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ABSTRACT
This article presents models to predict the time until mechanical failure of in-ground wooden 
test specimens resulting from fungal decay. Historical records of decay ratings were modelled 
by remotely sensed data from ERA5-Land. In total, 2,570 test specimens of 16 different wood 
species were exposed at 21 different test sites, representing three continents and climatic 
conditions from sub-polar to tropical, spanning a period from 1980 until 2022. To obtain 
specimen decay ratings over their exposure time, inspections were conducted in mostly annual 
and sometimes bi-annual intervals. For each specimen’s exposure period, a laboratory devel
oped dose–response model was populated using remotely sensed soil moisture and tempera
ture data retrieved from ERA5-Land. Wood specimens were grouped according to natural 
durability rankings to reduce the variability of in-ground wood decay rate between wood 
species. Non-linear, sigmoid-shaped models were then constructed to describe wood decay 
progression as a function of daily accumulated exposure to soil moisture and temperature 
conditions (dose). Dose, a mechanistic weighting of daily exposure conditions over time, 
generally performed better than exposure time alone as a predictor of in-ground wood 
decay progression. The open-access availability of remotely sensed soil-state data in combina
tion with wood specimen data proved promising for in-ground wood decay predictions.
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Introduction

From a climate change mitigation perspective, there is 
a strong interest to prioritize the use of renewable, 
wood-based (bio-based) building materials. However, 
while wood-based building materials may be attractive 
to end-users for their climate-conscious production 
footprint, they do unfortunately suffer in their long
evity. This means that they are susceptible to natural 
deterioration over time by biotic and abiotic means.

The two greatest influences on the decay hazard of 
wood are temperature and moisture, and it has been 
recognized for centuries that exposed wood deterio
rates more rapidly in warm, wet climates than in cold, 
dry climates (Lebow & Highley, 2008). Some well- 
known uses of wood in contact with soil (i.e. use 
class 4 according to EN 335 (2013)) include railway 
sleepers (ties), transmission and fence poles, founda
tion pilings in unstable soils, as well as in-water con
structions such as jetties, bridges, and quay/channel 
walls (Klaassen & Creemers, 2012; Marais et al., 2020). 
Wooden components exposed in-ground suffer severe 
exposure conditions due to the combination of 

potential attack from both insects and wood decaying 
fungi through suitable soil moisture and temperature 
conditions. Wood decay is a major contributor to 
failures of in-service wood; replacing decayed wood 
and wood-based materials accounts for 10% of the 
global lumber market (Morrell, 2018).

The recognition of regional variation in decay rate 
of in-ground wooden components, and its importance 
in predicting the usable lifespan (i.e. service life) of 
such components, has led to several efforts to develop 
maps delineating quantifiable hazard zones. These 
would assist wood users by providing a clear quanti
tative overview of the wood decay rate expected at 
a chosen location and where it might make sense to 
employ either a highly durable wood species or 
a chemical preservative treatment to enhance the dur
ability of a non-durable wood species.

Available since 2007, efforts to develop models of 
regional decay hazards for Australia were published in 
technical manuals relevant to TimberLife, a timber 
service life design guide software package 
(MacKenzie et al., 2007). The estimation of the 
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progress of decay (i.e. decay depth) considers the 
effects of the natural durability of wood, climate con
dition of a site, preservative treatment, and internal/ 
external maintenance applications. Concerning the 
climate conditions of the site, the in-ground model 
was a function of average annual temperature and 
rainfall. To account for soil moisture, an additional 
factor was added for the number of months in a year in 
which rainfall was less than 5 mm (Wang et al., 2008). 
Following on from TimberLife, a dose–response con
cept sought to improve estimations of decay depth and 
therefore service life prediction with a sigmoid-shaped 
dose–response model, presented in Brischke and Rapp 
(2008). The model describes the relationship between 
exposure conditions using wood moisture content and 
wood temperature (i.e. dose), and the resultant above
ground wood decay (i.e. response). Exposure condi
tions can be measured directly, or be inferred from 
weather data.

Recently, Marais et al. (2021) developed 
a laboratory-based dose–response model to describe 
the effect of soil temperature, soil moisture content, 
and soil water-holding capacity (dose) on wood decay 
(response). These data are today readily available from 
remotely sensed sources, which makes connecting the 
laboratory-derived dose–response model to in-ground 
field trial specimens or even larger wooden infrastruc
ture components possible.

Van Niekerk et al. (2022) were able to successfully 
integrate remotely sensed soil moisture data and soil 
surface temperature data, with service life modelling 
approaches using dose (Marais et al., 2021). In this 
context, dose was calculated for the measuring per
iod of March 2015 until October 2021, from which 
an average exposure year was constructed to present 
relative in-ground wood decay risk over Europe in 
the form of hazard maps. Therefore, these maps 
present average annual in-ground wood decay risk 
as a function of exposure to soil moisture and tem
perature conditions, which are understood to be 
prominent mechanistic drivers of in-ground wood 
decay.

Many studies investigating fungal wood decay have 
aimed to validate specific hypotheses, led by mechan
istic understandings (i.e. models) focussed on the 
causality of input–output relationships. For example, 
the countless isolated studies investigating the effect of 
temperature, moisture, or fungal species on wood 
decay (A’Bear et al., 2014; Gonzales & Morrell, 2012; 
Hiscox et al., 2016; Morrell & Zabel, 1985; Morton & 
Eggins, 1977; Venugopal et al., 2016) – an exhaustive 
review can also be found in Marais et al. (2020). As 
mentioned by Baker et al. (2018), a mechanistic mod
el’s purpose is to mimic real-life events through 
assumptions of the prominent underlying mechan
isms. To this end, appropriate mechanistic models 
can be applied to larger, already existing datasets to 

evaluate their suitability to describe wood decay, 
specifically.

