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Harmonization service and global 
library of models to support 
country‑driven global information 
on salt‑affected soils
C. T. Omuto 1*, M. Scherstjanoi 2, M. A. Kader 3, B. Musana 4, A. Barman 5, M. Fantappiè 6, 
L. S. Jiménez 7, W. A. Jimenez 8, H. Figueredo 9, R. Balta 10, K. Santander 10, A. Malatji 11, 
A. Nahar 12, A. Kairat 13, H. Ahmadzai 14, J. Morisson 15, S. Stone 15, R. Roopnarine 16, 
G. Eudoxie 16, P. Khat 17, C. Phy 17, V. Seng 17, N. Janjirawuttikul 18, M. Tina 19, M. Farradas 20, 
M. Alferihat 21, K. Desire 22, O. J. Jayeoba 23, M. Loum 24, W. Ahmad 25, A. S. Al Rasbi 26 & 
N. Matolo 27

Global distribution of salt‑affected soils (SAS) has remained at about 1 billion hectares in the literature 
over the years despite changes in climate, sea levels, and land use patterns which influence the 
distribution. Lack of periodic update of input soil data, data gaps, and inconsistency are part of 
the reasons for constant SAS distribution in the literature. This paper proposes harmonization as a 
suitable alternative for managing inconsistent data and minimizing data gaps. It developed a new 
harmonization service for supporting country‑driven global SAS information update. The service 
contains a global library of harmonization models for harmonizing inconsistent soil data. It also 
contains models for identifying gaps in SAS database and for showing global distribution where 
harmonization of available data is needed. The service can be used by countries to develop national 
SAS information and update global SAS distribution. Its data availability index is useful in identifying 
countries without SAS data in the global database, which is a convenient way to identify countries 
to mobilize when updating global SAS information. Its application in 27 countries showed that the 
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countries have more SAS data than they currently share with the global databases and that most of 
their data require SAS harmonization.

Global distribution of salt-affected soils (SAS), which is influenced by climate, soil parent material, proximity 
to salty water, and land use, was expected to have changed in the past decades because of changes in global 
climate, sea levels, land use patterns, and agricultural intensification and modernization. However, the distri-
bution is still portrayed in the literature at about one billion hectares since  1980s1–5. This may be partly due to 
some challenges with the input data for SAS mapping, which are mostly global soil  maps6,7, expert  opinions5, 
remote sensing images and climate  maps3, and soil  databases2,4. Updating these input data has had many chal-
lenges such as lack of sustained coordination and mobilization of data holders, data inconsistencies, copyright, 
and data  gaps8. Recently, the Global Soil Partnership (GSP) of the Food and Agriculture Organization of the 
United Nations (FAO) attempted to overcome the challenge of coordination and mobilization of soil data holders 
by use of a country-driven  approach9. In this approach, representatives from the countries are mobilized and 
their technical capacity strengthened towards the development of their national SAS information database. The 
national databases are then contributed to the global SAS information database. While this approach presents a 
viable alternative for more data and less gaps in global SAS database, it still has limitations due to inconsisten-
cies that are typical of crowdsourced data. Appropriate harmonization is one way of overcoming some of these 
challenges. This paper developed a framework for harmonizing crowdsourced soil data to support harmonized 
global SAS information.

Most recent global maps of SAS have been produced using publicly available soil  databases2–4 from more 
than 90  countries10–12. Although the databases have opened new opportunities for mapping global SAS using 
measured soil properties, they still have gaps. Many countries are not represented in the databases while some 
countries are only represented with data that were collected in the late  20th Century. In addition to data gaps, 
the databases also have typical discordance in crowdsourced data such as inconsistent sampling dates, sampled 
depths, and measurement methods for soil properties. Impact of the discordance is evident in the way that some 
SAS estimation methods discard non-conforming parts of the database, which further creates more data gaps 
and potential for high uncertainties in the final SAS information. Appropriate harmonization is proposed to 
partially overcome some of the inconsistencies in SAS data and substantially reduce the number of data points 
which would otherwise be omitted during SAS information development.

