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and laimosphere as refugia for bacterial life 
in a hyperarid desert environment
Anna Hakobyan1, Stefanie Velte1, Wiebke Sickel1,2, Dietmar Quandt3, Alexandra Stoll4,5 and Claudia Knief1* 

Abstract 

Background The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abun-
dance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs 
primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions 
that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. 
We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid 
regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth.

Results We detected clear differences between the bacterial communities being plant associated to those 
of the bare soil surface (PERMANOVA, R2 = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial 
community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct 
from those in the laimosphere, i.e., on buried shoots (R2 = 0.108, p = 0.001), indicating further habitat differentiation 
within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere coloniz-
ers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts 
(Wolbachia, “Candidatus Uzinura”) were found. The laimosphere hosted phyllosphere-associated as well as soil-derived 
taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R2 = 0.331, p = 0.001). 
These patterns were different and even more pronounced in the laimosphere (R2 = 0.467, p = 0.001), indicating 
that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere 
microbiota underwent temporal changes (R2 = 0.064, p = 0.001).

Conclusions Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere 
as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyper-
arid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known 
from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit 
these plants as viable microorganisms.
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Introduction
Hyperarid deserts such as the Atacama Desert in Chile 
are largely devoid of macroscopic life, especially in the 
inner core, where available water has been reported to 
be below the limit for photosynthetic activity and there-
with for plant growth [1]. The lack of water also lim-
its microbial life in such deserts. Besides strong water 
limitation, microorganisms have to cope with a com-
bination of high-temperature fluctuations, strong UV 
radiation, and in part saline soil conditions [2]. Conse-
quently, habitats such as soils, which are consistently 
colonized by microorganisms and often host the most 
diverse microbial communities on Earth [3], are strongly 
depleted of microorganisms in hyperarid deserts [4–6]. 
Strong changes in bacterial community composition have 
been observed particularly in the transition from arid 
to hyperarid conditions, commonly characterized by an 
enrichment of Actinobacteria and in part Chloroflexi, 
whereas common soil bacteria such as Proteobacteria 
become often depleted, especially in surface soils [4, 7, 
8]. Besides, altered community assembly processes have 
been reported with increasing aridity [9]. Thus, special-
ized microbial communities of limited diversity and sub-
stantially reduced in abundance and activity are found 
in this habitat [6]. Microbial life rather flourishes in spe-
cific refugia, which support highly specialized microbial 
communities. These can be observed beneath translu-
cent quartz stones, underneath rocks, or within halite 
crusts (e.g., [1, 2, 10–12]). Desert plants might represent 
another refugium of microbial life hosting specifically 
adapted microorganisms, but this has so far not been 
studied for plants growing under hyperarid conditions.

In general, plants are well-known to be colonized by 
microorganisms, aboveground in the phyllosphere as well 
as belowground in the rhizosphere [13, 14]. Nonethe-
less, the bacterial communities of plants have only been 
analyzed in a few studies in semiarid or arid landscapes, 
including work on Acacia and Tamarix trees, Agave and 
Atriplex species, or cacti [15–20]. These studies reported 
differences in the microbial community composition in 
different plant compartments and plant species, tempo-
ral changes, or biogeographic patterns. Plants growing in 
hyperarid environments such as the Atacama Desert have 
so far only been studied with focus on the rhizosphere 
microbiota [21–24], while the phyllosphere microbiota 
has not been studied yet. Consequently, it is not known 
whether the phyllosphere provides another refugium for 
microbial life in this extreme environment and whether a 
typical phyllosphere microbiota can establish even under 
these conditions.

The Atacama Desert in Chile is considered as one of 
the driest deserts on Earth with plants occurring primar-
ily along the eastern and western margins, where they 

are supported by sporadic rainfall or fog [25–27]. One 
particular plant genus being well adapted to hyperarid-
ity in this desert is Tillandsia, a member of the Bromeli-
aceae family. Populations of the most widely distributed 
species, Tillandsia landbeckii, occur along the Coastal 
Cordillera, where they form so-called Tillandsia lomas 
(Fig. 1A) [28]. These vegetation formations occur mostly 
as spatially isolated generally monospecific popula-
tions in the Chilean and Peruvian coastal desert sys-
tems, although occasionally few other species of the 
genus might be intermingled at a low density [29, 30]. In 
Chile, Tillandsia lomas occur from 3 to 45 km inland at 
an elevation of 900–1300  m [28, 31], where rainfall has 
been reported to be < 2 mm  y−1 (Fig. 1G), therewith rep-
resenting the driest part of the desert [32]. Tillandsia 
plants are primarily supported by fog, which reaches the 
lomas in corridors from the coast (Fig. 1B) [28, 33]. They 
often form parallel bands, perpendicular to fog penetra-
tion (Fig.  1C) [28, 34]. They obtain fog water by water-
absorbing trichomes, which cover their leaves, rather 
than by functional roots, which are usually lacking [33, 
35, 36]. Nutrients such as nitrogen are considered to be 
also largely fog supplied [37, 38], whereas the lower parts 
of the shoots are usually buried under sandy substrate, 
therewith supporting anchorage [29]. Such belowground 
shoots are not considered as rhizosphere but have been 
termed laimosphere [39]. This compartment has not 
gained much attention in microbiome research so far 
but very likely represents a different habitat compared 
to the phyllosphere or the rhizosphere of other plants. 
A very first recent study reports that T. landbeckii sup-
ports microbial life in the soil beneath the plants, as this 
soil showed increased bacterial abundance and diversity 
compared to the bare soil [40]. However, the plant itself 
has not been analyzed in that work, neither above- nor 
belowground.

The aim of this study was to analyze the microbiota 
associated with T. landbeckii plants, which are adapted to 
grow under the driest conditions on Earth. Plant popula-
tions sampled in this study were located in regions with 
an aridity index ≤ 0.0125 [41] or rainfall ≤ 1 mm  y−1 [38]. 
The overarching question was whether T. landbeckii pro-
vides specific habitats for bacteria in a hyperarid desert 
environment and supports microbial life. To evaluate 
this, we addressed the following more specific questions:

1) Are T. landbeckii plants colonized by a specific bacte-
rial community that is distinct from its surroundings?