The objectives of the present study can be defined 
as the following:

(1) To evaluate the suitability of a laboratory- 
derived dose–response model (Marais et al.,  
2021), as the predictor variable in modelling 
mean fungal decay progression of in-ground 
wooden specimens.

(2) To illustrate the exploitation of already existing 
wood decay datasets by using remotely sensed 
data sources to retroactively populate in-situ 
soil-state data not originally captured at the 
time of exposure.

Materials and methods

In-situ measured wood decay progression

In-ground wood decay test data from the International 
Research Group on Wood Protection’s (IRG-WP) 
durability database (IRG/WP, 2013) were used. The 
records of wood specimens included dates of inspec
tion and the measured state of decay progression, 
known as decay rating. At the time of our analysis 
(April 2022), the database contained a sum of 16,128 
observations of in-ground wood decay, resulting from 
2,570 individual untreated wood specimens, 16 differ
ent wood species, exposed at 21 different field test sites 
(Figure 1). The observations were ordered chronolo
gically spanning a time period from 1980 until 2022. 
The location coordinates of each test site can be found 
in Supplementary Table 1.

Specimens in the durability database were tested 
and rated according to two standards, EN 252 
(2015), shown in Supplementary Table 2, and AWPA 
E7–15 (2015), shown in Supplementary Table 3. The 
European standard, EN 252 (2015), uses a scale of 
decay rating (i.e. decay depth judged by a pick rating) 
from 0 to 4, while the North American standard, 
AWPA E7 (2015), uses a scale from 10 to 0. To allow 
for common analysis, decay ratings according to 
AWPA E7 (2015) were transformed to the EN 252 
(2015) standard, following the recoding shown in 
Supplementary Table 4.

Since it is understood that fungal wood decay is an 
irreversible chemical process, decay ratings should 
steadily increase over time. However, some instances 
of decreasing ratings (i.e. negative or “healing” rat
ings) over time were observed. Decay ratings are 
a measure of the depth in material surface softening, 
i.e. a measure of sound wood versus decayed wood. 
Therefore, numerous factors can influence 
a specimen’s decay rating ranging from material prop
erties, such as surface hardness and moisture content, 
to season of inspection, assessor bias, and simply even 

2 B. N. MARAIS ET AL.

https://doi.org/10.1080/22797254.2023.2264473
https://doi.org/10.1080/22797254.2023.2264473
https://doi.org/10.1080/22797254.2023.2264473
https://doi.org/10.1080/22797254.2023.2264473


mistaken or incorrect data entry. These decreasing 
ratings were corrected by the rule stating that each 
record needs to be larger or equal to the maximum of 
all previous records.

Once decreasing ratings were corrected, these syn
chronized values of wood decay representing indivi
dual wood specimens were then used to calculate 
mean decay ratings for wood specimen groups. The 
groups consisted of replicate wood specimens of the 
same wood species, installed on the same date at the 
same study site. The replicates also underwent subse
quent decay rating inspections as a group on similar 
dates thereafter. This resulted in a total of 696 mean 
decay rating observations.

Wood species and anatomy (heartwood and sap
wood) is known to influence wood decay rate. Early 
exploration of the full wood decay dataset showed 
high variability in mean decay progression over time, 
which in-part, could be attributed to differences in 
natural durability of the wood species. So, the incor
poration of multiple wood species into the models 
developed in this work meant grouping the 16 differ
ent wood species according to similar natural durabil
ity classification and expected in-ground wood decay 
rate. This was achieved by using species-specific coef
ficients for relative in-ground wood decay rates (vrel), 
taken from Brischke et al. (2021), shown in Table 1. 
These describe in-ground wood decay rate of a wood 
material relative to a reference wood material, irre
spective of exposure conditions at the study site. The 
relative decay rates (vrel) in Brischke et al. (2021) were 
calculated from the materials’ decay rate at the respec
tive field sites relative to the decay rate of a reference 
wood material. Southern pine sapwood (Pinus spp.) 
and Norway spruce (Picea abies) were considered the 
reference species (vrel = 1.00), while species experien
cing a higher in-ground decay rate have higher vrel 

values, and species experiencing a lower in-ground 
decay rate have lower vrel values. The various studies 
from which decay data were used to calculate these 
relative decay rates (vrel) are also listed in Brischke 
et al. (2021). For the purposes of this study, the follow
ing three ranges in vrel were used to group wood 
species of similar performance for modelling in- 
ground wood decay rate as a function of exposure 
conditions over the respective sites: vrel >1.25; 1.25 > 
vrel >0.75; vrel <0.75.

Figure 1. Map of all 21 field test sites (points) where wood specimens were exposed in ground contact for use in this study. Some 
sites in Germany were located too close together to be clearly discerned at this map’s scale.

Table 1. Species-specific coefficients for in-ground relative 
decay rates (vrel), taken from Brischke et al. (2021), and used 
to group wood species according to natural durability in the 
modelling process. Wood material is assumed to consist of 
heartwood where no annotation of sapwood (sw) is given. 
Picea abies includes both heartwood and sapwood (hw & sw).