Popularly used soil properties for SAS assessment that are often targeted for harmonization are electrical 
conductivity (EC), pH, exchangeable sodium percent (ESP), sodium adsorption ratio (SAR), total soluble salts 
(TSS), and total dissolved solids (TDS)13,14. Most SAS classification schemes using these soil properties recom-
mend measurements taken in extract solutions from saturated soil paste as the  standard15–17. Harmonization aims 
to convert values obtained from other extracts or methods to the equivalent values of the extract from saturated 
soil paste. Most conversion models in the literature were developed without the focus for improving global SAS 
information and therefore were not adequately tested in large soil databases to evaluate their rigor at the global 
level. In this paper, robust conversion models were developed and tested on the global databases using mixed-
effects modelling  approach18. Mixed-effects models are suitable for modelling data with more than one source 
of random variability or where measurements are clustered. They have potential application in modelling soil 
characteristics that are influenced by natural groups such as  texture19. Presently, most conversion models for 
SAS soil properties recognize the influence of these soil groups on the conversion models but do not necessarily 
integrate them in the modelling  process20. In this paper, these soil groups were incorporated in the mixed-effects 
harmonization models to improve models’ accuracy and robustness. The goal of this paper was to show how a 
harmonization service based on the mixed-effects harmonization modelling and open-source software package 
can support harmonized global SAS information.

Results
Harmonization models. A new SAS harmonization service was developed and contains a global library 
of models for harmonizing SAS data. The library has 37 models for EC and pH harmonization. Evaluation of 
these models using the global datasets showed that mixed-effects (ME) models produced the best harmonization 
of soil EC and pH. They had the highest predictive statistics on the validation dataset  (r2 > 0.7, Nash–Sutcliffe 
coefficient of efficiency (NSE) > 0.5, Root Mean Square Error (RMSE) < 1). Not only did they perform very well 
globally but also in soil data from most regions of the world. This is shown in Fig. 1 where the models were 
tested on the validation dataset from different geographic regions. ME models comprise fixed effects which are 
overall average model parameters and random effects which are random variations around the fixed effects. 
Random effects can be further modelled with factors which are believed to influence variations of the model 
parameters such as soil texture and consequently improving ME predictive performance. When the random 
effects were modelled with soil textural classes performance of ME models significantly improved (due to more 
than 7% reduction in residual standard errors (RSE) and more than 1.2% increase in  r2 and NSE) (supplemen-
tary Fig.  S4.4). Low RSE and high  r2 and NSE are diagnostic indicators of better predictive performance of 
 models21,22. More improvements in ME models’ performance (due to 10% decline in RSE and 1.5% increase in 
 r2 and NSE) were also obtained when regional data categorization was included in the random-effects model-
ling (supplementary Fig. S4.5). Regional data categorization grouped the global data into geographic regions 
such as sub-Saharan Africa, Asia, Europe, Latin America and the Caribbean (LAC), Near East and North Africa 
(NENA), North America, and the Pacific (supplementary Fig. S1.5). Improvements in ME models with inclu-
sion of soil texture and regional groups implied that natural soil groups are important in the harmonization of 
EC and pH.
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Further evaluation of the harmonization models was done to assess their performance in high (EC ≥ 8 dS/m 
and pH ≥ 7) and low value ranges (EC < 8 dS/m and pH < 7). The results showed that the models with simple linear 
relationships exhibited very low performance for high EC values (NSE < 0.2). Most models from the literature 
were of the form of a simple linear relationship (Supplementary Table S4.1). Their low performance for high EC 
values implies that they are less certain in identifying high intensity SAS classes. ME models showed the best 
performance for all EC ranges. This was depicted in graphical summaries where they portrayed relatively spread-
out prediction throughout the range of measured values (Fig. 2). Therefore, they can identify all SAS intensity 
classes better than most models in the literature.

High EC data range (EC ≥ 8 dS/m) had high variability and were fewer than low EC data (EC < 8 dS/m) (sup-
plementary Fig.   S2.1a). They were mostly from North America, NENA, and Latin America and were modelled 
with high uncertainty due to their characteristic variability. More calibration data are recommended to improve 
their harmonization. Assessment of standardized residual plots showed that some of the high EC data that came 
from the United States of America (USA), Oman, United Arab Emirates (UAE), Russia, central Asia, Antarctica, 
Puerto Rico, and Chile appeared as outliers (supplementary Fig. S4.3). Most of these data points came from areas 
which did not have adequate representation of SAS data in the global soil databases (supplementary material 
S1). More calibration data were also recommended to improve performance of the harmonization models in 
these areas.

Harmonization service with global library of harmonization models. SAS harmonization service 
is focused on harmonizing soil EC and pH and on provision of information on available global SAS data. Its har-
monization application facilitates consistent SAS intensity classification using three categories of models: models 
based on the mixed effects (ME) approach, models developed from existing expressions in the literature, and 
generic expressions for users to customize their own harmonization models. Generic models for developing own 
harmonization models are available for three different harmonization scenarios: (1) where ECse or pH(water) 
and corresponding non-standard EC or pH are available for a subset of SAS database; (2) where a relationship is 
needed between ECse or pH(water) and in-situ measurements from bulk soil sensors (such as electromagnetic 
induction); and (3) where a relationship is needed between ECse or pH(water) and other soil properties. In all 
these scenarios, the service can be used to develop own harmonization models on a subset of the data and then 
applying the models on the remainder larger part of the SAS database.

