribution then gives the probability of k suc
cesses in n trials of the experiment with a fixed probability of the single 
success p (e.g. heads on a coin p = 0.5 or rolling a six on a dice p =
0.167): 

P(k|n, p) =
(

n
k

)

pk (1 − p)n− k (1) 
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Fig. 1. The concept of using the binomial occurrence assessment (BOA) is exemplified for starry ray Amblyraja radiata in the North Sea. A) Time series of the total 
number of hauls and hauls with occurrences from 1983 until 2020. The time series is split into a reference (RP) and an assessment period (AP) to determine the 
number of total hauls and hauls with occurrences in both periods. These figures allow to calculate the parameters p (relative occurrence in RP), k (number of hauls 
with occurrences in AP) and n (total number of hauls in AP). B) Inserting p, k and n into the binomial distribution provides the probability distribution with lower and 
upper tails to determine threshold values (ksig.dec and ksig.inc). The probability of observing k = 442 hauls with occurrences in a sample size of n = 1999 is thereby ≪ 
0.001. C) The cumulative probability functions indicate at which k the probability falls below the significance threshold of 0.05 (ksig). Observing 628 or fewer hauls 
with occurrences in AP thereby indicates a significant decline, observing 699 or more hauls with occurrences indicates a significant increase. Observing between 629 
and 698 occurrences in the AP would indicate no increase and no decline, and therefore, would represent a stable situation. 
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The cumulative distribution function of the binomial distribution de
termines the probability of k or fewer successes: 

P(X ≤ k|n, p) =
∑ k

i = 0

(
n
i

)

pi(1 − p)n− i (2)  

Using the cumulative distribution function, it is possible to determine 
the values of k for which Eq.2 is below a predefined significance 
threshold, e.g. α < 0.05. These values of k represent the lower tail of the 
binomial distribution (Fig. 1B) and any observed k in this tail would 
indicate a significant deviation from an expected mean. Hence, the 
largest k value for which Eq.2 is < α can be used as a threshold Ksig to 
identify the significant deviation from the expected mean. Thus, when 
the number of occurrences in n hauls within the assessment period is 
equal or less than the maximum k required to satisfy the condition 
P(X ≤ k|n, p) < α, a significant decline in occurrences relative to the 
reference period can be assumed. In the example given in Fig. 1, the 
number of hauls in the assessment period is n = 1999 and the expected 
probability of success is 0.332 (equal to the relative occurrence in the 
reference period). Hence the maximum k is 628, before the significance 
of the test increases above the threshold level of α = 0.05. Accordingly, 
any number of occurrences up to and including 628 indicate a significant 
decrease, which is the case in the example with 442 occurrences 
observed in the reference period. 

The binomial distribution can be used to estimate the probability of 
observing k occurrences of a species in n samples (here fishing hauls) in a 
survey in a particular assessment period once we have an estimate of the 
probability p of detecting the species in a single haul. The key assump
tions here are that each haul in the survey data is considered as an in
dependent Bernoulli-experiment and the probability p of detecting the 
species remains constant in the reference and assessment periods. Based 
on these assumptions, p can be estimated from the frequency of occur
rence of the species in the survey in a chosen reference period, where the 
frequency of occurrence is simply the number of hauls with occurrence 
divided by the total number of hauls. According to Eq.2, a threshold ksig. 
can be set where any observed k in the assessment period becomes 
significantly unlikely, and thus indicates a statistically relevant decline 
in occurrence when compared to an expected occurrence derived from 
the reference period. 

The counter-event for the upper tail of the binomial distribution can 
be used accordingly to set a threshold for indicating a statistically sig
nificant increase, i.e. recovery (where the probability is below the pre
defined significance threshold) in the species’ occurrence in the 
assessment period as follows: 

P(X > k|n, p) = 1 − P(X ≤ k|n, p) = 1 −
∑ k

i = 0

(
n
i

)

pi(1 − p)n− i (3)  

and 

P(X ≥ k|n, p) = P(X > (k − 1)|n, p) = 1 −
∑ k − 1

i = 0

(
n
i

)

pi(1 − p)n− i

(4)  

Hence, a significant recovery in occurrences can be assumed, relative to 
the reference period for which p was set, if the number of occurrences in 
n hauls within the assessment period is equal to or greater than the 
minimum k required to satisfy the condition: P(X ≥ k|n, p) < α. 