2) Do we see habitat differentiation, i.e., does the phyl-
losphere host a different bacterial community com-
pared to the laimosphere?

3) Do biogeographic patterns exist in the T. landbeckii-
associated bacterial communities?
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4) Does the plant-associated bacterial community 
undergo seasonal (temporal) variation?

To address these questions, we collected shoots of T. 
landbeckii plants from seven different locations in the 
Atacama Desert in northern Chile. The plant-associated 
bacterial community was compared to the surface soil 
community to assess habitat specificity. We compared 

the bacterial community of the plant phyllosphere to the 
laimosphere in order to evaluate the capacity of T. land-
beckii to offer different habitats for bacteria in a hyper-
arid desert and to host microbial communities resulting 
from specific selection processes. To assess seasonality, 
selected sampling sites were visited twice. In all samples, 
bacterial community composition was analyzed based on 
16S rRNA gene-based amplicon sequencing.

Fig. 1 Tillandsia landbeckii populations in the Atacama Desert. A Plants of the Cerro Chipana population growing on a southwest facing hillslope. 
B Incoming fog at Cerro Chipana. C Salitrera San Lorenzo 2 population on a southwest facing hillslope and on sand dunes. D Partially dead plants 
of the Cerro Peninsula population. E and F Shoots and inflorescences of T. landbeckii. G Map of the Atacama Desert with elevation being color 
coded and sampling sites highlighted by yellow circles. Mean annual rainfall is indicated by black lines
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Material and methods
Study sites and sample collection
Samples were collected from seven different T. land-
beckii populations [31] in October 2016 (spring) and 
March 2017 (autumn) in the northern Chilean Atacama 
Desert (Fig.  1G  and Table  1). As phyllosphere sam-
ples, shoots were collected from ten individual plants 
per study site. Collection occurred along a zigzag path 
within an area with a radius of approx. 15 to 110  m, 
depending on the population size at the respective site. 
Five to ten laimosphere samples were collected from 
the same plant individuals that were selected for tak-
ing phyllosphere samples (Table S1). In addition, dead 
plant material from two to five plants was collected 
above- or belowground at two sites (Salar Grande, 
Cerro Pajonal) in 2016. Furthermore, three to four bar-
ren soil surface samples (0–1 cm depth) were collected 
per site. These were taken near the first, middle, and 
last plant collected at each site and thus coincide with 
the spatial area of the sampled plant population.

For the phyllosphere samples, several plant shoots 
per plant individual were manually plucked and trans-
ferred into paper bags. These were placed on silica in 
sealable plastic bags to dry the plant material. Silica 
was replaced during the drying process when needed. 
For the laimosphere samples, buried plant shoots were 
pulled from the ground and shaken to remove loosely 
attached sand particles before bagging. The buried 
shoots were up to 15 cm long and were buried in sand 
to a maximum depth of approx. 10  cm. Surface soil 
samples were collected with a small shovel and trans-
ferred into sealable plastic bags. All samples were 
shipped to Germany for further processing. Consid-
ering that all sample material was completely dry for 
shipping, we do not expect that substantial changes 
occurred in the microbiota due to shipment at ambi-
ent temperature. However, we cannot fully exclude that 

some changes were introduced during the drying pro-
cess of vital plant material.

Sample processing and DNA extraction
Dry plant material was crushed under a laminar flow 
using sterile mortars and afterwards stored in 15-mL 
tubes at −20  °C until DNA extraction. For DNA extrac-
tion, 0.1 g of the homogenized material was transferred 
to Lysing Matrix A tubes provided with the FastDNA 
SPIN Kit for DNA extraction (MP Biomedicals). Extrac-
tion was performed following the manufacturer’s instruc-
tions with the following modifications. To rehydrate the 
material, 300 µL of sterile water was added, and the sam-
ples were incubated for 2–3  h at 4  °C. The kit-supplied 
cell lysis solution CLS-VF and protein precipitation solu-
tion PPS were added, and bead beating was performed 
in the FastPrep instrument for 90  s twice for lysis. The 
matrix-bound DNA was additionally purified by remov-
ing the supernatant after brief centrifugation at 14.000 × g 
and resuspension in 1 mL of 5.5-M guanidine thiocyanate 
solution. The matrix was again pelleted by centrifugation 
and then resuspended in 600 µL of guanidine thiocyanate 
solution to load the matrix onto the kit-supplied spin fil-
ter for further processing. DNA elution was performed 
with two times 50 µL of DES elution solution.

DNA extraction from surface soil was most success-
ful with the NucleoMag DNA Microbiome kit (Mach-
erey–Nagel). Extraction was performed from 0.5  g of 
soil following the instructions of the kit with the follow-
ing modifications: (i) the volume of the kit-supplied lysis 
buffer MI1 was increased to 800 µL; (ii) the lysates were 
additionally incubated with lysozyme (50  mg/mL) for 
30 min at 37 °C, followed by incubation with proteinase 
K (20 mg/mL) for 30 min at 55  °C; (iii) elution of DNA 
was done in two steps (2 × 50 µL PCR grade water) result-
ing in 100 µL total eluate for each sample; and (iv) DNA 
was concentrated using vacuum drying. As extraction 

Table 1 Location of study sites from south to north and sampling dates

a Population ID as given by Merklinger et al. (2020) [31]

Site Population  IDa Latitude, longitude Elevation Sampling dates

Alto Chipana — Rio Loa 4 S21°21′18″ W70°00′31″ 936–955 21 October 2016
20 March 2017

Alto Chipana 5 S21°18′08″ W70°01′39″ 992–1014 21 October 2016
20 March2017

Salar Grande 6 S21°10′47″ W70°00′30″ 902–951 22 October 2016

Cerro Pajonal 7 S20°43′33″ W69°58′13″ 967–970 23 October 2016
18 March 2017

Salitrera San Lorenzo 2 (Oyarbide) 8 S20°31′45″ W70°02′08″ 1077–1087 18 March 2017

Cerro Guanaco 11 S20°20′07″ W70°01′56″ 1043–1055 24 October 2016
17 March 2017

Cerro Carpas 12 S20°17′07″ W70°00′49″ 998–1028 24 October 2016
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controls in both procedures, sterile tubes with only 
ceramic beads were used and treated similarly to the 
plant and soil samples. DNA concentration in all extracts 
was quantified using the QuantiFluor dsDNA System 
(Promega Corporation, Fitchburg, WI, USA), and DNA 
was stored at −20 °C for further use.