Wood species

In-ground wood decay metrics

In- 
ground 

vrel

Natural durability 
grouping

# of mean decay 
rating observations

Chamaecyparis 
nootkatensis

0.34 High 38

Fagus sylvatica 
sw

1.43 Low 54

Larix decidua 0.29 High 17
Larix laricina 0.57 High 35
Larix occidentalis 0.44 High 39
Larix sibirica 0.21 High 35
Picea abies (sw & 

hw)
1.00 Medium 72

Pinus ponderosa 
sw

1.00 Medium 26

Pinus radiata sw 1.12 Medium 5
Pinus sylvestris 0.53 High 33
Pinus sylvestris 

sw
0.95 Medium 148

Pseudotsuga 
menziesii

0.37 High 68

Pseudotsuga 
menziesii sw

0.62 High 7

Quercus robur 0.38 High 42
Thuja 

occidentalis
0.39 High 38

Thuja plicata 0.38 High 39
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Specimen data were stored in the IRG-WP durability 
database (IRG/WP, 2013) in the form of PDF-files. 
Microsoft Excel (2019, 2018) was used to transform 
these data into common spreadsheets. All subsequent 
steps of analysis, including merging the data using 
“dpylr” (Wickham et al., 2022), were done using the free 
programming language R, version 4.2.0 (R Core Team,  
2022), interfaced with RStudio Team (2022). The packages 
ggplot2 (Wickham, 2016) and ggpubr (Kassambara, 2020) 
were used to construct graphs of the modelling outputs.

In-ground dose–response model to describe soil 
exposure conditions

Soil moisture and temperature retrievals from 
ERA5-Land
Global grids of soil moisture content (“volumetric soil 
water layer 1”, SWC, [%]) and soil temperature (“soil 
temperature level 1”, Tsoil, [°C]) were downloaded from 
the ERA5-Land repository (European Commission, 
Copernicus, ECMWF, & Climate Change Service,  
2022), spatial resolution grid of 9 km, 0–7 cm soil 
depth. Although ERA5-Land provides SWC and Tsoil 

grids at an hourly interval, we only used one grid 
per day (14:00 UTC), since the resultant temporal reso
lution was considered adequate for purposes of this 
study. The daily grids were transformed into 
a common raster, stacked, and used to extract a time 
series of SWC and Tsoil corresponding to the exposure 
period of each of the 2,570 wood specimens exposed at 
each of the 21 study sites. To make the retrievals of SWC 
(and Tsoil) conform to the input data requirements of the 
dose–response model by Marais et al. (2021), entailed 
calculating variables for soil water-holding capacity 
(WHCsoil) and soil moisture content (MCsoil).

Following the procedure described by Salomón 
et al. (2022), we defined the 95th percentile of SWC 
values at every study site as the WHCsoil at that site. 
SWC was expressed in percentage of WHCsoil [i.e. 
%WHCsoil], renamed as MCsoil, and calculated accord
ing to Equation 1. 

MCsoil ¼
SWC

WHCsoil
�100 (1) 

To capture the time series between inspection intervals, 
cumulative total daily dose was calculated using the 
model by Marais et al. (2021). In short, daily dose 
summarizes the relationship between Tsoil, MCsoil, and 
WHCsoil. The model is based on dose component values 
calculated using WHCsoil, and daily values of MCsoil 

and Tsoil. Marais et al. (2021) used in-situ values of 
soil temperature and soil moisture to calculate daily 
dose values, which were accumulated for the period of 
exposure and compared to measured values of wood 
decay. In this work, we substituted the in-situ measure
ments of soil moisture and temperature with the ERA5- 
Land retrievals of MCsoil and Tsoil to calculate dose 

component values for moisture (DMC) and temperature 
(DT). The variable dose, D, was the product of DMC and 
DT for each day, and accumulated for the total exposure 
time of wood specimens on each study site, D(n). This 
meant that all the specimens belonging to the same 
wood species exposed for the same time period on the 
same study site, experienced the same exposure dose. 
That is to say, the same groupings used to calculate 
mean decay ratings from individual specimens 
(described above), were then assigned a calculated 
exposure dose. Equation 2 - 5 below describe the calcu
lation of these exposure dose variables in more detail.

Moisture-induced component
Equation 2 presents a polynomial function for the 
moisture-induced dose component of the laboratory- 
derived in-ground dose–response model developed for 
European beech wood specimens exposed to a reference 
soil consisting of a mixture of compost and quartz sand. 
Here, remotely sensed soil moisture values from ERA5- 
Land were used for WHCsoil and MCsoil, as described by 
Equation 1. For purposes of compatibility with soils 
outside of the laboratory conditions that the model 
was developed from, the lower WHCsoil constraint 
was removed. The lower WHCsoil boundary in Marais 
et al. (2021) was set to 30% to avoid the use of the model 
outside of its tested/developed parameters. However, 
once the model was applied to outdoor conditions (i.e. 
in this study), it became clear that wood decay still 
occurred in soils with WHCsoil lower than 30% and 
hence DMC still accumulated. Additionally, a new con
straint had to be introduced to account for this mod
ification of the model in cases where negative DMC 

values were produced (see Equation 4). 