2.3. Long-term and short-term assessments for FC-1 indicator “Recovery 
of sensitive fish species” 

Information on both long-term and short-term changes in pop
ulations can be determined from the same dataset by changing the 
length of the reference period (RP) but maintaining the same assessment 
period (AP). To align with the 6-year cycle of the MSFD, the AP is set as 
the most recent six years available in the survey data, e.g. Table S1). A 

long-term reference period (RLP) is set as the starting year for each 
survey until the year prior to the assessment period, while the short-term 
reference period (RPS) is the six years immediately prior to the assess
ment period. 

The status of a species within a survey was labelled “recovering” if k 
≥ ksig.inc, “decreasing” if k ≤ ksig.dec, and “stable” if k ≥ ksig.dec and ≤ ksig. 

inc. The species’ status was assessed as “unknown” if ksig.dec was zero or if 
the total number of occurrences in the full time series was less than five. 

3. Combining assessments from multiple surveys for species 
status 

In many OSPAR regions fish species occurrence data are available 
from more than one scientific survey. To include all information and 
consider each survey, we developed and compared two integration ap
proaches and one selection approach. The first integration approach is 
based again on the binomial distribution, the second integration 
approach is based on a combined index of survey suitability based on the 
relative occurrence in the reference period and frequencies of BOA 
outcomes from the different surveys (i-score). The selection approach 
based the assessment on whichever survey had the highest relative 
occurrence in the reference period (termed the “best survey” for that 
species in that region). 

3.1. Binomial integration [BI] 

The significance level (α) chosen to identify significant change in 
occurrence of a species was chosen as 0.05. The binomial integration 
(BI) approach considers the probability of a type 1 error in order to 
combine multiple outcomes from multiple surveys of a species. Using n 
as the number of surveys in a region and k as the number of surveys with 
significant recoveries or declines, the probability of observing recoveries 
in k out of n surveys can be determined according to Eq. (2) and Eq. (4). 
If, for example, in one region eight surveys were operating (n = 8) and 
three surveys indicated a significant recovery (k = 3), the probability for 
k = 3 is: 

P(k = 3|8, 0.05) =
(

3
8

)

0.0530.955  

P(k = 3|8, 0.05) = 0.00541  

Hence, it is significantly improbable (P < 0.05) that three surveys would 
each indicate a recovery by chance, suggesting that the observed fre
quency of recoveries indicates a real recovery in the occurrence of the 
species. However, at the same time, three other surveys out of the total 
of eight might indicate a significant decline, which is also a significant 
deviation from a randomly expectable number of declines. Conse
quently, the binomial integration approach can result in a mixed inte
gration outcome, because significant numbers of surveys can 
simultaneously indicate a recovery and decline. 

3.2. I-score [ISCR] 

To overcome the problem of a potentially mixed integration result 
using BI, a second integration approach, the i-score (ISCR), was devel
oped. The i-score is an index that combines the relative frequencies of 
assessment outcomes (RFAO) with the average relative occurrence in the 
reference period (OccRP) as a product of both metrics (Table 1): 

i.score = RFAO*OccRP  

The i-score thereby selects for the most frequently observed assessment 
outcome combined with the highest average relative occurrence, 
assuming that these surveys have the best representative data to assess 
the state of the species. 
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3.3. Best survey [BS] 

The third alternative approach that accounts for the existence of 
multiple potential assessment outcomes from multiple surveys, selects 
the ‘best’ survey (BS) based on the relative occurrence in the reference 
period (Table 1). The ‘best’ survey thus represents the survey with the 
highest frequency of occurrence with the underlying assumption that 
this survey thereby provides the most reliable information on change in 
the occurrence of the species. 

