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Benthic microbial biogeographic trends in the North Sea are
shaped by an interplay of environmental drivers and bottom
trawling effort
Guido Bonthond 1✉, Jan Beermann2, Lars Gutow 2, Andreas Neumann3, Francisco Rafael Barboza4, Andrea Desiderato2,5,
Vera Fofonova2, Stephanie B. Helber1, Sahar Khodami6, Casper Kraan7, Hermann Neumann7, Sven Rohde1 and Peter J. Schupp1,8

© The Author(s) 2023

Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes
operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S
rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples.
We utilized spatially explicit statistical models, to disentangle the effects of the different predictors, including bottom trawling
intensity, a prevalent industrial fishing practice which heavily impacts benthic ecosystems. Fitted models demonstrate how the
geographic interplay of different environmental and anthropogenic drivers shapes the diversity, structure and potential
metabolism of benthic microbial communities. Sediment properties were the primary determinants, with diversity increasing with
sediment permeability but also with mud content, highlighting different underlying processes. Additionally, diversity and structure
varied with total organic matter content, temperature, bottom shear stress and bottom trawling. Changes in diversity associated
with bottom trawling intensity were accompanied by shifts in predicted energy metabolism. Specifically, with increasing trawling
intensity, we observed a transition toward more aerobic heterotrophic and less denitrifying predicted metabolism. Our findings
provide first insights into benthic microbial biogeographic patterns on a large spatial scale and illustrate how anthropogenic
activity such as bottom trawling may influence the distribution and abundances of microbes and potential metabolism at
macroecological scales.

ISME Communications; https://doi.org/10.1038/s43705-023-00336-3

INTRODUCTION
The biogeography of microbes is shaped by environmental,
biological and anthropogenic processes that operate at different
scales [1]. This includes the microbiota that colonize marine
sediments in high cell densities [2, 3]. Marine sediments filter and
accumulate organic and inorganic matter and play a crucial role in
the biogeochemical cycling of carbon, nitrogen, sulfur and metals
[4, 5]. Most of these processes are carried out by microbes, which
are organized at the microscale into communities that are tightly
attached to sediment grains [3]. At the scale of millimeters to
centimeters, microbiota are metabolically sorted along vertical
redox gradients [5, 6]. The aerobic heterotrophs that consume
oxygen at the sediment surface are sequentially substituted
underneath by anaerobes utilizing alternative electron acceptors,
including nitrate, manganese/iron oxides, sulfate and finally
carbon dioxide. Patterns in benthic microbial composition and
diversity at macroecological scales (i.e., regional, continental and
global; [7]), and how they arise from environmental drivers, have

been studied less extensively [8] but correlate with sediment type
[9], temperature [10], organic resource availability [11], primary
production [12], macrofaunal bioturbation [13] and environmental
disturbance [14].
While the benthic environment is subject to disturbance driven

by currents, waves and storms [15], it also experiences anthro-
pogenic disturbances [16], which potentially affect microbial
biogeography. Bottom trawling, a prevalent fishing practice in
shallow shelf sea regions, represents the most extensive anthro-
pogenic disturbance to seabed habitats [17]. In the North Sea,
more than 60% of the bottom surface is trawled once or more per
year [18]. As large metal chains and heavy nets are dragged over
the seafloor, the local environment is physically disturbed,
resulting in a range of effects that act at different scales [19].
Trawling resuspends large amounts of sediment [20, 21], alters
seabed morphology [22], destroys biogenic structures [23], and
injures or kills benthic macrofauna [24–26]. Directly and indirectly,
trawling may alter the benthic biogeochemistry by enhancing the
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oxygenation of buried organic matter, impacting the sequestra-
tion and remineralization of organic carbon [27–31]. It may also
suppress benthic denitrification, and therewith potentially con-
tribute to eutrophication [32–34]. As bioturbation and bioirrigation
activity by macrofauna controls benthic oxygen and carbon fluxes
at regional scales [35], bottom trawling may also affect benthic
microbiota and microbial processes on larger temporal scales
through its impact on macrofaunal populations, of which some
species are highly susceptible to trawling [15, 26, 36, 37].
Based on this range of impacts on the benthic environment,