DMC ¼ 0 if 25 % > WHCsoil > 90 %; or if 30 %WHCsoil > 
MCsoil > 90 %WHCsoil (2) 

DMC ¼ b1 �WHCsoil þ b2 �MCsoil þ b3 �MC2
soil þ b4

�MC3
soil; if 30%<WHCsoil < 90%; orif 30%

WHCsoil <MCsoil < 90%WHCsoil 

Where: DMC is the moisture-induced dose component 
comprising a combination of soil water-holding capa
city (WHCsoil) and soil moisture content (MCsoil) for 
the considered day [%];
WHCsoil is the soil water-holding capacity [%];
MCsoil is the soil moisture content [%WHCsoil];
b1 ¼ 0:008449060; 
b2 ¼ � 0:015157741; 
b3 ¼ 0:000519323; 
b4 ¼ � 0:000004230:

Temperature-induced component
Equation 3 presents a polynomial function describing 
the temperature-induced dose component of the in- 
ground dose–response model (Marais et al., 2021). 
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Here, remotely sensed soil temperature values from 
ERA5-Land were used for Tsoil. 

DT Tsoilð Þ ¼ 0 if Tsoil;min < 0�C; or if Tsoil;max > 40�C
(3) 

DT Tsoilð Þ ¼ b1 � Tsoil þ b2 � T2
soil þ b3 � T3

soil 

þb4 � T4
soil þ b5 � T5

soil if Tmin � 0�C;

or if Tmax � 40�C
Where:
DT is the temperature-induced dose component;
Tsoil is the mean soil temperature for the 
considered day [°C];
Tsoil;min is the minimum allowable soil temperature for 
the considered day [°C];
Tsoil;max is the maximum allowable soil temperature 
for the considered day [°C];
b1 ¼ 0:03267; 
b2 ¼ 0:003112; 
b3 ¼ � 0:0003564; 
b4 ¼ 0:00001262; 
b5 ¼ � 0:0000001457:

Cumulative total daily dose
Equations 4 and 5 present functions towards cumula
tive total daily dose, D(n), where the daily dose, D, 
consisting of the products of the moisture- and tem
perature-induced components, DMC and DT, are 
summed for a given exposure period (Marais et al.,  
2021).  

D ¼ DT � DMC; if both DMC > 0 and DT > 0nD
¼ 0; if DMC � 0 or DT ¼ 0 (4) 

D nð Þ ¼
Xn

1
D ¼

Xn

1
f DT;DMCð Þð Þ (5) 

Where:
D(n) is the cumulative total daily dose for the 

considered exposure period [days];
D is the daily dose [-];
DT is the temperature-induced dose component;
Tsoil is the mean soil temperature for the considered 
day [°C];
DMC is the moisture-induced component compris
ing of a combination of soil water-holding capacity 
(WHCsoil) and soil moisture content (MCsoil) for 
the considered day [%].

Non-linear model fitting

After mean decay ratings were calculated and 
grouped using vrel, (all described above), model 

fitting was conducted. A series of non-linear mod
els were fitted using a sigmoidal function to evalu
ate the suitability of time of exposure of wood 
specimens [days] and cumulative total daily dose 
[days], to describe decay progression [mean decay 
rating]. The sigmoidal function used appeared as 
follows, Equation (6): 

f xð Þ ¼ A � 1 � e� a� xð Þ^bÞ
� �� �

(6) 

Where:
f xð Þ = mean decay rating;
A = asymptote corresponding to mean decay rating 
of 4;
x = independent input variable, D nð Þ [days] or time of 
exposure [days];
a and b = model coefficients.

Equation 6 was chosen for its ability to start at 
zero (wood condition at start of exposure), with 
its asymptote set to 4 (maximum decay rating 
possible). Models were fitted using the built-in 
function “nls” in R, version 4.2.0 (R Core Team,  
2022). Starting values for model coefficients a and 
b were separately optimized using a combination 
of visual model fitting and minimizing the sum of 
squares of residuals using the built-in “solver” 
function in Microsoft Excel. The result of the 
optimization of model coefficients was then used 
as starting values for the “nls” function in R.

Residual standard error (RSE) was used to evaluate 
the goodness-of-fit of the developed models against one 
another, Equation 7. Since the model fitting was non- 
linear, RSE was chosen over a coefficient-of- 
determination (R2), which is more suited to linear mod
els to evaluate prediction accuracy. However, in observed 
vs. predicted plots, R2 was used as model performance 
metric and was calculated using the caret package (Kuhn,  
2008) in R, version 4.2.0 (R Core Team, 2022). 

RSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P yi� byið Þ

2

n � 1

s

(7) 

Where:

RSE = residual standard error;
yi = actual mean decay rating [0–4];
byi = predicted decay rating [0–4];
n = number of mean decay rating observations.

Results

Exposure conditions of test sites

The 21 different exposure sites tested in this study pre
sented a range in soil exposure conditions. Table 2 shows 
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characteristic average annual soil exposure data for each 
study site taken from ERA5-Land, calculated for the time 
period from 2012 until 2022. All but one of the study sites 
(Rotorua, New Zealand), were found in the northern 
hemisphere. Gainesville (USA) showed the highest 
mean annual temperature (21.4°C), while Maple Ridge 
(Canada) showed the lowest mean annual temperature 
(6.85°C). High standard deviation in mean annual soil 
temperature (4–8°C) was shown for all study sites, except 
Hawaiian sites (1–2°C), reflecting a high- and low- 
temperature seasonality, respectively. Sites showing the 
highest and lowest mean annual soil temperature also 
showed the highest and lowest annual accumulated tem
perature dose (218 and 87.9), reflecting the total number 
of days in an average year where soil temperature con
ditions suitable for fungal wood decay were achieved.

