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Abstract

Biodiversity is declining at alarming rates worldwide and large-scale monitoring is ur-
gently needed to understand changes and their drivers. While classical taxonomic iden-
tification of species is time and labour intensive, the combination with DNA-based meth-
ods could upscale monitoring activities to achieve larger spatial coverage and increased 
sampling effort. However, challenges remain for DNA-based methods when the number 
of individuals per species and/or biomass estimates are required. Several methodolog-
ical advancements exist to improve the potential of DNA metabarcoding for abundance 
analysis, which however need further evaluation. Here, we discuss laboratory, as well as 
some bioinformatic adjustments to DNA metabarcoding workflows regarding their po-
tential to achieve species abundance estimation from arthropod community samples. 
Our review includes pre-laboratory processing methods such as specimen photogra-
phy, laboratory methods such as the use of spike-in DNA as an internal standard and 
bioinformatic advancements like correction factors. We conclude that specimen pho-
tography coupled with DNA metabarcoding currently promises the greatest potential 
to achieve estimates of the number of individuals per species and biomass estimates, 
but that approaches such as spike-ins and correction factors are promising methods to 
pursue further.
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Introduction

Biodiversity is declining at alarming rates worldwide (Díaz et al. 2020). The 
startling observation of a decline in over 75% flying insect biomass in German 
nature reserves over 25 years (Hallmann et al. 2017) triggered an earthquake 
in society and politics and raised awareness of arthropod declines, which have 
since been further documented (Lister and Garcia 2018; Seibold et al. 2019; 
Simmons et al. 2019; van Klink et al. 2020). Subsequently, numerous initiatives 
have been launched or reinforced at global to European and regional scales to 
assess arthropod diversity and also define guidelines for applied, large-scale 
biodiversity monitoring schemes (Seibold et al. 2019; Ronquist et al. 2020; Potts 
et al. 2021). Monitoring programmes are frequently limited in spatial coverage 
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and sampling effort, since they often rely on morpho-taxonomical analysis for 
species identifications, which is costly and time-consuming (Yu et al. 2012) 
and additionally limited by a shortage of taxonomic expertise (Fernandes et 
al. 2019; Watts et al. 2019; Darby et al. 2020; van Klink et al. 2022a). Thus, in 
order to meet the increased demand for arthropod diversity assessments, tradi-
tional morpho-taxonomy approaches need to be combined with other methods 
(Pawlowski et al. 2018; Compson et al. 2020).

DNA-based approaches offer a promising alternative to arthropod diversity 
surveys and monitoring (Porter and Hajibabaei (2018); Zinger et al. (2020); 
Suppl. material 1). In particular, DNA metabarcoding enables high sample 
throughput (Elbrecht and Steinke 2018; de Kerdrel et al. 2020), due to auto-
mation of laboratory and bioinformatic workflows (Krehenwinkel et al. 2017a; 
Buchner et al. 2021; Buchner et al. 2023) and offers a time- and cost-effective 
approach for large-scale biodiversity assessments (Piper et al. 2019; Watts 
et al. 2019). Molecular methods further have the potential to resolve cryp-
tic species (Sow et al. 2019) and intraspecific genetic diversity (Elbrecht et 
al. 2018) and open up the possibility to include degraded and non-invasively 
collected material, e.g. faeces (Andriollo et al. 2019), or plant material in bio-
diversity surveys, which yields high potential for trophic interaction and food 
web analysis.

However, implementation in policy-mandated monitoring programmes is 
still hampered (Blancher et al. 2022; Kelly et al. 2023). Reasons for the limited 
application include general scepticism among taxonomists, missing expertise 
and infrastructure within state monitoring agencies, a lack of standardised mo-
lecular protocols (Dickie et al. 2018; Pawlowski et al. 2018; Zinger et al. 2019; 
Compson et al. 2020; Creedy et al. 2021), as well as incomplete reference da-
tabases (Watts et al. 2019; van der Heyde et al. 2020; Zenker et al. 2020) and 
the destruction of specimens for DNA extraction (Zizka et al. 2019), although 
non-destructive approaches are gaining ground (Castalanelli et al. 2010; Carew 
et al. 2018; Zenker et al. 2020; Batovska et al. 2021; Kirse et al. 2023). The most 
important shortcoming concerns the limitation to assess the number of indi-
viduals per species and biomass, which is essential in standardised monitoring 
and ecological analysis, but still remains one of the greatest challenges for 
high-throughput DNA-based approaches (Compson et al. 2020).

Several factors within the metabarcoding workflow affect extraction of 
abundance data (Pawlowski et al. 2018; Zinger et al. 2019). Firstly, sample 
properties such as complexity seem to affect abundance information (Piñol 
et al. 2019). This complexity refers in particular to variation in biomass across 
and within species (Elbrecht and Leese 2015; Elbrecht et al. 2017; Braukmann 
et al. 2019), but also marker gene copy numbers (Krehenwinkel et al. 2017b). 
Secondly, methodological biases skew abundance and biomass estimations. 
During DNA extraction, a protocol-dependent taxonomic bias can be introduced 
due to variations in species size and morphology, causing differences in isolat-
ed DNA yields (Krehenwinkel et al. 2017a; Pornon et al. 2017; Matos-Maraví et 
al. 2019; Iwaszkiewicz-Eggebrecht et al. 2022). Several steps in the metabar-
coding laboratory workflow, such as PCR amplification and sequencing, can 
introduce stochastic processes affecting read counts (Leray and Knowlton 
2017; Shirazi et al. 2021). Arguably, the strongest bias is caused by taxon-spe-
cific differences in primer binding efficiency (Piñol et al. 2015; Krehenwinkel 
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et al. 2017a, 2017b). The magnitude of primer bias depends on the number 
of mismatches between primer and target sequence, especially towards the 
3‘-end of the primer (Piñol et al. 2019). Apart from primer choice, additional 
PCR bias can be caused by variable GC content in the target genetic marker 
(Nichols et al. 2018), amplicon length (Krehenwinkel et al. 2017b) or the occur-
rence of pseudogenes (Andujar et al. 2021). Thirdly, post-laboratory steps in 
the bioinformatic processing of sequencing data can skew final read distribu-
tion (Frøslev et al. 2017; Alberdi et al. 2018; Darby et al. 2020; Matos-Maraví et 
al. 2019; Creedy et al. 2021).