4. Data and methods for case studies 

4.1. Sensitive fish in the North Sea 

BOA was applied to 38 sensitive fish populations in the North Sea, 
with the selection and both integration approaches, using data from 
eight surveys (Fig. 2). The species were a subset of those identified as 
sensitive by ICES (2021) for which data were available in the survey 
data product (Table S1) prepared by Lynam and Ribeiro (2022a) using 
data extracted from the ICES Database of Trawl Surveys https://datras. 
ices.dk). 

No assessment was possible for survey CSEngBT1 due to the short 
length of the available time series (four years). For three surveys, BBIC 
(n)SpaOT4, CSNIrOT4 and BBICFraBT4, no RPL was available due to the 
length of the time series (12 years or less). For BBIC(n)SpaOT4 and 
BBICFraBT4 (length of eight and ten years, respectively) the AP and RPS 
were each reduced to four or five years, respectively. 

4.2. Comparison of BOA against analytical stock assessments 

Although the FC-1 indicator “Recovery of sensitive fish species” aims 
to identify those populations of sensitive species not assessed elsewhere 
that are potential management concerns (i.e. declining status), a subset 
of the sensitive species identified by ICES (2021) also support 
commercially fished populations in some areas (stocks). To support 
commercial fisheries, fish stocks are typically of relatively high abun
dance and the target of scientific surveys and thus often considered data- 
rich species suitable for analytical fish stock assessment by ICES. 

For the subset of the sensitive species with survey data and where full 
analytical stock assessments have been made (ICES, 2022a), the surveys 
were filtered to include only those that are relevant to the fish stock area 

(i.e. include the stock area in part or fully). Furthermore, to improve 
comparability with the spawning stock biomass (SSB) metric, surveys 
were retained in the analysis only if the mean length of individuals 
(weighted by biomass) of the species, using data prepared by Lynam and 
Ribeiro (2022b), was greater than the mean length of maturity for the 
species (Table S2). This filtering led to eight species with multiple survey 
datasets and 14 stock assessments for which comparisons were consid
ered relevant (Table S3). Although changes in SSB and occurrence need 
not show similar patterns due to a range of ecological processes 
impacting the spatial distribution of species and/or biomass, including 
climate-forced distribution shifts (see Link et al. 2011), it is unlikely that 
they would directly contradict each other in the majority of cases (i.e. 
increase vs decrease). 

Changes in SSB, between assessment and reference period, of each of 
these 14 stocks was compared against the outcomes of the three different 
BOA integration methods (BS, BI and ISCR). For direct comparability, 
the same reference period (2009–2014) and assessment period 
(2015–2020) was used for each comparison. The difference in mean SSB 
in the reference and assessment period was assessed statistically using a 
t-test. If the t-test indicated a significant difference between both means, 
the change in SSB was classified as “declining” or as “recovering”. In 
case of a non-significant t-test result, SSB was classified as “stable”. 

When comparing SSB and BOA outcomes, they were classified as 
“agreement” if both procedures resulted in the same classification and 
show “contradiction” if one procedure suggested a decline while the 
other an increase. If one procedure suggested a stable or mixed outcome 
and the other did not the outcomes were said to show “divergence”. 

5. Results and discussion 

5.1. Sensitive fish in the North Sea 

Comparing the binomial, best survey and I-score integration, all 
methods yielded equal assessment outcomes for 21 species (55 %) in the 
long-term assessment and 24 species (63 %) in the short-term assess
ment. The highest number of recoveries was found for the RPS and the BI 
integration (17 out 38 species), the lowest number of recoveries was 
found for RPS and BS (11out of 38 species). Starry ray Amblyraja radiata, 
eel Anguilla anguilla, lump sucker Cylcopterus lumpus, sandy ray Leucoraja 
circularis, pollack Pollachius pollachius and eelpout Zoarces viviparous 
indicated declining occurrences in at least two integration/selection 

Table 1 
Examples of integrating or selecting BOA results of single surveys using the binomial survey integration [BI], the best survey [BS] and the i-score [ISCR] approaches. 
RFAO = relative frequency of BOA assessment outcomes; OccRP= average frequency of occurrence in the reference period. Surveys with the highest relative occurrence 
in the reference period, i.e. ‘best’ (S5 in scenario 1, S4 in scenario 2) are highlighted in bold. The BOA outcomes of these ‘best’ surveys provide the assessment outcomes 
of the best survey approach. BI = values of binomial integration derived from Eq. (2). Integration results are symbolised as ↑=recovery, ↓= decline, ↕=mixed, 
↔=stable.  

