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Abstract
New mutations provide the raw material for evolution and adaptation. The distribution of fitness effects (DFE) de-
scribes the spectrum of effects of new mutations that can occur along a genome, and is, therefore, of vital interest in 
evolutionary biology. Recent work has uncovered striking similarities in the DFE between closely related species, 
prompting us to ask whether there is variation in the DFE among populations of the same species, or among species 
with different degrees of divergence, that is whether there is variation in the DFE at different levels of evolution. 
Using exome capture data from six tree species sampled across Europe we characterized the DFE for multiple species, 
and for each species, multiple populations, and investigated the factors potentially influencing the DFE, such as dem-
ography, population divergence, and genetic background. We find statistical support for the presence of variation in 
the DFE at the species level, even among relatively closely related species. However, we find very little difference at 
the population level, suggesting that differences in the DFE are primarily driven by deep features of species biology, 
and those evolutionarily recent events, such as demographic changes and local adaptation, have little impact.
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Introduction
The distribution of fitness effects (DFE) of new mutations, 
that is, the proportion of new mutations that are expected 
to be adaptive, neutral, slightly deleterious, or strongly 
deleterious, is at the heart of any evolutionary model, 
yet, in spite of recent progress (for a review, see Johri et 
al. 2022) it is still hard to estimate and is poorly under-
stood. While there is variation in the DFE across distantly 
related species with dissimilar biological features (Huber et 
al. 2017), on shorter evolutionary timescales it is not clear 
how the DFE might come to differ among species or popu-
lations, although we can make some predictions from the 
Nearly Neutral Theory (Ohta 1973). In particular, the 
strength of selection acting on new mutations is expected 
to scale with effective population size, Ne, and, therefore, to 
be affected by demographic processes. We also expect that 
the fraction of mutations inferred to be nearly neutral, that 
is, slightly deleterious, will be related to proxies of Ne. In 

particular, the ratio of slightly deleterious to neutral diver-
sity will be smaller in high Ne populations (Welch et al. 
2008).

Despite these predictions, empirical evidence has been 
mixed. Major evolutionary transitions do affect the DFE. 
For instance, a shift in mating systems from outcrossing 
to selfing leads to a lower Ne and a significant increase in 
the fraction of slightly deleterious mutations (e.g. 
Douglas et al. 2015), as predicted under the Nearly 
Neutral Theory. However, a number of studies have found 
that across closely related species, the DFE and related 
summary statistics, such as the ratio of nonsynonymous 
to synonymous nucleotide diversity, πN/πS, are remarkably 
stable (Grivet et al. 2017; Castellano et al. 2019; Liu et al. 
2022), even when comparing domesticated species and 
their wild relatives (Chen et al. 2017). In the latter, domes-
tication has a very strong effect on synonymous nucleotide 
diversity but the ratio of nonsynonymous to synonymous 
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nucleotide variation, a good proxy of the slightly 
deleterious class of mutations for populations at 
demographic equilibrium (Ohta 1973), was barely 
affected. Additionally, while some studies have found 
associations between parameters associated with the 
DFE and demographic processes such as range expansion 
(González-Martínez et al. 2017; Willi et al. 2020), others 
have not (Takou et al. 2021).

These contrasting results may reflect real biological and 
demographic differences across species and populations. 
Species may also experience different environmental con-
ditions across their ranges, which could result in changes in 
the parameters of the DFE. For example, Martin and 
Lenormand (2006) found evidence to support a scenario 
in which mutations have more variable fitness effects 
when an organism exists in an environment to which it 
is less well adapted. They interpreted this result in terms 
of a simple fitness landscape model. A recent study in 
Arabidopsis thaliana (Weng et al. 2021) also found that 
mutational variance was greater in populations growing 
in stressful environments in which their fitness was low. 
However, not all of the results in Weng et al. agree with 
the predictions of a simple fitness landscape model. For ex-
ample, the authors found that beneficial mutations were 
more common in populations in less stressful environ-
ments. Additionally, a review of the impact of environ-
ment on the effects of new mutations found that 
environmental stress can both decrease and increase the 
mean strength of selection acting on new mutations, as 
well as its variance (Agrawal and Whitlock 2010). 
Population differentiation may also be important, with 
more differentiated populations appearing to have less 
similar strengths of selection acting on shared mutations 
than less differentiated populations (Huang et al. 2021). 
Whether this could lead to differences in the DFE between 
populations given enough evolutionary time has not yet 
been systematically investigated.

However, contrasting results across species and popula-
tions might also be due to differences in metrics used to 
characterize patterns of deleterious and neutral diversity. 
It has been argued that while summary statistics such as 
the ratio of nonsynonymous to synonymous nucleotide di-
versity provide a good measure of the efficiency of selec-
tion, they are poor measures of the deleterious genetic 
load experienced by a population due to the effects of 
demography and nonequilibrium dynamics. For instance, 
after a demographic event, slightly deleterious nonsynon-
ymous mutations will reach their equilibrium frequency 
spectra more rapidly than synonymous mutations, simply 
because the equilibrium frequencies of slightly deleterious 
mutations are lower (Simons et al. 2014; Simons and Sella 
2016). Counts of nonsynonymous derived alleles are more 
robust to nonequilibrium dynamics, and give a good meas-
ure of load if mutations are deleterious, and their effects 
are additive. Therefore, metrics such as Rxy, which were 
specifically developed for the purpose of estimating 
asymmetries in counts of derived mutations between 
populations, provide a better proxy of genetic load 

(Do et al. 2015). A combination of such metrics, in addition 
to those based on the site frequency spectrum, may allow 
for a greater understanding of how new mutations affect 
the molecular evolution of populations and species differ.

In the present study, we investigated variation in the 
DFE at both the species and population levels by leveraging 
exome capture data collected from range-wide popula-
tions of six forest tree species, comprising four angios-
perms and three conifers, at different degrees of 
phylogenetic distance. These trees are keystones of 
European forests with a range of life history traits. All spe-
cies are widely distributed, but there are marked differ-
ences in levels of population differentiation within 
species (see supplementary table S1, Supplementary 
Material online for details). By using orthologous genomic 
regions, we were able to compare the DFE among species 
while controlling for gene content. Additionally, all species 
have been sampled broadly across their natural ranges, fol-
lowing the same sampling scheme, providing us with an 
ideal dataset to assess the constancy of the DFE at the 
within-species level. Finally, we also explored variation in 
patterns of genetic load between populations.