16S rRNA gene PCR and sequencing
For bacterial community analyses, 16S rRNA gene ampli-
cons were generated in a nested PCR approach similarly 
as described by Becker et al. [42]. DNA was first ampli-
fied using a LNA PCR protocol with modified primer 
set 63f/1492r to suppress the amplification of plant 
organelle-derived 16S rRNA genes [43]. The 25-μL PCR 
reaction mixture consisted of 5 µL of 5 × polymerase 
buffer, 0.25 µL of each primer [25 mM], 0.25 μL of BSA 
[0.8  µg/µL], 0.25 µL of dNTP mixture [25  mM of each 
dNTP], 1 µL of  MgCl2 [50  mM], 0.25 μL of Herculase 
II Fusion DNA polymerase (Agilent Technologies), and 
3 μL of DNA template and PCR-grade water (Qiagen). 
The PCR reaction was conducted upon initial denatura-
tion at 95 °C for 4 min with 30 cycles (95 °C, 30 s; 70 °C, 
30 s for LNA primer annealing; 56 °C, 30 s for 63f/1492r 
primer annealing; 72 °C, 45 s), followed by a final elonga-
tion at 72  °C for 10 min. A subsequent nested PCR was 
performed using the primers 799f/1193r (V5–V7 region) 
with sample-specific 8-mer barcodes in 3 × 50-μL assays 
to obtain enough PCR product for the downstream 
cleanup steps. Here, 5 μL of PCR product from the first 
round was used as template and applying a tempera-
ture profile consisting of initial denaturation at 95 °C for 
4 min, 15 cycles (95 °C, 30 s; 45 °C, 30 s; 72 °C, 30 s) and 
final elongation as before. The three technical replicates 
of each sample were pooled prior to DNA quantifica-
tion using the QuantiFluor dsDNA system (Promega). 
PCR products of the different samples were pooled at 
equimolar ratios, and the resulting pool was purified and 
concentrated using the HighPrep PCR Clean-up Sys-
tem kit (MagBio Genomics, Gaithersburg, MD, USA). 
The pooled PCR products of the correct size were puri-
fied from agarose gel using the QIAEX II gel extraction 
kit (Qiagen) to eliminate traces of unspecific products. 
Library preparation and sequencing on a NovaSeq sys-
tem (Illumina) were done by Novogene (UK), generating 
paired-end reads (2 × 250 bp).

Sequence data analysis
The raw sequence reads were processed as described by 
Becker et al. [42]. In brief, the data were demultiplexed, 
primers removed, and reads further processed with 
QIIME2 version 2022.2 [44]. The classified reads were 
quality filtered by removing rare amplicon sequence 
variants (ASVs) that appeared less than 20 times and 

in less than five of the 156 successfully sequenced sam-
ples (Table S1). Likewise, samples with less than 10,000 
reads were excluded. Two of the samples were removed 
as a result of these filtering parameters. Quality-filtered 
reads (25,922,551 sequences) were processed using 
default parameters of DADA2 [45] implemented in 
QIIME2 and grouped into 1457 ASVs, ranging from 
17,981 to 1,083,504 sequences per sample (Table S1). The 
taxonomic assignment of ASVs was done using a cus-
tom classify-sklearn plug-in classifer against the SILVA 
SSU138 Ref NR99 database by sub-setting to the ampli-
con region and using the last common ancestor method 
[46–48]. ASVs classified as mitochondria, chloroplasts, 
and Eukaryota were removed (1.3% of assigned ASVs). 
This dataset consisted of 1438 ASVs and was further ana-
lyzed using the phyloseq R package (version 1.40.0) [49].

As DNA extraction controls and PCR-negative controls 
of the surface soil samples were slightly positive accord-
ing to agarose gel electrophoresis, they were included 
in sequencing. The ASVs resulting from these controls 
were removed from the soil samples following the prev-
alence-based approach of the decontam R package (ver-
sion 1.16.0) [50]. Here, the prevalence (presence/absence 
across samples) of each ASV in true-positive samples 
was compared to the prevalence in negative controls to 
identify the contaminants. Both extraction and negative 
controls were used to assess the prevalence of the con-
taminant ASV sequences in the surface soil samples. 
The threshold was set to 0.5, therewith identifying all 
sequences as contaminants that were more prevalent in 
negative/extraction controls than in positive samples. 
This resulted in the removal of 103 ASVs. Additionally, all 
reads representing Aquabacterium, which dominated in 
the DNA extraction control but were not fully removed 
by decontam, were manually removed in phyloseq (301 
ASVs). The remaining 1034 ASVs were used for final 
data analyses (Table S2). We rate the surface soil sam-
ples of sufficient quality for the analysis we present and 
conclusions we draw, even though the extraction control 
remained similar to some of the soil samples (Figure S1).

Statistical data analysis and visualization
Statistical analyses were performed in QIIME2 and R 
(version 4.2.0) [51]. Analyses were first done on the com-
plete dataset including all samples from phyllosphere, 
laimosphere, and surface soil. More detailed analyses 
were then performed with data subsets to compare phyl-
losphere vs. laimosphere, living vs. dead plants (Fig.  1C 
and D), and spatial and seasonal dynamics. Alpha diver-
sity was estimated by Shannon’s diversity index using a 
feature table rarefied to 10,000 reads per sample. Addi-
tionally, evenness and Faith’s PD indices were analyzed in 
selected datasets upon significant results from Shannon’s 
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diversity. A Kruskal–Wallis test was applied to test for 
significant differences, followed by Dunn’s test with Ben-
jamini–Hochberg correction for multiple testing. For 
data comparisons between phyllosphere vs. laimosphere 
and seasonal dynamics in the phyllosphere, a Wilcoxon 
signed-rank exact test was applied for paired sample sets 
and a Wilcoxon sum exact test for some non-paired sam-
ple sets (e.g., Cerro Pajonal 2016 vs. 2017).

