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Abstract. Simulation models are tools commonly used to
predict changes in soil carbon stocks. Prior validation is es-
sential, however, for determining the reliability and applica-
bility of model results. In this study, the process-based bio-
geochemical model MONICA (Model of Nitrogen and Car-
bon dynamics on Agro-ecosystems) was evaluated with re-
spect to soil organic carbon (SOC), using long-term mon-
itoring data from 46 German agricultural sites. A revision
and parameterisation of equations, encompassing crop- and
fertiliser-specific C contents and the abiotic factors of soil
temperature, soil water and clay content, were undertaken
and included in the model. The modified version was also
used for a Morris elementary effects screening method,
which confirmed the importance of environmental and man-
agement factors to the model’s performance. The model
was then calibrated by means of Bayesian inference, us-
ing the Metropolis–Hastings algorithm. The performance of
the MONICA model was compared with that of five estab-
lished carbon turnover models (CCB, CENTURY, C-TOOL,
ICBM and RothC). The original MONICA model systemat-
ically overestimated SOC decomposition rates and produced
on average a ∼ 17 % greater mean absolute error (MAE)
than the other models. The modification and calibration sig-
nificantly improved its performance, reducing the MAE by
∼ 30 %. Consequently, MONICA outperformed CENTURY,
CCB and C-TOOL, and produced results comparable with
ICBM and RothC. Use of the modified model allowed mostly
adequate reproduction of site-specific SOC stocks, while the
availability of a nitrogen, plant growth and water submodel
enhanced its applicability when compared with models that
only describe carbon dynamics.

1 Introduction

The historic conversion from native to agriculturally man-
aged soils released 116 Pg of soil organic carbon (SOC) as
CO2 to the atmosphere (Sanderman et al., 2018). Current
projections estimate that unless no measures are taken, the
decline in SOC stocks will continue, further intensifying the
release of CO2 from soils (Riggers et al., 2021; Zhao et al.,
2021). However, the sequestration of atmospheric CO2 in
the soil is a climate change mitigation strategy that has sub-
stantial potential (Poeplau and Don, 2015; Fuss et al., 2018;
Amelung et al., 2020). In particular, croplands are promis-
ing landscapes, since they are depleted in SOC and gener-
ally accessible for cultivation practices (Poeplau and Don,
2015; Sanderman et al., 2018). Researchers have proposed
various agronomic systems, including agroforestry, reduced
tilling and perennial and cover cropping, to optimise agricul-
tural opportunities for sequestering carbon and thus partly re-
store the historically lost SOC (Smith et al., 2005). Estimates
of the global capacity of agricultural soils for sequestering
carbon range from 2 to 5 Pg C a−1 (Fuss et al., 2018). How-
ever, identifying and promoting site-specific measures in a
highly diverse agricultural landscape encompassing more
than 570 million farms globally and affecting ∼ 36 % of the
Earth’s terrestrial surface is a challenge (Lowder et al., 2016;
Amundson and Biardeau, 2018). Despite the uncertainty in
their practicability, international initiatives, such as the “4
per 1000” initiative, and scientific working groups advise the
rapid modification of agricultural systems so that they act as
carbon sinks (Minasny et al., 2017; Amelung et al., 2020). In
contrast, some scientists focus on the potential for underes-
timated detrimental effects and advocate a well-thought-out
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approach to sequestering SOC on a large scale (Sommer and
Bossio, 2014; Lugato et al., 2014; Amundson and Biardeau,
2018; Murphy, 2020).

Process-based models are tools that can be used to as-
sess mitigation capabilities of agricultural systems for differ-
ent environmental and management conditions and to anal-
yse disagreements and accuracy of alternative estimation ap-
proaches. They are designed to represent the behaviour of
natural systems, based on a selection of mathematical formu-
lations of generally accepted biophysical principles. Carbon
turnover models predict the dynamics of SOC in response
to management and climate. Agroecosystem models com-
bine carbon and nitrogen turnover routines with algorithms
that represent soil water dynamics, greenhouse gas emissions
and crop growth and allow the simultaneous prediction of
multiple variables from different domains of the soil–plant–
atmosphere continuum. Due to the explicit simulation of crop
growth in response to weather, site conditions and crop man-
agement, agroecosystem models exhibit a clear advantage
over simple soil carbon turnover models, as they can trans-
late any changes in conditions that affect biomass input to
soil, e.g. climate or crop management, directly to responses
in SOC. Potentially, they could also simulate any feedback
from those changing SOC dynamics to crop growth, for ex-
ample, via nitrogen release or immobilisation. The disadvan-
tage of this is that complex models require an accurate repro-
duction of the carbon input variability, whereas simpler car-
bon models estimate the carbon inputs from measured yields.
Processes that are not described by the model, such as the
effects of phosphorus and other nutrients and the effects of
plant diseases on plant growth, could further constrain the
ability of complex models to simulate adequate carbon in-
puts. Additionally, complex agroecosystem models are inher-
ently black boxes that make it difficult to understand the var-
ious factors and feedback loops. They have as of yet rarely
been tested for their ability to do exactly this, and they have
just as rarely been compared to simple soil carbon turnover
models to identify whether their advantage in applicability
comes with a reduced predictive power (Smith et al., 1997;
Farina et al., 2021). In any case, to ensure the adequate pre-
dictive capability of such models, complex or simple, a com-
prehensive validation process using measured data with dif-
ferent soil types, management practices and weather condi-
tions is required.

MONICA (Model of Nitrogen and Carbon dynamics on
Agro-ecosystems; Nendel et al., 2011, 2014) is a process-
based agroecosystem model that simulates the effects of spa-
tiotemporal environmental variability and agricultural prac-
tices on crop yields and soil condition of mineral soils (Nen-
del et al., 2014). It is a successor of the HERMES model,
which was initially developed to estimate N dynamics in
the soil–crop system (Kersebaum, 1995, 2006). A compre-
hensive SOC turnover submodule based on the Daisy model
was added, replacing the simpler approach in the HERMES
model (Hansen et al., 1991; Abrahamsen and Hansen, 2000).

The holistic principle of the MONICA model supports re-
search questions on the interlinkage between site conditions,
plant development and C and N dynamics in a changing cli-
mate. The performance of the MONICA model showed the
capability to adequately reproduce crop yields for different
crops (Asseng et al., 2013; Bassu et al., 2014; Kothari et al.,
2022; Rötter et al., 2012; Salo et al., 2016) and more complex
crop rotations (Kollas et al., 2015; Kostková et al., 2021).
For SOC dynamics under bare fallow treatment, MONICA
performed similarly to simple C turnover models (Farina
et al., 2021) but furthermore demonstrated also good per-
formance when simulating short-term high-resolution CO2
exchange in a soil–plant system (Specka et al., 2016). The
Daisy model, another agroecosystem model, had already
been tested against long-term soil carbon experiments (Smith
et al., 1997) and performed comparably well to soil carbon
turnover models, such as RothC (Coleman and Jenkinson,
1996) or CANDY (Franko et al., 1995).

The question now is whether the MONICA model with
its carbon turnover submodule is able to adequately simu-
late changes in SOC stocks when considering different agro-
nomic practices. It is also important to establish how the per-
formance of a complex model like MONICA compares with
simple C turnover models such as RothC, ICBM, C-TOOL,
CENTURY and CCB. To answer these questions, we have
the following four objectives: (i) to validate the SOC sub-
module of the MONICA model with data from 46 agricul-
tural long-term monitoring sites in Germany; (ii) if neces-
sary, to enhance its applicability in view of the diversification
of the dataset used for validation; (iii) to identify the main
drivers of C sequestration and decomposition in the model;
and (iv), if necessary, to improve model performance.

2 Materials and methods

2.1 Data composition and site characteristics

For calibration and validation of the SOC turnover subroutine
of the MONICA model, long-term monitoring data collected
by the State Office for Mining, Energy and Geology (Lan-
desamt für Bergbau, Energie und Geologie, LBEG) were
used. In 1990, the state government of Lower Saxony (Ger-
many) established a programme to permanently observe agri-
cultural and forest soils in the federal territory. Its goal was
to monitor soil changes and identify adverse ecologic and
economic implications and thus predict the risk of imminent
damage for the sustainable utilisation of soils.

The examined area is part of the North German Plain, with
highlands up to 971 m in its southern region. It is located
at latitudes between 51 and 54◦ N and longitudes between
7 and 11◦ E (Fig. 1a). It is characterised by a maritime cli-
mate, with mean annual temperatures ranging from 8.9 ◦C
to 10.4 ◦C. Average annual precipitation ranges from 574 to
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887 mm, with a positive climatic water balance in spring, au-
tumn and winter and a negative balance in summer.

The database consists of 48 agricultural sites, of which 42
are conventional agricultural systems and 6 are organic. Two
sites were removed due to their observation periods being
shorter than 10 years, leaving 46 entries for analysis. The
observation data consist of 33 sites that have been used for
agriculture for more than a century. The remaining 13 sites
were converted from forests, meadows or peatlands fewer
than 5 decades before the start of the observation period. Soil
sampling was generally conducted at regular intervals of be-
tween 1 and 5 years (Höper and Meesenburg, 2021). They
were sampled at a depth of up to ∼ 30 cm and consisted of
four replicates, which were combined as mixed samples.

In addition, soil horizons were sampled every 10 years at
a minimum depth of 1 m. During the soil monitoring pro-
gramme, a total of 333 soil carbon measurements (replicates
not included) were taken at the selected sites from 1992 un-
til the end of 2015. Between the sites, the mineral composi-
tion was diverse, with soil textures predominantly sand (20
sites) or silt (21 sites) and less frequently clay soils (five
sites; Fig. 1b). The key properties of the examined soils were
highly variable between the sites, with SOC ranging from
0.84 % to 4.91 %, C/N from 5.25 to 23.66, bulk density from
1.14 to 1.76 g cm3 and pH from 3.9 to 7.9. A special distinc-
tiveness of the investigated area is the occurrence of so-called
black sands, which are characterised by comparably high,
stable C contents in sand-dominated locations (Vos et al.,
2018). Site-specific details are summarised in the Appendix
(Table A1).

