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Abstract 

Under the umbrella of SPACES (Science Partnerships for the Adaptation to 
Complex Earth System Processes in Southern Africa), several marine projects 
have been conducted to study the coastal upwelling area off southwestern Africa, 
the Benguela Upwelling System (BUS). The BUS is economically important 
for the bordering countries due to its large fish stocks. We present results from 
the projects GENUS and TRAFFIC, which focused on the biogeochemistry and 
biology of this marine area. The physical drivers, the nutrient distributions, and 
the different ecosystem components were studied on numerous expeditions using 
different methods. The important aspects of the ecosystem, such as key species 
and food web complexity were studied for a later evaluation of trophic transfer 
efficiency and to forecast possible changes in this highly productive marine 
area. This chapter provides a literature review and analyses of own data of the 
main biological trophic components in the Benguela Upwelling System gathered 
during two cruises in February/March 2019 and October 2021. 

11.1 Introduction 

The Benguela Upwelling System (BUS) is one of four major Eastern Boundary 
Upwelling Systems (the others are the California, Canary and Humboldt Upwelling 
Systems) that are among the most productive marine ecosystems and account for 
up to 20% of global fish catches (Bonino et al. 2019). The BUS extends about 
2000 km along the eastern margin of the South Atlantic between Cape Agulhas 
(35◦S) and the Angola-Benguela Front at ~17◦S (Sakko 1998). It is bounded by the 
Agulhas Current in the south and the confluence of the Benguela Current with the 
Angola Current at the Angola-Benguela Front in the north (Fig. 11.1), which are 
the two largest warm-water bodies in the area (Carter 2011). The BUS is divided 
by the intense upwelling cell off Lüderitz (26◦–27◦S) into a southern (sBUS) and 
a northern (nBUS) subsystem (Bakun 1996). Characteristic of the BUS, in relation 
to the other three eastern boundary upwelling systems, is the width and depth of 
the coastal shelf that often extends up to 250 km offshore (Bordbar et al. 2021), 
providing space for the establishment of both shelf break/oceanic fronts at the shelf 
edge through coastal jets at about 350 to 500 m depth (Ragoasha et al. 2019), and 
upwelling fronts closer to the coast (Mann and Lazier 1991), with subsequent effects 

C. D. van der Lingen 
Fisheries Management, Department of Forestry, Fisheries and the Environment, DFFE, Cape 
Town, South Africa 

Department of Biological Sciences, University of Cape Town, Cape Town, South Africa



11 Studies of the Ecology of the Benguela Current Upwelling System: The. . . 279

Angola Dome 

Angola Benguela 
Front Kunene 

Angola 
Current 

Agulhas 
Rings 

LC 

Agulhas 
Current 

Walvis Bay 

Luederitz 

Cape Town 

Benguela 
Current 

nBUS 

sBUS 

UC 

Fig. 11.1 Map of the Benguela Current Region, LC Luederitz Upwelling Cell, UC seasonally-
varying poleward undercurrent, nBUS northern Benguela Upwelling System, sBUS Benguela 
Upwelling System 

on nutient supply (Flynn et al. 2020; Rixen et al. 2021) and possible larval trapping 
on the shelf (see Tiedemann and Brehmer 2017, for the Central East Atlantic). 

Upwelling is the movement of surface water away from the coast and is caused 
by wind drag and Coriolis force. These water masses are replaced by cold and 
nutrient-rich water from deeper layers by coastal upwelling and Ekman transport 
(Ekman 1905). A second type of upwelling is the offshore upwelling facilitated 
through Ekman pumping (Rykaczewski and Checkley 2008; Bordbar et al. 2021). 
Whereas Ekman transport is dependent on a constant wind field, Ekman pumping 
responds to gradients in wind strength. This so-called wind stress curl is more
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intense in the sBUS than in the nBUS (Fennel and Lass 2007; Bordbar et al. 2021) 
and important offshore upwelling is indicated for the Cape Columbine/Cape Town 
and the Lüderitz regions up to Walvis Bay. Wind stress curl-driven upwelling is 
further responsible for the surfacing of the poleward undercurrent originating in 
the nBUS, where coastally trapped Kelvin waves may modulate the intensity of 
the Angola Current. With increased wind stress curl, offshore upwelling uplifts 
undercurrent water masses to the surface creating highly variable surface currents 
and intensified upwelling. Important so-called upwelling cells (Shannon 1985) are  
located at Cape Frio (19◦S), Walvis Bay (23◦S), Lüderitz (25–26◦S), Namaqua 
(30◦S), Cape Columbine (32◦S), and Cape Town (34◦S). These regionally distinct 
oceanographic conditions form the basis for separate ecoregions within the BUS. 
For more details, see Chap. 9. 

Upwelling events vary seasonally and locally (Carter 2011). In austral summer 
(December to March), warm oligotrophic water from Angola (South Atlantic Cen-
tral Water, SACW) is transported southward and therefore can dominate upwelled 
water masses in the nBUS at that time of the year (Hutchings et al. 2006). In 
contrast, Eastern South Atlantic Central Water (ESACW) is transported northward, 
constituting the upwelled water mass in the sBUS, and also in austral winter in the 
nBUS (Monteiro et al. 2008; Mohrholz et al. 2014). The ESACW is oxygen-rich, 
but carries comparatively less nutrients than the SACW further north. ESACW is 
comprised of a mixture of central waters from the Indian Ocean which enter the 
Cape Basin as intrusions from the Agulhas Current retroflection region, with central 
waters transported across the South Atlantic from the Brazil-Malvinas Confluence, 
and mode waters which are formed just north of the sub-Antarctic Front in the 
Southern Ocean (Kersalé et al. 2018; Lamont et al. 2015). Maxima in phytoplankton 
biomass emerge in spring (September–October) and during late summer/early fall 
in nBUS, while south of South Africa, on the Agulhas Bank shelf, maxima occur 
in fall (March–April) (Lamont et al. 2018). It is likely that excessive turbulence and 
substantial offshore advection in the Lüderitz cell, which is active year-round, is the 
reason for the phytoplankton minimum in this area (Hutchings et al. 2006, 2012; 
Lamont et al. 2018). 

The high phytoplankton productivity in the BUS, however, is in surprising 
contrast to the relatively low productivity of the higher trophic levels as compared 
to the Humboldt Current System (Messié and Chavez 2015). Nutrients reaching 
the surface during upwelling are expected to be rapidly re-exported, given the 
substantial offshore transport of surface waters driven by upwelling-favorable 
winds, so that organisms of the higher trophic levels cannot effectively utilize 
the available production. The result of this inefficient retention of nutrients is, 
that, despite short trophic pathways, fisheries yields are relatively low. However, 
management effectiveness and industrial capitalization cannot be ruled out as a 
cause for the different rates in fisheries production. 

From a human perspective, and regarding the opportunities of harvesting living 
marine resources, the productivity of an ecosystem’s upper trophic levels is of par-
ticular interest. Many of the commercially targeted marine species are predatory fish 
at the upper end of the food chain. Inherently, upwelling systems are characterized

http://doi.org/10.1007/978-3-031-10948-5_9
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by exceptionally high productivity, the degree of which can be assessed as the 
ecosystem’s trophic transfer efficiency (TTE), alternatively called energy transfer 
efficiency. In this chapter, we will provide literature and new data on the main 
biological trophic components in the Benguela Upwelling System. Two research 
cruises were conducted to cover seasonal variations. A summary of the results is in 
progress and will be provided elsewhere. 