Differences in bacterial community composition were 
evaluated by principal component analysis using the non-
rarefied dataset upon robust-centered log-ratio (rCLR) 
transformation [52]. This analysis was performed with 
the R package vegan (version 2.6–2) [53]. Statistical dif-
ferences were calculated by adonis2 function (vegan 
package) on a robust Aitchison distance matrix, which is 
a form of one-way permutational multivariate analysis of 
variance (PERMANOVA). This was followed by pairwise 
comparisons (pairwiseAdonis version 0.4) [54] using Ben-
jamini–Hochberg correction for multiple testing. For the 
comparison of phyllosphere to laimosphere, pairwise dif-
ferential abundance analysis at ASV level was performed 
using analysis of compositions of microbiomes with bias 
correction (ANCOM-BC) with detection for structural 
zeros turned on [55]. Conservative variance estimates of 
the test statistic were used, and p-values were adjusted 
using Holm’s correction (padj). All ASVs with padj ≤ 0.05 
and  log2 fold changes of ≥ 2 or ≤ −2 were considered as 
significantly differentially abundant.

The visualization of the data was done in R using 
ggplot2 (version 3.3.6) [56]. A Venn diagram was gener-
ated with the ps_venn function of the MicEco package 
(version 0.9.18) [57]. The heat trees were created within 
the metacoder package using the heat-tree function [58]. 
Here, the number of reads in each taxon was calculated, 
and the samples were grouped by phyllosphere or laimos-
phere. The abundance value of 0.001 was set as threshold 
to remove the low-abundance taxa and reduce the com-
plexity of the plots.

Results and discussion
Compartment‑specific colonization of T. landbeckii plants
PCR amplification and sequencing were successful for 
the majority of phyllosphere and laimosphere samples 
(Table S1), indicating that bacteria were associated with 
these plants. To evaluate whether these two plant com-
partments host specific bacterial communities, we ana-
lyzed the associated bacterial communities comparatively 
to the community structure in the surface soil. Both the 
soil surface and the phyllosphere are assumed to receive 
bacteria from atmospheric deposition processes and 
should be similar in case deposition would be the major 
process leading to an accumulation of bacterial cells in 
these habitats. Differentiation of bacterial communities 

in dependence on the two plant compartments and sur-
face soil samples was evaluated by principal component 
analysis (PCA) using the amplicon data of all samples 
(Fig.  2A). This revealed a clear separation of samples 
due to the origin from phyllosphere, laimosphere, and 
the soil surface, especially along the first axis of the plot, 
which covered 11.4% of the variation. The distinctive-
ness by compartment was confirmed by PERMANOVA 
(R2 = 0.187, p = 0.001). Subsequent pairwise PER-
MANOVA resulted in significant differences between 
all three sample types with the soil surface being most 
distinct to phyllosphere (R2 = 0.13, padj. = 0.001) and lai-
mosphere (R2 = 0.14, padj. = 0.001) (Fig.  2A). Thus, it can 
be concluded that T. landbeckii provides distinct habitats 
for bacteria in comparison to the surface soil. The leaf-
associated microbiota is thus most likely not the result 
of mere atmospheric deposition, but instead the conse-
quence of selective processes, leading to the establish-
ment of a characteristic phyllosphere microbiome. This 
is further supported by the finding that the laimosphere 
was also clearly distinct from the phyllosphere, indi-
cating that this represents another specific habitat for 
microorganisms.

Differences were also observed in alpha diversity with 
lower Shannon’s index in the phyllosphere than in the 
laimosphere and soil surface (p < 0.001) (Fig.  2B). While 
evenness showed the same pattern, Faith’s PD, inform-
ing about the phylogenetic diversity by considering 
phylogenetic distances of the detected taxa, was not sig-
nificantly different between the three sample types. Thus, 
the observed differences in Shannon’s index are primar-
ily the result of lower evenness in the phyllosphere, while 
phylogenetic diversity was similar in all three compart-
ments. This is remarkable, because bacterial diversity in 
the phyllosphere is usually substantially lower than in soil 
and also lower than in the rhizosphere [14, 59]. Plants in 
hyperarid deserts may thus be able to support a relatively 
diverse microbiota compared to their surroundings, even 
though it has to be kept in mind that the soil surface may 
be particularly depleted in diversity [4].

At this point, it should be noted that the use of differ-
ent DNA extraction procedures for phyllosphere and lai-
mosphere samples compared to soil samples may have 
contributed to observed differences between these sam-
ple types. However, the possible method-related varia-
tion can be considered to be much smaller than the clear 
sample-type-specific differences we observed. The use of 
different kits was necessary to obtain sufficient DNA of 
adequate quality from the different sample types.

The differences between phyllosphere and laimos-
phere were assessed more specifically by focusing on 
corresponding samples, i. e., pairs of phyllosphere and 
laimosphere samples that were collected from the same 
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plant individual. PCA and PERMANOVA for this data 
subset confirmed the differences in the bacterial commu-
nity composition of these two compartments (R2 = 0.108, 
p = 0.001) (Fig.  3A). As before, Shannon’s diversity 
index (p < 0.01) and evenness (p < 0.05) were higher in 
the laimosphere than the phyllosphere, while Faith’s PD 
remained at the same level (Fig. 3B). Despite equal Faith’s 
PD, we observed a higher overall ASV richness when 
looking at all laimosphere samples in comparison to the 
overall observed richness in all phyllosphere samples 
(Fig. 3C). In agreement with the higher overall richness, 
more unique ASVs (32% of total) were detected exclu-
sively in the laimosphere than in the phyllosphere (24% 
of total) (Fig.  3C). This underlines that the above- and 
belowground parts of T. landbeckii plants provide dis-
tinct habitats for bacteria, with the laimosphere hosting 
a more even community with more unique ASVs than the 
phyllosphere.

