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Abstract 

Fruit production is an important part of the gross domestic product for many countries 

around the world especially to those who have a strong focus on agriculture. However, long-

term maintenance and yield stability of fruit production may be threatened by the ongoing 

climate change and its consequences like extended drought periods, heavy rain events, and 

floodings. Genome editing, with its progressive technological developments, offers 

opportunities to adapt relevant fruit plant species to new climatic conditions. Among modern 

genome editing techniques, CRISPR/Cas, in particular, has the potential to support breeding 

for those fruit plant species with extended breeding cycles, e.g., perennial fruits. In this 

review, we discuss CRISPR/Cas and other genome editing techniques in detail and how these 

techniques can be applied to support the breeding of fruit plant species for adaptation to 

changing climates. The chronological history of CRISPR/Cas9 systems, their associated 

computational tools, genomic data sources, transformation methods along with their delivery 
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vehicles, quality improvement, environmental-stress resiliency, limitations, and future 

perspectives will also be discussed with respect to securing future global fruit production. 

Keywords: CRISPR/Cas; TALEN; ZFN; Fruit Plants; Genome Editing Systems 
 

Introduction  

Global climate change patterns are one of the main concerns for developing 

agricultural systems and the food insecurity problem. Greenhouse emissions and the 

subsequent accumulation of these gases in Earth’s atmosphere are one of its leading causes. 

Even with taking proper measures to control the emissions, the damage that has already been 

done is going to take millennia to fully recover. All of these abrupt changes had a negative 

impact on the outputs of agricultural systems all around the world. As a result of droughts 

and floods, the global food supply is constantly declining (Nunez et al. 2019). Agriculture 

accounts for about 16.47% of China’s total gross domestic product (GDP). Similarly, for 

India, it's 20.19%, for the United States 5.4%, for Turkey 5.54%, for Mexico 3.89%, and, for 

Brazil, it’s a staggering 29%. All these countries are the top fruit producers globally and a 

significant portion of their GDP depends upon agriculture and agriculture-related industries. 

It is of foremost importance to develop fruit crops that are resilient to these environmental 

changes. 

 Our current gene editing systems can tackle these climate-related consequences by 

modifying the fruit plants in such a way that they adapt to the new climate by rendering their 

effects neutral. The gene editing method involves precise tampering with the DNA that leads 

to the knockdown of one or a set of genes which mostly leads to the loss of function of a trait. 
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On the contrary, it can also be used to precisely insert our gene of interest that results in 

knock-in mutants. The well-known and researched gene editing systems include Zinc Finger 

Nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and 

CRISPR/Cas (Khalil 2020). The CRISPR/Cas systems lead the packs in terms of precision, 

accuracy, and efficiency (Chakrabarti et al. 2019). All of these gene editing systems have 

paved a streamlined way to develop climate-smart or resilient plants. 

Climate-smart fruits have also proven to be the great wall against food insecurity 

problems worldwide (Kole 2020). As an example, banana has been successfully made 

resistant to abiotic stress by targeting the semi-dwarfed trait. Here, CRISPR/Cas9 was used 

to modify five GA20ox2 homologous genes in banana (Ma04g15900, Ma06g27710, 

Ma08g32850, Ma11g10500, and Ma11g17210). These gibberellin biosynthesis genes have 

been knocked out to establish semi-dwarfism which makes the banana plant more resistant 

to lodging during severe climate conditions (Shao et al. 2020). Worldwide fruit production 

has increased a little bit since these gene editing systems have gone mainstream development. 

The latest global fruit production statistics can be visualized in the graph illustrated in Figure 

1.  
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Figure 1: Descriptive statistics of global fruit production from the data taken in year 2020. 
The graph shows the production in million metric tons including the world’s major fruits like 
banana, watermelon, apple, and orange, to minor contributors raspberry, fig, and cashew 
apple.  

 

On the other hand, New Plant Breeding Techniques (NPBTs) are based on highly 

advanced molecular methods with more precision and accuracy than ever before. Both old 

and new plant breeding strategies improved concerning quality, quantity, and climate 

resilience. Similarly, to achieve the targets in fruits, different NPBTs have been utilized, e.g., 

genome-assisted breeding (GAB), mutation breeding, transgenic breeding, and currently, 

genome editing plant improvement systems (Salonia et al. 2020; Campoy et al. 2020; A. 