11.2 Previous Research and Hypotheses 

The TRAFFIC (Trophic TRAnsfer eFFICency in the Benguela Current) project is 
part of the SPACES II program and was conducted between 2018 and 2022. The 
members of the TRAFFIC consortium have had close collaborations with regional 
scientific organizations in southern Africa (NATMIRC*, BCC*, UNAM*, UCT*, 
and DFFE*) or with national projects (BIOTA Africa*, NAMIBGAS*, BENEFIT* 
(for abbreviations see end of chapter) for many years. These—mostly disciplin-
specific—precursory works have laid the scientific foundation for the predecessor 
SPACES I project GENUS (Geochemistry and Ecology of the Namibian Upwelling 
System). GENUS was a contribution to the international IMBER (Integrated Marine 
Biosphere Research) initiative of the IGBP (International Geosphere-Biosphere 
Programme) and was built on the established regional research collaborations 
BENEFIT (Benguela Environment Fisheries Interaction and Training, 1997–2007) 
and BCLME (Benguela Current Large Marine Ecosystem, since 2002). Many 
crucial data sources used as the knowledge base for TRAFFIC were developed in 
GENUS and other predecessor projects. In addition to providing valuable scientific 
results for understanding climate-induced changes in upwelling areas and the 
ecosystem services associated with them, TRAFFIC has deepened the collaboration 
with scientists in the partner countries Namibia and South Africa. 

The GENUS project (see Ekau et al. 2018) has shown that, regarding the 
overall net flux of carbon dioxide, the northern Benguela subsystem releases CO2 
into the atmosphere, while the southern subsystem takes up CO2 (Emeis et al. 
2018). Previously, this difference was attributed solely to different oceanographic 
conditions. The nutrient- and CO2-rich South Atlantic Central Water (SACW) is a 
main water supply to the northern Benguela, whereas the comparatively nutrient-
and CO2-poor Eastern South Atlantic Central Water (ESACW) forms the main 
upwelling water in the southern subsystem (Fig. 11.1). Consequently, upwelling in 
the nBUS promotes the emission of CO2 to the atmosphere on the Namibian shelf 
and the export of carbon from the euphotic zone to the deep ocean, readable from 
the formation of the carbon-rich silt layers at the seabed. In contrast, upwelling 
in the sBUS leads to a net uptake of CO2 and is accompanied by lower carbon 
sedimentation rates (Mollenhauer et al. 2004). Differences in fishery yields and 
results of biological studies show that in contrast to the relatively short food chain 
in the sBUS, which has been considered typical of upwelling systems, the food web 
is more complex in the nBUS. Because primary production is very similar in the 
northern and southern subsystems (Barlow et al. 2009), these relationships indicate
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more efficient utilization within the food chain in the southern Benguela. The aim 
of the TRAFFIC project has been to unravel the biological processes leading to the 
differences in the TTE between the food webs of the two subsystems of the BUS. 

TRAFFIC also relates studies of the food web to ongoing climate-related changes 
in the BUS. Recent findings from modeling studies have shown a poleward shift in 
subtropical high-pressure areas due to global climate change (Garcia-Reyes et al. 
2015; Rykaczewski et al. 2015; Wang et al. 2015). As a result, the trade winds in 
the sBUS will likely intensify, whereas the wind speeds and upwelling intensities in 
the nBUS will likely weaken. Our investigation will unravel the effects of ongoing 
changes in physical forcing on the overall productivity and the food web structure 
of the Benguela Current subsystems. 

Historically, it has been assumed that around 90% of material and energy is lost 
by metabolic activity from one trophic level to the next higher trophic level and that 
only 10% reaches the next level (Lindeman 1942). This value, however, can be very 
variable. Eddy et al. (2020) compiled data from several studies based on Ecopath 
with Ecosim models and calculated that the TTE ranges from 0.3% to 52.0% 
between trophic levels 2–3 and 3–4 with means of 12.0% in polar/subarctic-boreal 
regions, 9.6% in temperate regions, 8.6% in tropical/subtropical regions, and 8.0% 
in upwelling regions. In a warmer world, i.e., under climate change, the TTE may 
decrease due to higher metabolic losses. Freshwater plankton in artificial ponds that 
have been exposed for seven years to 4 ◦C warming relative to ambient conditions 
showed a decrease of TTE by up to 56% (Barneche et al. 2021). Projections by du 
Pontavice et al. (2020) also assume a decrease of TTE until 2100 under the RCP 
8.5 global warming scenario, which would be associated with an increase of about 
4.8 ◦C in global mean temperatures. 

Different physical conditions affect primary production (PP) and subsequent 
consumers, thereby determining the efficiency with which the produced biomass 
is carried through the food web. Low-latitude stratified ecosystems are dominated 
by small phytoplankton and carbon is routed through many trophic levels (TLs) 
before reaching pelagic fish. The overall TTE (the transfer of energy from primary 
to secondary producers and higher trophic levels) is furthermore driven by the 
complexity of the food web (see also Armengol et al. 2019). The mean number 
of TLs between primary producers and fish is around 6 in oceanic, 4 in coastal, 
but only 2.5 in upwelling regions (Ryther 1969; Eddy et al. 2020). A short food 
chain generally results in a high trophic transfer efficiency, for example when large 
chain-forming diatoms are consumed directly by sardines, without an intermediate 
level of zooplankton consumers (Moloney et al. 1991; van der Lingen et al. 2006a). 
The timing of the development of the different components in the food web, i.e., 
the temporal match and mismatch of TLs (Cushing 1990), is crucial for an efficient 
overall TTE. However, alternative dead-end scenarios for carbon transport may exist 
when stochastic blooms of salps consume the entire primary production and carbon 
does not reach higher TLs but sinks into deeper water layers at an increased rate 
(Martin et al. 2017). Consequently, zooplankton composition as well as the food 
web structure determine the amount of carbon and energy reaching upper trophic 
levels such as fish, seabirds, and marine mammals, and ultimately fisheries.
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From this point of view, ecosystems dominated by the zooplanktivorous (krill-
dominated diet) but partly piscivorous horse mackerel (Pillar and Barange 1998; 
Kadila et al. 2020) will be less productive in comparison to those dominated by 
anchovy and/or sardines that feed on smaller (copepods) zooplankton but also 
phytoplankton (van der Lingen et al. 2006a). Results of the GENUS project revealed 
that trophic interactions and the community structure of trophic levels are not 
as simple and straight-forward as previously thought with Schukat et al. (2014) 
showing that trophic roles of calanoid copepods in the nBUS were far more complex 
than merely linking phytoplankton to pelagic fish. 

Recent work has suggested that so-called “dead end” species (e.g., jellyfish 
and salps that feed on primary and/or secondary producers/consumers and were 
previously considered to be rarely consumed by predators) can be trophically 
important (Hays et al. 2018; Gibbons et al. 2021). Specifically, they can outcompete 
planktivorous fishes by forming intensive blooms when conditions are favorable 
and increase the export of organic matter to deeper layers by producing fast-sinking 
fecal pellets and mass mortality events. This reduces the energy available for higher 
trophic levels and the recycling of nutrients within the epipelagic realm. 