The test site in Tuusula (Finland) showed the high
est WHCsoil (50.4%) and highest mean annual MCsoil 

(90 ± 8.14%). The Tuusula (Finland) test site also 
showed the lowest soil moisture dose conditions due 
to the dose–response model penalizing over-saturated 
soil moisture conditions, meaning moisture dose was 
not accumulated if the soil moisture conditions did 
not comply to the model’s ranges. A similar observa
tion was noted for the test site in Maple Ridge 
(Canada) and Slovenian sites.

Rotorua (New Zealand) showed the lowest WHCsoil 

(28.1%), but Gainesville (USA), which showed the 
warmest mean annual soil temperature conditions, 
also showed the driest mean annual MCsoil conditions 
(70.2%). The test site in Saint-Trojan-les-Bains (France) 
showed the highest annual accumulated moisture dose 
conditions (73.1). Here, daily soil moisture conditions 
were moderate enough (i.e. not too wet or too dry) to 

accumulate a high number of total suitable moisture 
dose days in a year.

Maple Ridge (Canada) showed the lowest annual 
accumulated dose (18.3), which reflects the cold and 
wet conditions that limit fungal wood decay. The same 
observation was noted for the Tuusula (Finland) site 
(20.1). Again, the test site in Saint-Trojan-les-Bains 
(France) showed the highest cumulative total daily 
dose (45.4), reflecting the moderate, yet suitable, 
daily soil moisture and temperature conditions over 
an average year of exposure.

Relationship between exposure time and 
in-ground wood decay of different wood species

Figure 2 shows the mean decay rating progression over 
time of exposure for all wood species used in the study. 
As expected, mean time of exposure until specimen fail
ure (decay rating 4) varied across different wood species, 
and across different sites. Fagus sylvatica sapwood exhib
ited the shortest time until failure (2.3 years). Fagus syl
vatica sapwood was the least durable wood species 
included in the study, while Larix sibirica heartwood, 
the most durable of the wood species tested, showed 
the longest mean time until failure (10.7 years). The 
commonly used reference wood species, Fagus sylvatica 
sapwood, Pinus sylvestris sapwood, and Picea abies, con
tributed the biggest share of mean decay rating observa
tions to the dataset. Other material such as Pseudotsuga 
menziesii heartwood also made up a considerable share 
of the dataset. Differences in time until failure between 
wood specimen groups belonging to the same wood 
species can be attributed to differences in soil exposure 
conditions between exposure sites.

Table 2. Mean annual soil exposure conditions of the study sites calculated from ERA5-Land retrievals of soil moisture and soil 
temperature for the time period from 2012 to 2022. In this case, DMC(n) and DT(n) represent the cumulative sum of DMC and DT for 
an average year.

Test site

Exposure conditions

Tsoil [°C] MCsoil [%WHCsoil] WHC [%] DMC(n) [days] DT(n) [days] D(n) [days]

Saint-Trojan-les-Bains, France 17.7 (±6.96) 76.1 (±19.60) 41.4 73.1 191.0 45.4
Maple Ridge, Canada 6.85 (±5.35) 85.6 (±14.60) 43.1 47.8 87.9 18.3
Keaau (Hawaii), USA 19.5 (±1.61) 83.1 (±12.30) 37.2 58.3 203.0 34.6
Hilo (Hawaii), USA 19 (±1.72) 79.2 (±14.30) 32.6 62.2 201.0 36.2
Chalk River, Ontario, Canada 7.46 (±8.89) 79.3 (±14.20) 31.1 59.9 89.8 18.6
Gainesville, USA 21.4 (±6.15) 70.2 (±21.50) 28.8 56.8 218.0 35.4
Boesingshausen, Germany 12.1 (±7.86) 83.3 (±13.20) 41.7 61.3 137.0 31.6
Hamburg-Lohbruegge, Germany (without canopy) 12.8 (±7.73) 85.0 (±11.90) 40.5 53.0 145.0 28.8
Hamburg-Lohbruegge, Germany (with canopy) 12.8 (±7.73) 85.0 (±11.90) 40.5 53.0 145.0 28.8
Sørkedalen, Norway 7.24 (±7.94) 80.4 (±12.80) 37.6 70.7 88.4 20.3
Borås, Sweden 9.3 (±7.53) 80.1 (±13.00) 31.7 57.4 111.0 21.2
Simlångsdalen, Sweden 10.4 (±7.61) 77.0 (±16.40) 30.6 57.5 122.0 22.9
Ljubljana, Slovenia 13.0 (±8.28) 84.8 (±11.00) 42.6 62.8 144.0 31.3
Ig, Slovenia 12.8 (±8.07) 83.5 (±12.10) 42.5 66.0 143.0 33.0
Rotorua, New Zealand 11.9 (±4.07) 76 (±16.20) 28.1 56.0 146.0 24.8
Tuusula, Finland 8.09 (±8.32) 90 (±8.14) 50.4 40.4 96.2 20.1
Ghent, Belgium 14.7 (±7.46) 73.2 (±20.3) 29.5 53.6 163 28.1
Ellershausen, Germany 12.2 (±7.69) 84.5 (±12.2) 41.5 57.5 138 29.8
Dransfeld, Germany 12.2 (±7.69) 84.5 (±12.2) 41.5 57.5 138 29.8
Hanover, Germany 13.2 (±7.78) 82 (±14.7) 41.2 62.3 148 33.5
Goettingen, Germany 12.1 (±7.85) 82.9 (±13.6) 41.6 62.2 137 32

6 B. N. MARAIS ET AL.



Relationship between cumulative total daily dose 
and in-ground wood decay of different wood 
species

The graphs presented in Figure 3 show the rela
tionship between mean decay ratings and dose (b 
and d), and mean decay ratings and time of 
exposure (a and c) to describe in-ground wood 
decay progression. The vrel metric was used to 
group mean decay ratings of different wood spe
cies into natural durability ranges to create three 
in-ground wood decay models.