Methods
Samples
The data consists of six wind-pollinated forest tree species 
(6), two conifers (Picea abies and Pinus pinaster), and four 
angiosperms (Betula pendula, Fagus sylvatica, Populus ni-
gra, and Quercus petraea), distributed across Eurasia 
from the boreal to the Mediterranean region, and with ei-
ther animal-, wind-, or water-dispersed seeds. The species 
vary in both life history and population structure (Milesi et 
al. 2023; see supplementary table S1, Supplementary 
Material online for details).

Sequencing and SNP Calling
Sequencing and single nucleotide polymorphism (SNP) 
calling were as described in Milesi et al. (2023). Briefly, 
the data are the result of targeted nuclear DNA sequencing 
(∼10,000 species-specific probes that covered ∼3 Mb of 
sequence) on a total of 3,407 adult trees collected from 
19 to 26 locations per species (∼25 samples each) across 
their distribution range. The targeted regions primarily 
consisted orthologous regions among species, in addition 
to regions that had previously been identified as targets 
of selection. Site-based annotation (4-fold degenerate 
and 0-fold degenerate sites) of detected SNPs was gener-
ated using the Python script NewAnnotateRef.py available 
at https://github.com/fabbyrob/science/blob/master/pile 
up_analyzers/NewAnnotateRef.py (Williamson et al. 
2014). Detected SNPs were functionally annotated in order 
to predict their effects on protein sequences using the tool 
ANNOVAR (Wang et al. 2010). SNPs were classified as 
“noncoding”; “coding 4-fold degenerate synonymous”; 
“coding 0-fold degenerate nonsynonymous”; and “non-
sense” (determining a premature STOP codon or a STOP 
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loss). Filtering steps were applied in order to remove incor-
rectly assigned or clear hybrid samples. Full documenta-
tion of bioinformatics pipelines used to generate these 
VCF files is available at https://github.com/GenTree- 
h2020-eu/GenTree. The VCF files used in the present study 
correspond to version 5.3.2, available at https://entrepot. 
recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10. 
57745/DV2X0M. In order to be included in our analyses, 
both polymorphic and monomorphic sites had to have a 
call depth >8 or genotype quality >20. Loci with >50% 
missing calls were also removed. SNPs and monomorphic 
sites were further restricted to those that are either 
4-fold or 0-fold degenerate. An additional subdivision of 
our SNP dataset was created, which included only those 
SNPs that occur in orthologous genomic regions found 
in all six tree species.

SNP Polarization
To increase the power of our DFE estimation methods, we 
inferred the ancestral state at each SNP. This was achieved 
by considering the state of the site in either a single out-
group species (two species in our dataset; see 
supplementary table S2, Supplementary Material online 
for details) or two outgroup species (four species; see 
supplementary table S2, Supplementary Material online 
for details). For each species, we, therefore, mapped the 
genome of one or more outgroup species to the same ref-
erence genome used for SNP calling for that species using 
the bwa software package (Li and Durbin 2009); for further 
details and commands used, see supplementary table S2, 
Supplementary Material online. We also retained SNP sites 
that could not be matched to a site in an outgroup species 
(see in the following), due, for example, to being missing in 
the outgroup species genome. We used the maximum like-
lihood method implemented in Est-SFS (Keightley and 
Jackson 2018) for assigning the ancestral allele at poly-
morphic sites, assuming the Kimura 2-parameter substitu-
tion model. To conduct this step, we first down-sampled 
to a maximum number of 100 haplotypes per species by 
sampling randomly from a hypergeometric distribution 
to account for missing data and to not exceed the max-
imum permissible number of haplotypes for Est-SFS. We 
then used the probability associated with the state of 
each SNP to assign likely ancestral states, removing SNPs 
for which the probability of the major allele being the an-
cestral state was between 0.4 and 0.6, and which we are 
therefore not able to polarize with confidence. So, SNPs 
for which there was no outgroup information available 
could therefore still be assigned an ancestral state based 
on their minor allele frequency; however, we note that 
this is a small fraction of SNPs, and that all downstream 
analyses account for errors in ancestral state identification. 
We used a model averaging procedure to assess the effect 
of accounting for error in ancestral state identification on 
DFE inference (see DFE Inference); additionally, we as-
sessed how restricting our dataset to GC-conservative mu-
tations, which are less likely to be affected by polarization 

error due to the exclusion of CpG hypermutable sites, af-
fects our results.

Grouping Samples
For downstream analyses, we were interested in investigat-
ing variation in the DFE across a species range. DFE infer-
ence power depends on the number of sequenced 
individuals, and number of available SNPs; we, therefore, 
pooled individuals into groups based on sampling location 
(see supplementary fig. S1, Supplementary Material online 
for the map of sampling locations). This was first achieved 
by taking all individuals per country; subsequently, if mul-
tiple distinct admixture groups were present in this “coun-
try” pool of individuals, as identified in Milesi et al. (2023), 
this pool was subdivided further based on the admixture 
groups. If any pool contained fewer than 20 individuals it 
was not included in our analysis in the interest of main-
taining sufficient power to achieve accurate results. We 
will refer to these pools as “populations”, full details of 
which can be found in supplementary table S3, 
Supplementary Material online. We also calculated the 
mean latitude and longitude of each sampling location 
per population.

Summary Statistics
We inferred a number of standard population genetic 
summary statistics including Wright’s fixation index, FST 

(as calculated over 4-fold sites), and 0- and 4-fold pairwise 
nucleotide site diversity, π0 and π4, respectively, after first 
projecting our data down to an SFS of 40 haplotypes, that 
is, 20 individuals per species or population, to account for 
any sites with missing data. Projecting takes the average 
across every possible resampling of the data, as implemen-
ted in Python using functions in the δaδi package 
(Gutenkunst et al. 2010). Those pairwise nucleotide diver-
sity estimates were then used to calculate the ratio π0/π4. 
For each population, pairwise FST was calculated with 
Python scripts, as implemented in δaδi (Gutenkunst et 
al. 2010). For each species, we identified the median longi-
tude and latitude of sampling locations, and chose as a ref-
erence the pooled population sampled closest to this 
location, which represents a “central” population to the 
species range. These “central” populations were DE for 
B. pendula, CH for F. sylvatica, LT for P. abies, FR-North 
for P. pinaster, IT-North for P. nigra, and CH for Q. petraea 
(for location details, see supplementary table S3, 
Supplementary Material online for details).