its macrofauna and biogeochemistry, bottom trawling might also
affect the composition and diversity of benthic microbiota at large
scales. In this study, we present an analysis of regional scale
patterns and putative determinants – including bottom trawling
effort – of benthic microbial diversity and composition in the
central to southeastern North Sea. This marine region is known as
one of the most heavily trawled regions in the world, but trawling
intensities are highly heterogeneous [18, 38]. Our aim was to
identify the major determinants of the benthic microbial
biogeography at the regional scale. We conducted 16S rRNA
gene metabarcoding on 339 surface sediment samples from
149 sites across hundreds of kilometers, measured various
environmental variables, obtained model-based estimates of
bottom shear stress levels (natural disturbance) and high
resolution bottom trawling intensities recorded by the Vessel
Monitoring System (VMS). We utilized uni- and multivariate
statistical models, that control for spatial autocorrelation, to
disentangle these variables, each representing different

hypotheses, and evaluate the direction and shape of their
relationship. Specifically, we aimed to evaluate the hypothetical
effects of bottom trawling intensity on regional scale microbial
biogeography.

METHODS
Sampling and sedimentological parameters
Sediment samples were taken with a 0.1 m2 van Veen grab (weight: 90 kg)
during two scientific expeditions with the Research Vessel Heincke as part
of an ecological long-term monitoring program (HE538, doi:10.2312/
cr_he538 and HE562, doi:10.48433/cr_he562), in August 2019 and
September 2020. In total, samples were collected from 150 stations in
the southeastern North Sea, including 50 stations on the Dogger Bank
(HE538) and 100 stations at the Sylt Outer Reef (HE562, Fig. 1). Sediment
samples for DNA extraction were retrieved through a mesh lid on the top
side of the grab to minimize disturbance and collected in 15mL falcon
tubes, taking the top centimeter only (HE538) or the top 1 to 10
centimeters as vertical core (HE562). In the latter case, three cores were
taken approximately 10 cm apart in the same grab. Upon collection, tubes
were stored at −20 °C on board, and afterwards transferred to the
laboratory in cooling boxes, where they were stored again at −20 °C. For
granulometry, a subsequent sample was taken using a core (diameter:
4.5 cm, penetration depth approximately 6 cm) from the same grab. The
bottom temperature was determined from a separate grab with a standard
thermometer, inserted to approximately 3 cm below the surface. Forty
grams (wet weight) of the sub-sample were dried, weighed and
combusted for 5 h at 500 °C. The total organic matter (TOM) content was
calculated from the weight loss during combustion. The remaining
sediment was fractionated in a sieve cascade with mesh sizes of 8000,
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Fig. 1 Geographic overview of the study area. AMap of the central and south-eastern North Sea with stations sampled with van Veen grabs.
The background heatmap displays the bottom trawling intensity calculated as swept area ratio (SAR) per year (see the main text for details on
SAR). Panels (B, C) show zoomed sections of the two areas sampled on two different expeditions (HE538 and HE562).
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4000, 2000, 1000, 500, 250, 125 and 62.5 µm, corresponding to the
Krumbein φ scale [39]. The mud (<62.5 µm), sand (>62.5 µm, <2000 µm)
and pebble (>2000 µm) fractions were defined based on the percentage
weight. For each sample, logistic regressions were fitted on the cumulative
grain size distribution to estimate the median grain size by dividing the
location and slope parameter multiplied by −1. The slope parameter was
used as sorting coefficient.

DNA extraction and library preparation
DNA was extracted from sub-samples of the top cm with the DNAeasy
PowerSoil Pro kit (QIAGEN) following the manufacturer’s protocol. The
16SV3-V4 region was amplified with the primers 341F (S-D-Bact-0341-b-S-
17) and 805R (S-D-Bact-0785-a-A-21, ref. [40]), and two amplicon libraries
were prepared following Gohl et al. [41]. The first PCR was performed with
the Phusion Green Hot Start II High-Fidelity PCR Master Mix (ThermoFisher)
in volumes of 20 µL with 2 µL DNA template and 0.5 µM of each primer, an
initial denaturation step of 98 °C for 3:00min, 20 cycles of 98 °C for 0:30min,
55 °C for 0:30min and 72 °C for 0:30min and a final elongation step of 72 °C
for 5:00min. To estimate relative amplicon concentrations in the final
products before pooling the products into a library, the second PCR was
conducted as qPCR in 20 µL volumes with the SsoAdvanced Universal SYBR
Green Supermix (Biorad) applying the same program for 10 cycles. The
qPCR products were then pooled in equimolar volumes based on the
endpoint values, purified with a gel extraction step and sequenced on the
Illumina MiSeq platform using the v3 600 cycle kit. Amplicon libraries
included blanks from DNA extractions, negative PCR controls and mock
communities (D6311, Zymo Research). FASTQ files were demultiplexed and
further processed and quality filtered with MOTHUR v1.46.1[42], using the SILVA