The TRAFFIC project set out to closely investigate and compare the nBUS and 
the sBUS ecosystems in relation to the underlying oceanographic and biogeochem-
ical processes. Based on the concept of three alternative structures of the food chain 
(Fig. 11.2) and on recent climate models that suggest an intensification of winds 
and upwelling in the sBUS, in contrast to a weakening of the upwelling intensity in 
the nBUS (Garcia-Reyes et al. 2015; Rykaczewski et al. 2015; Wang et al. 2015), 
TRAFFIC investigated how current conditions influence productivity, carbon export 
and food chain structure in the two subsystems, and hence their trophic transfer 
efficiency and potential to support top predators and fisheries. 

11.3 Major Biological Components of the Benguela Upwelling 
System 

For the comparison of the TTE of the northern and southern BUS it is not only 
crucial to get a picture of the community structure and food web complexity, 
but it is also necessary to identify the starting conditions such as the efficiency 
of primary production and to follow the energy from the base of the food web 
to top predator level. For this purpose, two research cruises in the TRAFFIC 
project have been undertaken: a first one with RV METEOR in austral summer 
(M153, February/March 2019) and a second one with RV SONNE at the end of 
austral winter (SO285, September/October 2021). During these cruises, samples 
were collected with different gears in order to measure physical drivers, and to 
quantify biomass, standing stocks and plankton and fish composition of the two 
ecosystems. Additionally, experiments were set up onboard the ships to measure 
vital rates such as primary production, respiration, growth, metabolism and grazing 
of various planktonic organisms.
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Fig. 11.2 Three alternative simplified food web structures which may establish in the Benguela 
Upwelling System and lead to different trophic transfer efficiencies: (a) Typical short food chain of 
an Eastern Boundary Upwelling System; highly efficient transfer of carbon to upper trophic layers 
(common in sBUS); (b) food chain structure during mass occurrences of gelatinous zooplankton 
(salps and jellyfish), decoupling from higher trophic levels (occasionally in nBUS and sBUS); (c) 
long food chain with less efficient overall trophic transfer, common in nBUS. Blue arrows: upward 
transport of energy and matter through the food chain; brown arrows: export flux of energy and 
matter 

11.3.1 Abiotic Parameters and Chlorophyll Measurements 

A high-speed remotely operated towed vehicle (ROTV, TRIAXUS) was used 
during cruise M153 in 2019 (see also Rixen et al. 2021) to measure temperature, 
salinity, oxygen content, nitrate, chlorophyll a (Chl a) and other pigments, turbidity, 
photosynthetic active radiation (PAR) and hydroacoustics on several transects in the 
nBUS and sBUS (Fig. 11.3). Zooplankton was analyzed using a mounted Video 
Plankton Recorder (Möller et al. 2012). The vehicle was towed at a speed of 8 knots 
with a horizontal offset out of the vessel’s wake, undulating vertically between 5 
and 180 m, depending on the water depth. 

Vertical profiles of conductivity, temperature, pressure, oxygen, fluorescence, 
turbidity and photosynthetically active radiance (PAR) were obtained using a 
CTD in-situ (Fig. 11.4, left). These data were compared with satellite images of 
temperature and chlorophyll at the surface (Fig. 11.4, right) to provide background 
information for future evaluations.
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Fig. 11.3 TRIAXUS on deck of RV METEOR 

Fig. 11.4 Left: CTD with rosette; Right: Satellite data of sea surface temperature (SST) and Chl 
a during the expedition M153 in February 2019 

11.3.2 Phytoplankton and Microzooplankton 

The base of the food web, i.e., the primary producers and the microzooplankton 
were investigated to determine the quality and quantity of food available for higher 
trophic levels. For this purpose, water was taken from different depths using a 
Niskin bottle rosette attached to the CTD and filtered to determine the Chl a
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Fig. 11.5 Left: Bivariate plot of red fluorescence (FL3) vs. orange fluorescence (FL2) for 
acquired flow cytometry at 10 m depth, station 85 (30◦S, 16◦30′E). Preliminary gating was 
performed marking picoeukaryotes in green, Ostreococcus in pink, Synechococcus in yellow and 
Prochlorococcus in blue. Right: From flow cytometry converted abundance profile in the upper 
layer (10–100 m) of the main picophytoplankton groups at station 85 

content by spectrometry and the pigment composition by HPLC (High-Performance 
Liquid Chromatography). The results will be intercompared with remotely sensed 
data. A fluoroprobe was used in addition to the water samples to analyze different 
phytoplankton groups (green-algae, blue-green algae, diatoms, and cryptophyta) in 
situ. 

In order to assess the contribution and the community composition of picophyto-
plankton (0.2–2 μm) water samples were analyzed onboard using a flow cytometer 
(CytoFLEX, Beckman Coulter) for counting and identifying the main groups like 
Prochlorococcus, Synechococcus, and Ostreococcus as well as picoeukaryotes (Fig. 
11.5). 

Further water samples were taken to study nanophytoplankton composition by 
cross polarized light microscopy, as well as microphytoplankton composition by 
inverse microscopy in the home laboratories and to assess the photosynthetic fitness 
of the phytoplankton onboard the ship using the Fast Repetition Rate Fluorometry 
(FRRF, Fasttracka II, Chelsea Technology, UK). FRRF is a noninvasive method to 
measure the activity of primary producers using Chl a fluorescence (Oxborough 
et al. 2012). Small plankton were caught with an Apstein net (20 μm mesh size) 
to study the trophic positions and nutritional quality of phyto- and microplankton 
applying stable isotope and fatty acid analyses. The taxonomical composition was 
determined using fluid imaging (FlowCam). The FlowCam takes pictures of the 
organisms found in a sample (Fig. 11.6), which can be analyzed subsequently by
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Fig. 11.6 FlowCam images from a diatom bloom in the sBUS during cruise SO285 

a deep learning program which has been trained using plankton samples from the 
Benguela ecosystem. 

Marine life does not react immediately following upwelling events but rather 
with certain time lags. Initially, abundance and productivity are low in recently 
upwelled and highly turbulent waters (Ayon et al. 2008; Ekau et al. 2018), because 
upwelling water originates from the central water layer below the thermocline, 
where the phytoplankton stock is low. Furthermore, strong turbulence inhibits 
phytoplankton growth by transporting the organisms out of the range of photosyn-
thetic active radiance. Production peaks in moderate upwelling and in quiescent 
phases after upwelling events (Grote et al. 2007; Bode et al. 2014), forming 
an optimal environmental window (Cury and Roy 1989). The development of 
a diatom-dominated phytoplankton bloom in the nutrient-rich upwelling plume 
and a community succession from diatoms to flagellates requires time to respond 
to upwelling conditions. The increase of phytoplankton biomass by an order of 
magnitude takes approximately two weeks (Hansen et al. 2014). A mixed population 
of dinoflagellates, coccolithophores, and microflagellates was detected on cross-
shelf transects off Walvis Bay in newly upwelled waters (<13 days old) close to 
the coast. In contrast, diatoms dominated maturing waters (13–55 days old) 40 to 
250 km off the coast, whereas dinoflagellates prevailed in waters older than 55 days 
after the upwelling event.
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Fig. 11.7 Multinet Midi used to sample microzooplankton 

Primary production and respiration rates were measured by incubation of water 
from the most productive layer (Deep Chlorophyll Maximum) at in-situ tempera-
tures under different light conditions in a plankton-wheel. 