Finally, we also inferred Rxy, an estimator of the differ-
ences of genetic load between populations, as defined in 
Do et al. (2015). Briefly, Rxy measures the average difference 
in the accumulation of mutations between two genomes 
sampled in different populations at all sites for which 
the ancestral state is known. One counts the number of 
derived mutations in genome x that are not present in gen-
ome y and vice versa, and Rxy is defined as the ratio of these 
two counts. If selection has been equally effective and mu-
tation rates have been the same since the populations 
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diverged, Rxy is expected to equal 1. This statistic was 
shown to be monotonically related to the difference in 
mutation load between the two populations. We followed 
Do et al. (2015) in calculating confidence intervals on this 
estimate using a weighted block jack-knife procedure 
whereby SNP data was divided into 100 “consecutive” 
blocks and Rxy was recalculated, removing one block per 
run. Each VCF was first split into chunks of length 2 Mb, 
based on the SNP position in the assembled genome, 
and then these chunks were combined into 100 groups 
of similar length. This grouping was done such that con-
secutive parts of the genome were kept together, 
although small scaffolds meant that occasionally 
different scaffolds were combined into a single group. As 
before, we used our estimated “central” population per 
species as the reference when presenting results, but re-
sults are very similar when different populations are used 
as reference. We also calculate R′xy for 0-fold degenerate, 
nonsynonymous sites, a measure which is normalized 
using putatively neutral 4-fold degenerate synonymous 
sites, by dividing Rxy for 0-fold sites by Rxy for 4-fold 
sites. The custom scripts used to calculate all summary 
statistics are available at: https://github.com/j-e-james/ 
TreeDFEScripts.

DFE Inference
The DFE was primarily inferred using polyDFE (Tataru et al. 
2017; Tataru and Bataillon 2019). PolyDFE implements a 
likelihood-based approach, and simultaneously infers the 
DFE while also accounting for the effects of other distor-
ters of the SFS such as demography and errors in SNP po-
larization through the incorporation of nuisance 
parameters (Eyre-Walker et al. 2006), which are inferred 
for each category of the SFS. This method requires the spe-
cification of a class of neutral and a class of non-neutral 
sites, for which we used 0- and 4-fold degenerate sites, 
thereby avoiding site-counting issues that arise with 2- 
and 3-fold degenerate sites. As no change in 4-fold degen-
erate sites results in a change in amino acid, they are the 
best proxy for neutrally evolving sites in coding DNA, al-
though it is possible that there is selection on synonymous 
codon usage in the species (Duret 2002). We then inferred 
the neutral and non-neutral site frequency spectra across 
species and populations, after first projecting our data 
down to the same number of individuals to account for 
any sites with missing data. Our analyses were run on 
data projected down to 40 haplotypes, that is, 20 indivi-
duals. All scripts required for the processing of data, 
and the polyDFE input files used in this analysis, are avail-
able at (https://github.com/j-e-james/TreeDFEScripts). Pol 
yDFE allows for the fitting of both deleterious-only DFEs 
and mixed DFEs, which account for the possible effects 
of beneficial mutations on DFE inference. From the DFE fit-
ted for beneficial mutations, polyDFE is also able to esti-
mate α, henceforth referred to as αDFE, the rate of 
adaptive molecular evolution. In polyDFE, this is calculated 
from the full DFE for beneficial mutations, however, this 

may inflate estimates of αDFE due to the inclusion of bene-
ficial mutations with very small selective effects. We, there-
fore, followed Galtier et al. (2016) by incorporating a lower 
bound of 5 for the population selection coefficients of 
positive mutations to be used in the calculation of αDFE, 
as implemented in polyDFE v. 2.0 (Tataru et al. 2017). 
This lower bound is arbitrary, and changing it will have 
an impact on the estimated value of αDFE. Finally, we 
note that we only use polymorphism data when running 
PolyDFE, to avoid having to make the assumption that 
the DFE is invariant between the ingroup and outgroup 
species. PolyDFE is able to estimate the deleterious DFE ac-
curately without divergence information, and the inclu-
sion of divergence data provides little or no 
improvement to estimates of the beneficial DFE (Tataru 
et al. 2017; Booker 2020).

To ensure that, as far as possible, our polyDFE runs ex-
plored the full range of parameter space when estimating 
the DFE, we ran polyDFE a minimum of five times per spe-
cies, using different starting parameters for each run (see 
supplementary table S4, Supplementary Material online 
for details). Runs in which parameters were close to the 
edges of their permitted ranges were removed; we then as-
sessed whether our runs reliably returned similar esti-
mated DFE parameters and had a small gradient of the 
likelihood. As DFE estimation entails considerable uncer-
tainty, we then ran polyDFE a further four times per spe-
cies, initializing runs using both analytically estimated 
parameters and those parameters previously found to re-
turn the smallest gradient of the likelihood, fitting a differ-
ent model per run: in model 1 we fit a full (deleterious and 
advantageous mutations) DFE, including an estimation of 
the rate of misidentification of the ancestral allele, ɛanc; in 
model 2 we fit a full DFE, without including the estimation 
of ɛanc; in model 3 we fit a deleterious mutation-only DFE; 
in model 4 we again fit a deleterious mutation-only DFE, 
but without including an estimation of ɛanc. All models 
include an estimation of nuisance parameters, which ac-
count for the effects of demography. We then performed 
model averaging over the four models, as described in 
Muyle et al. (2021), such that models are weighted 
by their AICs to account for uncertainty in parameter 
estimation. We calculated AIC weights and generated 
bootstrap datasets using the R functions provided in 
polyDFE (Tataru et al. 2017), available at https://github. 
com/paula-tataru/polyDFE. All other scripts used to con-
duct these analyses are available at https://github.com/j- 
e-james/TreeDFEScripts.

PolyDFE v2.0 (Tataru and Bataillon 2019) enables the 
simultaneous fitting of DFEs to multiple datasets, allowing 
for model comparisons to assess whether models in which 
DFE parameters differ between datasets provide a signifi-
cantly better fit than models in which the DFE parameters 
are shared between datasets. In situations in which we 
were interested in comparing models (e.g. comparing po-
pulations), we inferred a full DFE, including nuisance para-
meters and ɛanc, allowing these parameters to vary 
between datasets, as recommended by Tataru and 
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Bataillon (2019), to account for differences in ancestral 
identification error and demographic processes between 
comparisons.