Further habitat differentiation may exist between living 
and dead plants. To study this aspect, we had included 
some samples from dead plants, collected from the Salar 
Grande and Cerro Pajonal populations, where T. land-
beckii populations were less vital compared to other 
study sites, with a remarkable number of dead plant indi-
viduals side by side to still living individuals (Fig.  1D). 
However, DNA extraction and PCR amplification of bac-
terial 16S rRNA genes from the dead plant material were 
of limited success. As a consequence, differences between 
living and dead plants could not be robustly assessed. 
They were overlaid by site-specific effects (Figure S2), 
which could not be excluded by data sub-setting due to 
the limited number of samples from dead plants per site. 
A further differentiation would have been expected, con-
sidering that plant-driven selection processes are relevant 
for shaping the phyllosphere microbiota. This requests 
further analyses in the future.

Fig. 2 Differences in bacterial community composition between phyllosphere, laimosphere, and bare soil surface samples. A Principal component 
plot (of rCLR transformed data) showing differences between the three sample types (symbol color) and of the seven different T. landbeckii 
populations (symbol shape). Significant differences between groups of samples were evaluated based on PERMANOVA on a robust Aitchison 
distance matrix and are listed besides the plot. B Differences in Shannon’s index, evenness, and Faith’s PD. Overall differences were assessed based 
on Kruskal–Wallis tests, followed by Dunn’s test with Benjamini–Hochberg correction for pairwise comparisons
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Dominant bacterial classes and genera of T. landbeckii 
plants are well‑known phyllosphere colonizers and include 
arthropod endosymbionts
Phyllosphere bacterial communities of the individual 
plants were dominated by Alphaproteobacteria, Gam-
maproteobacteria, Actinobacteria, or Bacteroidia 
(Fig. 4), which are known to represent dominant classes 
in the phyllosphere [14]. Likewise, several of the domi-
nant genera (> 10% relative abundance in a phyllo-
sphere sample; Figure S3) are well-known phyllosphere 
colonizers. This applies to all dominant Gammaproteo-
bacteria, i.e., Pseudomonas, Massilia, and Ralstonia, as 
well as Hymenobacter (class Bacteroidia), which have 
all been reported to occur prominently or as part of a 
phyllosphere core microbiota on other plants (e.g., [14, 
51, 60–66]). Similarly, dominant genera within the class 

Actinobacteria, i.e., Modestobacter and Kineococcus, 
are known as phyllosphere colonizers [51, 61]. Several 
type strains of these two actinobacterial genera were 
isolated from halophytic plants [67–70], desert [71, 72], 
or saline environments [73]. Thus, members of these 
genera may be particularly well adapted to water-lim-
iting conditions, likewise as reported for soil-dwelling 
Actinobacteria [74, 75]. However, we did not observe 
a general dominance of Actinobacteria in the phyl-
losphere, as often seen in hyperarid desert soils [4, 7, 
8]. Instead, a predominance of Actinobacteria was only 
seen on some plant individuals from two study sites, 
Cerro Guanaco and Salar Grande (Fig.  4), indicating 
that drought-adapted members of this genus are not 
consistently dominating in the phyllosphere.

Fig. 3 Differences in bacterial community composition between phyllosphere and laimosphere with focus on those 27 plant individuals that were 
sampled for both compartments. A Principal component plot (rCLR transformed) illustrating beta diversity. Differences related to compartment 
were evaluated by PERMANOVA on a robust Aitchison distance matrix. B Differences in Shannon’s index, evenness, and Faith’s PD. Differences were 
assessed based on Wilcoxon signed-rank test for each pair of indices. C Venn diagram illustrating shared versus unique ASVs in the phyllosphere 
and laimosphere. The number of corresponding ASVs is indicated, with corresponding percentages given in parentheses
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Similarly, the genera Wolbachia and “Candidatus 
Uzinura” occurred dominantly in the phyllosphere of 
some T. landbeckii individuals. These organisms are 
known as endosymbionts from plant(-sap) feeding 
arthropods and may use plants as intermediate hosts, 
being possibly transferred to plant tissue upon insect 
feeding [60, 76–78]. This is supported by a rather incon-
sistent occurrence of these taxa on plant individuals 
within and between the study sites, which is a logical 
consequence of selective (e.g., related to plant fitness) or 
stochastic insect attacks of plant individuals. The detec-
tion of these two endosymbionts, likewise as of endos-
ymbionts of the family Morganellaceae (Figure S3), raises 
the question of which arthropods might live in these 
hyperarid environments. During field sampling, no insect 
infestation of the Tillandsia plants was evident, but the 
presence of the endophytes suggests that the plants sup-
port also insect life under hyperarid conditions.

Characteristic and unusual colonizers in the phyllosphere 
of T. landbeckii plants in comparison to the laimosphere
To identify phyllosphere-specific ASVs more sys-
tematically in comparison to the laimosphere, dif-
ferential abundance analysis was performed using 
ANCOM-BC on the reduced dataset of corresponding 

phyllosphere-laimosphere samples obtained from 27 
plant individuals across the seven study sites. In the 
phyllosphere, 51 ASVs were identified as significantly 
enriched with padj. ≤ 0.05 and  log2 fold change ≥ 2 (Fig. 5 
and Table S3). These ASVs represented in total 85% of 
the mean relative abundance in the phyllosphere sam-
ples, but only 24% of the mean relative abundance in 
the laimosphere samples (Table S3), indicating that sev-
eral of the phyllosphere-enriched ASVs were dominant 
members in this community and clearly depleted in the 
laimosphere. They represented mostly Gammaproteo-
bacteria (18 ASVs, summed mean relative abundance 
42.0%), followed by Alphaproteobacteria (13 ASVs, 7.1%), 
Acidobacteriae (6 ASVs, 8.7%), and Bacteroidia (2 ASVs, 
42.1%).