reference alignment v132 [43] for denoising and classification. Sequences
were clustered into operational taxonomic units (OTUs) with the OPTICLUST

algorithm based on the 97% similarity criterion. Mitochondrial, chloroplast,
eukaryotic and unclassified OTUs, singleton OTUs, and samples with less
than 1000 reads were removed. Variation in sequencing depth among
samples was accounted for by inclusion of the log transformed sequencing
depth (LSD) as covariate in the statistical models. The raw demultiplexed
amplicon reads were deposited in the SRA database (accession:
PRJNA988469). Metagenomes with KEGG Ortholog (KO) annotations [44]
were predicted with PICRUST2 v2.5.0 [45], using the default settings and
excluding sequences without close relatives in the reference genomes.

Statistical analysis
Eight variables were considered as potential drivers. As an estimate for
contemporary bottom trawling intensity in the study area, we used
subsurface (≥2 cm penetration of gear in the surface) fishing intensity from
the OSPAR data & information management system [46] which is based on
data from the vessel monitoring system (VMS). The data are expressed as
swept area ratio (SAR) at a resolution of 0.05 squared decimal degrees,
averaged over the years 2009–2017. SAR-values indicate the number of
times an area is fished with bottom-touching gears per time-period. As a
measure of natural disturbance, we used bottom shear stress (in N/m2).
Spatial data on shear stress (maximum value) were derived from the
barotropic FESOM-C setup with tidal forcing for the North Sea. FESOM-C is
the coastal sub-unit of the global Finite-volumE Sea ice Ocean Model [47]
and has been tested and verified in numerous idealized and realistic
experiments for the North Sea [48–51]. The grid resolution varies from 30 to
100m in nearshore areas to 1 km in deeper offshore areas. Tidal forcing was
taken from the TPXO9 model [52]. The bottom friction coefficient varied
spatially from 0.0025 to 0.003. The reference density field was averaged
over the years 2019–2022 using salinity and potential bottom temperature
for late August, which were taken from the NEMO setup for the North-West
European shelf with a spatial resolution of 1.5 km [53]. Further, temperature
(°C), pebble content (% weight), sand content (% weight), mud content (%
weight), median grain size (mm) and TOM (proportion), were used as
predictors. These variables were measured as described above. Pebble,
sand and mud contents were square root transformed, TOM content was
logit transformed and the median grain size was transformed to the
Krumbein φ scale, by taking the negative log2 of the particle diameter in
mm. Since all stations were below 10m depth, light intensities were
assumed to be negligible. Further, as shear stress is depth-dependent,
declining with increasing depth due to the reduced influence of wind and
wave activity, water depth was not considered in the modeling process.
Correlations among the potential predictors were assessed based on

Spearman’s rank coefficients (Figure S1). In cases of strong correlations

(|ρ| > 0.7), only one of the correlated variables was included in the
modeling process [54].
Multivariate analyses were conducted with PERMANOVA [55] with the

function adonis2 from the R package VEGAN v2.6–4 and multivariate
generalized linear models (mGLMs), assuming a negative binomial error
distribution, using the manyglm function from the R package MVABUND

v4.2.1 [56]. To account for spatial autocorrelation, we followed the
approach from Pelinson et al. [57] and computed Moran eigenvector maps
(MEMs) with the R package ADESPATIAL v0.3–20. The positive MEMs were
included as artificial spatial variables in PERMANOVAs and mGLMs. In
addition, the PERMANOVAs and mGLMs included the LSD as covariate, to
control for differences in total read counts among samples, and the
predictors of interest (i.e., median grain size, mud content, TOM,
temperature, bottom shear stress and trawling intensity). The marginal
effect of each predictor on the overall OTU, genus and predicted KO
composition was tested with PERMANOVA, using Aitchison distances and
9999 permutations. To consider the dependency among samples from the
same grab, permutations were restricted to stations, by including station
identity as a blocking factor. Based on the coefficients and standard errors
from the mGLMs, we counted the number of OTUs and KOs with relative
abundances varying with each predictor. Coefficients were considered
significant when the theoretical 99% confidence region was entirely below
(negative response) or above zero (positive response).
Non-metric multidimensional scaling (nMDS) based on Aitchison distances