The soil and crop management at the sites was undertaken
by the landowners or their associates. Therefore, there is a
high degree of variability in the agronomic practices per-
formed at the sites, such as tillage depth and type, fertiliser
application, irrigation, crop rotation, harvest and crop residue
management. The reported management reflects common
agricultural practices for the site-specific regions (more de-
tails are given by Höper and Meesenburg, 2021). Control
treatments were not available for the sites. Simulated soil
temperatures and moisture contents were evaluated using
data from 11 German long-term field experiments (Table A2;
Flessa et al., 1995; Frolking et al., 1998; Schmädeke, 1998;
Leidel et al., 2000; Wolf et al., 2014; Flessa et al., 2017; Mal-
last et al., 2021; Winkhart et al., 2022).

2.2 Model description

The MONICA model is comprised of subroutines that char-
acterise plant growth, C and N dynamics, soil water and soil
temperature (for a more detailed description, see Nendel,
2014). Execution of the programme requires comprehensive
input data, including weather, soil and management informa-
tion, as well as parameter values describing model settings.
Every model iteration simulates soil and plant conditions in a
daily time step for soil depths up to 2 m. Mathematically, the

model is one-dimensional (point model), and the spatial rep-
resentativeness of the model output depends primarily on the
calibration data. Generally, the spatial representation ranges
between 1 m2 and 1 km2. The soil profile is partitioned into
20 layers, each with 10 cm thickness of homogenous soil
conditions. Soil input data are uniformly extrapolated to the
relevant depth if the entered soil horizons are shorter than
2 m.

According to the Daisy model, the SOC content is par-
titioned into three groups composed of dead native soil or-
ganic matter (SOM), living soil microbial biomass (SMB)
and added organic matter (AOM), each of which contains one
rapidly (SOMf, SMBf and AOMf) and one slowly decom-
posing subpool (Fig. 2; SOMs, SMBs and AOMs; Hansen et
al., 1991; Bruun et al., 2003). These compartments are cal-
culated separately for each soil layer.

MONICA is usually initialised using a standard distri-
bution of the SOC pools, which should correspond to an
equilibrium at the beginning of the simulation (Bruun and
Jensen, 2002). During the initialisation, inert SOC (IOM) is
subtracted from the total SOC, based on equations adopted
from Falloon et al. (1998). Then the SOM and SMB pools
are determined by multiplying the manually entered SOC
contents by the corresponding distribution parameters. The
AOM pools are initialised and altered by added C contents
from crop residues and organic fertilisers. Organic fertiliser
and crop types are parameterised with specific N contents
(NH+4 and NO−3 ), decomposition rate coefficients and pool
distributions. Furthermore, plant biomass accumulation is di-
vided into five groups, namely root, leaf, shoot, fruit and
sugar. For perennial plants, an additional permanent struc-
ture is considered. Each group has its own parameters con-
trolling the growth rate and the biomass that can potentially
be harvested or added to the AOM pools. Following a har-
vest command, accrued crop residues left on an agricultural
field are immediately distributed to the AOM pools. Root re-
mains are fragmented into the soil layers, depending on the
root mass distribution in the soil profile. During tillage, the
SOM content is distributed homogenously to the soil layers
affected by tillage depth.

The initialised pools are managed by first-order degrada-
tion due to decomposition, with each controlled by related
parameters. This process follows a decay rate that is propor-
tional to the pool size (Hansen et al., 1991). In addition, the
decomposition rate of organic matter is affected by soil tem-
perature, soil water and clay contents (Bruun et al., 2003;
Farina et al., 2021). These environmental conditions influ-
ence each pool as rate-modifying factors, with the excep-
tion of clay, which solely affects SMBs. Decomposed AOMf
and AOMs are subsequently transferred to the SMB pools,
from where fractions are respired to the atmosphere as CO2
or alternatively converted to SOMs and SOMf, following a
pool-specific carbon use efficiency coefficient. Biologically
degraded SOMs and SOMf goes through a similar process
and are either respired or returned to the SMB pools. A de-
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Figure 1. Location (a) and soil classification (b) of the 46 agricultural long-term monitoring sites in Lower Saxony, Germany.

Figure 2. Conceptual SOC pool distribution in MONICA, subdi-
vided into groups of added organic matter (AOM), soil microbial
biomass (SMB), soil organic matter (SOM) and inert organic mat-
ter (IOM). Except for IOM, each group consists of a slow (s) and a
fast (f) pool.

tailed description of the SOM turnover subroutine is depicted
in Hansen et al. (1991) and Nendel (2014).

2.3 Model modification

In total, 16 crop plants (amaranth, asparagus, buckwheat,
carrot, flaxseed, field bean, hemp, lupine, serradella, spelt,
strawberry, summer onion, sunflower, turnip and vetch) and
8 types of organic fertilisers (biogas slurry, calf slurry, dried
poultry manure, hoof and horn meal, lime-stabilised sewage
sludge, sheep manure and vinasse) were added to the model.
This enabled the reproduction of all occurring land man-
agement characteristics in the dataset. Parameter values for
crop growth (Tesar, 1984; Jeuffroy and Ney, 1997; Allen et
al., 1998), fertiliser nutrient contents (Möller and Schultheiß,
2015; Wiesler et al., 2016), crop residues and organic fer-
tiliser decomposition and partitioning coefficients (Gilmour
et al., 1998; Thuriès et al., 2001; Lashermes et al., 2009;

Peltre et al., 2012; Semenov et al., 2019) were taken from
the literature. Furthermore, a specific C content parame-
ter (CorgContent) was defined for each crop and organic
fertiliser, providing a more adequate replication of C in-
puts in comparison with the original constant (Möller and
Schultheiß, 2015; Wiesler et al., 2016; Ma et al., 2018). In
addition, an overhaul of existing crop and fertiliser types was
undertaken, ensuring distinct and more reasonable values for
essential parameters. Crop growth was calibrated according
to the measured yield data, while the residue-to-crop product
ratio was adapted from the literature and an ensemble of al-
lometric functions (Bolinder et al., 2007; Franko et al., 2011;
Jacobs et al., 2020; Taghizadeh-Toosi, 2020). The differences
between the allometric functions served as indicators of un-
certainty in the estimation of C inputs from crop residues.

The functions that describe the influence of soil tempera-
ture, water and clay content on decomposition were revised
and parameterised. This enabled all relevant carbon turnover
factors to be tested for uncertainty and subsequently cali-
brated. The optimal values of the parameters were used as the
evidential basis for the prior probability distributions, which
is necessary for model calibration by means of Bayesian in-
ference. For further explanations, see Sect. 2.5 and Table 1.

Extensive research provided evidence of the influ-
ence of temperature on physical soil processes, microbial
metabolisms and enzymatic activities (Pietikäinen et al.,
2005; Haddix et al., 2006; Meyer et al., 2018). The novel
temperature function is described by the following function
Eq. (1):

fTOD =
1

(1+ eTd−(e+Topt))Q10/(Topt/π)

(
−1+Q

Td
15.76
10

)
, (1)
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where T is the daily soil temperature in ◦C, Q10 is the Q10
temperature coefficient specified by the parameter QTenFac-
tor, and Topt is the optimal temperature for decomposition
in ◦C defined by the parameter TempDecOptimal (Fig. B1).
From a literature analysis, a range of 38.2±7.5 ◦C was iden-
tified for the optimal temperature (Pietikäinen et al., 2005;
Richardson et al., 2012; Menichetti et al., 2015; Liu et al.,
2018; Čapek et al., 2019) and 2.6± 0.6 for the Q10 temper-
ature coefficient (Haddix et al., 2006; Vanhala et al., 2007;
Conant et al., 2008; Gillabel et al., 2010; Meyer et al., 2018).

Microbial aerobic respiration is often driven by changing
soil water contents up to a point where water becomes a re-
stricting property for the availability of oxygen (Curiel Yuste
et al., 2007; Schimel et al., 2007). Based on an analysis of
incubation and field experiments, a Gaussian function was
proposed, described by the following Eq. (2):

fMOD = e
−18(WFPSd−Mopt)

2
, (2)

where WFPSd is the daily water-filled pore space in percent,
and Mopt is the optimal water-filled pore space (WFPS) for
decomposition in percent defined by the parameter Moisture-
DecOptimal (Fig. B2). Optimal WFPS for respiration was
determined to be around 59.5±9.9 % (Linn and Doran, 1984;
Doran et al., 1990; Liebig et al., 1995; Aon et al., 2001;
Gabriel and Kellman 2014; Zhang et al., 2015).

Several studies have indicated that increasing soil clay
contents have a negative effect on respiration due to the rein-
forced inaccessibility of SOM for microorganisms (Six and
Paustian, 2014; Churchman et al., 2020; Fomina and Skoro-
chod, 2020). In the MONICA model, the modulating effect
of clay on the decomposition rates of SMBs is by default ad-
justable through the parameter LimitClayEffect. An inverse
logistic function was proposed, described by the following
Eq. (3):

fCOD =
(1−LCE)

(1+ e−π+C·16)+LCE
, (3)

where C is the site-specific clay content (in kg kg−1), and
LCE is the limit at which the clay content affects the mineral-
isation defined by the parameter LimitClayEffect (Fig. B3).
Laboratory evidence suggests that soils amended with clay
minerals reduce mineralisation rates by∼ 1.5±1.1 % for ev-
ery percent of clay added to the soil, followed by a gradual
reduction in the effectiveness after a certain clay content is
exceeded (Nguye and Marschner, 2014; Schapel et al., 2018;
Riaz and Marschner, 2020; Liddle et al., 2020).