A meta-analysis targeting 22 DNA metabarcoding studies revealed a weak 
relationship between biomass and generated read counts, with a large degree 
of uncertainty (Lamb et al. 2019). The studies included in Lamb et al. (2019) 
used different protocols and a wide range of target organisms and sample 
types, which somewhat hampers overall comparability, but does emphasise 
that raw read counts are not suitable to infer abundance estimates.

A variety of different approaches have emerged recently that can help im-
prove abundance and biomass estimates from metabarcoding data, including 
species-specific correction factors applied to read counts, spike-ins, prim-
er optimisation or multi-locus metabarcoding (e.g. Richardson et al. (2015); 
Krehenwinkel et al. (2017b); Richardson et al. (2019); Darby et al. (2020);  Luo 
et al. (2023); Suppl. material 1). However, these advances have so far not been 
compared systematically for complex arthropod samples. Furthermore, since 
taxonomic biases exist in DNA metabarcoding data (Clarke et al. 2014), some 
form of species-specific correction of DNA metabarcoding would be required to 
obtain robust estimates of individuals per species. This may not be required to 
reliably estimate total biomass, but still requires the conversion of read counts 
to biomass, which is not trivial.

Here, we review potential methods that can improve abundance and bio-
mass estimation in arthropod whole organism community (WOC) samples. 
Considering the variety of approaches and applications, we aim to formulate 
general recommendations for DNA metabarcoding workflows in arthropod 
monitoring. In addition, we explore approaches from metabarcoding studies 
targeting e.g. aquatic samples that have so far not been applied to terrestrial 
arthropods and their trophic interactions.

Methods

Collection of relevant literature and assessment of methodological 
approaches

We performed an online literature search in Google Scholar and EBSCO 
Discovery Service on 17 January 2022 using the keywords [(quant*) AND (in-
sect) AND (metabarcod*) AND (DNA)] and included only peer reviewed publica-
tions in English. Although the search term specifically targeted insects, we use 
the more general term “terrestrial arthropods” throughout the text. Additionally, 
some publications were added to the list based on the authors’ expertise.

We included studies that applied DNA metabarcoding to terrestrial arthro-
pods as target organisms and/or in relation to their trophic interactions within 
ecosystems (e.g. pollination and food web studies), as these topics are strongly 
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connected and play an important role in monitoring schemes (e.g. ecosystem 
services of pollination or natural pest control). With these criteria, WOC and 
tissue samples were included covering also pollen, gut contents and faeces as 
well eDNA metabarcoding approaches, such as extraction from soil and sam-
ple fixative. We excluded studies that applied individual-based DNA barcoding 
and next generation sequencing (NGS) barcoding, PCR-free approaches as well 
as long-read sequencing methodologies, as we wanted to focus on metabar-
coding specifically. PCR-free approaches are, however, briefly discussed in an 
outlook section.

Based on 113 publications matching our search criteria (Suppl. material 
2), we extracted information on article type, study type, sample type, species 
group, methods and parameters (Table 1, Suppl. material 3). We examined 
these methods regarding their applicability to study types (species richness 
assessments, pollen analysis, food web studies) and to sample types (WOC 
samples, pollen, eDNA and gut contents/faeces). The overall suitability was 
assessed based on whether certain abundance metrics (number of individ-
uals per species, relative abundance) as well as biomass estimation were 
achievable, whilst also considering the extent of additional equipment, cost 
and labour (Suppl. material 4). These considerations are based on the avail-
able literature.

Abbreviations:

ASV amplicon sequence variant
ddPCR digital droplet PCR
eDNA environmental DNA
FOO / POO frequency of occurrence / percent of occurrence
NGS / HTS next generation sequencing / high-throughput sequencing
qPCR quantitative PCR
RRA relative read abundance
UMI unique molecular identifier
WOC samples whole organism community samples

Results

Description and assessment of methods

Reviewing the literature, we identified three main methods to estimate species 
abundance with metabarcoding (Table 1): (i) semi-quantitative metrics (Fig. 
1), (ii) approaches that can potentially reduce read abundance biases (Fig. 2), 
and (iii) the combination of DNA (meta-)barcoding with other methodological 
approaches, which we present in more detail in the following sections (also 
see Suppl. material 1). This review focuses on studies including developments 
associated with the laboratory workflow. For a critical assessment of miss-
ing standards in bioinformatics we refer to Creedy et al. (2021). Since many 
metabarcoding studies refer to relative abundances, whilst monitoring aims 
to determine counts of individuals per species, we make a clear distinction 
of these terms throughout this manuscript by referring to “number of indi-
viduals per species” (absolute number of individuals belonging to the same 
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species) and “relative abundance” (proportion of a species within a sample), 
but use the more general term “abundance” as a summary term. “Biomass” 
(weight of individuals belonging to the same species) is mentioned separately, 
where appropriate.