Survey BOA result Rel. occurrence in 
RP 

Freq. BOA 
outcomes 

RFAO OccRP i-score [ISCR] Binomial integration 
[BI] 

BI 
result 

ISCR 
result 

BS 
result 

Case 1: Apparent decrease scenario 
S1 Recovering  0.01 1 0.125 0.01 0.001 0.280 ↓ ↓ ↓ 
S2 Stable  0.33 3 0.375 0.183 0.069 NA 
S3 Stable  0.21 
S4 Stable  0.01 
S5 Declining  0.45 (BS) 4 0.500 0.205 0.103 (highest i- 

score) 
< 0.001 

S6 Declining  0.12 
S7 Declining  0.07 
S8 Declining  0.18 
Case 2: Mixed scenario 
S1 Recovering  0.01 3 0.375 0.183 0.069 (highest i- 

score) 
0.005 ↕ ↑ ↔ 

S2 Recovering  0.33 
S3 Recovering  0.21 
S4 Stable  0.45 (BS) 2 0.250 0.230 0.058 NA 
S5 Stable  0.01 
S6 Declining  0.12 3 0.375 0.123 0.046 0.005 
S7 Declining  0.07 
S8 Declining  0.18  
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methods in the RPL, suggesting long-term declines of these species in the 
Greater North Sea. Consistent long-term recoveries were indicated for 
11 species. Rare or rarely caught species such as basking shark Ceto
rhinus maximus, long-nosed skate Dipturus oxyrhinchus or Sebastes spp. 
(with fewer than 5 occurrences) could not be assessed. 

5.2. Comparison of BOA against analytical stock assessments 

From the three integration approaches of BOA, the ‘Best survey’ 
approach showed the highest level of agreement with the analysis of 
changes in SSB (10 out 14, i.e. 71 %, Fig. 3). Contrary, the ‘binomial 
integration’ and the ‘I-score’ had a lower frequency of agreement (7 out 
of 14, 50 %). Contradictions between changes in SSB and BOA were only 
observed for two monkfish stocks (mon.27.78abd and mon.27.8c9a) 
accounting for not more than 14 % with any of integration or selection 
approaches trialled. If the procedures led to contradictions at random, 
we would expect 22 % of comparisons to contradict directly for BS and 
ISCR and 17 % for the BI. Therefore, the analysis suggests that BOA 
should lead to non-contradictive or equal assessment results relative to 
change in SSB in the majority of cases. 

Divergence between BOA and SSB-SA is also seen for 6 stocks 
(Fig. 3B, two of which diverge in each of the BOA approaches (i.e. 
cod27.7a and meg27.8c9a). Cod in the Irish Sea (cod27.7a) was found to 
be stable in terms of SSB but it was declining in occurrence in two 
(CSNIrOT1[BS] and CSNIrOT4) otter trawl surveys (Fig. S2.1 & S2.2). 
The beam trawl (CSEngBT3) survey for Irish Sea cod was the only one 
that sampled the entire sea area, and was found to be stable, but this was 
not considered the Best Survey due to low occurrences in the samples. 
For this stock the survey data are highly variable (Fig. S2.1). In contrast, 
megrim (meg27.8c9a) is showing consistent increase in all four surveys 
that sample this species, but the applied t-test did not confirm the sig
nificance of the positive trend in SSB since 2018. 

The BI outcomes for Celtic Sea/Bay of Biscay megrim stock 
(meg27.7b-k8adb) diverges from BS and ISCR due to the mixed outcome 
(with 2 surveys increasing and two decreasing), whereas the BS and the 
ISCR agree, showing the intended benefit of the ISCR method. In 
contrast, outcomes for cod to the West of Scotland (cod27.6a) for SSB 
and BI agree that the stock is stable, but BS and ISCR (weighted toward 
the BS) indicate a recovery, demonstrating the weakness of the reliance 
on a single survey. 