The most abundant ASV (ASV406, 32.9% mean relative 
abundance) in the phyllosphere was representing Ralsto-
nia and had a  log2 fold change of 2.5 in comparison to the 
laimosphere. Ralstonia has been reported as dominant or 
consistent phyllosphere colonizer in some other studies 
[60, 63, 79]. The genus contains some serious soil-born 
plant pathogens (Ralstonia solanacearum, Ralstonia 
syzygii, Ralstonia pseudosolanacearum) causing bacterial 
wilt [80], but is not yet known as pathogen of Bromeli-
aceae. Considering that plants appeared healthy, these 

Fig. 4 Bacterial community composition in phyllosphere and laimosphere samples, collected at seven different study sites. All samples collected 
per site are included here
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were probably nonpathogenic strains, or the plants are 
not susceptible. The ASV showing the strongest enrich-
ment  (log2 fold change 8.7) was “Candidatus Uzinura” 
(ASV280, with 21.7% mean relative abundance, Table S3), 
the endosymbiont of arthropods discussed above. Fur-
ther ASVs occurring with high relative abundance and 
enriched in the phyllosphere  (log2 fold change between 
2.4 and 6.8) were members of Acidiphilium (ASV43), 
Wolbachia (ASV89), Pseudomonas (ASV108), Burk-
holderia-Caballeronia-Paraburkholderia (ASV334), and 
subgroup2 of the Acidobacteriae (ASV316) (Fig.  5 and 
Table S3). Several of these and further less-abundant, 
significantly enriched taxa such as Acinetobacter, Sphin-
gomonas, Mesorhizobium, and Rhodococcus (Fig.  5) are 

well-known phyllosphere colonizers [14], thus under-
lining that T. landbeckii provides a characteristic phyl-
losphere habitat. The presence of these taxa may be 
explained by the fact that the phyllosphere of many 
plants, not only desert plants, is representing a rather 
hostile environment where microorganisms are exposed 
to drought and UV radiation [14]. Phyllosphere coloniz-
ers are thus somewhat adapted to these conditions, pos-
sibly enabling some taxa to colonize even T. landbeckii 
plants. Besides, it has to be kept in mind that we did not 
separate endophytes from epiphytes in this study. Endo-
phytes may need less adaptations to the harsh conditions 
compared to epiphytes for survival in association with 
plants growing in hyperarid environments.

Fig. 5 Significantly enriched ASVs in the phyllosphere and laimosphere of T. landbeckii plants identified by ANCOM-BC. Displayed are ASVs 
with padj. ≤ 0.05 and  log2 fold changes of  ≥ 2 (abundant in phyllosphere) and ≤ −2 (abundant in laimosphere), with the color gradient illustrating 
the fold change according to the legend. Each light-bordered box represents one ASV, with the genus name given in black. The class names are 
indicated in light color, grouping the ASVs in big boxes with dark borders. The segment sizes reflect the mean relative abundance of the ASVs 
across all samples from the respective compartment, as included in ANCOM-BC, which included all plants from which a phyllosphere 
and corresponding laimosphere sample was taken. The names of the low-abundant taxa can be found in Table S3



Page 11 of 18Hakobyan et al. Microbiome          (2023) 11:246  

The enrichment of two ASVs representing Acido-
bacteriae subgroup2 in the phyllosphere was rather 
exceptional. Acidobacteriae have been detected in the 
phyllosphere, especially of tropical trees, but predomi-
nantly subgroup1, not subgroup2 [81–83]. Similarly, the 
presence of Acidiphilium was rather unexpected, as it 
is usually occurring in acidic, mineral, and oligotrophic 
environments [84], but not in the phyllosphere. This 
taxon was primarily detected at Alto Chipana but con-
sistently present with lower relative abundance in the 
phyllosphere of all other plant individuals. Due to the 
consistent occurrence, these otherwise fairly uncom-
mon phyllosphere colonizers appear to be part of a T. 
landbeckii-specific microbiota, therewith contributing 
to the plant-host specificity of the microbiome, which is 
well-known to exist between different taxonomic groups 
of plants, sometimes even down to plant cultivar level 
[85–87]. Their occurrence may result from the extreme 
conditions the plants and associated bacteria are exposed 
to in hyperarid environments. However, microbiota stud-
ies from plants growing in semiarid or arid deserts do not 
provide further evidence for this; the occurrence of these 
genera has not been reported there [18–20]. It is thus 
tempting to speculate that the transition from arid to 
hyperarid conditions introduces specific changes in the 
plant-associated microbiota, analogous to observations 
made in soil [4], or that T. landbeckii plants have some 
unique features that support these taxa, especially in the 
phyllosphere.

Taken together, these results suggest that the T. land-
beckii phyllosphere bacterial community hosts several 
taxa commonly known from plants grown under less 
arid conditions but includes in addition some particular 
taxa. The detected actinobacterial genera and Bacilli sug-
gest that a selection of particularly drought-tolerant taxa 
may occur. The relevance of drought adaptation of the T. 
landbeckii microbiota should be studied in more detail in 
the future, not only for the Actinobacteria and Bacilli but 
also for the well-known phyllosphere colonizers. Like-
wise, the plant traits and processes leading to the specific 
presence of subgroup2 Acidobacteriae and Acidiphilium 
deserve further attention.