2.4 Screening of variables relevant to soil carbon
turnover

For the purpose of understanding the relationship between
input variables, parameters and the predictive proficiency of
the MONICA model, a comprehensive sensitivity analysis
was conducted using an improved Morris elementary effects

screening method (Fig. C1; Morris, 1991; Campolongo et
al., 2007; Pujol, 2009). The algorithm demonstrates the ca-
pability to determine the importance of parameters in rela-
tively short computing times (Campolongo et al., 2007; Con-
falonieri et al., 2010). The effect of 51 variables was exam-
ined, of which 15 were environmental, 6 were related to the
crop, 4 to the management and 26 to SOC turnover. Of the
turnover parameters, six were unique for each fertiliser and
crop residue type.

Depending on the tangible properties of the variables (fac-
tual or conceptual), the upper and lower bounds of each fac-
tor were either derived from the literature or intuitively in-
ferred from model characteristics. After building the param-
eter space, all the factors were scaled to a range from 0–1.
During each iteration, one variable was changed to a random
value in the defined space (levels= 5; grid jump= 3), while
the remaining variables were unaltered. Subsequently, the ef-
fect of the modified factor on SOC stocks was assessed by
comparing the present iteration with the previous one. Based
on the magnitude of the changes and the degree of the in-
teraction with other factors, a parameter importance ranking
was identified using the two measures µ∗ and σ (Campo-
longo et al., 2007).

Common recommendations for the number of model it-
erations are between 10 to 50 for each variable considered
(Campolongo et al., 2007). However, several studies suggest
a much higher number of iterations to achieve robust results
(Sarrazin et al., 2016; Vanuytrecht et al., 2014; Pianosi et al.,
2016). As a base value, 103 iterations and three runs were
used in total to accomplish adequate coverage of possible in-
put spaces and to estimate the uncertainty in the elementary
effects.

The programming language R (version 4.1.0) with the
graphical user interface RStudio (version 1.4.1717) and
the sensitivity package (Iooss et al., 2020; version 1.26.0)
were used for screening of variables relevant to soil carbon
turnover in the MONICA model.

2.5 Parameter calibration

Bayesian inference techniques are an efficient approach for
the calibration of process-based models (Vrugt, 2016; Van de
Schoot et al., 2021). Common methods for prior elicitation,
likelihood specification and posterior distributions have been
extensively researched (Van de Schoot et al., 2021). For in-
stance, Bayesian calibration has been applied successfully to
forest biomass growth (Van Oijen et al., 2005; Svensson et
al., 2008) and agroecosystem models (Lehuger et al., 2009;
Gurung et al., 2020).

As a first step, the experimental data were divided into
one subset for calibration and one for validation. In the pro-
cess, the data were clustered into three groups based on their
initial SOC stocks in order to achieve a general representa-
tion of the variability between the sites. From each of the
groups, two-thirds of the sites were randomly sampled for
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model calibration (totalling 31 sites) and one-third for model
validation (totalling 15 sites). The parameter selection pro-
cess for the calibration was adapted from the results of the
sensitivity analysis and the recommendations from Minunno
et al. (2013), excluding local and 25 % of the least important
parameters.

The calibration of the 14 selected parameters was under-
taken by means of Bayesian statistical inference. In Bayesian
calibration, the determination of possible parameter values
is based on evidential probabilities (Van de Schoot et al.,
2021). Accordingly, it was important that the upper and
lower limits of the parameters were based on observed, re-
alistic values. Therefore, a comprehensive literature analysis
combined with expert knowledge provided the basis for the
prior probability distributions, as shown in Sect. 2.3 (Oakley
and O’Hagan, 2007). A weakly informative prior probabil-
ity distribution was constructed, with the mean of all identi-
fied measurements as the most likely value and the observed
lower and upper bounds as the variance for each parameter
(Table 1; Van de Schoot et al., 2021). At the beginning of
the calibration, a random initial value (within the prior prob-
ability distribution) was generated for each parameter, creat-
ing a parameter vector for each iteration. Selection for sub-
sequent parameter values was limited by the minimum and
maximum value of the prior probability distribution and a
randomly determined step size corresponding to 1 %–25 %
of the parameter space (Van Oijen et al., 2005). Accordingly,
the subsequent parameter value changes from the previous
value by a minimum of 1 % and a maximum of 25 % of the
entire parameter space. During each iteration, MONICA was
executed using the created parameter vector. Afterwards, the
generated output was compared with the measured data us-
ing a log–Laplace likelihood function, suggested by Vrugt
(2016), which estimated the association between simulated
and observed values. This association was a representation
of the posterior probability of each parameter vector. The
Laplace distribution showed robustness against outliers and
random variations, resulting in less biased and more con-
sistent parameter estimates (Schoups and Vrugt, 2010). The
Gelman–Rubin diagnostic (Gelman and Rubin, 1992) was
used as a measure for the convergence of the calibration and
was conducted with the R package coda (Plummer et al.,
2006).

2.6 Quantitative methods and model evaluation
specifics

The statistical methods for evaluating the sampling dis-
tributions and model performances were conducted with
the R packages hydroGOF (Zambrano-Bigiarini, 2020; ver-
sion 0.4-0) and car (Fox et al., 2019; version 3.0-12).
Shapiro–Wilk (Shapiro and Wilk, 1965) and Levene’s tests
(Levene, 1960) were used on the measured fluxes to test the
population for normality and variance equality. The Shapiro–
Wilk test resulted in rejection of the null hypothesis for the

variables (p < 0.001), inferring that the examined datasets
were not normally distributed. Levene’s test resulted in ac-
ceptance of the null hypothesis, implying that the variance
in the samples was homoscedastic (p = 0.88). Using the in-
terquartile range criterion (Jargowsky and Yang, 2005), 19
outliers were identified in the data, which represents ∼ 6 %
of the cases. Q−Q plots confirmed the assumption that the
data points were nonlinear distributed.

To improve representativeness, the years 1992 to 2000
were excluded from the analysis, reducing the observed num-
ber of cases from 333 to 223. The reason for this approach
was justified by the inherent risk of statistical biases from
overfitting of measured and simulated values due to the ini-
tialisation of simulated SOC stocks based on measured val-
ues, as significant changes in SOC stocks usually take several
years. Furthermore, a spin-up period of 20 simulated years
was included to ensure a realistic reflection of available fresh
matter in the soil, since the AOM pools were initialised equal
to zero. The chosen period corresponds to the maximum du-
ration of mineralisation of most AOM (Thuriès et al., 2001;
Semenov et al., 2019).

Based on the reduced sample size and the abovemen-
tioned statistical assumptions, Kendall’s rank correlation co-
efficient (T ; Kendall, 1948) was selected to assess the sta-
tistical dependence between the observed and simulated val-
ues. Kendall’s τ is the preferred method for measuring the
ordinal association in data consisting of small sample sizes
and outliers and is more robust and efficient than the Pear-
son correlation coefficient and Spearman’s rank correlation
coefficient (Bonett and Wright, 2000). In addition, the model
results were evaluated with statistical methods like the mean
absolute error (MAE; Willmott and Matsuura, 2005) for an
analysis of the average error between observed and simulated
pairs and with the Nash–Sutcliffe model efficiency coeffi-
cient (NSE; Nash and Sutcliffe, 1970) to assess the predic-
tive skill of the simulation model (Fig. E1). Furthermore, the
slope intercept was considered in order to better assess the
behaviour of the models.

3 Results

3.1 Simulation of soil and plant growth variables

Soil temperatures were well predicted, with an average er-
ror of just under ∼ 1.8 ◦C (Table 2). Low temperatures were
slightly overestimated, and high temperatures were underes-
timated. In comparison, soil water contents were predicted
somewhat less favourably, with an average error of ∼ 5.4 %.
Nonetheless, the predictive power was better than the mean
of the observations. The model tended to slightly overesti-
mate moderate water contents and underestimate the mea-
sured variance. A comparison of the default with the cali-
brated plant growth parameters was not performed, since new
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Table 1. Description of the 14 parameters chosen for the calibration of the C submodel in MONICA. The prior distribution depicts the
upper and lower bounds of possible parameter values inferred from the literature; the posterior distribution describes the median value of the
posterior and the corresponding standard deviation.

Parameter Prior distribution Posterior distribution

Notation Unit Default Minimum Maximum Reference Mean Standard
value value value deviation

AOM_FastUtilizationEfficiency % 0.1 0.1 0.65 Manzoni et al. (2012), Spohn et
al. (2016), Qiao et al. (2019), Schroeder
et al. (2020), Agumas et al. (2021)

0.27 1.2−3

AOM_SlowUtilizationEfficiency % 0.4 0.1 0.65 0.16 0.01

MoistureDecOptimal % NA 0.3 0.76 Linn and Doran (1984), Doran et
al. (1990), Liebig et al. (1995), Aon et
al. (2001), Gabriel and Kellman (2014)

0.45 3.1−3

LimitClayEffect % 0.25 0.01 0.5 Nguye and Marschner (2014), Schapel
et al. (2018), Riaz and Marschner
(2020), Liddle et al. (2020)

0.34 2.2−3

QTenFactor Q10 NA 1.6 4.2 Haddix et al. (2006), Vanhala et
al. (2007), Conant et al. (2008), Gilla-
bel et al. (2010), Meyer et al. (2018)

3.15 0.04

PartSMB_Fast_to_SOM_Fast % 0.6 0.4 0.8 Kindler et al. (2006), Liang and Balser
(2011), Miltner et al. (2012), Kallen-
bach et al. (2016)

0.66 2.1−3

PartSMB_Slow_to_SOM_Fast % 0.6 0.4 0.8 0.61 1.3−3

SMB_FastDeathRateStandard d−1 0.01 0.01 0.25 McGill et al. (1986), Joergensen et
al. (1990), Throckmorton et al. (2012)

0.12 1.1−3

SMB_SlowDeathRateStandard d−1 1.0−3 3.0−4 0.01 5.4−3 5.6−5

SMB_UtilizationEfficiency d−1 0.0 0.1 0.88 Throckmorton et al. (2012), Creamer
et al. (2019), Buckeridge et al. (2020),
Geyer et al. (2020), Shoemaker et
al. (2021)

0.43 6.6−3

SOM_FastDecCoeffStandard d−1 1.4−4 1.0−5 2.8−4 Paustian et al. (1992), Trumbore
(2000), Gleixner (2013), Wang et
al. (2016), Shi et al. (2020)

8.6−5 1.9−5

SOM_SlowDecCoeffStandard d−1 4.3−5 6.4−7 5.0−5 1.3−5 4.0−7

SOM_FastUtilizationEfficiency % 0.5 0.1 0.88 Manzoni et al. (2012), Saifuddin et
al. (2019), Qiao et al. (2019), Schroeder
et al. (2020), Agumas et al. (2021)

0.35 6.8−3

SOM_SlowUtilizationEfficiency % 0.4 0.1 0.88 0.49 2.2−3

crops were added to the model in order to simulate all possi-
ble systems.