Brown, Carpentier, and Swennen 2020; Boudichevskaia et al. 2020; Basu 2020; Rugienius 

et al. 2020; Ramesh, Arunachalam, and Rajesh 2020; Zambounis et al. 2020; Delrot et al. 

2020a; Gogorcena et al. 2020; Delrot et al. 2020b). 
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This review focusses on the recent developments and efforts of these genome editing 

technologies, especially CRISPR/Cas systems and their applications in the development of 

climate-smart fruit crops, and to achieve secure future global food production goals with 

limitations and new opportunities that lie ahead of us. 

A Brief History of Genome Editing Systems and their Mechanisms 

 In the past few years, several advanced genome editing tools have been developed that 

have paved the way to take genetic engineering to a new level of precision and specificity. 

These systems have different levels of priority in their utilization in different experiments 

due to variations and differences in their properties. The journey of genome editing begins 

with the development of the most notable systems including mega-nucleases and Zinc Finger 

Nucleases (ZFNs) (Y. G. Kim, Cha, and Chandrasegaran 1996). Then, Transcription 

Activator-Like Effector Nucleases (TALENs) came into action in 2009 and were identified 

as an efficient and highly specific genetic engineering tool, honored as “tool of the year” in 

2011 (“Method of the Year 2011” 2011; Boch et al. 2009).  

The CRISPR/Cas genome editing system was discovered in bacteria and utilized in 

plant sciences in 2013 (Shan et al. 2013; Nekrasov et al. 2013; Miao et al. 2013; W. Jiang et 

al. 2013; Xie and Yang 2013; Feng et al. 2013; J. F. Li et al. 2013a). Currently, several 

advanced versions of the CRISPR/Cas system including cytosine base editor (CBE) that 

allows C to T conversions, adenine base editor (ABE) that allow A to G conversions, prime 

editors, CRISPR-Transposases, CRISPR activation (CRISPRa), CRISPR (CRISPRi), 

Programmable Addition via Site-specific Targeting Elements (PASTE) (Ioannidi et al. 2021), 

etc., have been developed and are being used for improvement, acceleration of plant breeding 
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programs, and functional characterization of newly identified genes. A general mechanism 

of restriction enzyme cutting in action and the timeline of all other genome editing systems 

preceding CRISPR/Cas systems have been given in Figures 2, 3, 4, and 5 in respective 

chronological order. Furthermore, a detailed and contrasting comparison of genome editing 

systems like Oligonucleotide-Directed Mutagenesis (ODM), ZFNs, TALENs, and 

CRISPR/Cas systems are provided in Table 1. 

 

Figure 2: Restriction Enzymes (RE): the first true genome editors (1970) 
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Figure 3: Zinc Finger Nucleases (ZFNs): the masters of recognition (1985) 

 
Figure 4: Transcription Activator-Like Effector Nucleases (TALENs): the experts of single 
nucleotide resolution (2010) 
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Figure 5: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) / CRISPR-
associated protein 9 (Cas9): the revolution of precision genome editing (2012) 

 

Table 1: Comparison of genome editing techniques in plants  

Properties ODM ZFNs TALENs 
CRISPR/Cas

9 

Reference(s

) 

Multiplexin

g Capability 
Difficult Difficult Difficult Possible 

(Mao et al. 

2013) 

(Noman, 

Aqeel, and 

He 2016) 

Mutation 

Rate 
Medium High Medium Low 

(Gaj, 

Gersbach, 

and Barbas 

2013) 
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Mode of 

Action 

Conversion 

within the 

target region 

(sense 

strand 

directed) 

Breaks in 

target DNA 

(Double 

strand) 

Breaks in 

target DNA 

(Double 

strand) 

Breaks in 

target DNA 

(Double 

strand)  

(Mao et al. 

2013) 

Cloning Not required Necessary Necessary 
Not Required 

(Usually) 

(Sauer et al. 

2016) 

Target 

Sequence 

Length [bp] 

70-86 26-34 26-57 20-22 
(F. Chen et 

al. 2017) 

Targeting 

Efficiency 

Relatively 

high 
High High Very high 

(Gaj, 

Gersbach, 

and Barbas 

2013) 

Component

s 

Chimeraplas

t 

Zn finger 

FokI 

nuclease 

domain 

(non-

specific) 

TALE 

DNA-

binding FokI 

nuclease 

domain 

(non-

specific) 

Cas9 

proteins, 

sgRNA 

(V. Kumar 

and Jain 

2015) 

Structural 

Protein 

Compositio

n 

Non-protein 
Proteins 

(dimeric) 

Proteins 

(dimeric) 

Protein 

(monomeric) 

(J. F. Li et 

al. 2013b) 

Catalytic 

Domains 

Catalytic 

domain 

absent 

Restriction 

endonucleas

e FokI 

Restriction 

endonucleas

e FokI 

HNH and 

RuvC 

(Sauer et al. 