In marine ecosystems, generally 60% to 70% of primary production is consumed 
by microzooplankton and 10% to 40% by mesozooplankton (Calbet 2001; Calbet 
and Landry 2004), with microzooplankton also being an important dietary com-
ponent of mesozooplankton (Bollens and Landry 2000; Calbet and Saiz 2005). 
Phytoplankton growth rates and microzooplankton grazing were studied using the 
dilution method after Landry (1993). Landry (1993) postulated higher algae growth 
in water with less microzooplankton predators and undisturbed growth in the highest 
dilution. The experiment concomitantly gives information about the grazing activity 
of the microplankton. 

Microzooplankton for taxonomic and stable isotopic analyses were collected 
with a HydroBios Midi (mouth area 0.25 m2) Multinet (multiple opening/closing 
net) system equipped with five nets (55 μm mesh size) in discrete depth intervals 
(Fig. 11.7). Vertical hauls were conducted with hauling speed of 0.2 m/s from 100 m 
depth up to the surface. 

Microzooplankton (< 200 μm, sampled with 55 μm meshed nets) of the nBUS 
is often dominated by mixotrophic and heterotrophic dinoflagellates, tintinnids and 
small copepods (Bohata 2016). Figure 11.8 shows some of the microzooplankton 
organisms sampled during cruise M153.
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Fig. 11.8 Four important microplankton groups: (a) Mixo- und heterotrophic Dinoflagellata, (b) 
small Copepoda and nauplia, (c) Tintinnida, (d) Radiolaria 

The microplankton distribution patterns revealed a shelf—offshore zonation 
and clear temperature associations (Fig. 11.9). Heterotrophic dinoflagellates such 
as Protoperidinium and Noctiluca scintillans prevailed in <15 ◦C cold, recently 
upwelled water on the shelf, whereas subsequent succession stages in 15–20◦C 
warm surface water on the shelf were dominated by small copepods such as Oncaea, 
Oithona and Microsetella. Protoperidinium, Tintinnidae and the mixotrophic 
dinoflagellate Ceratium were abundant in decreasing order in >20 ◦C warm surface 
water at the shelf break. Tintinnidae contributed >37% to microzooplankton at the 
medium-warm shelf break, followed by Oncaea, Microsetella and Protoperidinium. 
The cold water and shelf break areas were dominated by Oncaea, followed by 
Protoperidinium and Ceratium. The warm offshore region was dominated by 
Tintinnidae comprising >30% of total abundance. Mixotrophic (Ceratium) and 
heterotrophic (Protoperidinium) dinoflagellates were also very abundant here,
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Fig. 11.9 Dominant microplankton taxa in different habitat zones of the northern Benguela 
Upwelling System during September/October 2011 (modified after Ekau et al. 2018)
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collectively making up >30% of total abundance. The medium-warm offshore area 
was characterized by high abundances of Oncaea (> 23%) and the Foraminifera 
Neogloboquadrina (>14%) (see also Bohata 2016). 

11.3.3 Mesozooplankton 

Mesozooplankton plays a key role in the energy transfer from primary production 
and microzooplankton to higher trophic levels. Due to their short generation 
times and direct coupling to physical drivers, zooplankton reacts sensitively to 
climatic change and can be used as indicators of environmental change (Hays et 
al. 2005). Cyclopoid and calanoid copepods usually dominate the mesozooplankton 
communities (on average 70%–85%) in the nBUS and sBUS, playing a key role 
in sustaining marine fish stocks as a principal food source for larvae, juveniles 
and adults and sometimes all three stages (Hansen et al. 2005; Bode et al. 2014; 
Verheye et al. 2016). Furthermore, Bivalvia larvae can be sporadically dominant 
at near-shore regions, while Appendicularia (Oikopleura), Thaliacea (Doliolida, 
Salpida), Amphipoda and Euphausiacea can contribute substantially to abundance 
and/or biomass further offshore. Along the continental slope in the nBUS, the krill 
species Euphausia hanseni plays an important role in the active carbon flux from 
the productive shelf to the adjacent open ocean and into the deep sea because of its 
pronounced diel vertical migration (Werner and Buchholz 2013). 

Mesozooplankton sampling consisted of vertical hauls with a multiple open-
ing/closing net (HydroBios Multinet Midi, five nets, 0.25 m2 mouth opening, 
200 μm mesh size) at 0.5 m/s hauling speed. Samples were taken from discrete 
depth layers down to ~10 m above sea floor (minimum bottom depth 55 m at 
inshore stations, maximum sampling depth 1500 m offshore). Additional material of 
larger and more mobile species (krill, decapods) were collected from double oblique 
hauls of a Multinet Maxi (0.5 m2 opening area, five nets of 300 μm mesh size; 
HydroBios). All samples were presorted onboard and potential key zooplankton and 
other species of the food web were deep-frozen at −80 ◦C for trophic biomarker 
analyses (stable isotopes and fatty acids). Key copepod species (Fig. 11.10) were  
selected from the net samples for in-situ experiments to measure respiration, egg 
production and fecal pellet production. 

During periods of active upwelling, the BUS zooplankton communities on 
the shelf are dominated by the biomass-rich herbivorous-omnivorous copepod 
Calanoides natalis (ex C. carinatus; Bode et al. 2014) and small calanoid (esp. 
Acartia, Clausocalanus, Ctenocalanus, Paracalanus, Calocalanus spp.) and 
cyclopoid (esp. Oithona spp.) copepods (Verheye et al. 2016; Bode-Dalby et al. 
2022). With increasing bottom depth closer to the continental slope, Centropages 
brachiatus and Metridia lucens occur at higher abundances. Further offshore, the 
copepod community is more diverse, due to mixing of cold- and warm-water species 
as well as deeper-dwelling diel vertical migrants such as Pleuromamma spp. When 
upwelling ceases and warmer water masses intrude/expand onto the shelf, the shelf 
community is replaced by medium-sized copepod species such as Nannocalanus
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Fig. 11.10 Copepods and amphipods in the Benguela Upwelling System. Top row: Pareucalanus 
sewelli, Pleuromamma quadrungulata, Candacia sp.; second row: Euchaeta sp., Gaetanus pilea-
tus, Euchirella similis female with two egg sacs; bottom row: Vibilia armata, Phronima sp. 

minor (Schukat et al. 2013, 2014; Bode et al. 2014). A striking difference between 
the northern and southern Benguela copepod community is the absence of Calanus 
agulhensis in the nBUS, as it is apparently advected offshore and away from the 
nBUS by the strong and permanent Lüderitz upwelling cell. So far, C. agulhensis 
has not been recorded in the nBUS. C. agulhensis is the most abundant calanoid 
copepod on the Agulhas Bank, a major spawning ground for sardines and anchovies 
in the sBUS (Peterson et al.  1992; Huggett and Richardson 2000; Richardson et al. 
2003). Later/older copepodid stages and adults of C. agulhensis are advected to the 
South African west coast, where its abundance is associated with warmer offshore 
waters (Huggett and Richardson 2000; Huggett et al. 2007). 

Phytoplankton growth after an upwelling event is followed by increasing cope-
pod abundance about 20–23 days after initial upwelling (Postel et al. 1995; 
Hutchings et al. 2006). In contrast to the sBUS, the seasonal signal in the nBUS 
is often diffuse with high interannual variability. Upwelling events, as well as
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zooplankton abundances, can be strongly pulsed with huge local and interannual 
variability and multiple interacting factors. Long-term data series derived from the 
Namibian monitoring program emphasize the complex interannual variability in the 
nBUS, where years with intense upwelling in spring can be followed by strong 
warm-water intrusions of tropical Angola Current water masses in late summer 
(Bode et al. 2014; Martin et al. 2015). Such years with strong seasonal temperature 
gradients were characterized by high copepod abundances suggesting a strong link 
between zooplankton distribution and physical forcing (Bode et al. 2014). 