Semi-quantitative metrics

DNA metabarcoding is comprehensively used to assess presence/absence 
from complex sample mixtures. Whilst this can be informative for some 
ecological assessments, including biodiversity measures (e.g. alpha diver-
sity), interaction analyses (e.g. multi-trophic networks, food web structures, 
plant-pollinator interactions) require some form of (semi-)quantitative data. 
There are different approaches to conduct semi-quantitative analysis of DNA 
metabarcoding data (Fig. 1A). In diet analyses, frequency or percentage of 
occurrence (FOO/POO; Fig. 1B) are often applied (Deagle et al. (2019), but 
see Cuff et al. (2022)). In bipartite networks, link strength (Fig. 1C) is a mean-
ingful quantitative metric for plant-pollinator or prey-predator networks (Cuff 
et al. 2022; Thomsen and Sigsgaard 2019). Alternatively, relative read abun-
dance (RRA) summarised over biological replicates is often used (Fig. 1D), 
especially for pollen samples (Kratschmer et al. 2019; Wilson et al. 2021). 
Various studies have applied read counts, RRA as well as derived metrics, 
such as log- or rank-transformed or rarefied read abundance to assess com-
munity composition for different sample types (pollen, faeces, gut and WOC 
samples; Hope et al. (2014); Hawkins et al. (2015); Richardson et al. (2015); 
Krehenwinkel et al. (2018); Macías-Hernández et al. (2018); Marquina et al. 
(2019)). The use of any of the above-mentioned metrics is straightforward, 
but in most cases they are unreliable for quantitative inferences due to the 
various factors affecting read counts (Pawlowski et al. 2018; Zinger et al. 
2019) and thus they are uninformative to estimate the number of individuals 
per species or biomass.

Table 1. Overview of methodological approaches discussed in this publication.

Category Approach Sample types Quantitative?

Semi-quantitative 
metrics

FOO/POO all semi-quantitative

RRA all semi-quantitative

rarefaction all semi-quantitative

transformation all semi-quantitative 

Reducing read 
abundance biases

correction factors via algorithm WOC samples yes; virtual specimen counts

correction factors via mock 
communities

all yes

spike-ins all yes; relative abundance

primer optimisation all no

multi-locus metabarcoding all yes 

Combination of 
methods

general all; depending on approach yes; depending on approach 

photography and body 
measurements of single 

specimens

WOC samples yes; number of individuals 
per species, biomass
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Figure 1. Semi-quantitative metrics. A ASV table as the outcome of a DNA metabarcoding experiment, rows are samples, 
columns are ASVs, numbers are raw read counts. From the ASV table, semi-quantitative metrics can be derived, e.g. 
frequency and percentage of occurrence, bipartite networks and relative read abundance. B Frequency and percentage 
of occurrence derived from ASV table, frequency of occurrence simplifies the ASV table into presence/absence data, in-
dicated by presence or absence of a rectangle (left), when summarising this over all samples, percentage of occurrence 
can be an informative metric for abundance in a system (right). C Bipartite networks derived from the ASV table, samples 
and ASVs are nodes, edges indicate presence/absence of the ASVs per sample (left), when summarising this over all 
samples, link strength can be an informative metric for abundance in a system (right). D Relative read abundance derived 
from ASV table, relative read abundance for individual samples is determined by dividing raw read counts of individual 
ASVs by total read count per sample (left), when summarizing this over all samples, mean relative read abundance can 
be an informative metric for abundance in a system (right); abbreviations: S – Sample, ASV – Amplicon sequence variant, 
RRA – relative read abundance; ASVs are colour coded and refer to ASVs from (A), artwork: Alice Scherges.
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Approaches that reduce read bias

Correction factors

Mock community experiments have shown a positive correlation of read counts 
per species with genomic template DNA concentration in pollen and WOC sam-
ples (Baksay et al. 2020; Gueuning et al. 2019), while other studies revealed a 
PCR bias introduced through taxon- and marker-specific primer efficiency (Bell 
et al. 2019; Braukmann et al. 2019; Darby et al. 2020; Krehenwinkel et al. 2017b). 
Since these biases are strongly affected by primer binding efficiencies (Piñol et 
al. 2019), they are assumed to be predictable (Krehenwinkel et al. 2017b). Thus, 
correcting read counts using species-specific correction factors can improve 
metabarcoding-derived abundance estimates (Krehenwinkel et al. (2017b); 
Darby et al. (2020); Fig. 2A, B). Such correction factors can be obtained using 
mock communities (Krehenwinkel et al. (2017b), Fig. 2A) or iterative “guess-
and-test” algorithms (see further down, Darby et al. (2013); Darby et al. (2020); 
Table 1, Fig. 2B, Suppl. material 1). In order to derive correction factors us-
ing mock communities, artificial community samples of defined composition 
are processed alongside unknown samples. However, the derived correction 
factors can only be applied to species that are present both in environmental 
and artificial community samples, which is a strong limitation for hyperdiverse 
WOC arthropod samples such as Malaise trap catches that contain many un-
known taxa.

It may be possible to extend correction factors to closely-related taxa based 
on phylogenetic relatedness, whereby similar skews of read counts are as-
sumed. In microbial analyses (Goberna and Verdu 2016), such an approach has 
been used to infer functional traits. In beetles, a recent paper has shown a sig-
nificant correlation between species biomass and high-throughput sequencing 
(HTS) read abundance for 16S, but not for COI, which had more primer-template 
mismatches. In addition, strong phylogenetic signals in primer-template mis-
matches were identified and models incorporating the effects of mismatch type 
or number improved species biomass estimation from HTS read abundance for 
COI (Liu et al. 2023). To obtain correction factors, mock communities have so 
far only been used in combination with WOC arthropod samples (Krehenwinkel 
et al. 2017b), but this approach could also be transferred to pollen samples, as 
processing mock communities alongside such samples is common (Bell et al. 
2019; Baksay et al. 2020; Swenson and Gemeinholzer 2021). Species-specific 
correction factors obtained from mock community samples are helpful to re-
duce read abundance biases; however, some sources of bias still exist, e.g. 
related to the evenness of a community sample (Piñol et al. 2019), copy num-
ber variations of the target gene (Krehenwinkel et al. 2017b) or differences in 
DNA quality between specimens used for mock community samples versus 
field-collected samples (Krehenwinkel et al. 2018). Furthermore, it should be 
noted that correction-factors obtained via mock communities are expected to 
fluctuate in response to changes in PCR cycle numbers across metabarcoding 
workflows (Yang et al. 2020; Martoni et al. 2022).