2016) 
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Large-Scale 

Libraries 
Difficult Difficult 

Very 

Difficult 
Possible 

(Hsu et al. 

2013) 

Engineerin

g Steps for 

Protein 

Not required Required Required Required 
(Cho et al. 

2013) 

 

 

Key Aspects of Fruit Plant Modification through Genome Editing Systems 

Generally, genome editing technology can be used mainly for any of the following 

two purposes. First, for plant modification or the development of their breeding material, and 

second is to characterize the function of genes in plants enabling also indirect plant 

improvement if the characterized genes are considered in conventional breeding. However, 

there are several key steps involved in CRISPR/Cas experiments to fulfill any of the 

mentioned goals. To go for either option, in fruits, the first step is the availability of the gene 

sequence of the target species. In this regard, genomes of various fruit species are freely 

available and can be used according to our needs and objectives. An exhaustive list of the 

genomes of major fruit species and their accompanying details have been supplied in Table 

S1 (Supplementary File 1) (Alioto et al. 2020; Velasco et al. 2010; F. Jiang et al. 2019; Dash 

and Rai 2016; Argout et al. 2010; Lantican et al. 2019; Xiao et al. 2017; Scalabrin et al. 2020; 

Al-Mssallem et al. 2013; Chagné et al. 2014; Mori et al. 2017; Mittal et al. 2020; Q. gang 

Zhu et al. 2019; Huang et al. 2013; Arumuganathan and Earle 1991; Ming et al. 2008; Verde 

et al. 2013; Wu et al. 2013; Ming et al. 2015; H. Xu et al. 2018; Liu et al. 2020; Luo et al. 

2020; J. Wang et al. 2020; Q. Xu et al. 2012; Jaillon et al. 2007; Martínez-García et al. 2016; 
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He et al. 2013). The second step involves the selection of target gene mining from the genome 

and then a specific region to be targeted by the CRISPR/Cas genome editing system (H. Li 

et al. 2020; Yi Zhang et al. 2018; Tabassum et al. 2021).  

One of the ways to identify the target gene for plant improvement is a sound literature 

review. Different susceptibility or sensitivity-causing genes can be identified from available 

literature, partly transferred from other plant species, and can be targeted by a CRISPR/Cas 

approach in fruits for their improvement. The transferability of candidate genes for genome 

editing in a selected plant species appears to be particularly promising if functional domains 

of the related protein match in the source and target species. For this purpose, functional 

domains can be identified based on the gene or amino acid sequences with freely available 

online tools and analyzed with respect to their function such as CRISPRscan, CCTop, and 

Cas-OFFinder. A detailed list of modern mainstream single guide RNA (sgRNA) designing 

tools has been provided in Table 2. Moreover, target genes can also be identified through 

differential transcriptome analysis of plants under certain stress treatments. Afterward, the 

sgRNAs are cloned into a suitable CRISPR/Cas vector. Then, that vector is transformed into 

the targeted plant species through direct or indirect transformation methods. Finally, 

CRISPR/Cas-edited mutant plants are screened and further processed till the possible 

commercialization step. This whole procedure may vary from 3-5 years, depending on the 

species and transformation method (Gogorcena et al. 2020; Delrot et al. 2020a; Zambounis 

et al. 2020; Ramesh, Arunachalam, and Rajesh 2020; Rugienius et al. 2020; Basu 2020; 

Boudichevskaia et al. 2020; A. Brown, Carpentier, and Swennen 2020; Campoy et al. 2020; 

Delrot et al. 2020b). 
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Table 2: CRISPR/Cas sgRNA Designing Tools  

Tool Web Address  Reference(s) 

CRISPRscan http://www.crisprscan.org/ 

 (Moreno-

Mateos et al. 

2015) 

CHOPCHOP https://chopchop.cbu.uib.no/ 
 (Montague 

et al. 2014) 

WU-CRISPR https://crisprdb.org/wu-crispr/ 

 (Wong, Liu, 

and Wang 

2015) 

CRISPRdirect http://crispr.dbcls.jp/ 
 (Naito et al. 