In addition to harmonization, the service also provides information on global SAS data availability and pre-
dictive performance of various harmonization models in different parts of the world (Fig. 1). Its data availability 
index is for spatial visualization of global SAS data availability. The index is useful in identifying spatial gaps 
in SAS data. Example application of the index in Fig. 3a demonstrates how it identifies available SAS data at a 
spatial resolution of 30  km2. It depicts most southwestern parts of the region without EC data in the global SAS 
database. The identified gaps can then be targeted with input data mobilization to update the global SAS database. 

Figure 1.  Performance evaluation for EC and pH models on validation data grouped according to geographic 
regions (LAC—Latin America & Caribbean, NENA—Near East and North Africa).
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In another perspective, comparison of the index with the map of types of SAS data illustrates areas where available 
data need harmonization. In Fig. 3b, these areas are shown in Botswana, Zambia, and Mozambique where there 
are many locations without the standard data for SAS intensity classification. If non-standard data are removed 
when developing SAS intensity classification for this region, more data gaps will be created. Harmonization of 
non-standard data is an alternative way to reduce these gaps. In this regard, the data availability index can be 
used to identify non-standard SAS data in the global database to target with harmonization.

Application of the harmonization service in 27 countries showed that there were more SAS data in most 
countries that have not been shared with the global datasets. On average, the data availability index was more than 
100 times higher in the case-study countries than the corresponding global data availability index within these 
countries. Less than half of the case-study countries had ECse and pH (water), which implies that most countries 

Figure 2.  Comparison of ME polynomial harmonized and measured ECse and pH(water) using holdout 
samples.

Figure 3.  Example service application on global SAS data availability in southern Africa.
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needed harmonization service to improve their SAS information. Therefore, the country-level data were first 
harmonized before developing national SAS intensity classes. The resultant SAS intensity classification showed 
predominance of coastal salinity in most countries from Latin America, the Caribbean, Pacific Islands, and 
southeast Asia countries (Fig. 4 and supplementary Table S6.2). It also showed that strong and very strong salin-
ity are dominant in arid areas while sodic soils were identified in few locations in northern Kenya, Jordan, and 
Thailand. Areas with these soils have been associated with natric mineralogy of the underlying parent  rocks23–25. 
The case study application established that the choice of harmonization model influenced the accuracy and spatial 
distribution of the resultant national SAS intensity classes. Harmonization models with poor prediction of high 
EC and pH values produced high misclassification of SAS intensity classes (supplementary Fig. S6.2). Information 
from the harmonization service guided selection of the best regional models to harmonize country-level data.

Discussions
One of the challenges in building global soil information from crowdsourcing is how to deal with inconsistencies 
in input soil  data26. Harmonization provides a partial solution to this  challenge27. Presently, there is no clear col-
lection of a suite of harmonization models to support consistent global SAS information development. In addi-
tion, most available models have not been adequately tested on the global datasets to assess their performance. 
The global library of harmonization models in this study presents convenient access to over 30 different models 
in one collection. It opens the door for comparing and testing of models, development of new harmonization 
models, and for improving SAS information development. This study used a model testing approach which is 
useful in guiding selection of proper harmonization model from the library. The approach targets different ranges 
of measured EC and pH in various geographic regions to identify harmonization performance in low and high 
SAS intensity classes in these regions (Fig. 1 and supplementary material S4). This is necessary to minimize 
misclassification of SAS intensity classes and subsequent misrepresentation of SAS information. For example, 
FAO, Ozcan, and USDA  models15,17,28 were shown with relatively poor harmonization of EC in Africa (Fig. 1) 
and low prediction of high EC values (supplementary Fig. S4.1). Their use in predicting SAS intensity class pro-
duced high misclassification and misrepresentation of SAS classes in northern Kenya (supplementary Fig. S6.2).