Statistical Analyses
We considered correlations between our inferred DFE 
parameters, life history traits, and population genetics 
summary statistics. All statistical analyses and plotting 
were conducted in R, using scripts available at https:// 
github.com/j-e-james/TreeDFEScripts.

Results
Summary Statistics
Our dataset comprises polarized SNPs from approximately 
3 Mb of targeted genome sequencing for six European tree 
species which were sampled broadly across their range, 
with approximately 25 individuals sequenced per location. 
For all populations across species (see “population” defin-
ition above), we calculated population genetic summary 
statistics to investigate the efficiency of selection across 
species and among populations within species.

Species vary broadly in π0/π4, the efficiency of purifying 
selection (Fig. 1A), with selection appearing to be com-
paratively inefficient in P. pinaster and P. abies relative to 
broad-leaved species such as B. pendula. This may reflect 
differences among species in effective population size. 
However, it does not clearly relate to levels of panmixia, 
despite the species exhibiting different degrees of genetic 
differentiation across their ranges (Fig. 1B). B. pendula ex-
hibits very little population differentiation and has the 
most efficient selection of the six species. For F. sylvatica, 
Q. petraea, B. pendula, and P. abies, despite their broad geo-
graphic ranges, the efficiency of purifying selection was 
similar among populations within a species. By contrast, 
P. nigra and P. pinaster have the highest levels of popula-
tion genetic structure, with strongly differentiated and iso-
lated Moroccan populations, and there is a relationship 
with latitude and π0/π4 for both species (P. nigra R2 =  
0.91, P = 0.0019 and P. pinaster R2 = 0.55, P = 0.04), with 
π0/π4 being lowest in populations at lower latitudes for 
both P. nigra and P. pinaster. However, these species 
have intermediate values of π0/π4 when comparing among 
species. P. abies, F. sylvatica, and Q. petraea show moderate 
levels of structure, with population FST increasing with lati-
tude, and while F. sylvatica and Q. petraea have intermedi-
ate values of π0/π4, P. abies has the least efficient selection 
of any of the species studied.

It has been argued that metrics measuring the ratio of 
nonsynonymous to synonymous (or 0- to 4-fold degenerate) 
diversity are poor measures of genetic load (Do et al. 2015). 
We therefore also estimated the statistic Rxy, which compares 
the frequency of derived alleles between a focal (X ) and ref-
erence (Y ) population. The neutral expectation is that the 
number of derived alleles is the same in the focal population 
as in the reference, while values of Rxy above 1 indicate that 
the focal population has an excess of derived alleles.

Comparing focal populations to a single reference 
population (for which we used a population that was ap-
proximately central for the sampling locations per species, 
Fig. 1C), the most striking results are for P. nigra popula-
tions MA and GB, which show a deficit of derived alleles 
relative to the reference population. We also note a slight 
tendency for low latitude populations of P. abies to show 
a relative deficit of derived alleles, which agrees with our 
0- to 4-fold diversity results. However, in the vast majority 
of populations, we find no deviation from the neutral ex-
pectation that the number of derived alleles at 0-fold de-
generate sites is the same in the focal as in the reference 
population. If we use 4-fold degenerate synonymous sites 
to normalize Rxy (R′xy, Fig. 1D), which has been suggested 
to account for the effects of population structure (Do et 
al. 2015; Grossen et al. 2020), we find that no population 
has a significant deficit relative to the focal population. 
Therefore, although population structure has resulted in 
a deficit or excess of mutations in some populations, there 
is little evidence that populations differ in their genetic 
load.

Species DFE
We inferred the full DFE for all species, incorporating a 
gamma-distributed deleterious DFE and an exponential- 
distributed beneficial DFE, using only polymorphism data 
(Tataru et al. 2017). The gamma distribution is a flexible 
and commonly used distribution, and is parameterized 
by two values: the shape parameter, b, which is inversely 
related to the coefficient of variation of the strengths of se-
lection acting on new mutations, and the scale parameter, 
Sd, which is the mean scaled strength of selection (Nes) act-
ing on new mutations. We also inferred the purely deleteri-
ous DFE for all six species to assess whether incorporating 
beneficial mutations improves our DFE model inference 
(Fig. 2). We fitted the full DFE and the deleterious-only 
DFE models both with and without incorporating an esti-
mation of the error rate for the inference of the ancestral 
state of alleles, ɛanc, and conducted a model averaging pro-
cedure (see Methods and supplementary fig. S2, 
Supplementary Material online to see the fit of each mod-
el, and see supplementary table S5, Supplementary 
Material online for all model-averaged inferred parameters 
for the deleterious and beneficial DFEs), such that the es-
timated DFE parameters presented here incorporate the 
degree of model uncertainty (Fig. 3; Table 1). In three of 
the species in our dataset, incorporating the rate of ances-
tral misidentification did not significantly improve the fit 
of the DFE model; while in F. sylvatica, Q. petraea and P. 
abies we see a small model improvement (P-values of like-
lihood ratio tests comparing models are 0.018, 0.016, and 
0.0039, respectively); these species have high Sd values 
and a high proportion of adaptive substitutions, which is 
the selective regime in which we expect the rate of ances-
tral error to be inflated in polyDFE analyses (Tataru et al. 
2017). Generally, the species in our dataset have similar va-
lues of b, but vary considerably in Sd. However, Sd values 

Exploring variation in the DFE · https://doi.org/10.1093/molbev/msad228 MBE

5

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/11/m
sad228/7313554 by Bundesforschungsanstalt fuer Landw

irtschaft user on 21 February 2024

https://github.com/j-e-james/TreeDFEScripts
https://github.com/j-e-james/TreeDFEScripts
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad228#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad228#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad228#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad228#supplementary-data


should be interpreted with caution, because Sd is not re-
lated to the distribution of selection coefficients of segre-
gating mutations in a straightforward way (see 
supplementary fig. S3, Supplementary Material online for 
details).