Fig. 2. Assessment and integration outcomes for 38 fish species of the Greater North Sea. RPL = long reference period (full time series), RPS = short reference period 
(six years previous to assessment period), BI = binomial integration, BS = best survey, ISCR = i-Score. For a description of survey abbreviations refer to supple
mentary Table S1. 
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Cod in the North Sea (cod27.47d20) is stable in ICES area 4 during 
winter according to the BS (GNSIntOT1), which agrees with the SSB 
outcome. However, a divergent trend (decreasing) is observed in sum
mer (GNSIntOT3) and in two surveys in the eastern channel (GNSIn
tOT1_channel and GNSFraOT1). This suggests the generic analysis of 
changes in SSB- may not capture seasonal and spatial changes within the 
stock area as discussed further by ICES (2022b). 

The North Sea turbot (tur.27.4) outcome, based on the Dutch beam 
trawl survey (GNSNetBT3) with wide spatial coverage (and BS), agrees 
with SSB-SA. However, the German (GNSGerBT3) and Belgian 
(GNSBelBT3) beam trawl survey results diverge from SSB, which is 
likely due to the limited area these surveys cover (central-eastern and 
south-western North Sea respectively). In contrast, the otter trawl sur
veys are spatially extensive with highly variable frequency of occurrence 
and potentially not representative of stock level changes. 

6. Advantages, caveats and limits of the BOA 

6.1. Advantages of the BOA 

6.1.1. Generic application 
The major advantage of the BOA is its easy implementation using 

already existing data, e.g. from scientific fisheries surveys used in our 
study. Thus, the BOA approach provides a status assessment according 
to the requirements of OSPAR and the MSFD (in particular the MSFD 
criterion D1C2 – abundance of species) and closes knowledge gaps on 
previously unassessed ecosystem features. 

The development of BOA was based on scientific fisheries surveys on 
demersal fish in the Northeast Atlantic, but BOA can be applied to any 
dataset with presence-absence data collected in the past and present. 
Such datasets could relate to birds, marine mammals, insects or plants. 
Examples of potential data sources can be found at the Global Biodi
versity Information Facility (https://www.gbif.org, e.g. for butterflies 
and bumble bees in Norway; Åström and Åström, 2022). BOA is not 
limited to demersal fish nor groundfish survey data, and it may not even 
require a regular temporal sampling scheme. BOA can be applied as long 
as there are sufficient data to estimate the probability of occurrence in a 
reference period (e.g. by an irregular sampling scheme in several years) 
and comparable sampling was conducted in an assessment period. The 

latter point on ‘comparable sampling’ is important since species iden
tification even within scientific surveys can improve/deteriorate over 
time and the ability of the fishers to operate their fishing gear can also 
change. We have used a standardised dataset (Lynam and Ribeiro, 
2022a) that accounts for known issues (due to change in methodology 
and reporting) and does not include the data for the North Sea surveys in 
the 1960 and 1970s for this reason (incomparable sampling) following 
Moriarty et al. (2017). Furthermore, the application of BOA is limited to 
data sets containing true absence information, as presence-only data will 
not allow determination of the relative occurrence of species, and hence 
no values for p can be obtained. Although, by definition, rare species 
have low catchability in trawl surveys, the BOA approach compares 
changes in occurrence between periods (that have equal low catch
ability) so this standardisation reduces the impact of low catchability on 
the assessment. 

6.1.2. Easy implementable mathematics 
BOA does not require extensive knowledge on modelling techniques 

or excessive computing power. By contrast, sophisticated statistical 
models, e.g. to estimate and model abundance, can become very 
demanding on computer resources and expert knowledge (Thorson 
et al., 2017). 

Essentially, BOA is implementable with widely distributed or free
ware software such as spreadsheets or the R programming language (R 
Core Team, 2013). An example for a one-line code implementation in R 
is given in supplements S3. 