Correction factors can also be calculated using an iterative algorithm which 
mitigates data skews due to copy number variations of the target gene (Darby 
et al. (2020, 2013); Fig. 2B, Suppl. material 1). This requires a reference dataset 
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Figure 2. Reducing read abundance biases. A Processing mock communities (bottle) with defined composition allows 
determining taxon-specific correction factors, which can be applied to correct relative read abundance of samples with 
unknown composition, indicated by a red line. Correction factors can only be determined for taxa included in the mock 
community. B Correction factors can be determined using iterative algorithms and a guess-and-test approach based on a 
morphological reference data set (not shown). The correction factors can be applied to correct relative read abundance of 
samples with unknown composition, indicated by a red line. Correction factors can only be determined for samples that 
show a good agreement in terms of taxa detected between the reference and the DNA metabarcoding data set. C Adding 
spike-ins, e.g. a defined amount of genomic DNA, to all samples and co-amplifying and co-sequencing the reference mate-
rial allows correcting raw read counts by simply dividing read counts assigned to taxa (blue and brown bars) by read counts 
assigned to the spike-in (red bars); abbreviations: RRA – relative read abundance, S – sample, artwork: Alice Scherges.
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with specimen counts obtained from morphological identifications. The algo-
rithm itself then starts with randomly generated correction factors for each 
species to compute predicted specimen counts from metabarcoding data. The 
predicted counts are compared to the reference data set and correction factors 
are iteratively adjusted until predicted and actual counts converge (Darby et al. 
2013).

The algorithm can only be applied to samples with high concordance between 
morphological and DNA-based taxonomies, but it is a promising approach, as the 
predicted numbers of individuals per species were highly correlated with actual 
count data (Darby et al. 2013; Darby et al. 2020). It requires high-quality material 
and specimens to be identified morphologically (Darby et al. 2013; Darby et al. 
2020) and thus can only be used for WOC and tissue samples (see Suppl. ma-
terial 1). Time and cost of the overall analysis increases, as a reference set of 
morphologically identified species is required, but this could be worth it in the 
case of repeated monitoring of sites with known species composition, or for the 
monitoring of known arthropod pests.

Spike-ins

Spike-ins (Fig. 2C) may also be referred to as internal standards (ISDs; Harrison 
et al. (2021)). Here, a defined amount of reference material DNA is added to 
each sample, which allows read count correction and thereby improves abun-
dance and biomass estimation (Luo et al. 2023). The reference DNA can be add-
ed as tissue (Darby et al. 2020), genomic DNA, pre-amplified DNA (Ji et al. 2020), 
plasmids (Luo et al. 2023) or synthetic DNA (Palmer et al. 2018), should include 
primer binding sites and needs to be added to the reference database (Tkacz et 
al. 2018; Luo et al. 2023). Spike-ins are added to the samples in a standardised 
manner, e.g. a defined amount of reference DNA (ng) per defined volume of lysis 
buffer (µl; Ji et al. (2020); Luo et al. (2023)). It is recommended to add the spike-
in after tissue lysis but prior to DNA extraction (Ji et al. 2020; Luo et al. 2023), 
so that it is co-extracted, co-amplified and co-sequenced along with the sample 
DNA and therefore underlies the same methodological biases. Since all samples 
receive the same amount of spike-in, they should theoretically return the same 
spike-in read counts. However, sample complexity affects read numbers (Piñol 
et al. 2019) and thus different samples will return different read numbers for 
the spike-in (Luo et al. 2023). Read correction can be achieved by dividing the 
number of reads assigned to amplicon sequence variants (ASVs) by the number 
of reads assigned to the spike-in, resulting in significant improvement in with-
in-species abundance across samples (Ji et al. 2020; Luo et al. 2023).

The use of spike-ins is not restricted by sample type, but comes with a low 
increase in effort and costs, because the spiking of samples is an additional, al-
beit minimal, step in the laboratory workflow, which has to then be integrated in 
the bioinformatic workflow. It should be noted that spike-in correction does not 
correct for biases across species within samples (Luo et al. 2023). The underlying 
reasons have, to our knowledge, not been systematically addressed, but may very 
well relate back to sample complexity and primer binding efficiencies (Piñol et al. 
2019). It has been proposed that species-specific correction factors obtained from 
mock communities (see previous section), unique molecular identifiers (UMIs, 
see outlook section) as well as the application of less biased primers can be used 
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to correct for within-sample across species biases (Ji et al. 2020; Luo et al. 2023). 
Spike-in correction is a straightforward and powerful approach with high potential 
to improve abundance and biomass estimations via DNA metabarcoding.