2015) 

CRISPR 

MultiTargeter 
http://www.multicrispr.net/ 

 (Prykhozhij 

et al. 2015) 

E-CRISP http://www.e-crisp.org/E-CRISP/ 

 (Heigwer, 

Kerr, and 

Boutros 

2014) 

CCTop https://cctop.cos.uni-heidelberg.de/ 
 (Stemmer et 

al. 2015) 

Cas-

OFFinder 
http://www.rgenome.net/cas-offinder/ 

 (Bae, Park, 

and Kim 

2014) 

 

Delivery of CRISPR/Cas constructs in fruit plants through direct and indirect 

transformation methods 

 CRISPR/Cas systems have caused a paradigm shift from ZFNs and TALENs through 

their flexibility and ease of use in many complex and diverse scenarios. The dispersion of 
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these site-specific nuclease systems has repurposed many biological research areas. Target 

discovery of disease and associated mechanisms, transcriptional trans-modulation, and the 

development of transgenic hybrid species of plants are the most prominent of them. One of 

the primary hurdles that researchers have to deal with is the delivery of the developed 

CRISPR/Cas constructs into the host of interest (Lino et al. 2018). Over the years, many 

methods have been developed and improved to deal with CRISPR/Cas payload delivery 

according to the varying needs of the situation and hence diverse methodologies and 

protocols. These advanced methods have merits and demerits in terms of efficiency and other 

important relevant factors.  

The components of CRISPR/Cas delivery systems have been categorized (Lino et al. 

2018) into two groups: 

1. Cargo 

2. Delivery Vehicle  

Cargo has been sub-divided (Lino et al. 2018) and has exploited the following three 

approaches: 

I. DNA plasmid encoding a sgRNA and Cas protein  

II. Cas translocation-mediating mRNA and a separate sgRNA 

III. Ribonucleoprotein (RNP) complex (sgRNA + Cas protein) 

The mediation of the above three cargoes is done by the delivery vehicles along with 

affecting factors like the usability of system utilizing both the in vivo and in vitro conditions. 

The system’s usability is a very important factor to consider while dealing with a cargo-
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mediating delivery vehicle. For example, molecular compatibility and cross-checking 

between cargo and the delivery vehicles are very important in the case of negatively charged 

oligonucleotides compared to the positively charged Cas9 proteins. Cas9:sgRNA RNPs 

exhibit positive and negative partial charge, which may also be affected by pH. Moreover, 

the concentration of Cas proteins can be mediated by using DNA instead of using 

recombinant protein as a direct input (Sun et al. 2015). Considering all the factors, it is still 

impossible to predict the number of effectively interacting Cas units in a specific time frame 

of a given assembly system.  

The properties and expansive details of all the up-to-date delivery methods along with 

their important respective properties have been provided in Table S2 (Supplementary File 2) 

(Matano et al. 2015; Ousterout et al. 2015; J 1995; Crispo et al. 2015; Raveux, Vandormael-

Pournin, and Cohen-Tannoudji 2017; Dong et al. 2015; Guan et al. 2016; Maggio et al. 2016; 

Maddalo et al. 2014; Tabebordbar et al. 2016; Truong et al. 2015; Platt et al. 2014; Roehm et 

al. 2016; Koike-Yusa et al. 2013; Mout et al. 2017; Ebina et al. 2013; Kennedy et al. 2014; 

Schwank et al. 2013; Horii et al. 2014; Zuris et al. 2014; Sun et al. 2015; Axford, Morris, and 

McMurry, n.d.; D’Astolfo et al. 2015; Bates and Kostarelos 2013; Nakamura et al. 2012; Su 

et al. 2017; Gonzalez Porras et al. 2016; Teng et al. 2016; Brito et al. 2008). Apples and 

grapevines are one of those fruit crops that have been successfully edited by exploiting 

vector-free transformation methods (Malnoy et al. 2016). The Agrobacterium-mediated 

transformation has also been used as a delivery method in apple, banana, cacao, citrus, 

grapevine, kiwi, and strawberry (Nishitani et al. 2016b; Naim et al. 2018; Fister et al. 2018b; 