In the sBUS, zooplankton abundance was positively correlated to upwelling 
intensity (Verheye et al. 1998), although seasonal cycles of mesozooplankton differ 
depending on the subregion (Verheye et al. 2016). For instance, around St. Helena 
Bay (32–33◦S), mesozooplankton populations usually peak during late summer and 
show a distinct decline in autumn. On the western Agulhas Bank (35◦S), on the other 
hand, maximum mesozooplankton abundance usually occurs during late autumn and 
spring. Differences in mesozooplankton abundances and community structure are 
not only caused by bottom-up mechanisms such as upwelling intensities and phyto-
plankton availability, but also by the distribution patterns of different planktivorous 
fish (“small pelagics”) and their life-history stages along the southwestern African 
coast (Verheye et al. 1998; Hutchings et al. 2006; van der Lingen et al. 2006b). 
Furthermore, stochastic mass occurrences (“blooms”) of gelatinous zooplankton 
such as salps or jellyfish can eliminate other plankton and reset the succession of 
the entire pelagic community (Martin et al. 2017). 

Besides predator-prey interactions and food web structure, the availability of 
dissolved oxygen and the vertical extent of the oxygen minimum zone (OMZ) 
strongly determines the distribution of zooplankton in the BUS, especially in the 
nBUS (Auel and Verheye 2007; Ekau et al. 2010). Such OMZs occur regularly 
on the Namibian shelf in the nBUS (Schmidt and Eggert 2016) and around St. 
Helena Bay in the sBUS (Pitcher et al. 2014), yet, at different extents. The specific 
conditions on the Namibian shelf are favorable for benthic sulfur bacteria, which 
may form thick mats and, during occasional anoxic conditions, cause hydrogen 
sulfide eruptions (Schmidt and Eggert 2016). Many zooplankton species can cope 
with the upwelling-driven, highly pulsed productivity regime, strong advective 
processes and the regionally pronounced OMZs. The dominant copepod C. natalis is 
well adapted to the highly dynamic upwelling regime with its reproductive strategy, 
lipid accumulation, ontogenetic vertical migration, and dormant phase (diapause) of 
C5 copepodids at depth (Auel et al. 2005; Verheye et al. 2005; Auel and Verheye 
2007; Schukat et al. 2013, 2014; Bode et al. 2015). Females of C. natalis and 
other species such as M. lucens or C. agulhensis maintain their populations in 
the productive shelf region through diel vertical migration (DVM) between surface 
currents and subsurface counter-currents (Timonin 1997; Huggett and Richardson 
2000; Loick et al. 2005). Species that can retreat into OMZs for at least part of 
the day have various advantages, e.g., finding refuge from predators (Loick et 
al. 2005). The extent of DVM can also be adapted to upwelling intensities and 
food availability: C. natalis and C. agulhensis showed very pronounced DVM 
during periods of increased advection and high Chlorophyll a concentrations,
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whereas DVM was reduced during quiescence of upwelling and low phytoplankton 
concentrations (Verheye and Field 1992; Huggett and Richardson 2000). 

Since the 1950s, long-term changes of zooplankton abundance and biomass have 
been observed in the entire BUS (Verheye and Richardson 1998; Verheye 2000; 
Huggett et al. 2009; Hutchings et al. 2009; Verheye et al. 2016). Around Walvis 
Bay (23◦S), copepod abundances increased six-fold from the 1980s to the early 
2000s, followed by a decline after 2005 (Hutchings et al. 2009). In contrast to 
the nBUS, the sBUS has been studied more regularly in terms of zooplankton 
abundance and community structure making long-term assessments more reliable 
(reviewed by Verheye et al. 2016). A 100-fold increase in total copepod abundance 
(cyclopoids and calanoids) was reported for the sBUS between 1950 and 1995 
(Verheye et al. 1998). Between 1988 and 2003 copepod biomass and production 
along the entire sBUS coast were around one order of magnitude higher than in 
the late 1970s (Huggett et al. 2009). This long-term increase in copepod abundance 
was accompanied by increasing wind stress and upwelling intensities (Shannon et 
al. 1992; Verheye 2000), and it also coincided with the onset of commercial fishing 
since the 1950s (Verheye et al. 2016). Since the mid-1990s, copepod abundance 
decreased again slightly; thus, the decline in copepod abundance started one decade 
earlier than in the nBUS (Verheye et al. 2016). 

In both subsystems, there has also been a size shift in the mesozooplankton 
communities from larger to smaller species during the last decades (Verheye and 
Richardson 1998; Verheye et al. 2016). In the 1950s, euphausiids (esp. Euphausia 
lucens and Nyctiphanes capensis) and large to medium-sized copepods such as 
C. natalis, R. nasutus, and C. brachiatus prevailed in the species composition of 
St. Helena Bay. From the late 1980s onward, smaller copepod species such as 
“small calanoids” (mostly Clausocalanidae and Paracalanidae) and the cyclopoid 
Oithona spp. became clearly dominant (Hutchings et al. 2012; Verheye et al. 
2016). The shift from larger to smaller species can be an indicator of ocean 
warming, whereas a cooling trend by up to 0.5 ◦C per decade has been evident 
from the 1980s onward due to intensification of upwelling in this region (Rouault 
et al. 2010; Verheye et al. 2016). Both oceanographic and biological processes 
(bottom-up control) together with predation effects (top-down control), particularly 
size-selective feeding of sardines and anchovies, seemed to cause these changes 
in the zooplankton communities (Verheye et al. 1998; Verheye and Richardson 
1998; Hutchings et al. 2012). The decline of larger copepods in the St. Helena Bay 
region since the mid-1990s coincided with a marked increase in biomass of small 
pelagic fish such as anchovy, which potentially prey on these copepods (Hutchings 
et al. 2012; Verheye et al. 2016). In the nBUS, no clear predator-prey relationships 
between zooplankton and fish have been identified to date. After the decline of 
anchovies in the mid-1990s no increase of larger copepods was detected (Verheye et 
al. 2016). Hence, the relative importance of bottom-up vs. top-down effects remains 
uncertain, but it is clear that such changes in zooplankton have fundamental effects 
on biogeochemical processes, food web structure and thus ecosystem functioning 
and services.
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Due to considerable interannual variability and different patterns in various sub-
regions of the BUS, trends in one region and season cannot be extrapolated to other 
regions in the BUS, emphasizing the need for high spatial, seasonal, and taxonomic 
coverage of continuous monitoring programs (Huggett et al. 2009; Kirkman et al. 
2016; Verheye et al. 2016). Thus far, the discontinuous and heterogeneous nature 
and the relatively poor data of the BUS compared to time series from other systems 
do not allow far-reaching conclusions about the synchronicity of fluctuations of 
zooplankton biomass and abundance at spatial scales similar to those found for 
fish species (Batchelder et al. 2012). This emphasizes the need for appropriate 
and concrete actions proposed by the Benguela Current Commission to advance 
sustainable development of the BUS goods and services (Verheye et al. 2016). 
Characterizing zooplankton communities by functional types and not only focusing 
on large species will help improving predictive biogeochemical and ecosystem 
models. The community structure of the small calanoid copepods in the BUS has 
not been well distinguished so far (Bode-Dalby et al. 2022). There are contradictory 
and uncertain mentions of Microcalanus (=Clausocalanus?) and Pseudocalanus 
(=Ctenocalanus?) spp. (Verheye et al. 2016); thus, it is not known how diversity of 
small copepods and their functional role has changed over the last decades. 