In five of the six species, a model incorporating benefi-
cial mutations into estimates of the DFE was the most 
highly weighted, although only in four species was this 
model a significantly better fit to the data. Ignoring the 

contribution of beneficial mutations to the DFE in these 
species leads to a reduction in the inferred value of b and 
to an increase in the inferred value of Sd (Figs. 2 and 3). 
We used polyDFE to estimate the rate of adaptive molecular 
evolution (i.e. the proportion of nonsynonymous substitu-
tions that are beneficial), αDFE, incorporating a lower bound 
for the minimum strength of selection acting on new muta-
tions. We demonstrate the effects of different bounds 
on the estimate of αDFE in see supplementary fig. S4, 

Fig. 1. Levels of non-neutral diversity and mutation load are similar across populations within a species, despite different levels of population 
differentiation. The average π0/π4 per population for all species (A), and “focal” population pairwise FST (Wright’s FST) for all species (B), using a 
“central” (see Methods) population per species as a reference, plotted against average sampling latitude for the focal population. Lines shown are 
linear regression slopes, along with their 95% confidence intervals. In (C), we plot Rxy for 0-fold degenerate, nonsynonymous sites, calculated per 
population, comparing focal populations (x) to a “central” (see Methods) reference population (y), while in (D), we plot R′xy for 0-fold degen-
erate, nonsynonymous sites, a measure which is normalized using putatively neutral 4-fold degenerate synonymous sites. In (C) and (D), black 
diamonds indicate the calculated values, while error bars are 95% confidence intervals on the estimate, calculated through jack-knifing. X axis 
labels are population codes, which begin with the two-letter country code of the sampling locations for each population, ordered by increasing 
latitude. The third letter provides additional location information for populations: C = Corsica, S = South, N = North, E = East, W = West (for 
exact sampling locations, see supplementary table S3, Supplementary Material online). Color codes for species, and species order, are consistent 
across all figure panels, with species ordered such that more closely related species are closer together.
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Supplementary Material online. We find that the rate of 
adaptive evolution is fairly high in some of the tree species, 
particularly in B. pendula and P. nigra, suggesting that adap-
tive substitutions are common in these forest tree species 
(Fig. 3).

P. abies and P. pinaster, the two conifer species included 
in this study, are an interesting pair to compare. P. abies 
has remarkably low values of αDFE, which is particularly sur-
prising given the fairly high inferred αDFE in the other coni-
fer in the dataset, P. pinaster. These differences may arise 
due to P. pinaster having relatively differentiated popula-
tions, which could facilitate local adaptation due to the 
limited influx of alleles from other populations, whereas 
P. abies has less population structure, that is, greater levels 
of admixture, and uniformly high levels of purifying selec-
tion across its range (Figs. 1 and 3). It is also interesting to 

note that P. pinaster has quite a distinct discretized DFE 
compared to the other species in the dataset, with a 
high inferred b, a low inferred absolute Sd, and a relatively 
small estimated fraction of mutations falling into the most 
strongly deleterious category (Nes < −100). P. pinaster has 
fewer SNPs compared to the other species in the dataset, 
and so we have less confidence in these results, however, 
these differences could represent the greater phylogenetic 
distance between P. pinaster with the other forest trees in 
the dataset. The most closely phylogenetically related spe-
cies in this dataset are F. sylvatica and Q. petraea, which do 
have similar DFEs (shown in Figs. 2 and 3). However, we 
find that for these two species, DFE models that are fitted 
independently per species have significantly better 
log-likelihoods than models in which either both b and 
Sd are shared between species (P = 0.05), or models in 

Fig. 2. Species differences in the deleterious-only DFE. (A) Shows the model-averaged discretized DFE, that is, the fraction of new mutations in 
each scaled fitness effect (Nes) category. Black bars indicate 95% confidence intervals on the estimated fraction, as estimated from 
model-averaged bootstrap replicates. (B) Violin plots of the shape parameter, b, and (C) Violin plots of the scale parameter Sd, for the gamma 
distribution of deleterious fitness effects per species. Black diamonds are the inferred model-averaged parameters, while violins show the 95% 
confidence intervals, as estimated from model-averaged bootstrap replicates.
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which only b is shared between species (P = 0.03), as might 
be the case if the two species shared a DFE but had differ-
ent effective population sizes.

Drivers of Differences in the DFE at the Species Level
GC-biased Gene Conversion
It has been demonstrated that GC-biased gene conversion 
can result in misinference of the DFE (Bolívar et al. 2018). 

CpG sites are highly mutable, and prone to polarization er-
ror. We therefore repeated our analyses restricting our da-
taset to GC-conservative mutations (see supplementary 
table S6 and fig. S5, Supplementary Material online for de-
tails). We found that fitting the DFE parameters independ-
ently for GC-conservative mutations does not provide a 
better model fit than allowing DFE parameters to be 
shared between GC-conservative mutations and the full 
SNP dataset. Our inferred DFEs are similar across datasets 

Fig. 3. Species differences in the 
full DFE. (A) Shows the model- 
averaged discretized DFE, that 
is, the fraction of new mutations 
in each scaled fitness effect (Nes) 
category. Black bars indicate 95% 
confidence intervals on the esti-
mated fraction, as estimated 
from model-averaged bootstrap 
replicates. (B) Violin plots show 
the shape parameter, b, the scale 
parameter, (C) Sd, for the gamma 
distribution of deleterious fitness 
effects per species, (D) αDFE, the 
estimated fraction of substitu-
tions inferred to be adaptive. 
Black diamonds are the inferred 
model-averaged parameters, 
while violins show the 95% confi-
dence intervals, as estimated 
from model-averaged bootstrap 
replicates. In (E), we show the 
fraction of slightly deleterious 
(−1 < Nes < 0) mutations plot-
ted against the ratio of 0- to 
4-fold degenerate nucleotide di-
versity. Circles represent the frac-
tion as inferred from the 
deleterious-only DFE model, dia-
monds represent the fraction as 
inferred from the full (advanta-
geous and deleterious) DFE 
model. The dashed line indicates 
x = y. For P. abies, the diamond 
and circle overlap.