was conducted using the R package VEGAN v2.6–4. To exclude the effect of the
sequencing depth prior to the scaling procedure, partial residuals from the
mGLMs were used. Ordination vectors for the predictors of interest were
computed with the envfit function from the same R package.
Alpha diversity was measured in effective numbers [58] of OTUs, genera

and predicted KOs. As a measure of local scale beta diversity, we calculated
Aitchison distances among cores from the same van Veen grab. Finally, we
analyzed specific predicted functional groups related to energy metabo-
lism, using the summed predicted ortholog counts from complete or
partial KEGG pathway modules. This included the KOs for cytochrome c
oxidase to represent aerobic respiration (M00155), nitrification (M00528),
denitrification (M00529), dissimilatory nitrate reduction and dissimilatory
nitrite reduction (M00530), thiosulfate sulfate oxidation (M00595), dissim-
ilatory sulfate reduction (M00596), methanogenesis from CO2 (M00567)
and methane oxidation (M00174). Details on the predicted KOs included in
the modules are provided in Table S1.
Univariate responses were analyzed with generalized additive mixed

models (GAMMs) using penalized cubic regression splines with the gamm
function from the R package MGCV v1.8–41 [59]. First a global model was
fitted, including all predictors (retained after the correlation analysis) as
smooths with a maximum number of 3 degrees of freedom for each term.
Station identity was included as random intercept to represent non-
independence among samples from the same grab and the LSD was used
as a covariate in the model to correct for the sequencing depth. To
account for spatial autocorrelation, the models contained an exponential
covariance structure, using the geospatial coordinates. Within grabs, the
latitudinal coordinates of the outer samples were adjusted with ± 10−6

latitudinal decimal degrees to approximate the 10 cm distance between
samples within a grab. Then, we compared the global model with the
simpler models generated from all possible combinations of fixed effects,
but always including the random effect and covariance structure, and
selected the best model based on the AICc criterion. The relative
importance (RI) of retained predictors was calculated as the sum of AICcw
of all models with a ΔAICc ≤ 4 [60].

RESULTS
The quality filtered dataset counted 91,860 bacterial and 612
archaeal OTUs across 339 samples from 149 stations. Woeseia
(Gammaproteobacteria) was the dominant taxon in most samples,
followed by unclassified Sandaracinaceae (Deltaproteobacteria),
unclassified Actinomarinales (Actinobacteria), Sva0996-marine-
group (Microtrichaceae, Actinobacteria), Rhodopirellula and Blas-
topirellula (Planctomycetes). Of these taxa, Sva0996-marine-group
and the unclassified Sandaracinaceae (Deltaproteobacteria) were
dominant in muddy sediments, whereas Woeseia (Gammaproteo-
bacteria) and Blastopirellula (Planctomycetes) dominated in
samples with high median grain size (Fig. 2A, Table S2).
Communities from areas with no or low trawling intensity tended
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to be dominated by unclassified Gammaproteobacteria and
Lutimonas (Bacteroidetes) whereas heavily trawled sites tended
to be dominated by Woeseia and unclassified Sandaracinaceae
(Gamma- and Deltaproteobacteria, respectively; Fig. 2B).
In total 7550 KEGG orthologs (KOs) were predicted with

PICRUST2. 896 OTUs (0.96% of all OTUs) from the OTU table had

nearest-neighbor sequence index (NSTI) values > 2 (the default
threshold) and were excluded prior to the prediction process.
The weighted NSTI per sample varied from 0.172 to 0.266
(median 0.207), within the range of ocean and soil microbiota
datasets from which predictions have been obtained with
reasonable precision [45].