The calibrated plant growth model achieved a good repre-
sentation of measured yields, with an average error smaller
than ∼ 1.6 Mg DM ha−1 for all crops. Overall, there was
a linear relationship between the calibrated and measured
yields. However, there was a high variability in the estima-
tion quality between different crop types. Some crops, such
as triticale and potatoes, were modelled less adequately than
silage maize and sugar beet, which was partly explained by
the differences in the number of observations and the vari-
ance in yields. The C inputs were compared with the esti-
mated mean of the allometric functions. The model produced
an average error that was similar to the calculated difference
between the allometric functions (∼ 1 Mg DM ha−1).

3.2 Quantification of uncertainty and parameter
calibration

A strong relationship was identified between SOC stock
change rates and C inputs through organic fertilisa-

tion and crop residues (Table F1; OrganicFertilization,
AOM_DryMatterContent and CorgContent), given the up-
per and lower bounds of possible values. Additionally, these
factors were less affected by other variables, noticeably by
the lower σ on average in comparison with µ∗. The cli-
mate variables of temperature (Temperature) and precip-
itation (Daily_Precipitation) were also of greater impor-
tance to the SOC turnover rate but had a higher standard
deviation of elementary effects. Except for solar irradi-
ance (Global_Radiation), temperature and precipitation, all
other climatic factors had an insignificant effect on SOC
stocks. Of all the variables that were initialised at the be-
ginning and remained static during the model run, the ini-
tial SOC stock (SoilOrganicMatter) was the most influ-
ential, followed by the site-specific field capacity (Field-
Capacity), soil bulk density (SoilBulkDensity) and pore
volume (PoreVolume). Other site-specific variables (Sand,
Clay, PermanentWiltingPoint, pH, and Sceleton) were com-
parably less important. The management factors of tillage
(Tillage), mineral fertilisation (MineralFertilization), irri-
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Table 2. Statistics describing the performance of the MONICA model regarding soil and plant growth variables. The statistics depicted are
Kendall’s rank correlation coefficient (T ), Nash–Sutcliffe model efficiency coefficient (NSE), mean absolute error (MAE), the slope and
intercept for characterising the relationship between measured values (except values for C inputs, which were calculated with allometric
functions) and simulated values.

Variables T NSE MAE Slope Intercept

Soil temperature (n= 24576) 0.83∗∗∗ 0.86 1.84 (◦C) 0.93 1.17
Soil water content (n= 9636) 0.63∗∗∗ 0.39 5.37 (%) 0.84 7.83
Yield (n= 846) 0.65∗∗∗ 0.81 1.62 (Mg DM ha−1) 0.99 0.07
C input (n= 846) 0.4∗∗∗ 0.32 0.98 (Mg DM ha−1) 0.88 0.38

∗∗∗ p < 0.001.

gation (Irrigation) and N content in the added organic
matter (CN_Ratio_AOM_Slow, CN_Ratio_AOM_Fast, CN,
AOM_NH4Content and AOM_NO3Content) had a small
effect on the SOC turnover rate. σ values were gener-
ally higher than the overall importance of the input fac-
tors, indicating that there is probably an interaction and
non-linear effect between the environmental and manage-
ment variables. In comparison, the sensitivity of the turnover
variables was less pronounced and revealed three particu-
larly important parameters, namely one C pool parameter
(SOM_SlowDecCoeffStandard) and two weather-regulated
decomposition factors (QTenFactor and MoistureDecOpti-
mal). They were similar in significance to precipitation, ini-
tial SOC and field capacity. Changes in the parameters QTen-
Factor and MoistureDecOptimal were more important than
in LimitClayEffect, which was in accordance with the influ-
ence of clay being limited to the SMBs pool. The effect of
the factor describing the optimal temperature for decompo-
sition (TempDecOptimal) was negligible but had a consid-
erable increase in importance when a higher range of possi-
ble values for the variable temperature was included. Crop-
and fertiliser-specific turnover parameters were also sensitive
and coincided with the importance of C inputs for SOC stock
change rates. Less pronounced sensitivities involved the pa-
rameters describing the microbial dynamic (besides the pa-
rameter SMB_UtilizationEfficiency), distinguishable by the
SMB in the name. Non-linear effects and interactions were
more strongly pronounced in the SOC turnover parameters.

Figure 3 shows the results of the calibration process, with
the posterior distribution curve representing the frequency of
accepted values and the vertical red line indicating the op-
timal value as the median of the posterior. Bayesian infer-
ence reduced the uncertainty for all parameters, converging
the posterior distribution to a normal or lognormal distribu-
tion. Throughout the random sampling, the entire plausible
parameter space was covered and curve progressions showed
that the optimal values were probably within the specified
limits. During the calibration process, the posterior distri-
bution of most parameters became narrower in comparison
with the prior, confirming the convergence to the optimal
values. Similar to Lehuger et al. (2009), the acceptance rate

for the proposed parameter values was ∼ 25 %. Based on the
results of the Gelman–Rubin diagnostics, adequate conver-
gence was achieved for all parameters (Fig. G1), signify-
ing the unbiased outcome of the Markov chain Monte Carlo
(MCMC). The correlations across parameters remained be-
low a coefficient of 0.2, with the exception of QTenFactor
and SOM_SlowDecCoeffStandard (Fig. H1).

3.3 Model performances

The statistical methods showed that the default MONICA
model (MONICAdef) was inferior to the RothC, ICBM and
C-TOOL models and produced results similar to CENTURY
and CCB (Tables 3 and I1; Fig. 4). The mean absolute error
was the highest of all the models but was within the mar-
gin of error compared with CENTURY and CCB for all sites
and with CCB for the validation sites. Kendall’s rank corre-
lation coefficient and Nash–Sutcliffe model efficiency coef-
ficient values were within the margin of error for all models
and sites and therefore showed insignificant differences in
the predictive skill of the models.

MONICAdef estimations deviated on average by more than
∼ 10 % from the measurements. Inclusion of a C content
parameter for different crop residues and organic fertilisers
in the MONICA model (MONICAmod) improved the ac-
curacy of predictions for C stock changes by ∼ 16 % for
all sites and by ∼ 8 % for the validation sites, while the
additional global parameter calibration (MONICAcal) im-
proved MONICA’s average estimation error by ∼ 29 % for
all sites and by ∼ 30 % for the validation sites. Compared
to MONICAcal, only RothC achieved a lower MAE for all
sites. The differences between RothC and MONICAcal were
within the margin of error for the validation but not for
all sites. MONICAcal, MONICAmod, RothC, ICBM and C-
TOOL produced errors within the average standard deviation
between the replicates of the C measurements for the vali-
dation (7.76 Mg C ha−1) and for all sites (5.01 Mg C ha−1).
In contrast, MONICAdef, CENTURY and CCB had errors
that were not within the average standard deviation for all
sites. Each model was capable of producing results corre-
sponding to the 95 % confidence interval for the validation
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Figure 3. Posterior probability distribution (vertical bars) of 14 C submodel parameters calibrated over the range of the prior probability
distribution (density curve). The posterior is depicted as the distribution of accepted values determined by random sampling from 105

proposed values. The vertical red lines represent the optimal values as the median of the posterior and the blue lines the initial values of each
chain.

sites (6.4 Mg C ha−1). No model achieved the same for all
measurements (3.3 Mg C ha−1).

Based on the outcomes of the NSE method, all mod-
els performed better than the mean of the measurements,
with MONICAdef achieving the lowest and RothC the
highest scores. The differences between MONICAcal and
MONICAdef were within the margin of error. The Kendall
rank coefficient displayed a significant statistical dependence
between the simulated and measured data, with MONICAcal,
RothC and ICBM achieving the best results and CCB and
CENTURY the weakest results. Overall the T coefficients
were high, with MONICAdef achieving average results and
MONICAcal above-average results, which is in contrast with
the other models. Of the six models, MONICAcal gener-
ally produced better results than CENTURY, C-TOOL and
CCB. The slope and intercept of the statistical analysis indi-

cated that MONICAdef generally overestimated decomposi-
tion, while MONICAcal produced results closer to the mea-
sured data. Overall, MONICAdef underestimated the SOC
stocks at 24 sites and overestimated them at two sites, leav-
ing 20 sites that were simulated within the standard deviation
of the measurements. In comparison, MONICAcal underesti-
mated the SOC stocks at six sites and overestimated them
at nine sites, leaving 31 sites that were simulated within the
standard deviation of the measurements. The calibration re-
sulted in a model behaviour that was comparable with RothC.
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Table 3. Statistics describing the performance of the default (MONICAdef), the modified uncalibrated (MONICAmod) and the modified
calibrated (MONICAcal) soil carbon submodel in MONICA in comparison with five C turnover models for all sites. The first 10 years were
excluded from the analysis (n= 223). The following statistics are depicted are Kendall’s rank correlation coefficient (T ), Nash–Sutcliffe
model efficiency coefficient (NSE), mean absolute error (MAE) and the slope and intercept for characterising the relationship between
measured and simulated C stocks.