6.1.3. Insensitivity to gaps in time series 
BOA is rather insensitive to gaps in time series. Data from a reference 

period can be pooled from several years to obtain an estimate of relative 
occurrences in the reference period. Thereby BOA can be applied to 
irregular monitoring schemes sampling data at irregular intervals. 
Although, comparable sampling in the reference and assessment periods 
is advised to ensure equal chance of detecting occurrences in both time 
periods. 

Fig. 3. Analysis of BOA assessments and trends in spawning stock biomass (SSB SA) from analytical stock assessments for 14 stocks of various OSPAR regions. A) 
Assessment results of integrated BOA by three approaches and trend assessment of SSB SA. B) Comparisons of integrated BOA methods vs. trend assessment of SSB 
SA. BOA integration approaches are abbreviated as BS =’Best survey’, BI =’Binomial integration’ and ISCR =’I-score’. 
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6.2. Limitations of the BOA 

6.2.1. Detectability of declines 
There are limitations to BOA for assessing the significance of a 

decline in cases where p and/or n are low (Fig. 4). In these circumstances 
the cumulative distribution function does not approach probabilities 
below 0.05 and hence ksig.dec cannot be determined. In other words, due 
to low sample sizes and/or relative occurrences (i.e. catch rates) the 
probability of not encountering a species at least once is rather probable 
(p > 0.05). 

By contrast, the probability of an increase can always be significantly 
determined (if zero occurrence is the norm, a single occurrence already 
can indicate a significant increase). This finding may have implications 
for the assessment target, such as suggested by Greenstreet et al. (2012) 
or Probst and Stelzenmüller (2015), i.e. whether to use the assessment 
against a significant decline or recovery in determining the status of a 
species. If assessed against a decline, assessments may not be possible for 
very rare species, whereas an assessment against a recovery technically 
will always be possible. However, it should be noted that in the case 
study of the Greater North Sea (as in all other OSPAR areas) a minimum 
of at least five occurrences in the survey time series was required to 
implement the BOA, otherwise the status of the species was classified as 
“unknown”. 

6.2.2. Autocorrelation 
The BOA assumes that the probability of occurrence p (i.e. the rela

tive occurrence in the reference period) is constant. However, this may 
be not the case, as the probability of occurrence p for a species may differ 
between sampling sites. For example, it may be more likely to catch a 
certain fish species on sandy than on muddy habitats. Hence, within a 
fisheries survey, p will most likely be unequal among single hauls. The 
BOA approaches this problem by estimating an average p through the 
relative occurrence during the reference period assuming that the survey 
design is unchanged between assessment and reference periods. 

The sensitivity of BOA against non-constant values of p can be tested 
by applying Fast Fourier convolution (FFC). Given a vector of differing p 
= (p1, p2, …, pi), ksig.FFT can be calculated using FFC convolution. This 
ksig.FFC can then be compared against boundaries derived from binomial 
distribution (ksig.binom) with p as the average of p1 – pi. 

In a resampling analysis with 500 repetitions and varying p with 
varying means and standard deviations, ksig.FFC and ksig.binom were 
compared. At maximum, both ksig differed by 14, i.e. the FFC would 

indicate a significant decline or recovery with 14 occurrences more or 
less than the binomial distribution. 

Comparing the thresholds for significant recoveries or declines (ksig), 
the intervals which indicate no significant change (i.e. the difference 
between ksig.inc and ksig.dec) are generally narrower for FFC than the 
binomial distribution. This implies that ksig determined by the binomial 
distribution is more precautionary when indicating recoveries, but less 
sensitive to declines than applying the FFC. 

A RandomForest-model analysed the influence of the total number of 
samples (N), the mean and standard deviation of p (i.e. relative occur
rence) on the deviation between ksig.FFC and ksig.binom. The deviation 
between ksig.FFC and ksig.binom increases with mean and standard devia
tion of p (Fig. 5). However, the standard deviation of p has the most 
influence on the deviation between ksig.FFC and ksig.binom, whereas the 
number of observations and mean of p have limited effect. 