Table 1 Model-averaged estimates of the DFE parameters, for all species

Species Sd b Fraction of mutations 
−1 < Nes < 0

π0/π4 Model

Fagus sylvatica −25,000 0.36 0.20 0.23 − ɛanc

Quercus petraea −9500 0.41 0.23 0.27 +− ɛanc

Betula pendula −190 1.59 0.17 0.20 +−
Populus nigra −571 0.39 0.24 0.26 +−
Picea abies −47,000 0.097 0.30 0.35 − ɛanc

Pinus pinaster −64 0.73 0.22 0.28 +−

Sd: the mean scaled strength of deleterious selection acting on new mutations rounded to two S. F., that is, the scale parameter of the gamma-shaped deleterious DFE; b: the 
shape parameter of the gamma-shaped deleterious DFE, which is inversely related to the coefficient of variation in the fitness effects of new deleterious mutations; the in-
ferred fraction of mutations with fitness effects between −1 and 0, that is, the nearly neutral fraction of slightly deleterious mutations; and π0/π4. DFE parameters shown are 
model-averaged, such that estimates are weighted by model AIC. The best model, as ascertained using likelihood ratio tests, is indicated in the last column; whether fitting a 
deleterious-only DFE (−) or a full DFE including beneficial mutations (+−), and whether including the rate of error in the inference of the ancestral state improves the model 
fit (ɛanc).
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(see supplementary figs S6 and S7, Supplementary Material
online for details), it is therefore unlikely that differences in 
GC-biased gene conversion, due, for example, to differ-
ences in recombination rate among species, explain differ-
ences in the DFE among species.

Life History Traits and Ne

There are no significant correlations between any of the es-
timated parameters of the DFE and the two life history 
traits that we tested, maximum longevity and age at first 
reproduction (i.e. minimum age at flowering), which 
were previously shown to predict genetic diversity and 
the efficiency of selection in plants (Chen et al. 2017). 
However, the mean scaled strength of selection acting 
on deleterious variants, Sd, varies across species, increasing 
with a proxy of Ne, the level of neutral nucleotide site di-
versity π4, which reflects the stronger effect of drift in smal-
ler populations, as expected under the Nearly Neutral 
Theory (Spearman’s rho = −0.79, P = 0.048, Pearson’s 
R = 0.72, P = 0.065).

As expected under the Nearly Neutral Theory, the frac-
tion of mutations that we infer to be nearly neutral from 
the DFE is correlated to our estimate of π0/π4 (Fig. 2E). 
However, π0/π4 is always greater than the nearly neutral 
fraction of mutations as estimated from the DFE. This is 

likely to be due to the contribution of segregating benefi-
cial and slightly beneficial mutations to diversity in these 
species. Indeed, if we consider results from models in 
which we fit the deleterious DFE only (Fig. 2E), this system-
atic difference between π0/π4 and the nearly neutral frac-
tion is reduced. B. pendula and P. nigra are particular 
outliers, highlighting the effect that beneficial variants 
have on patterns of molecular evolution in these species.

Gene Content
The differences in the DFE that we observe between spe-
cies are unlikely to be due to differences in gene content, 
or differences in genes sequenced, between species. 
Indeed, the parameters of the DFE were very similar 
when calculated across all genes in the dataset, and 
when calculated only for those common orthologs that 
were sequenced in all six species (for details of the relative 
proportions of all-species orthologs, see supplementary 
table S7, Supplementary Material online for details). 
Only in P. pinaster do likelihood ratio tests suggest that 
an independent DFE for orthologs found in all species is 
a better fit to the data than a shared DFE for all genes. 
We found that a slightly higher fraction of new mutations 
is inferred to be strongly deleterious in orthologs (Fig. 3), 
which we might expect as such genes are likely to be older, 

Fig. 4. Discretized DFEs for each species, showing model comparisons for different categories of genes. Darkest bars show the independent fit for 
all genes, lightest bars show the independent fit for orthologs found in all species, intermediate bar shows the fit if the parameters are inferred to 
be shared across the all-species orthologs and the full dataset. We show model fits for the full DFE, including an estimate of the rate of ancestral 
allele misidentification, ɛanc, for all species.
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involved in many important biological functions, and un-
der strong purifying selection. This suggests that in P. pin-
aster, genes in our dataset that are not part of the 
all-species ortholog set might experience differences in se-
lective effects; they may be under less strong purifying se-
lection. We also note a lower fraction of adaptive 
substitutions in all-species orthologs.

Differences Among Populations Within Species
The DFE is similar across populations of the same species, 
with species explaining a considerable proportion of the 
variation in the parameters of the deleterious and benefi-
cial DFE as calculated across populations (Fig. 5; for 
deleterious-only DFE inferences see supplementary fig S8, 
Supplementary Material online for details). For the major-
ity of populations, we could not reject the null model that 
the DFE of the population is the same as the DFE inferred 
for the species as a whole. This was true even under a very 
conservative scenario in which we fit models assuming 
that both b and Sd are shared across the populations 
and the species on average. In other words, the mean 

scaled strength of selection and the variance in fitness 
due to new mutations is consistent across populations, 
despite any differences in demographic history and local 
adaptation to environmental conditions between 
populations.

There are some exceptions to these general trends. We 
note that while results for P. pinaster populations indicate 
a considerably greater spread of inferred b among popula-
tions (Fig. 5A), no differences between populations are 
statistically supported. However, model comparison re-
sults indicate that two B. pendula populations might 
have different DFEs from the species on average (ES and 
IT, see supplementary fig S9, Supplementary Material on-
line for details). We also find that one Q. petraea popula-
tion (LT), four F. sylvatica populations (AT, GB, NO, and 
SI, see supplementary fig S9, Supplementary Material on-
line for details) and three P. nigra populations (GB, ITS, 
and MA, see supplementary fig S9, Supplementary 
Material online for details), have significantly different 
DFEs from the DFE as calculated over all populations of 
each species (Fig. 4). Our results suggest both Sd and b dif-
fer between these populations and the dataset as a whole. 

Fig. 5. DFE parameters are consistent across populations within a species for the full DFE. Shown are the model-averaged inferred parameters. 
We plot the shape (A) and scale (B) parameter of the gamma deleterious distribution of fitness effects, (C) αDFE, the proportion of substitutions 
that are expected to be adaptive, (D) the proportion of mutations inferred to be effectively neutral, that is, the fraction of mutations for which 
−1 < Nes < 1. Boxplots show the distribution of values per species, with outlier points indicated as black dots, and labeled by their population 
codes. Population codes always start with two letter country codes, S = South. For exact sampling locations, see supplementary table S3, 
Supplementary Material online.
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We note that of these outlier populations only two, 
F. sylvatica NO and P. nigra GB, are significant after per-
forming a strict Bonferroni correction for multiple testing.