Model T NSE MAE Slope Intercept
(Mg C ha−1)

MONICAdef 0.83∗∗∗ 0.91 5.54 1.07 0.43
MONICAmod 0.83∗∗∗ 0.93 4.68 1.11 −3.8
MONICAcal 0.85∗∗∗ 0.95 3.91 1.02 −0.83
RothC 0.85∗∗∗ 0.96 3.69 1.03 −0.86
C-TOOL 0.83∗∗∗ 0.94 4.43 1.04 −0.23
ICBM 0.85∗∗∗ 0.94 3.99 0.93 3.43
CENTURY 0.79∗∗∗ 0.92 5.31 1.1 −4.19
CCB 0.8∗∗∗ 0.92 5.44 0.96 −1

∗∗∗ p < 0.001.

4 Discussion

4.1 Differences in models and performances

The MONICA model featured a plant growth, nitrogen and
soil water submodel, while RothC, CCB, ICBM, CENTURY
and C-TOOL did not. Smith et al. (1997) have argued that
coupling C turnover with agroecosystem submodels will be
necessary to simulate the impact of global change on agri-
cultural production and SOC changes. However, they also
assumed that simpler models have an advantage in simulat-
ing various land uses due to the lack of adequate data and
the necessary parameterisation of complex models. Other lit-
erature shows that C turnover models coupled with sophis-
ticated plant growth models do not result in a better per-
formance, highlighting that complex models are more error
prone (Mueller et al., 1996; Parton, 1996; Li et al., 1997).
One explanation could be that some processes, such as the
effect of phosphorus and other nutrients or the impact of
plant diseases on crop growth, are not included in the mod-
els. In addition, information on crops and plant residues is
often not available, so that measured values from other pub-
lications must be used to determine the required parame-
ter values for crop development and ultimately the C in-
puts. This also applied to the data requirements of the MON-
ICA model, which led to the necessary parameterisation of
new crop and fertiliser types in order to simulate all sites.
Since the data available for this publication did not contain
additional information on the organic fertilisers and crops,
allometric functions and values of differing genotypes and
growing conditions had to be used to compare ingoing C in-
puts. Although we were able to adequately replicate yields
as a proxy for modelling C inputs from crop residues, some
discrepancies between model and observed yields remained.
This could have led to an inaccurate reproduction of C in-
puts, since the specific properties of organic fertilisers and

crop residues are characterised by high standard deviations
(Möller and Schultheiß, 2015; Wiesler et al., 2016; Ma et
al., 2018). In contrast, the C input estimation for the simpler
models was based on observed crop yields for each site and
allometric functions evaluated for Germany in previous stud-
ies (Dechow et al., 2019; Riggers et al., 2019). We assumed
that a C input estimation based on measured yields should
better describe the variability in the C inputs between sites.
However, the results of the present study did not confirm
the assumption that model complexity is an indicator of pre-
dictive ability in process-based models. Notable differences
were driven by model characteristics, like SOM pool initial-
isation or model-specific response functions, some of which
were controlled by parameterisation. Each model showed
weaknesses depending on the specific conditions at each site
(Figs. J1 to J7). For instance, MONICAdef overestimated de-
composition in∼ 52 % of all sites in the dataset but managed
to predict the C losses at the Fuhrberg and Vinnhorst sites
better than MONICAcal. These sites had undergone recent
land use change and had on average higher initial SOC stocks
and losses over the measured period. In temperate agroe-
cosystems, conversion from grassland or forest to arable land
is considered to be one of the main reasons for C release
(Vos et al., 2019; Poeplau et al., 2020). Correspondingly, sites
with recent land use change showed the strongest decline in
C stocks and were therefore a good indicator of the down-
ward trend in SOC stocks. Removing sites with a cultivation
period < 50 years (n= 10) resulted in a balanced C budget
(0.02 t C ha−1 a−1), which also produced an even better per-
formance by the calibrated MONICA model. The magnitude
of changes in SOC stocks for all sites was comparable with
other studies conducted in temperate climates, representing a
general trend for German arable land (Steinmann et al., 2016;
Sanderman et al., 2018; Vos et al., 2019; Seitz et al., 2022).

All models underestimated the magnitude of the variation
in the natural SOC dynamics. The best simulation results
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Figure 4. Linear regression between simulated and observed SOC stocks for 46 agricultural long-term monitoring sites, all years and 333
measurements for the MONICA (a), RothC (b), C-TOOL (c), ICBM (d), CENTURY (e) and CCB (f) models.

were generally achieved at sites with slowly changing SOC
stocks. Some sites distinguished by dramatic changes in SOC
were especially problematic for the models to simulate, in
particular the Dinklage site (BDF033_L), which was char-
acterised by high C losses, and in contrast the Reinhausen
site (BDF051_L), which was characterised by increasing
C stocks. CENTURY and CCB, which under-performed in
comparison with the other models, were the best at predict-
ing these highly variable sites. The other models overesti-
mated the SOC stock for BDF033_L and underestimated
it for BDF051_L. In MONICAcal, these two sites caused
∼ 10 % of the mean absolute error.

At site BDF033_L, the farmer was cultivating winter bar-
ley and corn as energy crops but experienced declining corn
yields over the measured period. This probably led to a neg-
ative C balance, even though the field was extensively fer-

tilised with pig and bull slurry. In MONICA, organic fertil-
isation was the best indicator of SOC changes, while there
was no significant relationship between the amount of or-
ganic amendments and SOC stock changes in the measured
data. Accounting for the quantitative variations in manure ap-
plication supports the assumption that organic fertilisation is
a weak predictor of SOC turnover rates and was correspond-
ingly overestimated in the model. However, numerous stud-
ies clearly show a positive effect of organic amendments on
SOC stocks (Koishi et al., 2020; Gross and Glaser, 2021; Roß
et al., 2022). Since no control treatments were included in
the experimental design of the long-term monitoring sites, it
was not possible to carry out a comparative analysis of the
individual sites with regard to the impact of organic inputs.
Another consideration concerned site-specific uncertainties
in the necessary model input. The properties of organic fer-
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tilisers and residues were unknown and thus had to be sup-
plemented with standard values from the literature. Each fer-
tiliser and crop type had fixed C ratios in the models, while
in reality these inputs have a highly variable composition
and can vary greatly depending on farm management, ani-
mal diet, climate and soil conditions (Schnug et al., 1996;
McCartney et al., 2006; Cajamarca et al., 2019). There are
three possible reasons for the disparity between the mod-
els and observations at site BDF033_L: (i) the fertiliser and
crop-specific nutrient contents were inaccurate, leading to an
overestimation of C inputs; (ii) the C losses from harvest-
ing were underestimated; or (iii) the site and environmental
characteristics and their effect on SOC decomposition were
incorrectly simulated.

In comparison, at site BDF051_L, the farmer had transi-
tioned to a management with reduced tillage intensities and
no cultivation of root crops and managed to increase the C
content in the upper soil layer by ∼ 30 Mg C ha−1 during the
measured time period. Although the effect of conservational
tillage is still being debated, numerous studies support the ef-
fect measured at site BFD051_L (Freibauer et al., 2004; Luo
et al., 2010). In the MONICA model, tillage uniformly dis-
tributed SOC in the affected soil layers. This was supported
by the sensitivity analysis, which showed that tillage had an
effect when there was heterogeneity in the soil profile. How-
ever, based on this study’s data, it is likely that the model
underestimated the effect of tillage on SOC decomposition.
Possible reasons for the disparity were either an imbalance
of C inputs into the topsoil or missing functions that describe
the processes involved, such as the effect of tillage on soil
aggregation, hydraulic properties and root growth (Mondal
et al., 2020). The effect of tillage on SOC stocks is currently
absent from other C turnover models, such as RothC. Jordon
and Smith (2022) suggest modifying the decomposition rate
to achieve a realistic representation of the effect of tillage on
SOC, although they assume a small effect of tillage on SOC
stocks.

Another probable reason for the differences between the
model and measurements was the climate variables. In the
data, only precipitation correlated significantly with SOC
stock change rates, while in MONICA this was important but
less so than temperature. Sierra et al. (2015) argue that func-
tions in process-based models tend to overestimate the tem-
perature effect on decomposition rates, and this imbalance
cannot be offset by the moisture effect. This was also likely
in the MONICA model, since the effect of temperature on de-
composition was generally twice as strong as moisture. The
importance of climate variables is still being debated, with
Luo et al. (2017) and Carvalhais et al. (2014) finding major
effects on SOC changes, while only minor effects have been
established by Fujisaki et al. (2018) and Vos et al. (2019).