Primer optimisation

A variety of studies have shown that primer design is an essential part determin-
ing the success of DNA metabarcoding studies, both in terms of taxon recovery 
and read abundance biases (Esnaola et al. 2018; Jusino et al. 2018; Lafage 
et al. 2019; Pedro et al. 2020). Primers used in DNA metabarcoding need to 
be universal and the fragment length needs to be suitable for the sequencing 
platform of choice, whilst allowing for species-level identification (Meusnier 
et al. 2008). Over and under amplification of different lineages of arthropods 
(Krehenwinkel et al. 2017b; Darby et al. 2020) as well as certain plant species 
dominating pollen samples (Bell et al. 2019; Baksay et al. 2020) have been re-
ported and should be minimised as much as possible. Thus, primer design, 
including primer validation and evaluation, is a painstaking task, which needs to 
be continuously pursued using complex mock communities to ensure the best 
choice of primer for arthropod metabarcoding studies (Elbrecht et al. 2019).

Multi-locus metabarcoding

Different genetic markers suffer from different taxonomic biases and thus some 
studies employ several different loci for the same organismal group, which is re-
ferred to as multi-marker (Adamowicz et al. 2019) or multi-locus metabarcoding 
(Batovska et al. 2021). Multi-locus metabarcoding has been applied to WOC and 
tissue samples (Marquina et al. 2019; Giebner et al. 2020), pollen (Richardson 
et al. 2015; Bell et al. 2019; Richardson et al. 2019), faecal samples and gut con-
tents (Swift et al. 2018; Krehenwinkel et al. 2019; Gil et al. 2020) as well as soil 
and even eDNA samples (Ritter et al. 2019; Thomsen and Sigsgaard 2019).

Locus-specific biases can be mitigated by using rank order abundance or medi-
an-based proportional abundance summarised over all loci, as has been demon-
strated in pollen DNA metabarcoding (Richardson et al. 2015; Richardson et al. 
2019). The locus-specific PCRs are often performed separately (Richardson et al. 
2015; Swift et al. 2018; Richardson et al. 2019; Baksay et al. 2020; Darby et al. 2020), 
which increases time and cost for sample processing. Multi-locus metabarcoding 
can be performed in multiplexed reactions (de Kerdrel et al. 2020; Batovska et al. 
2021) to improve time and cost efficiency. However, this may introduce additional 
read abundance skews, possibly due to PCR competition between loci (Batovska 
et al. 2021). During analysis, data from different markers need to be analysed sepa-
rately (Thomsen and Sigsgaard 2019), which increases time for analysis. It should 
be emphasised that different markers usually yield discordant taxon lists (Alberdi 
et al. 2018; da Silva et al. 2019), e.g. because of incomplete reference databas-
es for markers other than COI (Andujar et al. 2018), but may also be attributed 
to differences in PCR efficiency. Such discordant taxa lists allow a broader taxon 
coverage, but it also means that data from different markers are complementary 
(Kirse et al. 2021), complicating data analysis. In the case of discordant taxa lists, 
abundance estimates (e.g. rank-based) can only be determined for taxa identified 
by more than one marker (Richardson et al. 2015; Richardson et al. 2019).
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For pollen samples, as no single universal plant barcode exists (CBOL Plant 
Working Group 2009; Bell et al. 2016), multi-locus metabarcoding was com-
monly adopted especially in early studies (Kraaijeveld et al. 2015; Richardson 
et al. 2015; Pornon et al. 2016). Consequently, pollen DNA metabarcoding 
workflows include both ribosomal (e.g. ITS2) and chloroplast markers (e.g. 
trnL, rbcL, matK) (Richardson et al. 2015; Milla et al. 2021; Swenson and 
Gemeinholzer 2021; Arstingstall et al. 2023). The latter generally perform well 
concerning PCR amplification and taxonomic resolution, despite concerns re-
garding little chloroplast DNA in pollen grains (Hawkins et al. 2015; Kraaijeveld 
et al. 2015; Bell et al. 2016). There even exists some evidence that chloroplast 
markers are more suitable for assessing relative abundances than ribosomal 
markers (Richardson et al. 2019; Baksay et al. 2020), possibly due to lower GC 
contents (Baksay et al. 2020), and these differences need to be carefully con-
sidered. However, more recently, pollen DNA metabarcoding studies may revert 
to single-locus metabarcoding, focusing on ITS2 (Leidenfrost et al. 2020), due 
to incomplete reference databases for and sub-optimal taxonomic resolution 
of chloroplast markers (Richardson et al. 2019; Kolter and Gemeinholzer 2021).

Combining DNA metabarcoding with other methods

Some studies combine DNA metabarcoding with other methodologies. Thereby, 
DNA metabarcoding may be used to obtain a comprehensive species list of the 
detected taxa, whilst abundance estimates (e.g. number of individuals per spe-
cies, DNA copy number) and/or biomass estimates are obtained with another 
methodology. One common example is the complementary morphological anal-
ysis of gut content remains, pollen grains or arthropod specimens (Keller et al. 
2015; Darby et al. 2020; Gil et al. 2020). Other examples are weighing WOC sam-
ples (Hausmann et al. 2020), using flow cytometry of pollen (Baksay et al. 2020) 
or other forms of PCR (Schneider et al. 2016; Tedersoo et al. 2019). The choice 
of additional methodology determines the sample types that can be used, for 
example, combining metabarcoding with quantitative PCR (qPCR; Schneider et 
al. (2016)) or digital droplet PCR (ddPCR; Tedersoo et al. (2019)) can be per-
formed on all sample types. For other methodologies, for example weighing, 
WOC samples are required (Hausmann et al. 2020). All these data sources are 
complementary and can provide different kinds of information, e.g. total bio-
mass of WOC samples obtained from weighing, supplemented by species-level 
presence/absence data provided by metabarcoding (Hausmann et al. 2020).