The T. landbeckii laimosphere hosts soil 
and rhizosphere‑dwelling bacteria in addition 
to phyllosphere colonizers
Similar to the phyllosphere, Gammaproteobacteria, Act-
inobacteria, or Bacteroidia dominated in the laimosphere 
(Fig.  4). In addition, Bacilli were quite prominent here, 
while Alphaproteobacteria were less abundant. Focus-
ing on dominant genera (> 10% relative abundance in a 
sample), 11 of the 17 genera that were dominant in the 
phyllosphere were also found as dominant taxa in the 

laimosphere (Figure S3). When evaluating all ASVs, the 
overlap between the phyllosphere and laimosphere was 
44% (Fig. 3C). This indicates that the laimosphere shares 
a substantial part of its microbiota with the phyllosphere. 
Besides, the laimosphere hosted several additional abun-
dant genera compared to the phyllosphere (Figure S3). 
These were primarily members of the Actinobacteria, 
Bacteroidia, and Gammaproteobacteria (Figs. 4 and S3). 
Moreover, some dominant members of the phylum Aci-
dobacteriota were present. In agreement with the higher 
number of dominant genera, 32% of the ASVs were 
uniquely detected in these samples (Fig.  3C). The spe-
cific comparison between phyllosphere and laimosphere 
by ANCOM-BC revealed 52 ASVs to be significantly 
enriched with a  log2 fold change ≤ −2 in the laimosphere 
(padj. ≤ 0.05) relative to the phyllosphere. In total, these 52 
ASVs represented 44% of the mean relative abundance 
of the bacterial community in the laimosphere samples 
but less than 1% of the mean relative abundance of the 
phyllosphere samples (Fig.  5 and Table S3), therewith 
underlining the distinctiveness of the two compartments. 
Most of these ASVs belonged to the class Actinobacteria 
(24 ASVs, 11.3% summed mean relative abundance), fol-
lowed by Bacilli (10 ASVs, 9.5%), Bacteroidia (10 ASVs, 
9.0%), and Gammaproteobacteria (7 ASVs, 11.6%).

The most prominent ASV with significant enrichment 
in the laimosphere was a member of the genus Pseu-
domonas (ASV81, 6.5% mean relative abundance,  log2 
fold change of −3.1), which was different from the abun-
dant Pseudomonas ASV in the phyllosphere (ASV108, 
3.4%,  log2 fold change of 3.8, Table S3). Likewise, differ-
ent ASVs representing Acidiphilium and Bryobacter were 
enriched in the phyllosphere and laimosphere (Fig.  5). 
This points to niche differentiation at species or even 
strain level within these genera. Among the most strongly 
enriched taxa in the laimosphere  (log2 fold change 
between −3.5 and −4.6) were Cellulomonas, Kocuria, 
Modestobacter (all from the class Actinobacteria), Pla-
nomicrobium and Bacillus (Bacilli), Salinisphaera, Kush-
neria and Noviherbaspirillum (Gammaproteobacteria), 
and Adhaeribacter (Bacteroidia), which were mostly 
represented by several differentially abundant ASVs 
(Table S3). All these genera include soil-dwelling organ-
isms, and most include strains that have been reported to 
exist under dry or high-salt conditions [88–92]. Moreo-
ver, some of those were also detected in our surface soil 
samples (Table S2), indicating that those could be soil-
borne taxa, which colonized the buried plant parts in 
addition. In further agreement with this assumption, sev-
eral of these taxa (Cellulomonas, Kocuria, Planomicro-
bium, Bacillus, Pseudomonas, and Kushneria) have been 
reported to establish in the rhizosphere of desert plants 
or halophilic plants and have potentially plant beneficial 
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traits [88, 93–97]. Furthermore, some have the capability 
to degrade plant residue (Cellulomonas, Bacillus, Adha-
eribacter, Pseudomonas) [98–102]. This indicates that the 
laimosphere is colonized in part by soil-derived bacteria, 
which probably benefit from plant carbon. However, it is 
not yet known whether organic carbon is leaking from 
the buried plant shoots or whether the bacteria actively 
decompose the buried shoots under conditions when 
sufficient water is available for metabolic activity. Most 
of the time, soil water contents will be too low to allow 
decay of these buried shoots [41], therewith guarantee-
ing the maintenance of the anchorage function of these 
shoots upon burial. These remain largely intact, some-
times for centuries even after burial of the complete 
plant [38, 103], due to very slow degradation processes. 
Upon burial, the microbiota probably undergoes a very 
slow transition from a typical phyllosphere microbiota 
towards a more saprotrophic microbiota.

Contrasting biogeographic patterns exist 
in the phyllosphere and laimosphere of T. landbeckii
Biogeographic patterns are commonly observed in the 
plant-associated microbiota [16, 85]. To gain insight into 
spatial community heterogeneity of the plant-associated 
microbiota of T. landbeckii in the two compartments, 
the data were subsetted by compartment, and the bacte-
rial community structure was compared between study 
sites. All three alpha-diversity indices, i.e., Shannon’s 
index, evenness, and Faith’s PD, differed for the phyllo-
sphere bacterial communities between the different study 
sites (Figure S4). For the laimosphere, differences were 
less evident. Regarding beta diversity, PCA and PER-
MANOVA revealed spatial variation in the phyllosphere 
(R2 = 0.331, p < 0.001), which was even more pronounced 
in the laimosphere (R2 = 0.467, p < 0.001) (Fig.  6). In the 

laimosphere, samples from Alto Chipana appeared most 
separated in the PCA plot, while this was not evident in 
the phyllosphere, where Salar Grande samples appeared 
most distinct (Fig. 6). This underlines that the two plant-
associated bacterial communities are controlled by differ-
ent environmental factors. Distance decay will contribute 
to spatial patterns, but this was not the main factor for 
differences in the two compartments of T. landbeckii in 
the Atacama Desert, as sample clustering by sites in the 
PCA plots does not reflect geographic distances between 
the study sites. Consequently, other site-specific envi-
ronmental factors must be more relevant drivers for 
community assembly. Assuming that the laimosphere is 
influenced by the surrounding soil substrate, we evalu-
ated comparatively the biogeographic patterns of the 
bacterial communities in the surface soil samples, reveal-
ing that strong spatial patterns exist also in these samples 
(R2 = 0.517, p < 0.001), with samples from Alto Chipana 
and Salitrera San Lorenzo 2 being most distinct from the 
other samples (Figure S1). As samples from Alto Chipana 
were also most distinct in the laimosphere from all others 
and those from Salitrera San Lorenzo 2 were separated 
from many others along the first axis (Fig. 6), soil-related 
traits and the recruitment of soil-derived microorgan-
isms in the laimosphere likely contributed to the varia-
tion between sites in the laimosphere. Soil traits that may 
play a role are pH, organic carbon content, electric con-
ductivity, or the concentration of specific salts [4, 104, 
105]. The plant itself is probably another factor, being 
relevant for both the phyllosphere and laimosphere. The 
studied T. landbeckii plants are known to be genetically 
distinct [31], resulting in potential phenotypic differ-
ences, which might lead to altered community structures 
[106–109]. This also deserves a more detailed evaluation 
in the future. Moreover, climatic conditions, such as fog 

Fig. 6 Differences in bacterial community composition in the phyllosphere and laimosphere related to sampling site. Shown are principal 
component plots and PERMANOVA results based on robust Aitchison distance matrices
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availability, may have an influence in particular on the 
phyllosphere microbiota, acting either directly or indi-
rectly via altered plant physiology.