The harmonization approach and global library of harmonization models demonstrated an alternative way 
of incorporating useful SAS input data which otherwise would be left out when developing SAS information. 
More data gaps are inevitable without harmonization of available non-standard soil data. For example, in Fig. 3, 
most data points from eastern Botswana and the whole of Mozambique would be removed if no harmonization 
is used. Perhaps this is one of the contributing factors for low SAS prediction in these areas in the literature where 

Figure 4.  Long-term average topsoil (0–30 cm) SAS intensity classes for case-study countries based on FAO 
 classification14,15.
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global datasets have been used and non-standard data excluded from the  analyses3,4. By reducing the data gaps, 
the harmonization service facilitates reduction of uncertainties due to gaps in spatial SAS information. Besides 
facilitating reduction of data gaps, the library of models can also be used to supports selection of appropriate 
harmonization model to further minimize uncertainty in SAS information development. For example, models 
with low predictive performance for high EC and pH (supplementary Fig. S4.1) may not be preferred in areas 
dominated with high SAS intensities because they are likely to produce high uncertainties (supplementary 
Figs. S6.2 and S6.3). The library offers alternative models with better performance to improve SAS information 
development in such areas. In general, the service can be used to identify possible sources of uncertainties in 
spatial SAS information (for example, due to data gaps or inadequate harmonization model). It also offers alterna-
tive ways for partially overcoming the uncertainties such as through recommendations for more representative 
samples in areas with data gaps and use of better harmonization models.

The harmonization service provides a platform for improving contribution to and use of global SAS informa-
tion. Its data availability index shows areas where input data are currently available in the global datasets. SAS 
data users can use it to query data availability in any area of interest. The index can also be used to mobilize input 
data contribution to the global data where there are gaps in the global datasets. For example, currently the index 
shows no EC data for Myanmar and Cambodia in the global datasets (supplementary Fig. S1.1). However, this 
study has shown that there are SAS data in these countries (Supplementary Table S6.1). Cases such as in Myanmar 
and Cambodia can be encouraged to develop their SAS information and contribute to the global SAS informa-
tion. In this regard, the service can be used to support country-driven updates of global SAS  information9. Since 
most countries have more national data density than is represented in the global datasets, the countries can use 
the service to develop national SAS information and contribute the output to global SAS information (Fig. 4).

Conclusions
A new harmonization service was developed for supporting SAS information development. It contains a global 
library of harmonization models for harmonizing soil data, which can be used to improve consistent global SAS 
information. Consistent input soil data are a major challenge in global mapping of salt-affected soils. The service 
also contains models for querying availability of global SAS datasets and for guiding further actions to improve 
data gaps. Not only does it identify data gaps but also shows where data harmonization is needed. Evaluation 
of the harmonization models showed differences in performance for high or low EC and pH values in different 
regions of the world. Models based on the mixed-effects (ME) approach were found to be adequate in harmoniz-
ing low and high EC and pH values in most parts of the world. ME approach can also be used to modify existing 
harmonization models in the literature to improve their predictive performance.

The harmonization service has a provision for developing models which target other SAS data types that were 
not tested in this study. Harmonization models for these types of data and their evaluation is recommended. 
Data availability index in the service is recommended as a tool to facilitate SAS data mobilization for countries 
without SAS data.

Methods
Input data for developing global harmonization models. This study used EC, pH, and texture data 
from the global soil  databases10–12. The databases contained four types of EC data depending on the soil extract 
solution used in the EC  measurement29. They include EC in 1:2 extract solution (denoted as  EC1:2 in this study), 
EC in 1:2.5 extract solution  (EC1:2.5), EC in 1:5 extract solution  (EC1:5) and EC in saturated soil paste extract 
(ECse). The data had 138,530  EC1:2 samples; 148,176  EC1:2.5 samples; 167,015  EC1:5 samples; and 194,119 ECse 
samples. Spatial distribution of the data is given in supplementary Fig. S1.1. In addition, the data also contained 
127,491 samples with  EC1:2 and ECse; 2,981 samples with  EC1:2.5 and ECse; and 1,566 samples with  EC1:5 and 
ECse. All samples had measurements of soil particle size distribution (% sand, % silt, and % clay contents). 
Since the databases already harmonized the limits between particle sizes, no further harmonization was done 
on the textural proportions between samples. The data also contained 228,129 soil samples with pH (water), 
214,383 samples with pH (KCl), 244,270 samples with pH  (CaCl2), 228,129 samples with both measurements of 
pH(water) and pH  (CaCl2), and 198,135 samples with both measurements of pH(water) and pH (KCl). Details 
of the methods for measuring the soil properties are given in the database  documentation10–12.

Harmonization models based on mixed‑effects approach. Mixed-effects harmonization models 
were developed from the general relationship in Eq. (1) between harmonized (y) and measured (x) soil proper-
ties.

where f is the harmonization function, θ is a set of model-fitting parameters, ε is the residual representing the 
difference between x and y, g represents the function for the residuals, and n is the number of observations. 
Although most models in the literature recognize that harmonization varies with soil textural classes, soil types, 
(and other factors), they rarely incorporate these factors in their structures other than providing different models 
for different factor  groups15,30. Equation (1) was modified as mixed-effects model to incorporate factor-groups 
in the harmonization such as the textural classes (Eq. 2). Significant differences were found in SAS soil proper-
ties between soil textural classes (Supplementary Fig. S1.4) that could be modelled using mixed-effects models.