Figure 3a plots all mean decay ratings against time 
of exposure, irrespective of wood species. Figure 3b 
plots all mean decay ratings grouped according to 
a scale of low to high natural durability classification 

using vrel (Low: vrel >1.25; Med: 1.25 > vrel >0.75; High: 
vrel <0.75). Figures 3c,d shows models fitted to the 
plots of mean decay ratings against exposure time 
and cumulative total daily dose, respectively. The 
model performance metric RSE is also given in 
Figure 3c,d. Cumulative total daily dose, which is 
a combination of time of exposure and soil conditions 
linked to that exposure time, showed improved RSE 
performance over exposure time alone to describe in- 
ground wood decay progression. Although cumulative 
total daily dose improved RSE in all three cases, it also 
produced some new outliers. The full equations of the 
models in Figure 3d are given in Table 3.

Figure 4 plots observed mean decay ratings against 
decay ratings predicted from models in Figure 3c where 

Figure 2. Relationship between mean decay rating progression and time of exposure for different wood species, irrespective of 
study site. For each wood species, different study sites are represented by the range of different geometric shapes on the decay 
progression curve. Each point on the decay progression curve of a given wood species represents the mean decay rating at one 
study site at a certain time of exposure (inspection interval). Wood material is assumed to consist of heartwood where no 
annotation of sapwood (sw) is given. Picea abies includes both heartwood and sapwood. The mean time until failure (mean decay 
rating 4) and standard deviation for each wood species is shown by the purple point and error bar.
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exposure period [days] was used to predict decay rating 
progression [0–4]. The coefficients of determination 
(R2) of the linear lines of best fit through the point 
clusters were satisfactory overall, with the specimens 
grouped according to high natural durability returning 
the lowest of the three R2 values. The slope and y-inter
cept of all three lines of best fit were close enough to the 
idealised 1:1 prediction line that no clear over- or 
underprediction pattern was observed.

Figure 5 plots observed mean decay ratings against 
decay ratings predicted from models in Figure 3d where 
cumulative total daily dose (D) was used as input 
(Table 3). The coefficients of determination (R2) of the 
linear lines of best fit were generally higher for cumu
lative total daily dose (D) than for exposure time. The 
R2 of dose models showed improved prediction 

accuracy compared to exposure time models. Again, 
the slope and y-intercept of the lines were close enough 
to the idealised 1:1 prediction line that no clear over- or 
underprediction pattern was observed, with the excep
tion of the medium natural durability class line of best 
fit, which was strongly influenced by outlier points.

Discussion

Model performance

In models presented across Figure 3c,d, dose as 
a predictor variable generally performed better than 
exposure time alone to describe mean wood decay 
ratings. This can be seen from the lower RSE metrics 
in Figure 3, and the higher R2 metrics from the 

Figure 3. Relationship between the time of exposure and mean decay ratings according to EN 252 (2015) of 16 different wood 
species exposed across 21 different study sites (a). Relationship between dose and mean decay ratings (b), with mean decay 
ratings shaded from low (red) to high (black) natural durability classification using vrel. Relationship between mean decay ratings 
and time of exposure (c), and mean decay ratings and cumulative total daily dose (d). Each dot represents the mean decay rating 
at one study site for a given wood species at a certain time of exposure (n). Residual standard error (RSE) is given as model 
performance metric.

Table 3. Non-linear model equations towards predicting mean in-ground wood decay rating [0–4] as a function of soil exposure 
conditions represented by cumulative total daily dose [days]. The models can accommodate a range of wood species by matching 
the natural durability metric (vrel) of the wooden material of interest to the appropriate model specification (vrel range). Model 
performance metrics, Bayesian information criterion (BIC) and residual standard error (RSE) for each model are also given. Degrees 
of freedom is denoted by df.

Model # Natural durability vrel range Equation df BIC RSE

1 Low >1.25 f xð Þ ¼ 4 � 1 � e� 0:02625� xð Þ1:142
� �� �

52 89 0.50

2 Medium 0.75–1.25 f xð Þ ¼ 4 � 1 � e� 0:02625� xð Þ0:991822
� �� �

249 487 0.62

3 High <0.75 f xð Þ ¼ 4 � 1 � e� 0:02625� xð Þ1:080919
� �� �

389 639 0.54
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observed vs predicted plots in Figure 4 and Figure 5. 
Compared to exposure time alone, compound model 
error and measurement error were newly introduced 
by the dose modelling procedure. Nevertheless, the 
improved prediction accuracy of dose was expected 
since the dose–response concept, and therefore the 
weighting of moisture and temperature conditions in 
an exposure time series, has already been applied 
successfully to aboveground wood decay (Brischke & 
Rapp, 2008). Already in earlier studies, Viitanen 
(1997) and Rapp et al. (2000) postulated towards the 

application of a mechanistic weighting procedure (i.e. 
dose) through the identification of wood moisture 
content, temperature, and relative humidity ranges 
which influence aboveground fungal wood decay. 
A similar procedure was followed to identify soil 
moisture and temperature ranges that influence in- 
ground wood decay, captured in Marais et al. (2021), 
and applied to this study.