4.2 Implications for improving MONICA’s soil carbon
turnover model

Most biogeochemical models were developed many decades
ago. This is also true of the C turnover subroutine in MON-
ICA, which is based on the Daisy model (Hansen et al., 1991;
Abrahamsen and Hansen, 2000). Therefore, it is based on the
conceptual design of multiple SOC pools with pool-specific
turnover rates that are not associated with clear, measurable
soil properties (Bruun and Jensen, 2002). This circumstance
makes it difficult to clearly define how the model could be
optimised using response functions but also the initialisation
of the model. Bruun and Jensen (2002) argue that it can be
important to use plausible assumptions to initialise the SOM
subroutine using radiocarbon measurements or the land use
history. Nonetheless, functions in C turnover models need
to be improved in order to estimate SOC dynamics across
a wide range of spatiotemporal and agronomic conditions
(Smith et al., 1997). Correspondingly, general insights into
soil processes are needed to justify the introduction of addi-
tional or improved functions. There needs to be further exam-
ination of existing mechanisms and the interactive effects of
site-specific characteristics but also missing factors that af-
fect microbial abundance, diversity and activity (Louis et al.,
2016). Microorganisms in particular play a significant role in
the soil carbon cycle by controlling the rate of mineralisation
and promoting plant growth by improving mineral nutrition
or stimulating immune and stress reactions in crops (Tardy et
al., 2015; Berg et al., 2017). This could be advantageous for
representing the processes like priming or SOC responses on
warming. However, microbial models, as reviewed in Chan-
del et al. (2023), vary widely in terms of model structure, pro-
cesses considered and parameters required, which makes it
clear that there is currently no consensus on which approach
is best suited to represent the biosphere. Some of the models
are evaluated and compared in Sulman et al. (2018), using ex-
perimental data from litter input studies and warming exper-
iments. In evaluating these models, they find high variability
in model results and conclude that first-order models already
produce divergent projections due to parameter uncertainties
and that structural diversity among models would exacerbate
these uncertainties. We believe that increasing differences
between models due to structural diversity does not represent
a degradation in predictive ability but rather a more accu-
rate estimate of predictive uncertainty (Bradford et al., 2016;
Lovenduski and Bonan, 2017). It is unclear if the adoption
of one of the various microbial approaches could increase
the model accuracy of MONICA. Because of the increased
model complexity and number of parameters, the evaluation
and calibration of an incorporated microbial model for re-
gional conditions would also require a more constraining
dataset, preferably including those events where microbial
models might outperform models based on first-order kinet-
ics.
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This study attempted to introduce two changes to the de-
fault MONICA model: (i) a revision, parameterisation and
calibration of the functions that describe the influence of soil
temperature, water and clay content on decomposition and
(ii) an integration of a crop- and fertiliser-specific C content
parameter. Alteration of the temperature function involved
mathematically reformulating the original exponential func-
tion into a surge function. The reason for this change was that
the default equations did not consider the decreasing activity
of soil microorganisms at temperatures above 30 ◦C (Liu et
al., 2018; Fang and Moncrieff, 2001). This could lead to an
overestimation of mineralisation, especially under globally
increasing temperatures caused by climate change (DWD,
2021). Further improvements could be achieved by incorpo-
rating changes in the optimal temperature for decomposition
based on site-specific varieties of microbial communities and
C qualities (Fierer et al., 2006).

The clay function was changed to an inverse logistic func-
tion on the basis of the original equation. Many studies sug-
gest that increasing soil clay contents have an adverse ef-
fect on SOC decomposition due to the reinforced inaccessi-
bility of organic substances for decomposers (Six and Paus-
tian, 2014; Churchman et al., 2020; Liddle et al., 2020). Ad-
versely, several studies have found no effect or even a pos-
itive effect (Wei et al., 2014; Fissore et al., 2016; Zhang et
al., 2021). There are multiple explanations for this disparity,
e.g. different clay types, residue qualities and microbial di-
versities (Nguye and Marschner, 2014; Fissore et al., 2016).
Without knowing the exact underlying processes to explain
the variability and limitation of the available data, only mi-
nor changes were made when modifying the clay function.
Removing the clay factor might reduce the complexity of the
model but could also negatively impact the predictive capa-
bility of the SOC turnover routine. Further evaluation is re-
quired to assess the importance of the clay factor for decom-
position and to credibly change the function.

Furthermore, the soil moisture factor, which was origi-
nally based on the pressure potential derived from the van
Genuchten model (Van Genuchten, 1980; Abrahamsen and
Hansen, 2000), was simplified. The default moisture function
was directly controlled by the soil water content, soil tex-
ture, bulk density and SOC stocks, while the revised Gaus-
sian function was only regulated by the soil water content. It
is argued that the effect of texture on the decomposing com-
munity could be overestimated, since clay as a factor was al-
ready included in a function limiting mineralisation. In addi-
tion, the influence of soil texture on decomposition proved to
be inconsistent, therefore requiring a better understanding of
underlying processes (Doran et al., 1990; Scott et al., 1996),
while the influence of bulk density was limited by model
characteristics as it remained static after initialisation, ham-
pering the reproducibility of management-related soil dis-
turbances on the moisture function. Linn and Doran (1984)
showed that the effect of ploughing on bulk density increased
the microbial activity and decreased the optimum soil mois-

ture content, while other studies have also determined an
impact of soil structure changes on the mineralisation rate
(Franzluebbers, 1999; Vilkiene et al., 2016). Another partic-
ularity of the default moisture function was that the optimal
water-filled pore space for microbial activity was estimated
to be between 10 %–25 % for sandy soils and 30 %–35 % for
clay soils, while in the literature a general value of ∼ 60 % is
considered the most probable (Linn and Doran, 1984; Doran
et al., 1990; Liebig et al., 1995; Aon et al., 2001; Gabriel and
Kellman, 2014; Zhang et al., 2015). Nevertheless, the simpli-
fication is probably less error-prone and easier to understand
but at the same time not optimal for depicting the variance
in microbial diversity and their environmental preferences.
The inclusion of a more complex moisture function should
be based on definite results.

As shown with the crop- and fertiliser-specific C content
parameter, increasing the complexity of a model can be im-
portant for improving performance. According to the sensi-
tivity analysis and the results, the addition of a C content
parameter was necessary for the representation of realistic C
inputs. However, the limited availability of data hinders the
determination of precise C contents in plant residues and or-
ganic fertilisers. As mentioned in Sect. 4.1, values adopted
from the literature could have a detrimental effect on the
model’s predictive capability. Therefore, measurements of C
contents in crop residues and organic fertilisers should be
part of the experimental design when investigating changes
in SOC stocks. To further optimise the model, it is recom-
mended that the C inputs from crop residues be divided into
aboveground and belowground biomass. Currently there is
no distinction between roots, shoot and leaves in the AOM
pool, even though there is good evidence that roots in par-
ticular have a much longer mean residence time in the soil
(Poeplau et al., 2021; Sokol and Bradford, 2019).

The above suggestions for improvement relate solely to the
soil carbon model, but in complex models such as MONICA,
the different subroutines can be interdependent, and changes
in one could have a relevant impact on another function. Es-
pecially with respect to the feedbacks between the C and N
cycle, plant growth and soil water contents should be consid-
ered in future studies.

5 Conclusions

The evaluation of the original MONICA model revealed
weaknesses in estimating SOC trends. Using the default pa-
rameterisation, decomposition was overestimated, and the
statistical performance was inferior compared with the C
turnover models RothC, ICBM and C-TOOL. MONICA’s ca-
pabilities of simulating SOC trends increased when more re-
alistic functions were introduced that described the effects of
soil temperature, moisture and clay on decomposition, cou-
pled with a better specification of C inputs from organic fer-
tilisation and crop residues. A sensitivity analysis displayed
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the importance of C inputs and the environmental factors of
temperature and precipitation, as well as the corresponding
parameters on SOC variation in the model. A successful cal-
ibration by means of Bayesian inference improved the pa-
rameterisation of the C turnover subroutine. The modified
and calibrated MONICA model outperformed CENTURY,
C-TOOL and CCB and produced similar results in com-
parison to RothC and ICBM. With the exception of certain
sites, adequate reproduction of SOC stock change rates was
achieved. However, none of the investigated models was ca-
pable of simulating each site satisfactorily. All the models
underestimated the variation in measured SOC dynamics that
occurred at sites with particular properties and management
practices. This paper reveals that even complex, biogeochem-
ical models are capable of performing similarly or even better
than the more simplistic C turnover models. It is likely that
with better data availability and continuing optimisation of
functions representing natural processes, MONICA’s perfor-
mance can be further enhanced.

Appendix A: General properties of each monitoring and
experimental site

Table A1. Description of the long-term monitoring sites (n= 46) used for calibration and validation of the carbon turnover routine in the
MONICA model. SOC is soil organic carbon. MAT is mean annual temperature. MAP is mean annual precipitation.

Site Location Start End Sand Clay Bulk SOC C/N MAT MAP Average fertiliser Land use
date date (%) (%) density (%) ratio (◦C) (mm) amendments change

(g cm−3) (kg N yr−1)b

BDF001_L Timmerlah 1992 2014 6 16 1.34 1.2 8.6 9.8 632 151 UAN
27 POM

1760

BDF002_L Druette 1994 2014 3 15 1.35 1.2 11.0 9.8 631 181 UAN
20 POM

1760

BDF003_L Ehmen 1993 2014 70 7 1.37 1.4 10.6 9.9 689 151 CAN
17 POM

1945

BDF004_L Hemmendorf 1995 2014 2 16 1.38 1.1 10.6 9.8 769 139 UAN, CAN
40 PIS

1780

BDF005_L Reinshof 1991 2014 11 16 1.24 1.0 10.0 9.3 632 183 UAN
4 LFR

1775

BDF006_La Mariental 1991 2014 60 16 1.48 0.9 10.4 9.6 601 132 CAN 1760

BDF007_L Barum 1996 2014 21 7 1.4 1.0 10.0 9.4 674 155 UAN, U
54 POM

1776

BDF008_La Hofschwicheldt 1991 2014 17 38 1.33 2.3 9.3 9.8 617 169 UAN, U
33 PIS

1833
1992 drainage

BDF009_La Hornburg 1991 2014 2 23 1.29 1.5 9.4 9.4 666 158 UAN
26 POM

1760

BDF010_La Uesen 1996 2013 86 4 1.36 2.7 17.7 9.7 680 113 CAN, AS
22 LFR

1897
1997 drainage

BDF012_L Buehren 1991 2014 14 26 1.35 1.6 10.7 10.0 740 180 UAN
46 PIS

1775
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Table A1. Continued.