(1)yi = f (xi , θ)+ g(εi) for 1 ≤ i ≤ n

(2)
yij = f

(

xij ,ϕi
)

+ g
(

εij
)

for1 ≤ i ≤ n

ϕj = θ + bj for 1 ≤ j ≤ m
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where b is a set of random-effects for m groups (e.g., textural classes), and θ represents model-fitting parameters 
comprising global average parameters (also known as fixed-effects). The model description and computation are 
given in the supplementary material S2. Random-effects account for between-groups variability and comple-
ments within-groups random residual term in improving the model’s  performance18,19. Equation (2) was used 
to harmonize EC and pH.

Seven different models for f function in Eq. (2) were chosen based on the orientation of the scatterplot 
between EC in saturated paste extract (ECse) and EC in other soil extracts and the scatterplot between pH 
(water) and pH (KCl) or pH  (CaCl2) (supplementary Fig. S2.1). The models and their curve-fitting parameters 
are summarized in the supplementary Table S2.1.

Performance evaluation. Predictive performance of the harmonization models was evaluated by com-
paring harmonized values with measured ECse or pH (water) values. To test the predictive performance, the 
global dataset was stratified by soil textural classes and randomly split into two parts: one part for developing 
the harmonization models and the other part held out for evaluating model performance (see supplementary 
material S3). Predictive performance was evaluated using models’ accuracy and uncertainty. Statistical indices 
for evaluating model accuracy were correlation  (r2), Nash–Sutcliffe coefficient of efficiency (NSE), root-mean 
square error (RMSE), and bias. Models with lowest RMSE and bias and highest  r2 and NSE were considered as 
best. Visual inspection of graphical plots of harmonized versus measured soil  properties31 was also done to show 
if the model had balanced prediction throughout the range of measured values. Uncertainty was evaluated using 
models’ prediction interval at 95% confidence  interval32. Models with narrow intervals and most data points 
within interval limits were considered more certain than those with wide intervals and most data points were 
outside the interval limits.

Performance evaluation indices were compared for three different data scenarios to assess models’ robust-
ness: (1) whole range of measured values (between minimum and maximum values); (2) low data values (e.g., 
EC < 8 dS/m and pH < 7); and (3) high values (e.g., EC ≥ 8 dS/m and pH ≥ 7). A harmonization model was con-
sidered robust if it had the best evaluation statistics for these three scenarios. Analysis of low and high values 
also facilitated identification of model areas with poor predictive performance so that they can be targeted with 
more input data to improve the models.

Harmonization service. A harmonization service for SAS information was developed. The service has two 
main application areas: EC and pH harmonization and information provision on available global SAS data. Its 
harmonization application contains mixed effects (ME) models, existing models from the literature, and generic 
expressions to aid customization of own harmonization model. The generic expression of the form of Eq. (1) 
accommodates prediction of ECse or pH (water) from a variety of independent variables such as EC from bulk 
soil sensors (e.g., electromagnetic induction), EC from soil extracts other than those shown in this study, and 
pedo-transfer functions with other soil properties. An open-source computer codes for implementing these 
models was developed using R  software33 (supplementary material S5).

Information on available SAS data was based on the global distribution of sample locations. The index in 
Eq. (3) was developed to assess SAS data availability.

where samples are number of sample locations with distinct latitude and longitude coordinates and area is a 
spatial square grid (resolution) containing the samples. Dimensions of the square grid is optionally selected from 
values such 1, 5, 10, 20  km2, etc. for an area of interest.

The harmonization service was tested in 27 countries to facilitate national SAS information development 
(supplementary material S6). This test application illustrated how the service can be used to support harmonized 
national SAS information development.

Data availability
The global datasets generated during and/or analyzed during the current study are available in the ISRIC Data 
Hub (https:// data. isric. org/ geone twork/ srv/ eng/ catal og. searc h#/ home), LUCAS Topsoil Data (https:// esdac. jrc. 
ec. europa. eu/ resou rce- type/ datas ets), and FAO Soil Portal for HWSD (https:// www. fao. org/ soils- portal/ data- 
hub/ soil- maps- and- datab ases/ harmo nized- world- soil- datab ase- v12/ en/). Case study country data are available 
from the authors upon reasonable request.
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