Fig. 2 Composition and patterns in benthic microbiota. Stacked bar plots of the 25 most abundant prokaryotic genera across all samples,
(A) sorted by median grain size and (B) by swept area ratio. nMDS plots based on Aitchison distances displaying compositional dissimilarities
of the microbial communities after correcting for the sequencing depth, based on (C) OTUs and (D) predicted KOs. The environmental
variables were ordinated on the nMDS plots and are displayed as vectors. E The deviance explained by each term as percentage of the overall
deviance explained by the model. The number of (F) OTUs, (G) genera and (H) predicted KOs, which differ in abundance with environmental
predictors.
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Correlation analysis
Strong correlations (|ρ| > 0.7) were detected among pebble
content, sand content, median grain size and sediment sorting.
Mud content was correlated weakly with the other sediment
variables (|ρ| < 0.5). Therefore, the model selection was conducted
with the median grain size to represent the coarser sediment
fractions and include mud content as separate variable. Apart
from a moderate correlation (0.5 < |ρ| < 0.7) between TOM content
and trawling intensity (ρ=−0.51) all other correlations were weak
(|ρ| < 0.5, Figure S1).

Community composition
Community composition was spatially autocorrelated, as indicated
by two positive MEMs, which were used as artificial spatial
variables in the PERMANOVAs and mGLMs to account for spatial
autocorrelation. All included predictors had significant marginal
effects on OTU and predicted KO composition (p < 0.05, Table S3).
At the genus level, all variables except TOM content and shear
stress were significant. These effects were visible in nMDS plots
(Fig. 2C, D). For OTU, genus and predicted KO composition, the
median grain size was most important, explaining 38.7%, 54.6%
and 62.5%, respectively, of the overall explained deviance. Mud
content was the next most important predictor for OTU
composition (17.2%) and TOM content for genus and predicted
KO composition (28.8% and 14.4%). Bottom trawling intensity was
less important but explained 13.2%, 4.0% and 4.2% of the overall
deviance in OTU, genus and predicted KO composition, respec-
tively (Fig. 2E). The median grain size also yielded the most
differentially abundant OTUs, genera and predicted KOs (7,552
OTUs, 611 genera, 5,276 KOs). In total 1,731 OTUs, 171 genera and
1,746 predicted KOs varied with bottom trawling intensity
(Fig. 2F–H, see Figure S2 for more details on differentially
abundant genera).

Diversity
Alpha diversity (effective OTU and genus numbers) was best
explained by the median grain size, mud content, temperature,
bottom shear stress and trawling intensity (Fig. 3A–H, Table S4-5).
OTU and genus diversity increased with the median grain size
(Fig. 3A, E) and mud content (Fig. 3B, F). Both at the OTU and
genus level, diversity increased also with shear stress (Fig. 3C, G).
In response to trawling, OTU diversity dropped rapidly at relatively
low trawling intensities (SAR < 0.25) but increased again gradually
at higher trawling rates (SAR > 0.5) (Fig. 3D). Genus diversity
decreased with bottom trawling (Fig. 3H). For predicted functional
diversity, the model selection procedure yielded median grain
size, mud content, temperature, TOM content and trawling
intensity as informative predictors. Predicted functional diversity
increased with median grain size, mud content and temperature
(Fig. 3I–L) and decreased with trawling intensity (Fig. 3M).
OTU and genus beta diversity were best explained by median

grain size and mud content, both showing increasing trends with
median grain size (Fig. 3N–Q). Median grain size was the only
informative predictor for predicted functional beta diversity, with
which it increased (Fig. 3R).

Predicted metabolic groups
Median grain size was retained in all models for the predicted
metabolic groups except for aerobic respiration and dissimilatory
nitrite reduction (Fig. 4A). Mud content was an informative
predictor for dissimilatory nitrite reduction. TOM content
explained changes in predicted aerobic respiration, denitrification,
nitrate reduction, nitrite reduction, thiosulfate oxidation and CO2

reduction. Further, bottom shear stress was informative for
predicted aerobic respiration, nitrate reduction, nitrification,
dissimilatory sulfate reduction, thiosulfate reduction and methane
oxidation and bottom trawling intensity for aerobic respiration
(Fig. 4B), nitrification (Fig. 4C), methane oxidation, denitrification

(Fig. 4D), dissimilatory nitrate reduction, sulfate reduction (Fig. 4B)
and thiosulfate oxidation.