In these analyses, we compare a population-specific DFE 
to a species-level DFE inferred over all populations, which 
might reduce differences between populations and the 
species-level “pooled” DFE. We therefore repeated our ana-
lyses, comparing each focal population to a central refer-
ence population. We again found little difference in the 
DFE between populations within a species. The only popu-
lations that had significantly different DFEs to the central 
population were F. sylvatica NO and P. nigra MA and GB, 
and thus we can conclude that our results are consistent.

Drivers of Differences in the DFE at the Population 
Level
At the species level, evidence of a relationship between 
population differentiation and variation in the effective-
ness of selection, or in the shape of the DFE, is not clear. 
P. pinaster, P. abies, and P. nigra, have higher mean FST va-
lues by approximately an order of magnitude, however, 
among-population variation in parameters of the DFE 
and the estimated effectiveness of selection are similar 
for both these and other species in the dataset with lower 
levels of population differentiation (see Fig. 4).

To investigate more systematically the possibility that 
differentiation leads to differences in the DFE, we corre-
lated population pairwise FST with population differences 
in the DFE parameters Sd and b, and population differences 
in π0/π4. Although in some species, greater population dif-
ferentiation appears to correlate with larger differences in 
parameters of the DFE, this relationship is not consistent 
(see supplementary fig S10, Supplementary Material online 
for details).

Discussion
Here, we have shown that both the efficiency of selection 
and the DFE differ among species, but that there is relative-
ly little variation among populations within species. Our 
results suggest striking differences between different tree 
species, with conifers generally having a smaller fraction 
of highly deleterious mutations. This variation is not driven 
by differences in gene content between species. The nature 
of our exome capture dataset has resulted in a dataset that 
contains a high proportion of genes which are orthologs, 
with only 140 out of a total of 1,042 genes sequenced in 
only a single species. Even when we restrict our analysis 
to orthologous genes sequenced across every species, which 
constituted an average of 32% of genes sequenced per spe-
cies (ranging from 26% in P. nigra to 38% in F. sylvatica), dif-
ferences between species in both the mean scaled strength 
of selection (Sd) and the coefficient of variation in the 
strength of selection (b) remain the same.

An important caveat of the present study is that in or-
der to estimate the DFE, we have assumed that the DFE 
can be reasonably well approximated as a continuous 

gamma distribution. This allowed us to conduct straight-
forward comparative analyses across species and popula-
tions. However, it is important to acknowledge that 
although the DFE is commonly modeled as a gamma dis-
tribution (Bataillon and Bailey 2014; Martin and 
Lenormand 2006), other distributions can be theoretically 
justified (Loewe and Charlesworth 2006), and in some 
studies better support has been found for alternative dis-
tributions such as the lognormal or multimodal 
(Kousathanas and Keightley 2013; Loewe and 
Charlesworth 2006; Sawyer et al. 2003). Alternative distri-
butions may be better able to model high concentrations 
of strongly deleterious or lethal mutations more accurate-
ly, a feature that has been observed in some mutation ac-
cumulation experiments (Eyre-Walker and Keightley 
2007). Such mutations have little chance of being observed 
in most datasets due to their rarity, and as such the shape 
of the most deleterious class of mutations is based on pro-
jecting from the DFE. However, previous analyses have 
found that the inferred parameters of the gamma DFE 
are not greatly affected by including or excluding an add-
itional parameter that takes these most deleterious muta-
tions into account (Eyre-Walker et al. 2006). At the other 
end of the selective scale, alternative models may also be 
better able to cope with the fact that it is difficult to exam-
ine the DFE for mutations that are either neutral or have 
very small selection coefficients (Welch et al. 2008). 
Some studies have considered models that consist of a dis-
tribution of selected effects plus a point mass of neutral 
mutations, which have sometimes been found to fit data 
well (Loewe and Charlesworth 2006; Kim et al. 2017).

Our analysis was conducted on targeted resequencing 
data. This approach allowed for the sampling of a high 
number of individuals per population and per species, in-
creasing the amount of power we had to infer DFE’s para-
meters, which are notoriously difficult to estimate. While it 
is possible that the genomic regions used in this analysis do 
not reflect processes across the genome, a dataset re-
stricted to all-species orthologs has a similar DFE to the da-
taset as a whole, making it likely that our DFEs are 
representative of the whole coding genomes of the species 
included in this study. Interestingly, recent work (Simons 
et al. 2022) has argued that in a scenario in which most 
traits are highly polygenic and experiencing stabilizing se-
lection, the distribution of selection coefficients will be 
similar across loci that underlie all such traits. The ortho-
logous genes which make up the majority of the coding se-
quences included in this analysis are perhaps likely to 
experience both stabilizing selection, and to underlie traits 
that are highly polygenic, and hence be well described by 
the model developed by Simons et al.

Variation in the efficiency of selection at the among- 
population level in the species in our dataset is low. It is 
perhaps not surprising that many populations have highly 
similar DFEs to that inferred for the species overall, given 
the remarkably similar levels of π0/π4 across populations 
in most species (Fig. 1), and their often similar demograph-
ic histories. Although many of the species are important 

Exploring variation in the DFE · https://doi.org/10.1093/molbev/msad228 MBE

11

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/11/m
sad228/7313554 by Bundesforschungsanstalt fuer Landw

irtschaft user on 21 February 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad228#supplementary-data


economically, their use by humans is unlikely to have af-
fected the DFE, especially given that the domestication 
of other crop plants has had little effect on their DFEs com-
pared to their wild relatives (Chen et al. 2017). 
Comparatively, forest tree domestication and breeding is 
in its infancy, and the increasing effects of human activity 
have not yet had sufficient time to have a large impact on 
the tree species in this study. Recent work on the demo-
graphic histories of these species found that populations 
were remarkably stable in recent time, with little detectible 
effective population size reductions even in the face of per-
iods of glaciation (Milesi et al. 2023). The two populations 
for which we have the strongest evidence for differences in 
the DFE, on the other hand, are somewhat unusual in 
terms of their demographic histories. The P. nigra GB 
population experienced a sharp population decrease in 
the past, and subsequently recovered. F. sylvatica NO 
also experienced a fairly extreme decrease in Ne, from 
which it has since recovered. Both populations differ 
from the species as a whole in that they have a compara-
tively high fraction of strongly deleterious mutations.