11.3.4 Macrozooplankton and Micronekton 

To investigate the trophic transfer efficiency in midwater ecosystem components, 
biomass size spectra comprising all major taxa encountered, i.e., fish, crustacean and 
gelatinous plankton (see Fock and Czudaj 2019) were analyzed, as well as diurnal 
feeding patterns and food composition of key fish species in combination with stable 
isotope ratios for selected fish species, medusa and crustacean plankton and other 
micronekton. 

The vertical distributions of macrozooplankton and micronekton were ana-
lyzed using depth-stratified net catches (Multinet-maxi, Multinet-midi, Rectangular 
Midwater Trawl RMT, Figs. 11.7, 11.11) as well as horizontal surface sampling 
(Neuston catamaran). These were used to assess abundance, biomass, and species 
composition, and also to gain information about the behavior of fish larvae in 
relation to hydrography on meso-spatial scales and at high vertical resolution. Fishes 
were captured mostly at night in double oblique hauls down to 500 m depth. 

In order to be able to construct normalized biomass size spectra (NBSS), 
samples were analyzed using digital imaging tools such as the ZooScan (Fig. 
11.12). Similar to the FlowCam method for phytoplankton and microzooplankton, 
organisms like krill, chaetognaths, and fish larvae were scanned and measured 
digitally. Thus, size and volume could be calculated in addition to taxonomic 
classification and abundance. The age, RNA/DNA ratios, fatty acid composition 
and C/N isotope content of commercially important fish larvae (mostly Trachurus 
capensis, Sardinops sagax, and Engraulis encrasicolus) were analyzed to indicate 
their fitness and condition.
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Fig. 11.11 Mesopelagic 
fishes, large crustaceans and 
gelatinous plankton were 
collected using a Rectangular 
Midwater Trawl (RMT 8) 

A Kongsberg EK80 hydroacoustic system was used on the first cruise (M153) 
to detect fish and biomass aggregations of smaller nekton. A configuration using a 
frequency of 38 kHz and a long pulse duration of 1.024 ms allowed the detection 
of biomass down to 750 m depth (Fig. 11.13). Smaller particles could be detected 
using a 200 kHz transducer, but only to a depth of about 150 m. By continuous 
activation of the echosounder, the hydroacoustic systems were able to document 
the vertical distribution of biomass, diel vertical migration and behavioral changes 
of the spatial distributions of organisms like zooplankton and fish. In this way, 
the mesopelagic zone could be monitored continuously, which led to the first 
documentation of deep-scattering layers (DSL) in the Benguela ecosystem between 
300 m and 600 m depth. The intense diel vertical migration between the DSL and the
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Fig. 11.12 Zooscan pictures of (a) Trachurus capensis larvae, (b) Euphausiacea, (c) Chaeto-
gnatha, (d) Amphipoda: Paraphronima sp., (e) Salpidae, (f) Pluteus larvae, (g) Copepoda 

Fig. 11.13 Diel vertical migration from the Deep-Scattering Layer over a 72 h cycle at Station 
18, sBUS, recorded by the EK80 during M153. Nautical Area Scattering Coefficient (NASC, as 
log m2 nm−2) was calculated over 10 m depth bins and 10 min intervals and serves as a proxy for 
biomass 

surface layers, dominated by certain euphausiids and mesopelagic fishes, shows the 
strong connection between the deep sea and the productive euphotic zone (see Fig. 
11.13). During the cruise SO285, a more powerful hydroacoustic system was used. 
This EK60 configuration with four frequencies (18, 38, 120 and 200 kHz) allows for 
the distinction between acoustic response curves, or echoes, of different taxonomic 
groups and can help to distinguish between acoustic biomass of jellyfish, krill and 
different species of fishes. To further identify the origin of the acoustic biomass, 
rectangular midwater trawls were carried out in specific layers of high biomass. 
These reference hauls can then be compared to the acoustic signals of these layers 
to associate biomass with certain species or groups.
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The Benguela Upwelling System is unique in its mesopelagic fish diversity, 
as it is influenced by the warm Angola and Agulhas Currents to the north and 
south, respectively, as well as the cold Benguela Current to the west (Duncombe-
Rae 2004; Lett et al.  2007; Hutchings et al. 2009), leading to a mix of tropical, 
subtropical, and temperate species of mesopelagic fish (Duncan et al. 2022). Sutton 
et al. (2017) described the Benguela as a unique global biogeographical region for 
its mesopelagic fauna, where pseudo-oceanic species dominate due to the close 
distance of the frontal region to the shelf break (Hulley 1981; Hulley and Lutjeharms 
1989), i.e., the myctophids Lampanyctodes hectoris and Symbolophorus boops, 
and the sternoptychid Maurolicus walvisensis. This ecoregion also exhibits the 
highest cephalopod diversity in the Atlantic (Rosa et al. 2008; Sutton et al. 2017). 
Influences of tropical and cold-water mesopelagic fish species can be seen within 
each of its two subsystems (Duncan et al. 2022). Few studies (Hulley 1981, 1992; 
Rubiés 1985; Hulley and Prosch 1987; Hulley and Lutjeharms 1989; Armstrong and 
Prosch 1991) have investigated the mesopelagic fish community in the Benguela. 
The most recent of these (Staby and Krakstad 2008) documented 18 families from 
five orders of mesopelagic fish using data collected during research surveys off 
Angola, Namibia and South Africa over the period 1985–2005. This study reported 
that the Myctophidae (Diaphus spp. off Angola and Lampanyctodes hectoris and 
Symbolophorus boops off Namibia and South Africa) prevailed and occurred most 
frequently in research trawls particularly over the shelf and slope, followed by the 
Sternoptychidae (predominantly Maurolicus walvisensis; also in shelf and slope 
waters), and then the Phosichthyidae (Phosichthys argenteus) that were typically 
found further offshore. 

Lampanyctodes hectoris and Maurolicus walvisensis appear to be the most 
abundant mesopelagic fishes in the region (Hulley and Prosch 1987; Staby and 
Krakstad 2008). Acoustic surveys for the period 2006–2018 conducted in the sBUS 
(Coetzee et al. 2009, 2018) indicate a combined mean biomass of 1.25 million 
tons of three mesopelagic species (L. hectoris, M. walvisensis and S. boops), on 
average split between M. walvisensis and the myctophids 2:1. Dense aggregations 
were mostly found between 31◦S and 35◦S. As compared to mesopelagic biomass 
estimates for the Humboldt Current System, a biomass of 2–11 million tons for one 
single species (Vinciguerria lucetia) was estimated beyond the shelf break along the 
whole coast off Peru (see Cornejo and Koppelmann 2006). Similar to the biomass 
of small pelagics, the biomass of mesopelagic fish appears to be low in relation to 
system primary production. 