DISCUSSION
We characterized the microbial biogeography of the top sediment
layer at a regional scale (i.e., across hundreds of kilometers) in the
central to southeastern North Sea. All environmental variables
included in our analyses partially explained at least some of the
taxonomic and/or functional responses in benthic microbiota. This
is in line with previous studies, which identified sediment
characteristics, bottom temperature, and organic matter content
as important variables shaping microbiota at larger scales
[3, 9, 11, 61]. Microbial communities were spatially autocorrelated,
indicating the effect of unmeasured variables and/or historical
contingencies. After accounting for environmental effects and
spatial autocorrelation, we also found patterns in composition,
diversity and predicted functions associated with bottom shear
stress and bottom trawling intensity. Therewith, our work adds to
previous studies demonstrating the impact of bottom trawling on
microbial biogeochemical processes [32, 34, 62, 63] and provides
evidence that bottom trawling may influence benthic microbial
biogeography and potential metabolism.

Granular properties
Sediment properties, represented by median grain size and mud
content, were the primary determinants of benthic microbial
diversity and composition. The median grain size and mud
content explained different parts of the overall variation,
indicating that these variables mirror different underlying
processes possibly acting on different scales. The median grain
size is a good proxy for sediment permeability [64, 65], and thus of
porewater advection rates across sediments layers (i.e., centi-
meters), whereas mud particles may constrain advection at much
smaller scales (i.e. micrometers) by forming cohesive aggregates
wherein diffusion is the dominant process for solute transport.
Mud aggregates could promote whole sediment diversity through
the formation of microenvironments with functionally different
communities, a process which is also known from soils [66].
Advection may promote alpha diversity rather through ecological
processes such as dispersal and community coalescence between
sediment layers and the water column. This may not only explain
the observed patterns in alpha diversity, but also in predicted
functional beta diversity, for which only the median grain size but
not mud content was a good predictor. Whereas the occurrence of
mud aggregates likely has a specific effect at microscales,
advection could also enhance the stochastic occurrence of
microbes from the water column or deeper sediment layers,
which may increase within-grab beta diversity. Previous studies
have reported a negative correlation between permeability and
microbial diversity but attributed this to the typically higher
organic content in muddy sediments [9, 67]. Our analyses
disentangle the effects of median grain size, mud content and
TOM content by estimating partial effects of each predictor (i.e.,
how diversity varies with median grain size when levels of mud
and TOM content are kept constant). Based on this, we suggest
that the correlations reported in Franco et al. [67] and Probandt
et al. [9] are most likely explained by confounding mud content,
TOM content or both, rather than by permeability itself.

Total organic matter content
Globally, organic matter content explains microbial community
composition in marine sediments [11] as well as microbial biomass
and diversity in terrestrial soils [68]. Our study in the North Sea
confirms that benthic microbial composition and predicted
functional diversity vary with TOM content. The increasing to
unimodal trend in functional diversity agrees with macroecologi-
cal theory which predicts that increased resource availability
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promotes diversity up to an optimum, beyond which biological
processes (e.g., competition) favor specific functional groups at
the costs of others [69].
We also observed a relative increase in several predicted

anaerobic groups (e.g., denitrification, thiosulfate oxidation, Fig. 4).
This may mirror a transition from organic substrate limitation to
oxygen limitation as resource availability increases, which could
facilitate the proliferation of anaerobic heterotrophs, utilizing
alternative electron acceptors. In the North Sea, high TOM content
typically occurs in areas with low levels of near-bed turbulence
and low permeability [35]. Here, absolute levels of oxygen
consumption are relatively high [70]. Under these combined
conditions of high TOM content and low oxygen supply through

decreased advection, oxygen may be particularly depleted near
the sediment surface or in microenvironments such as dead-end
pores and grain crevices, which could further boost anaerobic
metabolism in the surface layer.

Bottom temperature
The influence of temperature on the microbial composition and
diversity is well established [71–74] and our results corroborate
that bottom temperature is an important predictor for benthic
microbial composition and functional diversity. Thermal stress is
often linked to microbial beta diversity in holobionts [74–77]
according to the Anna Karenina Principle, which predicts beta
diversity to increase due to a shift from deterministic to more
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stochastic processes acting on communities [75]. In a recent study
on marine sediments, temperature was also identified as major
driver of local scale beta diversity [78]. Within the thermal range of
this study (12 °C to 20 °C), we could not confirm a temperature-
beta diversity relationship. While temperature was associated with
predicted functional composition and diversity, it did not explain
changes in the predicted groups related to energy metabolism
(Fig. 4A), suggesting it rather affects traits not directly related with
energy metabolism.