One noteworthy approach of method combination is the photographic doc-
umentation of specimens from WOC samples before analysing them with 
DNA metabarcoding. This combined approach enables individual counts, body 
size measurements and thereby biomass estimation (Gueuning et al. 2019). 
As specimens are handled individually (Wührl et al. 2022), the use of body 
parts for DNA extraction, instead of full specimens, is furthermore facilitated 
(Gueuning et al. 2019; Darby et al. 2020), keeping voucher specimens most-
ly intact. Specimen photography further allows documentation of specimens 
for future reference as well as incorporating a pre-sorting strategy (Elbrecht et 
al. 2020). Whilst handling of individual specimens is exceptionally time- and 
labour-intensive, automated solutions can improve time-efficiency (Ärje et al. 
2020; Wührl et al. 2022). In combination with machine learning approaches, the 
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automated screening of high-resolution pictures of arthropod WOC samples 
for abundance estimation is emerging and would facilitate large-scale assess-
ments, e.g. for monitoring schemes (Høye et al. 2021). While these approaches 
are still in development, the vision of completely automated protocols, incorpo-
rating image recognition before molecular sample processing, exists (Høye et 
al. 2021; Besson et al. 2022; van Klink et al. 2022b; Wührl et al. 2022). However, 
exactly when highly accurate image recognition to species level for all arthro-
pod species in a WOC sample might be possible and thereby circumvent the 
need for metabarcoding altogether, is difficult to assess.

Discussion

General conclusions and recommendations for arthropod monitoring 
and related questions

The available literature has revealed that the majority of (terrestrial) arthropod 
DNA metabarcoding studies do not sufficiently address the matter of estimating 
the number of individuals per species and/or biomass (Suppl. material 2). In terms 
of pollen analysis, research exists that discusses abundance estimation via DNA 
metabarcoding, but with inconsistent results (Keller et al. 2015; Kraaijeveld et al. 
2015; Richardson et al. 2015; Bell et al. 2019; Richardson et al. 2019; Baksay et 
al. 2020). In contrast to this, DNA metabarcoding has received considerably more 
attention in the aquatic sector in recent years and advancements exist both for 
WOC samples of macrozoobenthos and eDNA (Elbrecht and Leese 2015; Elbrecht 
et al. 2017; Beentjes et al. 2019; Hoshino et al. 2021). Existing policies, like the EU 
Water Framework Directive (WFD; Directive 2000/60/EC) and the Marine Strategy 
Framework Directive (MSFD; Directive 2008/56/EC), legally require routine moni-
toring of aquatic environments. As a consequence, standards for sampling, pro-
cessing and reporting already exist (Haase et al. (2004), but see Birk et al. (2012)), 
as well as DNA-based indicators (Aylagas et al. 2014). Especially the DNAqua-Net 
COST Action (Leese et al. 2016; Leese et al. 2018) has published many advance-
ments regarding the suitability and integration of (e)DNA metabarcoding in bio-
monitoring (Buchner et al. 2019; Pawlowski et al. 2018), as well as resources to 
facilitate standardisation and quality control for DNA-based monitoring (Bruce et 
al. (2021); Bruce and Keskin (2021); Vasselon et al. (2021); Leese et al. (2023),  
DNAqua-Hub, https://dnaquahub.eu/; accessed 24 May 2022). This work has a 
high potential to be transferred into terrestrial arthropod monitoring and demon-
strates that DNA metabarcoding can indeed be standardised for monitoring 
purposes (Leese et al. 2023), which is far more challenging for morphological 
species identification. However, this transfer could be hampered by the lack of 
data on diversity and distributions of the hyperdiverse arthropods, although such 
studies are now emerging (Buchner et al. 2023; Srivathsan et al. 2023).

Additionally, the collected literature focused on approaches that apply to the 
sample processing stage of metabarcoding workflows. The effect of bioinformat-
ics and data analysis strategies on abundance and biomass estimations is strong-
ly underrepresented (Suppl. material 2). A variety of non-harmonised bioinformatic 
tools and pipelines exists (Creedy et al. 2021), but a more detailed discussion on 
the bioinformatics and data analysis side of this topic is outside the scope of this 
review. However, future research needs to address this.

https://dnaquahub.eu/


317Metabarcoding and Metagenomics 7: 305–337 (2023), DOI: 10.3897/mbmg.7.112290

Wiebke Sickel et al.: Abundance estimation with DNA metabarcoding

As expected, there is a variety of adjustments attempting to improve abun-
dance and biomass estimation via DNA metabarcoding (Suppl. material 2). It 
remains, however, difficult to find a “one-size-fits-all” approach to assessing in-
dividual counts and biomass from DNA metabarcoding, partly because different 
approaches are applicable only to certain sample types or because recent ad-
vancements still do not translate to individual counts and/or biomass estimates.

Overall suitability of DNA metabarcoding approaches to estimate 
the number of individuals per species and biomass in terrestrial 
arthropod monitoring

Currently, the most promising approach is to combine DNA metabarcoding with 
specimen photography, which would ideally be automated (Ärje et al. 2020; Wührl 
et al. 2022). In addition, promising avenues such as correction factors and spike-
ins should be further developed (Darby et al. 2013; Krehenwinkel et al. 2017b; 
Darby et al. 2020; Ji et al. 2020; Luo et al. 2023). Specimen photography coupled 
with automatic image recognition facilitates body size measurements to achieve 
biomass estimates as well as the number of individuals per species. Combining 
the approaches of Gueuning et al. (2019), Darby et al. (2020) and de Kerdrel et al. 
(2020) seems especially promising, as recombining specimens to ”pseudo-com-
munity” samples allows cost-efficient mixed-species DNA (meta-)barcoding. We 
would like to point out that this strategy is not the same as NGS barcoding (Wang 
et al. 2018; Srivathsan et al. 2021), since individual specimens or parts of them are 
combined to mixed-species samples (Gueuning et al. 2019; de Kerdrel et al. 2020). 
Thus, samples are processed following a metabarcoding workflow, but obtained 
barcodes can be traced back to specimens (de Kerdrel et al. 2020). We argue that 
despite the increase in processing time and associated costs, (automated) spec-
imen photography is a simple and effective way to achieve considerable improve-
ment in taxon recovery, as well as estimates regarding the number of individuals 
per species and biomass (Fig. 3). This approach is limited to WOC samples, al-
though a similar approach may potentially be applied to pollen samples, for exam-
ple by flow cytometry (Baksay et al. 2020; Dunker et al. 2020). Theoretically, these 
approaches could be combined to achieve count and biomass data, although the 
above-mentioned studies did not comment on this potential.