Site Location Start End Sand Clay Bulk SOC C/N MAT MAP Average fertiliser Land use
date date (%) (%) density (%) ratio (◦C) (mm) amendments change

(g cm−3) (kg N yr−1)b

BDF013_L Ottenstein 1995 2014 4 21 1.15 1.6 7.9 8.9 759 160 CAN, AS
22 PIM

1760

BDF014_La Neuhauserfelde 1991 2011 38 11 1.34 0.9 9.3 9.3 887 177 CAN, AS, U
44 LFR

1878

BDF016_L Tetendorf 1992 2014 81 4 1.43 1.4 17.0 9.3 796 119 CAN, U
148 LFR, SS

1897

BDF017_La Lueder 1993 2014 82 6 1.46 1.1 12.0 9.2 735 102 CAN, AS
81 LFR

1777

BDF019_L Ganderkesee 1992 2014 75 6 1.37 2.7 15.7 9.7 693 66 UAN
184 CAS, LFR

1780

BDF021_L Groenheimer Moor 1997 2014 84 5 1.45 2.8 18.3 10.0 770 79.8 POM 1945
< 1990= pasture

BDF022_La Voxtrup 1993 2014 44 16 1.33 1.4 9.9 10.0 830 82 CAN, AS
101 CAS, PIS

1920

BDF024_La Dalumer Moor 1992 2014 82 4 1.18 4.7 26.3 10.3 783 129 CAN, AS
171 CAS

1978

BDF026_L Vechtel 1995 2014 95 4 1.34 2.0 13.1 10.1 766 112 CAN, AS
151 CAS, PIS

1935

BDF027_L Barrien 1996 2014 32 5 1.26 1.5 11.5 9.7 715 134 UAN, U
166 SS

1897

BDF031_L Vinnhorst 1992 2011 37 16 1.14 4.0 13.5 9.9 645 120 CAN 1980

BDF032_L Markhausen 1992 2015 81 4 1.39 3.3 54.8 9.9 777 47 UAN, CAN
172 CAS, PIS

1957

BDF033_L Dinklage 1992 2014 92 3 1.32 1.8 13.1 9.8 765 19 CAN
199 PIS, CAS

1973

BDF036_La Stuetensen 1993 2014 78 7 1.56 0.9 12.9 9.4 628 175 PIM, CAM 1780

BDF037_L Schladen 1994 2014 6 31 1.42 2.3 7.9 9.6 708 165 UAN, U
17 CAS

1901

BDF039_L Handeloh 1994 2014 86 5 1.63 1.7 17.3 9.5 824 142 CAN, AS,
UAN
96 PIS, LFR

1901

BDF042_L Fuhrberg 1995 2014 87 8 1.33 3.1 10.3 10.0 692 35 UAN, CAN, AS
54 LFR

1950
< 1988= pasture

BDF043_L Oldershausen 1996 2014 2 18 1.38 1.0 9.1 9.3 841 178 U, UAN, AS
35 SS

1784

BDF045_La Riddagshausen 1994 2014 58 3 1.66 0.8 8.7 9.8 631 12 CAS 1759

BDF046_La Rodewald 1997 2014 31 31 1.42 2.0 9.9 10.3 687 114 CAN
48 PIS, LFR

1965

BDF047_L Hiddestorf 1994 2014 2 12 1.37 0.9 8.7 10.0 705 141 UAN, U
28 CAM

1781

BDF049_L Glissen 1994 2014 87 6 1.45 1.5 12.8 10.0 730 65 CAN
43 PIS

1955

BDF050_L Bockheber 1994 2014 78 5 1.43 1.3 12.1 9.3 790 27 CAN
58 SHM

1776

BDF051_L Reinhausen 1995 2014 12 49 1.43 1.3 6.1 9.3 628 169 UAN, AS
28 CAM

1784
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Table A1. Continued.

Site Location Start End Sand Clay Bulk SOC C/N MAT MAP Average fertiliser Land use
date date (%) (%) density (%) ratio (◦C) (mm) amendments change

(g cm−3) (kg N yr−1)b

BDF052_L Suestedt 1996 2014 14 11 1.29 1.5 10.9 9.7 715 109 UAN
101 PIS

1899

BDF056_La Meinersen 1996 2014 96 2 1.42 1.3 18.9 9.8 625 62 CAN, UAN
6 LFR

1945

BDF057_L Starkshorn 1997 2014 81 5 1.55 3.3 15.8 9.2 807 118 CAN, AS
53 POM

1777

BDF058_L Kuingdorf 1996 2014 12 12 1.42 1.2 9.0 9.8 832 130 UAN, AS
62 CAS, PIS

1846

BDF059_L Wuelferode 1997 2014 64 12 1.76 0.9 9.0 10.1 684 42 CP 1781

BDF063_La Meyenburg 1998 2014 4 36 1.3 2.4 10.3 10.0 818 213 U, AS
27 POM

1980
1982 drainage

BDF064_L Hohenzethen 1998 2014 79 7 1.44 1.0 12.9 9.7 574 145 UAN, CAN
401 CAS, LFR

1998

BDF065_La Juehnde 1998 2014 3 41 1.39 2.6 9.6 9.5 642 130 CAN, U
34 PIS, LFR

1775

BDF067_La Listrup 1998 2014 83 6 1.48 1.2 15.5 10.4 770 114 CAN, AN,
UAN
116 PIS

1985

BDF069_L Wendhausen 1998 2014 6 22 1.44 1.7 9.7 10.0 698 1.3 HOM 1845

BDF070_L Sehlde 2001 2014 9 25 1.48 1.9 8.8 9.6 753 164 U, CAN
5 CAS

1845

a Sites used for model validation (n= 15). b Predominantly applied fertilisers; N values for organic amendments were estimated. UAN is urea ammonium nitrate. U is the urea. CAN is calcium
ammonium nitrate. AS is ammonium sulfate. AN is ammonium nitrate. POM is poultry manure. PIS is pig slurry. PIM is pig manure. LFR is liquid fermentation residues. SS is sewage sludge. CAS is
cattle slurry. CAM is cattle manure. SHM is sheep manure. CP is compost. HOM is horse manure.

Table A2. Description of the long-term experimental sites (n= 11) used for the validation of simulated soil temperatures and water contents.
SOC is soil organic carbon. MAT is mean annual temperature. MAP is mean annual precipitation.

Site Start End Sand Clay Bulk density SOC pH C/N MAT MAP
date date (%) (%) (g cm−3) (%) ratio (◦C) (mm)

Bornim 2010 2016 75 6 1.65 1.0 6.6 9.8 8.7 503
Braunschweig 2008 2011 62 8 1.55 0.9 6.1 12.2 9.1 617
Dedelow 2010 2016 59 10 1.45 0.8 6.8 7.5 8.4 485
Göttingen 1992 1996 5 30 1.25 1.6 7.5 8.2 8.7 634
Hennef 1997 2000 8 22 1.31 0.9 6.5 7.5 10.3 837
Hohenheim 2010 2016 3 19 1.3 1.7 7.1 8.4 8.3 688
Hohenschulen 2010 2016 60 11 1.43 1.8 6.7 15.2 8.9 732
Merbitz 2010 2016 16 16 1.42 1.2 7.4 10.9 9.0 520
Rostock 1993 1998 70 7 1.5 0.9 6.5 1.1 9.3 593
Scheyern 1989 1996 22 23 1.25 1.9 6.1 9.4 7.4 833
Viehhausen 2011 2022 14 22 1.4 1.06 6.1 5.1 7.5 797
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Appendix B: Revised environmental decomposition
factors

Figure B1. The effect of soil temperature on the soil organic carbon decomposition rate. The solid red line describes the standard function
that is integrated in the MONICA model. The solid blue line describes the revised function as the best fit curve to the observed data, while the
dashed blue lines describe the possible properties of the equation according to the prior probability distribution of the parameters QTenFactor
and TempDecOptimal.

Figure B2. The effect of soil moisture on the soil organic carbon decomposition rate. The solid red line describes the standard function for
a clay soil (clay= 60 %, sand= 10 %, bulk density= 1.4, and soil organic carbon= 2 %), while the solid yellow line describes the standard
function for a sandy soil (clay= 4 %, sand= 80 %, bulk density= 1.4, and soil organic carbon= 1 %). The solid blue line describes the
revised function as the best fit curve to the observed data, while the dashed blue lines describe the possible properties of the equation
according to the prior probability distribution of the parameter MoistureDecOptimal.

Figure B3. The effect of clay on the soil organic carbon decomposition rate. The solid red line describes the standard function that is
integrated in the MONICA model. The solid blue line describes the revised function as the best fit curve to the observed data, while the dashed
blue lines describe the possible properties of the equation according to the prior probability distribution of the parameter LimitClayEffect.

https://doi.org/10.5194/gmd-17-1349-2024 Geosci. Model Dev., 17, 1349–1385, 2024



1366 K. Aiteew et al.: Evaluation and optimisation of the soil carbon turnover routine in the MONICA model

Appendix C: Morris elementary effects screening
method

Table C1. Mathematical formulation of the sensitivity measures of the Morris elementary effects screening method, where r is the number
of input factors, and EE is the elementary effect of each input.

Description Equation Properties

Ranking of the input factor
(Campolongo et al., 2007)

µ∗
j
=

1
r

r∑
i=1
|EEij | Mean estimates of the distribution of the absolute values

of each input

Standard deviation of the input
factor (Morris, 1991)

σj =

√
1
r

r∑
i=1
(EEij − 1

r

r∑
i=1
(EEij )2 Standard deviation estimates of the absolute values of

each input

Appendix D: Metropolis–Hastings algorithm

Table D1. Mathematical formulation of the Metropolis–Hastings algorithm and the log–Laplace likelihood function, where θ is the parameter
vector, Y the dataset used for calibration, t the number of iterations, σ the standard deviation inferred jointly from the error between
observation and simulation, ω the model input, f (ωi ;θi) the model run with the parameter vector θ , α the acceptance ratio and δ a random
vector from a multivariate distribution.