Bottom shear stress
How microbial diversity varies along gradients of physical
disturbance has received limited attention, but some studies
found that diversity declines with disturbance in soils [79] or

follows a unimodal trend in coastal marine sediments in
agreement with the intermediate disturbance hypothesis [14].
Within the range of disturbance levels estimated for the present
study, we found a linear trend, with OTU and genus diversity
increasing toward higher levels of disturbance. In surface
sediments, near-bottom turbulence enhances pore water advec-
tion rates, but also promotes other modes of transport such as
sediment erosion and mobile bedforms [65]. For example, the
frequent resuspension of the surface sediment by mobile
bedforms is constantly mixing individual grains into new redox
zones and may prevent the local microbial community of a
particular grain to complete succession to specific redox condi-
tions. In this way, high bottom shear stress levels could increase
alpha diversity by preventing communities to reach successional
stages where diversity is restricted by strong competition. Notably,
bottom shear stress was not an informative predictor for local beta
diversity. This may seem counterintuitive to the idea that higher
advection rates (i.e., higher median grain size) promote beta
diversity by increasing random occurrence of microbes from the
water column or deeper layers. However, while bottom shear
stress indeed increases porewater advection rates, it also mixes
and resuspends the sediment itself, which may decrease within-
grab beta diversity at the same time by reducing substrate
heterogeneity existing at the scale of centimeters or more (e.g.,
from macrofaunal bioturbation).

Bottom trawling
VMS based SAR estimates of fishing intensity are aggregated in
space and time. Therefore, SAR values linked to datapoints do not
necessarily reflect actual trawling events, as a given station that
has never been trawled, may lay in a heavily trawled grid cell [80].
Moreover, SAR does not distinguish short- and long-term effects,
nor effects operating within and outside of trawling tracks and
thus represent rather a probability that a geospatial position is in
some way impacted by trawling. Consequently, this limits the
ability to detect trawling effects and poses the need for high
spatial replication to evaluate bottom trawling impact. In spite of
this, benthic macrofaunal diversity and biomass have been found
to decrease with SAR [23, 26, 81]. Here, taxonomic and predicted
functional microbial diversity followed similar trends in response
to trawling intensities. The rapid decline in OTU diversity at low
trawling intensity (from 0 to 0.25 SAR) toward a minimum may
indicate a depletion effect, with the first trawling pressure having
the highest impact and the effect of every subsequent trawl being
proportional to the previous one [82]. The more linear decrease in
genus level and functional diversity suggests that the relatively
high loss in OTU diversity at low trawling rates and increase at
higher trawling rates primarily concerns closely related and
functionally redundant OTUs within only few groups, while
diversity at higher ranks responded more slowly and continues
to decline.
The effect of bottom trawling on macrofaunal communities may