Temporal changes provide evidence for environmentally 
responsive bacterial communities in the phyllosphere of T. 
landbeckii
Having proven the presence of specific bacterial communi-
ties in the different compartments of T. landbeckii and the 
existence of spatial patterns, we were interested in the envi-
ronmental responsiveness of the plant-associated micro-
biota. Due to the limitation of water, microbial metabolic 
activity and, therewith, responsiveness might be strongly 
limited, similarly as known from the hyperarid desert soil 
in the absence of water [6]. To gain evidence, we analyzed 

the temporal dynamics of the bacterial communities in the 
phyllosphere. Therefore, we collected samples from four 
study sites twice, in spring (October 2016), and half a year 
later in autumn 2017 (March). Overall, all three alpha-
diversity indices changed significantly over time (p ≤ 0.002) 
(Figure S5). A more detailed analysis within each site 
revealed that such changes were not observed consistently 
across all sites. A significant decline in bacterial diversity 
(Shannon’s index and Faith’s PD) was observed at Cerro 
Pajonal, whereas a less pronounced decline was seen in 
samples from Alto Chipana-Rio Loa (Faith’s PD only). PCA 
revealed clear differences related to season in beta diver-
sity, partly reflected by a low though significant R2 value in 
PERMANOVA (R2 = 0.064, p = 0.001) (Fig. 7). The season-
related changes were superimposed by the stronger spatial 

Fig. 7 Differences in bacterial community composition in the phyllosphere related to sampling site and season. Shown are principal component 
plots and PERMANOVA results based on robust Aitchison distance matrices
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patterning (R2 = 0.326, p = 0.001) and a combined season/
site effect (R2 = 0.081, p = 0.001). When assessing the tem-
poral changes site specifically, significant changes in the 
phyllosphere bacterial community composition over time 
were seen at three study sites (PERMANOVA R2 ranging 
from 0.171 to 0.532) (Fig. 7). This leads to the conclusion 
that the phyllosphere microbiota does undergo temporal 
changes. It appears likely that these changes are related 
to weather conditions, which are known to be a control-
ling factor for plant-associated microorganisms in general 
[110, 111]. Water availability via incoming fog may be a 
major factor here. Fog availability is higher between July 
and November than in the other months [41, 112, 113] 
and was therewith higher at the first sampling event than 
the second. In this context, the observed decline in alpha 
diversity appears reasonable, assuming that only the bet-
ter adapted microorganisms and endophytes withstand 
the dryer period of the year. Besides a direct impact of fog 
on the microorganisms, the increased availability of fog-
derived water has implications on plant productivity. T. 
landbeckii plants at Salitrera San Lorenzo 2 were reported 
to have lowest growth rates in May to August and high-
est rates in August to November, along with the higher 
fog availability at this time [113]. This may change habitat 
conditions for the phyllosphere microorganisms, contrib-
uting to seasonal community compositional changes. The 
specific roles of fog and host plant factors request further 
evaluation in the future. The main conclusion drawn from 
the observed differences here is the existence of temporal 
variation, serving as indicator for responsiveness of the T. 
landbeckii phyllosphere microbiota to environmental cues.

Conclusion
In this study, we demonstrated that T. landbeckii plants, 
which grow under extreme conditions in hyperarid 
deserts, provide distinct habitats for microorganisms. 
The phyllosphere hosts in part well-known phyllosphere 
colonizers, indicating that T. landbeckii plants provide a 
refugium of microbial life in hyperarid deserts. In addi-
tion, some detected genera are rather unique for the 
Tillandsia phyllosphere, pointing to a selection of par-
ticular host- or habitat-specific taxa. The bacterial com-
munity of the laimosphere was observed to be partially 
distinct from the one in the phyllosphere, in part due to 
the presence of soil-dwelling taxa. Biogeographic pat-
terns were more prominent in the laimosphere than the 
phyllosphere, indicating that the community assembly 
in these two compartments is driven by different deter-
ministic as well as stochastic processes. Climate, espe-
cially fog and therewith water availability, appears to be 
an important factor acting in particular on the phyllo-
sphere microbiota, either directly or indirectly via plant 
fitness, whereas soil traits such as water storage capacity 

may modulate the laimosphere microbiota in addition. In 
particular, the role of fog for the plant-associated micro-
biota deserves more attention in future studies, as it may 
explain the temporal variation observed in this study. 
Both the spatial and even more so the temporal varia-
tion in the bacterial community structure, we observed 
here points to a microbiota that is responsive to envi-
ronmental cues. Thus, it appears unlikely that the plant-
associated microbiota of T. landbeckii, growing under 
hyperarid conditions, is merely the result of an accumu-
lation of (dead) microorganisms from dust depositional 
processes. Instead, the plant provides specific species-
rich refugia of life for microorganisms above- and 
belowground in this hostile hyperarid desert. The micro-
organisms that colonize T. landbeckii should be studied 
in more detail with regard to their in situ metabolic activ-
ity, their adaptation mechanisms to live in this hyperarid 
environment, and how these differ from those of micro-
organisms living in the phyllosphere under less arid con-
ditions. Moreover, the possible role of the T. landbeckii 
microbiome for plant growth support deserves attention.
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