The use of non-linear modelling techniques deliv
ered three different models applicable to wood species 
spanning a range in natural durability (here based on 

Figure 5. Relationship between observed and predicted mean decay ratings [0–4] of 16 different wood species exposed across 21 
different study sites, evaluated according to EN 252 (2015). Each dot represents the mean decay rating at one study site for a given 
wood species at a certain time of exposure. Predicted mean decay ratings were calculated according to models shown in Table 3, 
which used cumulative total daily dose (D) values calculated from ERA5-Land measurements of soil temperature and soil moisture 
as input.

Figure 4. Relationship between observed and predicted mean decay ratings of 16 different wood species exposed across 21 
different study sites, evaluated according to EN 252 (2015). Each dot represents the mean decay rating at one study site for a given 
wood species at a certain time of exposure. Predicted mean decay ratings were calculated using models shown in Figure 3c (not 
reported), which used exposure time as input.
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vrel). The potential exists to incorporate the models 
developed in this study into the approach outlined in 
Brischke et al. (2021) to predict the in-ground wood 
decay rate of wood species (including modified and 
treated wood materials) not included in this study.

Laboratory-derived dose–response model to 
describe soil exposure conditions

Modelling time-series data is complex, therefore the 
dose–response model employed in this study was seen 
as a mechanistic informer model, able to describe the 
exposure time as a function of exposure conditions. 
Figure 3d points out the benefits of using such a model 
to consolidate exposure time, where dose generally 
leads to better prediction accuracy of mean decay 
rating than exposure time alone. Dose was able to 
capture the interaction between daily moisture- and 
temperature conditions between inspection intervals 
of the specimens. The dose–response model captures 
the physiological requirements for proliferation of 
soil-inhabiting micro-organisms, with the assumption 
that the group of soft-rot fungi are predominantly 
present and therefore responsible for the observed 
wood decay. Of course, other fungi belonging to the 
brown-rot and white-rot groups can and have indeed 
been identified in countless in-ground wood decay test 
specimens. However, improvements to the physiolo
gical requirement curves of the dose–response model 
used in this study can still be implemented to improve 
its prediction accuracy. So-called “activation” or “set- 
back” functions could be implemented, where decay 
rate after physiological disruptions, such as excessively 
high or low temperature, or water-logging, and their 
inhibitory effect on wood decay rate could be captured 
(Isaksson et al., 2013; Viitanen et al., 2010).

Spatial resolution of remotely sensed site data

The application of open-access remotely sensed cli
mate data to wood decay modelling was explored in 
this study. The use of remotely sensed site data to 
retroactively populate the laboratory-derived dose– 
response model (Marais et al., 2021) as a predictor 
variable to model in-ground wood decay progression 
was shown to be a suitable approach over using only 
exposure time as predictor variable. Therefore, the 
prediction of in-ground wood decay at study sites 
outside of those used in this study is possible, as long 
as the natural durability of the wood material of inter
est is known and data regarding soil exposure are 
available – either from remotely sensed sources or 
measured in-situ at the site. Some shortfalls of the 
spatial (and temporal) resolution of remotely sensed 
site data should, however, be mentioned.

The pros and cons of remotely sensed vs. in-situ 
measured climate data should be considered before 
any single data source is decided on. In-situ measure
ments can provide accurate measurements of local 
conditions, but their measurements can be sporadic, 
requiring interpolation where observations are miss
ing (Mendelsohn et al., 2007). In-situ measurements 
are almost always located at a different distance from 
the site of interest, not to mention the differences in 
measuring devices and metrics, and the need for 
device calibration and calibration between datasets. 
Satellites might deliver problematic measurements 
for some ground phenomena such as precipitation, 
but they can provide complete spatial coverage of 
various parameters over a landscape (Mendelsohn 
et al., 2007). Their data is also distributed over regular 
grids and if biased, can be corrected systematically. 
While in-situ climate data is ideal (i.e. like the nature 
of the wood decay data in this study), this is not always 
possible at every study site, especially not retrospec
tively, which also makes remotely sensed datasets as 
presented in this study better suited to the modelling 
procedure in general. Nevertheless, it is possible to use 
in-situ measurements when available and remotely 
sensed data as a substitute for missing data, either 
due to sensor outage (to avoid interpolation) or due 
to a lack of measurements altogether. One source of 
data does not necessarily exclude another, where in the 
context of ERA5-Land, climate data are collected from 
numerous sources (i.e. satellite, aircraft, weather sta
tions, ocean buoys, etc.) and combined into 
a temporally and spatially accurate data service 
through a process known as data assimilation and 
reanalysis. Here, the importance of numerous com
plementary data sources and measuring locations, all 
vetting one another, cannot be overemphasized.

The 9 km spatial resolution grid of the ERA5-Land 
data used in this study showed shortfalls when applied to 
sites close to bodies of water. The study site in Finland 
showed the lowest moisture dose, attributable to periods 
of waterlogging (saturated soil moisture conditions). 
These points were seen as outliers in both Figure 3d 
and Figure 5. Temporal resolution aside, since only one 
mean soil moisture measurement value is delivered per 9  
km grid, a high spatial density of water bodies in a grid 
can lead to an inflation of the soil moisture measurement 
value for that 9 km grid. In-ground wood decay test sites 
are typically placed a fair distance away from water 
bodies, but their associated remotely sensed data mea
surement can be skewed or unrealistic for a single non- 
water body point in that grid. A similar effect can be seen 
in mountainous regions, where high variation in altitude 
within a single grid can pose a similar anomaly to mea
surements of temperature (Brischke & Selter, 2020). In 
future however, the use of further disaggregation techni
ques such as “depth-to-water” or “topographic wetness 
index”, should be pursued to improve the spatial 
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resolution of remotely sensed soil moisture observations 
(Ågren et al., 2021; Lidberg et al., 2020; Schönauer et al.,  
2022).