Regardless of application or sample type, general recommendations for ev-
ery metabarcoding workflow are to use appropriate positive controls, i.e. mock 
communities (Ji et al. 2020), as well as negative controls, biological and tech-
nical replicates (Alberdi et al. 2018; Elbrecht and Steinke 2018; Liu et al. 2019; 
Zinger et al. 2019; Yang et al. 2020) and consider multi-locus metabarcoding. 
Each of these steps can improve taxon detection and the correlation between 
relative read abundances and input DNA mass (Richardson et al. 2019; Ritter 
et al. 2019; Thomsen and Sigsgaard 2019; Ji et al. 2020). Associated increas-
es in costs and labour are justified by the improvement in the generated data, 
although budget limitations may deem technical replicates unfeasible. With 
optimised metabarcoding and bioinformatic workflows, more robust relative 
abundance and biomass estimates are thus potentially achievable in the fore-
seeable future. However, the number of individuals per species cannot be de-
termined, as other sources of bias still exist. We therefore recommend consid-
ering additional approaches discussed further down.
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Figure 3. Recommended workflow for biodiversity assessments with bulk samples and DNA metabarcoding that obtains 
count and biomass data with species level taxonomic identifications. A Specimens from a bulk sample (bottle) are first 
processed individually. B Processing includes specimen photography (camera), specimen counts (abacus), body size 
measurements (caliper) and biomass estimation (scales). Ideally, this is done automatically (green robot icon) and in-
volves automatic image recognition to achieve preliminary taxa identifications on broad taxonomic scales. C Specimens 
are then re-combined to a community sample, a spike-in is added and DNA is extracted (microcentrifuge tube). D DNA 
metabarcoding delivers species level identifications and raw read counts (ASV table), which are corrected via the spike-
in. E Image data is combined to a taxon list containing count, size and biomass data (taxon list). F Image data and DNA 
metabarcoding data are combined using machine learning approaches (data assembly, orange robot icon) to obtain a 
data set that contains information on species level identities, along with count data and biomass estimates (taxa bub-
bles), abbreviations: ASV – amplicon sequence variant, artwork: Alice Scherges.
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For eDNA, obtaining count data is extremely difficult. Since eDNA dynam-
ics (Barnes and Turner 2016; Compson et al. 2020) are affected by various 
uncontrollable factors prior to sampling, analysis of abundance information is 
further impeded. Thus, presence/absence and derived frequency or percent-
age of occurrence (FOO/POO) data from replicates currently seem to be the 
best option, although promising approaches exist that will move towards more 
informative data obtainable from eDNA. For example, combining species de-
tections with information about the cellular and molecular state of eDNA (e.g. 
intra- versus extra-cellular eDNA, genetic region, fragment size) is expected to 
improve the abundance estimation, as demonstrated in water samples (Jo et 
al. 2021). Other options for eDNA-based monitoring are: an overall experimen-
tal design and sampling strategy that allows indirect counts, developing and 
applying novel metrics (e.g. the ”eDNA index”; Kelly et al. (2019)) or coupling 
presence/absence data with site-occupancy models (van Strien et al. 2010; van 
Strien et al. 2013). We argue that eDNA approaches are worth considering for 
arthropod monitoring, as they are non-invasive (Andriollo et al. 2019; Thomsen 
and Sigsgaard 2019; Pumkaeo et al. 2021; Roger et al. 2022), which is especial-
ly important for protected and endangered species.

Additionally, (e)DNA-based analyses open up new avenues that move away 
from the traditional estimation of numbers of individuals per species or biomass. 
One such avenue to pursue further is more sensitive detection rates of para-
sitism and invasive species (Sow et al. 2019; Young et al. 2021). Thus, (e)DNA 
metabarcoding deserves to be incorporated in such schemes at least as a com-
plementary approach to morpho-taxonomy.

Outlook: Further molecular approaches for the estimation of species 
abundances

In the following, we explore selected approaches from the wider literature that 
were not within the scope of the present review. However, there is high po-
tential for the implementation in monitoring programmes in the future. Novel 
data analysis pipelines are constantly being developed and some focus on inte-
grating uncertainties associated with the dynamics of DNA in the environment 
(Barnes and Turner 2016; Compson et al. 2020). One such example, a tracer 
model, has successfully been applied to estimate the abundance of target fish 
species (Fukaya et al. 2020). Another example, an “eDNA index”, which is a 
double-transformation of read-counts, holds potential to assess abundance 
trends across time and space (Kelly et al. 2019). Additionally, species occu-
pancy models can detect false negatives (Compson et al. 2020) and Bayesian 
hierarchical models can integrate primer choice and other parameters of the 
metabarcoding workflow (Doi et al. 2019; Compson et al. 2020), which would 
allow correcting read count-derived abundance estimates. Lastly, the applica-
tion of half-life corrections and prey DNA decay rates allow the inference of 
relative frequencies and biomass of prey items based on metabarcoding and 
shotgun sequencing data (Uiterwaal and DeLong 2020; Paula et al. 2023).