F. Zhang et al. 2017; Nakajima et al. 2017; Z. Wang et al. 2018b; Zhou, Wang, and Liu 2018).  
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Exploiting the CRISPR/Cas system in fruit plants for biotic and abiotic 

stress management 

 Though the work of genome editing is challenging in fruits, there are certain applications 

of the CRISPR/Cas genome editing system that have been successful in modifying fruit crops 

for various purposes. For example, many fruits have been targeted via the CRISPR/Cas 

system and improved their response to various environmental stresses, yield, and quality to 

meet the global need for food and nutrition. The successfully modified fruit plant species 

include apple, banana, kiwi, fig, pear, orange, and papaya. All of these have been modified 

for one or more than one gene. A detailed list of CRISPR-edited fruits along with their loci, 

their type of modification, mode of transformation, and plant parts under modification have 

been provided in Table 3. Although Agrobacterium-mediated transformation and RNP 

transformation methods pave the way to the development of genome-edited mutants in terms 

of identification, these are indistinguishable from any other mutants produced by mean of 

other genetic modification methods like physical (UV-rays, X-rays, gamma rays, and ion 

beams) and chemical methods (alkylation agents, base analogs, and acridine dyes). 

Table 3: CRISPR/Cas genome editing in fruits. The plants are transformed with 

Agrobacterium-mediated transformation protocols. 

Fruits Crop 

Loci 

being 

Targeted 

Type of 

Modification(s) 

Tissue for 

Modification 
Reference(s) 

Apple uidA 
Activity of β-

glucuronidase 
Leaf tissue (Peer et al. 2015) 
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 PDS 
Biosynthesis of 

carotenoids 
Leaf tissue 

(Nishitani et al. 

2016a) 

 IdnDH 
Tartaric acid 

biosynthesis 
Leaf tissue 

(Osakabe et al. 

2018) 

 
DIPM (1, 

2, and 4) 

Resistance to 

fire blight 
Protoplasm 

(Malnoy et al. 

2016) 

Banana MaPDS 
Biosynthesis of 

carotenoids 

Cell suspension 

(embryogenic) 
(Kaur et al. 2018) 

 eBSV 

Viral 

pathogenesis 

control 

Explant 

(epicotyl) 

(Tripathi et al. 

2019) 

Kiwifruit acPDS 
Biosynthesis of 

carotenoids 
Leaf tissue 

(Z. Wang et al. 

2018a) 

Sweet 

Orange 
CsPDS 

Biosynthesis of 

carotenoids 
Leaf tissue (Jia and Nian 2014) 

 DMR6 

Resistance to 

Huanglongbing 

disease 

Explant 

(epicotyl) 

(“Regulation of 

Citrus 

<em>DMR6</Em> 

via RNA 

Interference and 

CRISPR/Cas9-

Mediated Gene 

Editing to Improve 

Huanglongbing 

Tolerance,” n.d.) 

Fig uidA 
Activity of β-

glucuronidase 
Leaf tissue (Peer et al. 2015) 
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Wanjincheng 

Orange 

CsLOB1 

(promoter 

Sequence) 

Resistance 

against citrus 

canker 

Explant 

(epicotyl) 
(Peng et al. 2017a) 

Pear TFL1 Early flowering 
Cell suspension 

(embryogenic) 

(Charrier et al. 

2019) 

Coffee CcPDS 
Biosynthesis of 

carotenoids 

Cell suspension 

(meristematic) 

(Breitler et al. 

2018) 

Cacao TcNPR3 

Enhanced 

defense 

response 

Leaf tissue (Fister et al. 2018a) 

Grapevine VvPR4b 
Downy mildew 

resistance 

Proembryogenic 

mass (PEM) 

cells 

(M. Y. Li et al. 

2020) 

 VvMLO3 
Powdery 

mildew 
Leaf tissue (Wan et al. 2020) 

Papaya cp 

Resistance 

against Papaya 

ringspot virus 

immature 

zygotic 

embryos 

(Fitch et al. 1992) 

 

 CRISPR/Cas genome editing is also being used to produce and develop those varieties 

of fruits that are resistant to multiple biotic stress situations posed by the environment. For 

example, papaya has been made resistant to its infamous pathogen named papaya ringspot 

virus (PRSV). The virus uses insects mainly aphids as a transmission vector. The biolistic 

transformation approach was exploited to develop the transgenic ‘SunUp’ cultivar from the 

original ‘Sunset’ cultivar by utilizing genes isolated from a closely-related Hawaiian papaya 

strain (Fang et al. 2020). To achieve the desirable yellow flesh of papaya that the new cultivar 
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was lacking, it was further crossed with a non-engineered ‘Kapoho’ cultivar. The resulting 

cultivar was also resistant to the papaya ringspot virus (Fitch et al. 1992; Conover 1964). 