Description Equation Properties

Log–Laplace likelihood func-
tion (Vrugt, 2016)

L(θ |Ȳ )=−
t∑
i=1

log( 1
2σi
) −

t∑
i=1
( e
Ȳ−f (ωi ;θi )

σi
) Continuous probability distribution, assumes all

error residuals equally

Metropolis–Hastings algorithm
(Metropolis et al., 1953; Hast-
ings, 1970)

θ∗ = θi−1+ δ

α =
t∑
i=1

L(θ∗|Ȳ )

L(θi−1|Ȳ )
=

t∑
i=1

L(Ȳ |θ∗)L(θ∗)

L(Ȳ |θi−1)L(θi−1)

Accept θ∗if α ≥ u where u is a uniform random
value between 0 and 1, otherwise if α < u reject
θ∗
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Appendix E: Model evaluation methods

Table E1. Quantitative methods used for data and model evaluation, where S is the predicted value,O is the observed value, n is the number
of cases, and k is the number of divided subgroups from n.

Statistical method Equation Value range Properties

Kendall rank correlation coeffi-
cient (Kendall, 1938, 1948)

T =

∑
i<j

(sgn(Si−Sj )·sgn(Oi−Oj ))

n(n−1)
2

−1–1 If T > 0 positive association
between two variables; other-
wise, if T = 0 no association or
if T < 0 negative association

Mean absolute error (Willmott
and Matsuura, 2005)

MAE=

√
1
n

n∑
i=1
(Si −Oi) > 0 If MAE= 0 perfect agreement

between two variables; other-
wise, if MAE> 0 decreasing
agreement

Nash–Sutcliffe model effi-
ciency coefficient (Nash and
Sutcliffe, 1970)

NSE= 1−

n∑
i=1
(Si−Oi )

2

n∑
i=1
(Oi−Ō)

2
< 1 If NSE= 1 perfect agreement

between two variables; other-
wise, if NSE< 1 decreasing
agreement
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Appendix F: Results of the Morris elementary effects
screening method

Table F1. Results of the Morris method depicting the effects of 51 variables on soil carbon changes. The variables are subdivided into
site, management, crop- and fertiliser-specific and carbon turnover factors. The parameters CorgContent (C content of crop residues and
organic fertilisers), MoistureDecOptimal (optimal water-filled pore space for decomposition), TempDecOptimal (optimal temperature for
decomposition) and QTenFactor(Q10 temperature coefficient) were included as modifications to the model. The overall importance of an
input factor is specified by two sensitivity measures, namely the mean (µ∗) and the standard deviation of the elementary effect (σ ) of each
parameter. Higher values in the two sensitivity measures imply a greater importance of the variable for changes in soil carbon stocks. The
uncertainty is presented as the standard deviation between the results of three separate Morris elementary effects screening runs.

Variables Absolute mean of elementary effect µ∗ Standard deviation of elementary effect σ
(g C kg−1) (g C kg−1)

Site factor

Temperature 11.43± 0.46 15.9± 0.58
SoilOrganicCarbon 4.72± 0.14 8.08± 0.26
SoilBulkDensity 4.44± 0.14 4.96± 0.04
Daily_Precipitation 4.16± 0.28 8.55± 0.71
FieldCapacity 3.7± 0.07 7.15± 0.49
PoreVolume 2.46± 0.13 4.85± 0.49
Global_Radiation 1.48± 0.05 3.37± 1.28
Clay 0.62± 0.04 1.4± 0.11
CN 0.53± 0.05 2.77± 0.77
PermanentWiltingPoint 0.24± 0.01 0.87± 0.12
Sand 0.19± 0.02 0.54± 0.18
pH 0.0± 0.0 0.02± 0.02
Wind_Speed 0.0± 0.0 0.0± 0.0
Relative_Humidity 0.0± 0.0 0.0± 0.0
Sceleton 0.0± 0.0 0.0± 0.0

Management factor

OrganicFertilization 18.36± 0.68 16.43± 0.44
MineralFertilization 1.03± 0.05 3.39± 0.26
Irrigation 0.37± 0.03 1.01± 0.12
Tillage 0.22± 0.03 1.42± 0.42

Crop and fertiliser factor

AOM_DryMatterContent 17.75± 0.32 16.25± 0.39
CorgContent 7.74± 0.41 8.67± 0.3
PartAOM_to_AOM_Slow 2.82± 0.11 4.78± 0.11
PartAOM_to_AOM_Fast 2.41± 0.12 4.23± 0.15
AOM_SlowDecCoeffStandard 1.62± 0.14 4.84± 0.5
AOM_FastDecCoeffStandard 1.51± 0.07 4.94± 0.79
PartAOM_Slow_to_SMB_Slow 0.57± 0.06 2.05± 0.44
CN_Ratio_AOM_Fast 0.44± 0.06 1.89± 0.57
PartAOM_Slow_to_SMB_Fast 0.44± 0.04 1.18± 0.39
CN_Ratio_AOM_Slow 0.43± 0.06 2.53± 0.29
AOM_NH4Content 0.18± 0.03 0.95± 0.14
AOM_NO3Content 0.18± 0.03 0.72± 0.15

Carbon turnover factor

QTenFactor 4.77± 0.08 8.56± 0.1
MoistureDecOptimal 4.02± 0.15 6.71± 0.15
SOM_SlowDecCoeffStandard 3.73± 0.18 7.11± 0.14
SOM_FastUtilizationEfficiency 2.5± 0.1 4.44± 0.33
AOM_FastUtilizationEfficiency 2.06± 0.03 4.87± 0.63
PartSOM_Fast_to_SOM_Slow 1.96± 0.04 3.5± 0.04
SOM_FastDecCoeffStandard 1.75± 0.09 3.05± 0.16
SMB_UtilizationEfficiency 1.63± 0.11 3.59± 0.24
AOM_SlowUtilizationEfficiency 1.34± 0.15 3.35± 0.16
PartSMB_Fast_to_SOM_Fast 1.25± 0.09 2.37± 0.36
PartSMB_Slow_to_SOM_Fast 0.94± 0.03 2.24± 0.25
SOM_SlowUtilizationEfficiency 0.81± 0.01 1.65± 0.07
SMB_FastDeathRateStandard 0.65± 0.02 2.0± 0.09
SMB_SlowDeathRateStandard 0.53± 0.08 1.69± 0.49
SMB_FastMaintRateStandard 0.38± 0.04 1.29± 0.48
SMB_SlowMaintRateStandard 0.37± 0.02 0.92± 0.07
LimitClayEffect 0.25± 0.02 0.63± 0.13
PartSOM_to_SMB_Slow 0.1± 0.0 0.13± 0.0
PartSOM_to_SMB_Fast 0.04± 0.01 0.13± 0.13
TempDecOptimal 0.0± 0.01 0.1± 0.17
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Appendix G: Gelman and Rubin shrink factor

Figure G1. Evolution of the Gelman and Rubin shrink factor. The 50 % (solid line) and 97.5 % (dashed red line) quantiles show the conver-
gence of the calibration.
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Appendix H: Correlations between C turnover
parameters

Figure H1. Correlation matrix quantifying the statistical relationship between the prior probability distributions of the SOM submodel
parameters.

Appendix I: Model performance

Table I1. Statistics describing the performance of the default (MONICAdef), the modified uncalibrated (MONICAmod) and the modified
calibrated (MONICAcal) soil carbon submodel in MONICA in comparison with five C turnover models for 15 validation sites. The first 10
years were excluded from the analysis (n= 70). The statistics depicted are Kendall’s rank correlation coefficient (T ), Nash–Sutcliffe model
efficiency coefficient (NSE), mean absolute error (MAE) and slope and intercept for characterising the relationship between measured and
simulated C stocks.

Description T NSE MAE (Mg C ha−1) Slope Intercept

MONICAdef 0.85∗∗∗ 0.93 5.41 1.07 0.54
MONICAmod 0.81∗∗∗ 0.94 4.97 1.08 −2.14
MONICAcal 0.83∗∗∗ 0.97 3.81 1.02 −0.41
RothC 0.83∗∗∗ 0.97 3.68 1.04 −0.57
C-TOOL 0.85∗∗∗ 0.95 4.63 1 2.68
ICBM 0.87∗∗∗ 0.95 3.6 0.91 4.86
CENTURY 0.84∗∗∗ 0.95 4.32 0.88 4.37
CCB 0.8∗∗∗ 0.93 4.95 0.89 3.29

∗∗∗ p < 0.001.
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Appendix J: Model performances

Figure J1. Performance of the default MONICA model for each individual site. The first 10 measured years were excluded.
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Figure J2. Performance of the modified and calibrated MONICA model for each individual site. The first 10 measured years were excluded.
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Figure J3. Performance of the CCB model for each individual site. The first 10 measured years were excluded.
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Figure J4. Performance of the CENTURY model for each individual site. The first 10 measured years were excluded.
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Figure J5. Performance of the C-TOOL model for each individual site. The first 10 measured years were excluded.
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Figure J6. Performance of the ICBM model for each individual site. The first 10 measured years were excluded.
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Figure J7. Performance of the RothC model for each individual site. The first 10 measured years were excluded.
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Code and data availability. The original and modified
MONICA model source code is openly available at
https://doi.org/10.5281/zenodo.8380341 (Aiteew et al., 2023a).
The described long-term soil monitoring data are available from the
State Office for Mining, Energy and Geology of the Lower Saxony
state government. Restrictions apply to the availability of these data,
which were used under license for this study. Data are available
from the State Office for Mining, Energy and Geology of the Lower
Saxony state government from https://www.lbeg.niedersachsen.
de/boden_grundwasser/bodenmonitoring/bodendauerbeobachtung/
das-boden-dauerbeobachtungsprogramm-von-niedersachsen-572.
html (LBEG, 2023) and via email (bodenkundlicheber-
atung@lbeg.niedersachsen.de). Additional data are openly
available at https://doi.org/10.5281/zenodo.8380332 (Aiteew
et al., 2023b). Further information on the Berge, Dedelow,
Hohenheim, Hohenschulen and Merbitz data are comprehen-
sively described in the publication by Mallast et al. (2021)
(available via email from janine.mallast@thuenen.de). The
Deutsche Wetterdienst weather data are openly available from
https://opendata.dwd.de/climate_environment/CDC/ (DWD, 2022).
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