Most studies have focused on L. hectoris and M. walvisensis (Hulley 1981; 
1992; Rubiés 1985; Hulley and Prosch 1987; Hulley and Lutjeharms 1989), and 
also on mesopelagic fish larvae (Olivar 1987; Olivar and Beckley 1994; Ekau and 
Verheye 2005). However, comparative studies of mesopelagic fish communities 
between these two dynamic upwelling systems as well as biological and ecological 
studies are lacking, especially including species of mesopelagic families such 
as Gonostomatidae, Stomiidae, Phosichthyidae, Bathylagidae, and Melamphaidae, 
among others (Staby and Krakstad 2008).
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Data collected during the TRAFFIC research surveys show that the overall 
abundance of mesopelagic fish did not differ between the northern (north of Walvis 
Bay) and southern Benguela subsystems, but species accumulation curves indicate 
that the nBUS has a higher mesopelagic fish richness (Duncan et al. 2022). However, 
there is high heterogeneity within each subsystem, which demonstrates the need for 
increased sampling of these organisms at appropriate spatial scales. Species counts 
revealed 88 mesopelagic species for the TRAFFIC campaign so far, as compared 
to 131 species listed in the South African Africana data base and 98 listed in the 
BENEFIT project (Staby and Krakstad 2008). Seven mesopelagic fish communities 
have been identified on the shelf and slope of the Benguela system. These include 
one shelf group in each of the nBUS and sBUS, as well as several offshore groups 
(Fig. 11.14). The shelf group in the sBUS has low diversity and is dominated 
by Maurolicus walvisensis, which is a shelf/slope-associated species (Hulley and 
Prosch 1987; Prosch  1991) and corroborates the findings of Coetzee et al. (2009). In 
contrast, the shelf of the nBUS had very low abundance of mesopelagic fishes and is 
dominated by gobies and jellyfishes (Roux et al. 2013; unpublished data). The only 
species that defined the shelf ecosystem assemblage in the nBUS was the myctophid 

Fig. 11.14 Modified figure from Duncan et al. (2022) showing (a) Station map (left) with clusters 
of mesopelagic fish communities based on hierarchical cluster analysis (right) using the average 
linkage method on Bray-Curtis dissimilarity matrix for Hellinger-transformed abundance data. 
Panel (b) reflects the abundance of dominant species in each cluster, corrected by the number of 
stations representative of each cluster. Those species listed contribute at least 5% to the fraction of 
mesopelagic fishes and those contributing less have been combined to the category “other” with the 
total number of species contributing to “other” in parenthesis. Abbreviations stand for DD Diaphus 
dumerilii, DH Diaphus hudsoni, DM Diaphus meadi, DT Diaphus taaningi, HH Hygophum 
hanseni, LH Lampanyctodes hectoris, LA Lampanyctus australis, SY Symbolophorus barnardi, 
SO Symbolophorus boops (all Myctophidae), MB Melanolagus bericoides (Bathylagidae), SB 
Stomias boa (Stomiidae), C Cyclothone spp. (Gonostomatidae), AH Argyropelecus hemigymnus, 
MW Maurolicus walvisensis (both Sternoptychidae), VA Vinciguerria attenuata (Phosichthyidae), 
and O other unspecified fishes
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Diaphus dumerilii. This species has a tropical distribution with populations along 
the equatorial Atlantic, both off the coast of Brazil and in the eastern Atlantic 
(Hulley 1981; Czudaj et al. 2021). Offshore stations in the sBUS were dominated 
by gonostomatid Cyclothone spp. as well as the myctophid Diaphus meadi, with the 
exception of one community, which was dominated by the myctophid Hygophum 
hanseni, one of the most abundant myctophids circumglobally, in the area of the 
Subtropical Convergence (Hulley 1981 and references cited therein). In the nBUS, 
offshore stations consist of three communities, two of which are dominated by the 
myctophid Diaphus hudsoni, and one where M. walvisensis prevails. 

Environmental factors that drive mesopelagic fish species composition in the 
Benguela are water masses, surface chlorophyll a and oxygen concentrations. As 
the nBUS is more influenced by SACW and the Angola Current, species that are 
classified as having tropical patterns can be found, such as Diaphus dumerilii and 
Diaphus taaningi (Hulley 1981), while the sBUS has a higher abundance of fishes 
with temperate and convergence patterns (Hulley 1981), such as D. meadi. Hulley 
(1992) also found that the fishing depth and temperature influenced the downslope 
distribution of species. As tropical ecosystems tend to have a higher diversity of 
organisms than temperate regions, this is also reflected in the order Stomiiformes, 
for which 15 species were identified in the sBUS, while species were identified in 
the nBUS (Duncan et al. 2022). Overall, the subsystems found in the Benguela 
Upwelling System show mesopelagic fish diversity, that is highly influenced by 
differences in water masses, oxygen concentrations and currents. However, data 
on seasonality of mesopelagic fish communities are still lacking and there is a 
need for further investigation in order to fully assess the diversity and abundance 
of mesopelagic fishes in the Benguela Current. 

Normalized biomass size spectra (Fig. 11.15) for the micronekton and macro-
zooplankton offshore components beyond the shelf break front, both indicate an 
exchange across the shelf break front, given the differences in slopes in particular 
for the nBUS as well as the influence of the shelf break Benguela jet, transporting 
anchovy larvae downstream spawned in the Agulhas Bank region. The latter is 
supported by the significant fish group normalized biomass with a body mass 
below 0.1 g wet mass (WM) in the sBUS, which mostly comprises anchovy 
larvae, E. encrasicolus. In turn, in the nBUS, euphausiids are dominating in this 
biomass range, mainly Euphausia hanseni, which are dependent on the upwelling 
regime. Given that TTE model parameters are the same for the two closely related 
subsystems, TTE is lower for the nBUS, i.e., the NBSS slope is steeper (−1.37) as 
compared to the sBUS (−1.07, Fig. 11.15). 

11.3.5 Higher Trophic Levels 

The Benguela ecosystem hosts the species spectrum typical of upwelling systems 
and supports multiple species in higher trophic levels, including crustaceans, 
cephalopods, fishes, marine mammals and seabirds. A total of 133 fish species from 
40 families are listed for the Benguela Current LME (www.Seararoundus.com).

http://www.seararoundus.com
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Fig. 11.15 Normalized 
biomass size spectra for the 
northern and southern 
Benguela subsystems 
offshore micronekton and 
macrozooplankton from 
RMT8 samples obtained 
during the M153 late summer 
cruise, March 2019. “Total” 
refers to total community 
biomass, i.e. fish plus 
macroplankton 

Some of these species (e.g., small pelagic fishes) can attain high biomass levels, 
and several are commercially important as fisheries resources including the Cape 
hakes (Merluccius capensis and M. paradoxus), Cape and Cunene horse mack-
erels (Trachurus capensis and T. trecae), and small pelagics (sardine Sardinops 
sagax, anchovy Engraulis encrasicolus and round herring Etrumeus whiteheadi). 
Substantially smaller catches of crustaceans such as rock lobster (Jasus lalandi) and 
deep-water crab (Chaceon sp.) are also commercially important (van der Lingen et 
al. 2006b; Kirkman et al. 2016; Kainge et al. 2020). Additionally, high biomasses 
of as yet not commercially targeted mesopelagic fishes, gobies and jellyfish occur 
in the Benguela, the latter two in the nBUS in particular (Lynam et al. 2006; Roux 
et al. 2013; Kirkman et al. 2016; Salvanes et al. 2018). The southern part of the 
Benguela—from Luederitz to Cape Agulhas—provides nursery grounds for most 
of that subsystem’s ecologically and economically important fish species (Kirkman 
et al. 2016), including both hake species, the small pelagics, and horse mackerel. 