It has been suggested that differences in genetic load 
among populations might drive differences in the DFE 
and that populations at the edge of a species’ range will 
have a temporarily increased mutation load relative to 
central populations, due to the increased importance of 
drift in these populations (Peischl et al. 2013; Willi et al. 
2018). While for most populations we find no evidence 
that mutation load differs between populations, in 
two P. nigra populations, GB and MA, there is a 
reduction in the proportion of derived alleles relative to 
other P. nigra populations. P. nigra is also one of the two 
species that show a relationship between the 
efficiency of selection and latitude. For the GB population, 
greater purging of deleterious derived alleles is in line with 
our finding that a high fraction of new mutations in this 
population are strongly deleterious, and that the mean 
strength of selection acting on new deleterious mutations 
is greater.

However, for the Moroccan (MA) P. nigra population, a 
comparatively low fraction of new mutations is inferred to 
be strongly deleterious (see supplementary fig. S9, 
Supplementary Material online for details). This popula-
tion is differentiated, and in addition, there is little correl-
ation in the frequency of alleles between this and other 
P. nigra populations. There are also a number of fixed 
differences between MA and other P. nigra populations. 
The DFE might differ due to these fixed differences; 
for example, new mutations may be less strongly deleteri-
ous when they occur on a genetic background in which 
many deleterious mutations are already present. 
However, the differences we observe are not due to in-
breeding; we do not see any evidence for a shift in mating 
system in the MA population. There are no clonal indivi-
duals in the MA population, nor any increase in the degree 
of relatedness between individuals (as estimated via the 
KING algorithm, implemented in PLINK; Manichaikul et 
al. 2010; Chang et al. 2015).

The fact that we generally do not find evidence for vari-
ation in the DFE at the population level does not mean 
that there is no local adaptation occurring in response 
to different environmental conditions across populations. 
Tree species generally show high levels of local adaptation, 
for example, for phenological traits (Savolainen et al. 2007), 
and the species in this study were generally inferred to 
have a high proportion of beneficial substitutions, with 
the exception of P. abies (αDFE, Fig. 3C). Infrequent, strong 
selective sweeps are expected to leave little signature on 
the SFS (Booker 2020), and thus have a relatively small ef-
fect on statistics calculated from it, including the DFE. 
Therefore, it is possible that the tree populations do ex-
perience local adaptation through selective sweeps, the ef-
fects of which we will not detect with the summary 
statistics considered here. However, the DFE is informative 
about the strength of purifying selection and the variance 
of mutational effects, which do not differ among popula-
tions in the tree species in this study.

It has been hypothesized that higher population differ-
entiation might lead to greater differences in the para-
meters of the DFE between populations. Our general 
finding is that there is some relationship between popula-
tion differentiation and differences in the DFE, particularly 
in the strength of deleterious selection (see supplementary 
fig. 10, Supplementary Material online for details), but it is 
not consistent. It is interesting to consider this finding in 
light of the scattering and collecting phase of the coales-
cent (Wakeley 1999). During the collecting phase, the 
more ancient part of a species’ history, the rate of coales-
cence is independent of the current geographic distribu-
tion of individuals. However, demographic history and 
geography will determine coalescence during the more re-
cent part of a species history, the scattering phase. From 
this study, it seems that the DFE is more strongly affected 
by ancient events, that is, the collecting phase of the co-
alescent, and the long-term Ne, leading to similar strengths 
of purifying selection across most populations of the same 
species. Whether this finding is generally true remains to 
be seen; the tree species in this study have moderate to 
high dispersal rates, however, stronger patterns of isolation 
by distance will lead to a stronger signal during the scatter-
ing phase (Wilkins 2004), which may result in the scatter-
ing phase having a greater impact on the DFE.

Why do differences in the DFE exist at the species level? 
Neither of the life history traits that we examined, max-
imum longevity and average age at first flowering, showed 
a relationship with any parameters of the DFE. We fo-
cussed on these two traits as they have been previously 
shown to be predictive of genetic diversity in plants 
(Chen et al. 2017), although it is possible that other life his-
tory traits might affect the DFE. Previous work suggests 
that there might be a relationship between the DFE and 
large life history changes, such as transitioning from selfing 
to outcrossing. For example, in the herb Arabis alpina, self-
ing was associated with a reduction in the fraction of mu-
tations inferred to experience strong negative selection, 
and a general reduction in the efficiency of purifying 
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selection, while populations with mixed mating systems 
had very similar DFEs to outcrossing populations, with 
no signal of increased genetic load (Laenen et al. 2018). 
Relatedness also clearly plays a part- previous studies on 
closely related species have found that they share the 
same DFE (Chen et al. 2017; Castellano et al. 2019; Liu et 
al. 2022). The most closely related species in our dataset, 
F. sylvatica and Q. petraea, also appear to have more similar 
DFEs (see, for example, Fig. 3), although model comparison 
tests indicate that fitting DFEs independently to these spe-
cies provides a better fit to the data, albeit only slightly 
(log-likelihoods of independent and shared models: 
−523.6194, −526.7272, P = 0.045). It may be that some 
slow evolving aspect of genome biology, for example, 
gene interaction networks, methods of gene expression 
regulation, or genome organization or size, eventually 
lead to differences in DFEs between species. The possibility 
that genome organization could affect the DFE was previ-
ously investigated by Hämälä and Tiffin (2020), who 
showed that a number of genome features could influence 
selective constraint, including expression level, expression 
variability, and gene network connectivity, while 
Castellano et al. (2020), found that gene density was nega-
tively correlated to nonsynonymous diversity, possibly due 
to greater constraint acting on gene dense regions. This is 
of particular relevance to the species included in this study, 
because conifer genomes are considerably larger than the 
genomes of other tree species (De La Torre et al. 2014).

In summary, genome and species biology are important 
determinants of the DFE, whose long-term effects domin-
ate short-term processes. Our findings indicate that des-
pite differences among populations in environmental 
challenges faced, the mean strength of selection experi-
enced by new mutations and their variation in selective ef-
fects remain similar across populations. The DFEs of the 
tree species in this study are stable, reflecting deep pro-
cesses. A large change, such as a shift in breeding system, 
for example, from outcrossing to inbreeding, or genome 
structure, may be required before the DFE differs between 
populations or species.
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