Similarly, Citrus species as one of the more economically important fruit plant groups are 

susceptible to citrus canker. Targeted modifications at the 5’-regulatory region have been 

made in the effector-binding element (EBEPthA4) of the Citrus sinensis Lateral Organ 

Boundaries 1 (CsLOB1) gene that is responsible for the susceptibility. When the promoter of 

the gene was disrupted, it was observed that the overall resistance was improved. Complete 

resistance was achieved by completely deleting the EBEPthA4 promoter sequence from both 

CsLOB1 alleles (Jia et al. 2017a; Peng et al. 2017b).  

Furthermore, through CRISPR/Cas-mediated gene disruptions , cacao has been made 

resistant to the fungus Phytophthora tropicalis, grapevine against Botrytis cinerea, and 

grapefruit against citrus canker (Jia et al. 2017b, 2016; X. Wang et al. 2018). Furthermore, 

Bayoud disease in date palms can also be tackled successfully using CRISPR/Cas 

manipulation of multiple date palm genomic loci through the universal tRNA-based approach 

(Sattar et al. 2017; Jaganathan et al. 2018). Plant productivity and survival are negatively 

impacted by abiotic stresses posed by the environment, especially and increasingly by climate 

change. Many genes have been identified to regulate the adaptive mechanisms related to 

abiotic stresses like heat, cold, salinity, and drought (Bressan, Bohnert, and Zhu 2009). For 

example, pear (Pyrus communis) has been modified to produce multiple abiotic stress 

tolerances at once. This has been made possible by the overexpression of the apple-derived 

spermidine synthase gene (MdSPDS1) modulated by the application of Agrobacterium-

mediated transformation that alters the titers of polyamines in pear fruits (Wen et al. 2008). 
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Similarly, apple has been made tolerant to cold, salt, and drought stress by overexpressing its 

MdCIPK6L gene that encodes specific CIPKs (CBL-interacting protein kinases) (Y. Wang 

et al. 2016; Kaur, Awasthi, and Tiwari 2020). 

 CRISPR/Cas genome editing has been used to control the browning in apple fruits. The 

browning of the apple’s flesh happens when the underlying phenolic compounds are oxidized 

by polyphenol oxidases (PPOs). An approach was successful to develop multiple varieties of 

apples by using a CRISPR/Cas system to silence the genes mediating the activity of PPOs 

(Butiuc-Keul et al. 2022). Similarly, as a proof of concept of the great potential of the 

CRISPR/Cas system, Pinkglow™ pineapple was developed by modifying the carotenoid 

synthesis pathway through the expression of the tangerine (Citrus reticulata) PSY gene. The 

pink color is due to the subsequence accumulation of lycopene that is formed as an 

intermediate during general carotenoid synthesis. In tomatoes, enhancements have been 

made to their floral architecture and fruit size through mobile CLV3 peptide (regulates floral 

stem cells) promoter edited by CRISPR/Cas (Rodríguez-Leal et al. 2017). 

 

Limitations and their possible solutions in engineering climate-smart fruit plants  

 One of the major concerns that limit the efficacy of CRISPR/Cas systems are undesirable 

off-target effects, meaning unintended editing events. They can be caused by PAM 

(protospacer adjacent motif) sequences and sgRNA binding sites besides the intended target 

when implemented in vivo. In silico techniques are readily utilized to precisely predict these 

off-target cleavages but are limited by the exceptionally complex interaction of epigenetic 

modifications that are almost impossible to predict with the current technological standards. 
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Moreover, these programs are limited to the examination of only homologous genes (Yee 

and Yee 2016; H. C. Yang and Chen 2018; Suleiman, Saedi, and Muhaidi 2021; Zischewski, 

Fischer, and Bortesi 2017). High-throughput NGS or genome-wide next-generation 

sequencing can contribute to reducing off-target effects by designing extremely target-

specific sgRNAs using existing gene sequences. If off-targets cannot be completely excluded, 

gene sequences can at least be used to predict possible off-targets, which can then be checked 

for unintended editing via DNA sequencing. One of the strategies that can be applied directly 

to a CRISPR/Cas system is reducing the functional time frame of activity as well as target 

locus alterations and enhancing the specificity of nuclease cleavages. The newly engineered 

CRISPR-associated proteins like Sniper-Cas9, HF-Cas9, eSpCas9, and HypaCas9 exhibit on-

target specificity with great efficiency reducing the off-target effects (Hu et al. 2018; J. K. 