6.3. Comparison with assessment methods 

The analysis comparison presented in Section 5.2 between changes 
in SSB and BOA indicates a high potential for agreement between both 
methods, with fewer disagreements observed than expected by chance. 
However, our results indicate that assessment outcomes of BOA can 
diverge from, and even contradict changes in SSB on occasion. Hence, 
species assessed by BOA might indicate a different status than when 
assessed by an analytical stock assessment. However, it is inevitable that 
some comparisons will fail as time series of occurrence and SSB can 
substantially differ for ecological reasons. For example, the frequency of 
occurrence of a highly abundant species can reach a plateau (at a 
maximum of 1) even though SSB might still vary substantially between 
periods. A diverging outcome may also be valid, e.g. where a species 
range has contracted but there is no change in biomass, and in such cases 
both methods/outcomes can be complimentary. Additionally, analytical 
stock assessments usually include landings or catch data, and so the 
different underlying data sources may also contribute to the differences 
in outcomes from the two assessment methods. 

The advantage of the BOA lies in its generic applicability to presence- 
absence data and is applicable to situations when data are too sparse for 
other assessment methods, such as time series based assessments of 
abundance (Probst and Stelzenmüller, 2015), production models (Ped
ersen and Berg, 2017) or analytical stock assessments. We therefore 
suggest that the assessment of a species population/stock should be 
made using the most suitable statistical method given the data available. 

Fig. 4. The relationship between the number of hauls in the assessment period (AP), the frequency of occurrence (p) in the reference period (RP) and the significance 
limits for observed occurrences in the assessment period (Ksig) for predicting decreases (right) and increases (left). Note the grey area in the left panel indicating the 
inability to identify significant declines because the number of hauls and/or p is too low. 
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Accordingly, BOA is suitable for data-poor populations. For the OSPAR 
QSR 2023 assessment of the FC-1 indicator “Recovery of sensitive fish 
species”, populations of sensitive species were excluded from the BOA 
where analytical stock assessments were available. 

Further research comparing different assessment methods will be of 
interest for populations of fish, bird, mammal in the marine and 
terrestrial environments. For fish, the comparison against changes in 
SSB data from a greater suite of commercial species against BOA would 
be useful. Furthermore, the comparison of BOA against IUCN red list 
criteria such as changes in population abundance (Dulvy et al., 2021) to 
understand the comparability of BOA to other data-limited assessment 
approaches. Such analysis, however, was beyond the scope of this study 
as the alignment of temporal and spatial survey and assessment scales 
requires careful consideration and preparation. 

6.4. Choice of integration/selection method 

The choice of how to integrate or select the assessment information 

from all available survey time series can affect the overall conclusion on 
the status of a stock. Therefore, the integration and selection methods 
proposed here may require further development and validation to 
ensure an optimal integration of all available information. For the time 
being, BS seems to yield more consistent results in comparison to SSB 
than either BI or the ISCR (see Fig. 3). BI has the disadvantage that it can 
simultaneously indicate significant recoveries and declines (e.g. for 
turbot Scophthalmus maximus of shad species Alosa spp in RPL in the 
Greater North Sea case study) resulting in a “mixed” assessment 
outcome. These cases could be further resolved by including expert 
judgment or by adapting a precautionary approach that weighs the 
significant indication for declines more heavily. In contrast the I-Score 
and BS do not provide ambiguous outcomes and based on this feature 
might be preferred in future applications. 

7. Conclusions 

The major advantage of BOA is its generic applicability to time series 
of occurrence for rare or rarely observed species. Hence, it can be 
considered as a new assessment tool for the implementation of 
ecosystem-based management approaches that complements already 
existing assessment schemes. The application of BOA closes previous 
assessments gaps for rarer species, thereby providing an early warning 
signal for potentially declining populations that may otherwise have 
gone undetected and provide evidence for where further monitoring or 
management considerations are required. But care has to be taken when 
contradicting information from other assessment sources is available. 
BOA might be used if no other information on the status of a species is 
available, however, when abundance time series from stock assessments 
or other sources are available, results from BOA may provide comple
mentary information to consolidate and validate primary assessment 
outcomes. 
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