11.3.6 Commercial Fishery 

Important fisheries (in terms of economic value) in the Benguela are those for Cape 
hakes (most valuable) and horse mackerels (largest volume) in the nBUS, and Cape 
hakes (most valuable) and small pelagics (largest volume) in the sBUS (Kainge et 
al. 2020). The fishing gear, product utilization and markets, average catches, and 
management strategies of these fisheries are summarized in Table 11.1, and catch 
time-series shown in Fig. 11.16. 

Historically, sardine dominated landings from 1950 to the late-1960s in both 
subsystems, with peak catches of >1 million tons in the nBUS and close to ½
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Fig. 11.16 Time series of catches of sardine, round herring, anchovy, horse mackerel and Cape 
hakes in the EEZs of Angola, Namibia and South Africa (RSA), 1950–2019. Catches for Cape 
hakes and horse mackerels off Namibia updated from Kainge et al. (2020) and for small pelagics 
from FAO (Namibian catches were included in South African catches from 1950 to 1989 and only 
specifically recorded post-independence (1990). Earlier catches are estimated by subtracting the 
South African catches (see below) from FAO catches. Catches for Cape hakes, horse mackerels 
and small pelagics off South Africa updated from DFFE (2020) and from FAO 

million in the sBUS (Fig. 11.16), but catches of this species then declined rapidly 
off both Namibia and South Africa due to overfishing (van der Lingen et al. 2006b; 
Augustyn et al. 2018). Anchovy replaced sardine in South African catches for the 
next three decades, and sardine catches increased briefly before declining again 
to recent depleted levels (DEFF 2020) arising from prolonged poor recruitment 
and increased fishing mortality (Augustyn et al. 2018). However, despite changes 
in species dominance, and including a small contribution made by round herring, 
catches by the South African small pelagic fishery have been relatively stable (Fig. 
11.16). 

The Namibian sardine fishery has essentially been replaced by the fishery for 
horse mackerels (Trachurus capensis and T. trecae), with catches of the latter 
increasing rapidly from the early 1970s to a peak of almost 660,000 t in 1983. Since 
then this has been Namibia’s major fishery in terms of volume despite a drop from 
peak catches to around 300,000 t annually since the mid-1990s (excluding 1997 
when a catch of only 125,000 t was taken). Substantially smaller (by almost an order 
of magnitude) quantities of horse mackerel (T. capensis only) are caught off South 
Africa, mostly from the Agulhas Bank off the south coast. The Namibian fishery 
for hake started in the early 1960s with catches increasing rapidly to 820,000 t in 
1972 owing to poor control and increased fishing by foreign vessels (Kainge et 
al. 2020). Improved control has resulted in sharply reduced catches, which then 
increased again during the 1980s before declining sharply again in the early 1990s 
(Fig. 11.16). Since the turn of the century however, catches have been relatively
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stable and fluctuated between 100,000 and 200,000 t. South Africa’s hake fishery 
was initiated in 1917 and increased steadily to a peak of 300,000 t in 1972, before 
declining and then leveling out between 100,000 and 150,000 t annually since the 
late-1970s. 

Overall, catches by these major sectors have shown different trajectories in the 
two subsystems. In the nBUS, catches initially increased rapidly but then decreased 
rapidly, with the highest combined catch (just over 2 million t) occurring in 1969. 
Combined annual catches in the nBUS since 2000 have been low (around 20% of the 
maximum attained) but steady. In the sBUS, catches in each sector increased more 
slowly and declines were less or did not occur because of species replacements (i.e., 
anchovy for sardine), and the highest combined catch occurred in 1988. Combined 
annual catches in the sBUS since 2000 have averaged 70% of maximum catch, albeit 
with more variability (42%–93%) than in the nBUS. 

11.4 Conclusion 

Like every upwelling system, the Benguela system reacts to changes in physical 
forcing and is expected to be responsive to present and future climate changes, as 
it is extremely sensitive to global, regional, and local fluctuations in atmospheric 
circulation patterns (Bakun 1990; Bakun et al. 2010; Demarcq 2009). Various 
coastal upwelling systems have undergone dramatic changes (called ecosystem 
regime shifts) in their ecosystem structure and fishery productivity in the past 
(Alheit and Bakun 2010; Cury and Shannon 2004; Finney et al. 2010). These 
changes are not thought to have been triggered exclusively by human actions, but 
also by global or regional physical drivers (Overland et al. 2010; Rykaczewski and 
Checkley 2008). Although some models differ in their implications to projected 
climate change (Wang et al. 2010), most calculations and assessments that address 
the consequences of potential climate change in coastal upwelling areas postulate an 
intensification of physical forcing (wind) that results in stronger, more persistent, or 
more widespread upwelling, particularly in the poleward regions of these systems 
(Bakun 1990; Bakun et al. 2010). 

We summarized TRAFFIC results together with data from the literature and 
previous projects in a synoptic presentation to shed light on trophic transfer effi-
ciencies in the nBus and sBUS. First results indicate that trophic transfer efficiency 
can be modified by metabolic processes and behavior of the animals, for instance 
in terms of predator-prey interactions. Schukat et al. (2021) compared life history 
traits of dominant calanoid copepods in the Humboldt Current System (HCS) with 
those in the nBUS to infer effects of behavior on trophic transfer efficiency. The 
authors concluded that higher transfer efficiency within the HCS was correlated with 
the lack of ontogenetic vertical migration of Calanus chilensis, making it easily 
accessible to epipelagic predators during all life stages. In contrast, in the nBUS, 
the large copepod Calanoides natalis tends to perform vertical migration through 
the oxygen minimum zone, taking it out of reach for hypoxia-sensitive predators 
and hence preventing efficient transfer toward higher trophic levels (Schukat et al.
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2021). To establish a holistic view of the carbon transfer processes information from 
other ecological components have to be added. For example, the role of bacteria 
and DOC fluxes is still not understood. DOC export is estimated to account for 
around 20% of the global passive export production (Roshan and DeVries 2017). 
Model estimates of DeVries and Weber (2017) indicate that large plankton produce 
primarily labile DOC, which is rapidly remineralized within several days, whereas 
small plankton produce more non-labile DOC that persists for years and contributes 
to carbon export and sequestration. Investigations on small-sized plankton are in 
progress. At the other side of the size spectrum, higher trophic levels other than fish 
seabirds and marine mammals should be given more attention to fully assess trophic 
transfer efficiency. 
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Glossary of Organizations and Projects 

[The below list is limited to those organizations and projects cited in this chapter, 
and is not intended to represent a comprehensive overview of all marine initiatives 
in southern Africa] 

Organizations 

NATMIRC National Marine information and Research Center, Swakopmund, 
Namibia 

BCC Benguela Current Convention, Swakopmund, Namibia 
UNAM University of Namibia, Windhoek and Henties Bay, Namibia 
UCT University of Cape Town, Cape Town, South Africa 
DFFE Department of Forestry, Fisheries and the Environment, Cape 

Town, South Africa 

Projects 

BIOTA Africa BIOdiversity Monitoring Transect Analysis in Africa. 
The German Federal Ministry of Education and Research 
(BMBF) was open to fund the initiative, meanwhile
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several African countries and partner institutions added 
funding 

NAMIBGAS funded by BMBF 
BENEFIT Benguela Environment Fisheries Interaction and Train-

ing Programme, funded by a number of local, regional 
and international research and development sources 

GENUS (2009–2015) Geochemistry and Ecology in the Namibian Upwelling 
System, funded by BMBF 

TRAFFIC (2019–2022) Trophic Transfer Efficiency in the Benguela Current, 
funded by BMBF 
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