Lee et al. 2018; J. S. Chen et al. 2017; J. Lee et al. 2019; Davis et al. 2015). Online tools such 

as Cas-OFFinder and CCTop can be utilized to predict potential off-targets involved in the 

intended CRISPR/Cas approach (Bae, Park, and Kim 2014; Stemmer et al. 2015). 

 Furthermore, the availability of PAM sequences at the locus of interest is limited. This 

restriction can be circumvented by using variants of CRISPR-associated proteins such as 

Cas12a and SpCas9 or alternative PAMs with lower efficiency. The indel target specificity 

can be further enhanced by exploiting artificial intelligence-mediated predictions and 

analysis (H. K. Kim et al. 2018; Kleinstiver et al. 2015; Gao et al. 2017). To obtain single 

point mutations without the induction of DNA double strand breaks, base editors are 

exploited because of their unmatched efficiency. These include cytosine and adenine base 

editors that convert C-G base pairs to T-A pairs and A-T pairs to G-C pairs, respectively 
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(Gaudelli et al. 2017; Komor et al. 2016; Rees and Liu 2018; Y. Yang et al. 2021). Other 

prominent limitations hindering the efficacy of CRISPR/Cas systems are mosaicism, RNA 

instability, and Cas-associated immunogenicity (P. Kumar et al. 2020). The mosaicism 

problem can be tackled through the proper optimization of the transformation pathway being 

used for the induction of faster editing. RNA instability can be corrected by avoiding RNase 

contaminations in the process. Furthermore, it has been shown that the Cas proteins-

associated immunogenic response can be reduced by the induction of two consecutive 

mutations in the epitope anchor residues (Ferdosi et al. 2019). 

Conclusions and Future Perspectives 

 The original prokaryotic defense system against bacteriophages, i.e., modern 

CRISPR/Cas technology, holds virtually infinite potential and clings tightly to an immensely 

positive future outlook. It has already affected and turned the face of global food insecurity 

by a mile due to its easiness of use in developing multiple climate-smart fruit crops. Through 

the precision and accuracy of CRISPR/Cas technology, researchers can implement the 

features of C4-plants in C3-plants to cope with the yield losses due to the deficiency in the 

overall photosynthesis rate, especially in warmer climates (Cui 2021; N. J. Brown et al. 

2011). Although, the underlying mechanisms of C4-plants are highly complex (Sedelnikova, 

Hughes, and Langdale 2018; Furbank 2016; H. Zhu, Li, and Gao 2020; J. H. Lee et al. 2020; 

Yingxiao Zhang et al. 2019), recent important developments have paved to the way for the 

new C4-plants to emerge (Lundgren et al. 2016; Newell et al. 2010; Brutnell et al. 2010). 

Moreover, CRISPR biosynthetic pathway modification is already being applied to fruits like 

apples, bananas, citrus, pineapple, pear, fig, and kiwi to introduce novel mechanisms like 
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carotenoid biosynthesis as a proof-of-concept and regulation in the activities of different 

enzymes. These modifications lead the way in achieving resistance against climate change 

by enhancing the biotic and abiotic stress tolerance profile in fruit crops (South et al. 2019; 

Narayanan et al. 2019; Taylor et al. 2019). The recent advances in base and prime editing 

have demonstrated that the capacity and scope of CRISPR/Cas technology are still expanding 

(Grünewald et al. 2020; Lin et al. 2020; Anzalone et al. 2019). 

 Furthermore, a lot of potential of CRISPR/Cas systems has been exploited to make fruits 

resistant to biotic and abiotic stresses of the environment along with enhancing their overall 

nutritional value. All of these developments are ultimately necessary especially when the 

world population is rising at an alarming rate along with climate change. To get the most out 

of these revolutionary genome editing technologies, the general population also needs to be 

guided about the long-term benefits and perks of using climate-smart fruits generated through 

CRISPR/Cas and other systems provided that their concerns are justified. Maybe in the 

distant future, this technology morphs into a new form with its current precise, accurate, and 

efficient editing and without its limitations, which will surely help to use the uncharted and 

gigantic genetic resources of plants. 
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