overlap with the effects of natural mechanical disturbance [15, 37].
Based on our findings, this may partially apply to microbial
composition, as bottom trawling and bottom shear stress were
ordinated in similar directions in the nMDS (Fig. 2C, D). However,
in terms of taxonomic diversity, trawling and shear stress yielded
contrasting trends. In contrast to bottom shear stress, which was
only informative for taxonomic diversity, bottom trawling was also
associated with decreasing predicted functional diversity and
yielded different trends in predicted metabolic groups, which
suggests differential effects of the two types of disturbance,
potentially reaching down to the functional level. While the nature
of disturbance is similar in some respects (e.g., sediment
resuspension and mixing of the upper sediment layers), bottom
trawling has different effects on the seabed morphology [22], and
is more lethal to certain benthic macrofaunal species [15, 37].
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The trends related to energy metabolism uncovered in this
study are based on functional profiles inferred from amplicon data
and should thus be interpreted with caution as they only
represent a prediction or potential of the functional potential.
Nevertheless, the relative increase in predicted aerobic energy
metabolism (i.e., aerobic respiration, nitrification) and decrease in
predicted anaerobic metabolic groups (i.e., denitrification, dissim-
ilatory sulfate reduction), could mirror a trawling induced shift
from anaerobic to aerobic heterotrophy within microbial commu-
nities. Microbial heterotrophy plays an important role in the
storage and remineralization of organic carbon in marine
sediments [4, 5]. Trawling may impede carbon storage or induce
underwater carbon dioxide emissions by increasing aerobic
microbial respiration [30], although in which quantities this occurs
is subject of debate [83]. Aerobic heterotrophy can be enhanced
in different ways, including degradation of seabed morphology
[18, 22], re-exposure of buried organic matter to aerobic
conditions [32, 62, 63], or by impacting macrofauna [13, 31].
While the redistribution of labile organic matter from deeper
layers may fuel aerobic microbial heterotrophy [29, 62], the
putative trawling impact on burrowing macrofauna could further
enhance aerobic microbial respiration, as benthic invertebrates
consume most of the oxygen in the top sediment layer [5] and
transport labile organic matter to deeper anaerobic layers,
allowing organic matter to escape aerobic microbial decomposi-
tion [13, 31, 35].
A concurrent relative decrease in predicted denitrification, may

indicate a shift in metabolism related to nitrogen cycling to be
associated with trawling. Also this biogeographic trend aligns with
biogeochemical patterns detected in previous studies that
evaluated bottom trawling impact and reported reduced deni-
trification and increased sediment nitrate concentrations
[32, 33, 63]. Denitrification, which plays a major role in the
removal of bioavailable nitrogen from marine systems such as the
North Sea [84], is maximized within marine sediments by the
three-dimensional complexity of the redox structure which is
formed by burrowing macrofauna [13, 33]. Thus, both the
mechanical trawling impact and the putative effects on macro-
faunal communities, may explain the shift in predicted nitrogen
metabolism within benthic microbiota.
While the negative effects of bottom trawling on benthic

macrofaunal diversity and biomass are well established for various
systems, including the North Sea [23, 26, 36, 37], the susceptibility
of macrofaunal communities to trawling is area specific and likely
varies at different spatial scales [15]. Therefore, the effects on the
macrofaunal communities are not simply a function of SAR values
and our results emphasize the need for future study to evaluate
how the biogeography of benthic microbiota and macrofauna
covary in the context of bottom trawling.

CONCLUSIONS
Our models successfully explained regional scale environmental
patterns in benthic microbial biogeography. Generally, sediment
characteristics were identified as the most important determinants
of structure and functioning. We posit that both alpha and beta
diversity are shaped by processes operating at different spatial
scales: At the micron scale, mud content enhances whole
sediment diversity by the formation of microscale environments.
At the scale of centimeters, pore water advection may promote
alpha and beta diversity by facilitating the exchange of microbial
cells across sediment layers. Finally, operating at the scale of
meters or more, bottom shear stress may enhance alpha diversity
in parallel, by promoting porewater exchange. After accounting
for environmental predictors, bottom shear stress and spatial
autocorrelation, microbiota varied also with bottom trawling,
revealing a decrease in alpha and predicted functional diversity
with increasing trawling intensity. At low taxonomic ranks (i.e. OTU

level), diversity increased again at higher trawling rates, but this
was not followed by genus and predicted functional diversity,
which gradually declined further. The effects of bottom trawling
on community composition were partially similar to those of
bottom shear stress, potentially indicating overlapping effects of
the two types of physical disturbance. However, they were
associated with different changes in diversity and in predicted
functions. Specifically, two noteworthy patterns in potential
energy metabolism emerged, including a relative shift towards
more potential aerobic metabolism and toward less potential
denitrification. While our data cannot be translated to chemical
fluxes, and may not necessarily indicate changes in biogeochem-
ical cycling, they do reveal notable biogeographic trends at a
regional scale, which have not been documented before.
Ultimately, the results of this study emphasize that the microbial
biogeographic consequences of bottom trawling activity at the
global scale merit further research.

DATA AVAILABILITY
The raw de-multiplexed V3-V4-16S gene amplicon reads and associated metadata are
available from the SRA database under the Bioproject accession number
PRJNA988469. Data and R-scripts for analyses are available on GitHub at https://
github.com/gbonthond/srf_benthic_microbial_biogeography.
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