When grouping sequencing reads as ASVs instead of molecular operation-
al taxonomic units, DNA metabarcoding can potentially deliver conservative 
abundance estimates in the sense of “minimum census estimates”, similar 
to those obtained from non-invasive sampling of hair and faeces (Frantz et 
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al. 2004; Miotto et al. 2007). In this case, the evolutionary rate of the chosen 
marker would have to be considered (Wang et al. 2016), as it may affect the 
recovery of ASVs per species and consequently the obtained minimum census 
estimates. Furthermore, ASV-based analyses facilitate the analysis of intraspe-
cific diversity (Elbrecht et al. 2018; Arribas et al. 2021; Shum and Palumbi 2021; 
Weitemier et al. 2021), which is greatly underappreciated in arthropod monitor-
ing schemes. Another promising approach is to further refine the qSeq protocol 
(Hoshino and Inagaki 2017; Hoshino et al. 2021) and similar workflows employ-
ing unique molecular identifiers (UMIs; Luo et al. (2023)). Here, a single-primer 
extension is included in the workflow before performing PCR. During this step, 
each DNA fragment is labelled with a random tag and the number of random 
tags per ASV can be used to accurately infer starting copy numbers of each 
recovered sequence in the original sample. This allows simultaneous species 
identification and inference of relative abundances from eDNA and WOC sam-
ples (Hoshino and Inagaki 2017; Hoshino et al. 2021; Luo et al. 2023). Unique 
molecular identifiers have also been applied in detecting rare allele variants 
and mutations and have been reported as being especially useful for read error 
corrections (Jabara et al. 2011; Kinde et al. 2011; Kivioja et al. 2012; Fields et 
al. 2020).

There is an urgent need to shift away from a purely morpho-taxonomic ap-
proach and related indicators for long-term arthropod monitoring, towards an 
integrative framework, in which morphological and molecular biological meth-
odologies are applied in parallel. This requires the development and implemen-
tation of novel proxies and indicators to indirectly assess species abundance 
based on genetic data. One possible approach is to apply Hill numbers to 
DNA-based and morpho-taxonomic assessments alike, as this improves com-
parability and they can even be applied to (phylo-)genetic data (Alberdi and 
Gilbert 2019). Additionally, the amount of genomic DNA per taxon can reliably 
be assessed by combining metabarcoding with qPCR or ddPCR, although these 
usually focus on specific target species (Schneider et al. 2016; Tedersoo et al. 
2019), but also via the use of UMIs (see above).

PCR-free methods represent a further alternative (Garrido-Sanz et al. 2020; Ji 
et al. 2020; Cordier et al. 2021). The advantage of these approaches is that no 
amplification step is conducted and therefore, the complete mitochondrial or 
nuclear DNA is sequenced and analysed. As PCR amplification is omitted, mito- 
and metagenomic approaches are associated with more reliable abundance es-
timations. Ideally, whole mitochondrial or nuclear reference genomes of target 
taxa exist in order to assign generated reads to the species of origin (Schmidt et 
al. 2022; Theissinger et al. 2023). However, the absence of reference genomes 
for non-model organisms poses a barrier to the application of PCR-free ap-
proaches (Formenti et al. 2022; Lewin et al. 2022) and thus de novo assemblies 
(Meng et al. 2019) may be a suitable alternative, especially for mitogenomics. 
The general suitability of mito- or metagenomics for large-scale arthropod mon-
itoring, however, remains limited due to higher costs, computing power and data 
storage requirements. Further, bias introduced through extraction and variable 
gene copy number still exist in those approaches. Nonetheless, genomic ap-
proaches are valuable and informative for biodiversity conservation purposes, 
as they enable more detailed analyses of intra-specific diversity and population 
structure than DNA (meta-)barcoding allows (Theissinger et al. 2023).



321Metabarcoding and Metagenomics 7: 305–337 (2023), DOI: 10.3897/mbmg.7.112290

Wiebke Sickel et al.: Abundance estimation with DNA metabarcoding

Concluding remarks

Even though there are many details to consider when applying DNA metabar-
coding to arthropod monitoring, pollen and food web analyses, we were able to 
make some general recommendations. Generally, DNA metabarcoding should 
always be optimised for maximum taxon recovery and minimal amplification 
biases. The processing of adequate positive and negative controls is essential. 
Incorporating appropriate biological and technical replicates reduces the im-
pact of certain methodological biases.

DNA metabarcoding as a rapid tool to obtain species occurrences is a very 
promising method for large-scale monitoring activities, especially when abun-
dance estimates are not required. When combining DNA metabarcoding with 
specimen photography and body size measurements, the number of individu-
als per species and biomass can also be assessed.

Going forward, creating new DNA-based metrics to report (relative) abundances 
based on genetic units rather than processing individual specimens offers new 
innovations addressing the most central questions in arthropod monitoring, as 
these rarely require absolute measures of abundance. Detecting and assessing 
trends in monitoring relates more to within- and between-sample comparisons tak-
en across spatial and temporal scales, which can be achieved with metabarcoding. 
Additionally, DNA metabarcoding facilitates the assessment of ecosystem services 
in a time- and cost-efficient manner, via processing pollen and food web analyses.

There are still many challenges to face until metabarcoding data can deliver 
robust abundance and biomass estimations. Currently, sorting and individual 
handling of specimens from WOC samples is unavoidable to obtain such data. 
However, it is important to apply both classical morpho-taxonomy and molecular 
biological approaches in parallel, which will allow the management and analysis 
of the large amounts of data generated by monitoring programmes in a time-
ly and cost-effective manner. Thus, despite its limitations, DNA metabarcoding 
can and should be incorporated as an additional tool in routine arthropod moni-
toring to increase sample sizes and cover a broader range of taxonomic groups.
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