This study lacked wood decay sites in central and 
south America, Africa, and Australia, with the southern 
hemisphere generally under represented. Registered 
study sites in these regions, which form part of the IRG- 
WP durability database (IRG/WP, 2013) do exist, but 
most are also occupied by termites, where the role of 
fungi cannot be isolated. A full-scale validation of the 
models developed in this study would require more 
wood decay data over a broader site diversity.

Real-world applications

In this article, the in-ground fungal decay of wooden 
test specimens exposed at numerous test locations for 
the period starting from 1980 until 2022 was modelled. 
These test specimens cannot directly describe wooden 
components of larger dimensions (e.g. transmission or 
fence poles). However, decay rating (or pick-rating), 
which relates to decay depth, can be considered the 
metric for service life, defined by the response variable 
“mean decay rating [0–4]”. According to EN 252 
(2015), a decay rating of 4 defines a mechanical impact 
failure of the wooden test specimen (dimension: 25 ×  
50× 500 mm3). To link decay rating to larger dimension 
wooden components would require a link between 
decay progress past a decay rating of 3 and an associated 
mechanical property loss of such larger components. 
Peer-reviewed articles (e.g. van de Kuilen, 2007; van de 
Kuilen & Gard, 2013), conference papers (van de Kuilen 
et al., 2021), industry standards (e.g. Welte & Refsnæs,  
2010 - a review of transmission pole standards), and the 
in-ground component of the TimberLife software pack
age (Wang et al., 2008), highlight links between decay 
depth, loss in bending strength and/or compressive 
strength, and loss in cross-sectional area. Depth of 
decay of a wooden specimen can therefore also reflect 
loss in cross-sectional area.

In Welte and Refsnæs (2010), initial bending 
strength is assumed to be based on a 5th percentile of 
full-scale bending tests for logs of the same species and 
diameter intended for use as transmission poles. 
Stresses on the pole resulting from, for example, cli
matic loads due to wind and ice, the weight of the 
construction, and tension from the wire conductors, 
are calculated and compared to the pole’s strength 
which will decrease over time due to decay. At the 
same time, stresses in the pole will increase as soon as 
some part of the pole’s cross-section is subject to 
reduced modulus of elasticity stemming from decay 
pockets, woodpecker cavities, lean, and other 
damages. As decay progresses and causes softening 
of the cross-section, the sound regions will receive 
more loading. The point at which the material can 
no longer resist the maximum stress in the pole 

denotes failure; however, a major component of this 
prediction of failure lies in the pole’s loss in load- 
bearing capacity over time, where inaccurate measure
ments of remaining cross-section (i.e. remaining dia
meter and therefore remaining capacity) can cause 
errors in remaining service life estimation. This is 
where an accurate decay model could assist utility 
providers to achieve the longest possible service life 
from their pole assets (Salman et al., 2020). Currently, 
some utility companies are using resistance drilling 
measurements at ground level to assess cross- 
sectional area loss, however these are partially destruc
tive and provide a means for further fungal ingress, 
not to mention the spatial shortfall of taking only one 
or two measurements per cross-section (Sharapov 
et al., 2019). Networks of utility poles can span over 
multiple regions having different soil conditions. The 
application of remotely sensed data for service life 
prediction will add information useful in the planning 
and maintenance on network scale. In addition, it can 
be used to make inference about whether additional 
protection is necessary, such as higher retentions of 
wood preservatives due to increased decay risk.

The developed models are envisioned to be incorpo
rated into a type of service-life planning software, capable 
of predicting in-ground wood decay of various wood 
materials as a function of exposure to soil moisture and 
soil temperature conditions over time. The adoption of 
weighted daily exposure conditions (i.e. dose) has already 
been demonstrated in multiple aboveground service life 
planning works (Isaksson et al., 2014; Pousette et al.,  
2017; Thelandersson et al., 2011; van Niekerk et al.,  
2023). In this context, dose, rather than exposure time 
alone, enabled service life planning at practically any 
geographic location. This includes predicting service life 
and scheduling maintenance works on planned or 
already installed wooden components. Furthermore, 
the use of exposure conditions enables quantitative con
sideration of the effect of future climate changes. Van 
Niekerk et al. (2022b) demonstrated the use of various 
Representative Concentration Pathway (RCP) scenarios 
to illustrate future aboveground wood decay hazard in 
the context of various climate change scenarios.

Conclusion

A need exists to incorporate easy-to-use wood decay 
models into the decision-making surrounding main
tenance scheduling, and service life and obsolescence 
planning in sectors that make use of wood and wood- 
based components.

The core outcomes of this study can be summarized 
as follows:

● Remotely sensed data from ERA5-Land was suc
cessfully integrated with a laboratory-derived 
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dose–response model to (retroactively) analyze 
wood decay field-trial datasets. Existing wood 
decay datasets could be given new meaning.

● Mean decay rating modelled from daily ERA5- 
Land retrievals of soil moisture and temperature 
conditions generally performed better than time 
of exposure alone as a predictor variable. The 
model uncertainty remains large, but serves as 
a starting point for further improvement.

● Lacking model performance was observed in 
locations with high soil moisture conditions 
owing to the presence of water bodies. This was 
related to the spatial resolution of ERA5-Land 
retrievals and in future could be addressed by 
spatial disaggregation techniques.
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