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Abstract 

Determination of individual age is one essential step in the accurate assessment of fish stocks. In non-tropical environments, the manual 
count of ring-like growth patterns in fish otoliths (ear stones) is the standard method. It relies on visual means and individual judgment 
and thus is subject to bias and interpretation errors. The use of automated pattern recognition based on machine learning may help 

to overcome this problem. Here, we employ two deep learning methods based on Convolutional Neural Networks (CNNs). The first 
approach utilizes the Mask R-CNN algorithm to perform object detection on the major otolith reading axes. The second approach 

employs the U-Net architecture to perform semantic segmentation on the otolith image in order to segregate the regions of interest. 
For both methods, we applied a simple postprocessing to count the rings on the output masks returned, which corresponds to the 
age prediction. Multiple benchmark tests indicate the promising performance of our implemented approaches, comparable to recently 
published methods based on classical image processing and traditional CNN implementation. Furthermore, our algorithms showed 

higher robustness compared to the existing methods, while also having the capacity to extrapolate missing age groups and to adapt 
to a new domain or data source. 
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Introduction 

Individual age is an essential parameter in the analysis of fish 

population dynamics and thus a precondition for both sus- 
tainable management and a thorough understanding of the 
ecological role of a fish stock. The common approach in es- 
timating the age of a fish is to make use of patterns along 
calcified structures such as scales and otoliths (ear stones) and 

observe the appearance of the annual growth zones (or an- 
nuli) (Panfili et al. 2002 ). These growth zones are formed by 
the uneven deposition of calcium carbonate and proteins as 
the fish experiences seasonal changes. Correspondingly, each 

single alternating opaque and translucent ring formation rep- 
resents a period of one year (Campana 2001 , Panfili et al.
2002 ). Hence, in traditional age reading, human experts per- 
form manual counting of these ring patterns, which require 
individual judgment, especially if the rings are hardly distin- 
guishable. 

The pattern of ring formations can be distinct for each fish 

species, hence making the task of annual growth zone detec- 
tion extremely challenging. Moreover, due to known environ- 
mental effects on otolith growth (Campana 1999 ), even dif- 
ferent stocks of the same species can also have different ring 
patterns (Williams et al. 2005 ). In some cases, false rings and 

double rings can occur, which may lead to an overestimation 

of fish ages. Likewise, some rings can also be very faint and 

ambiguous, leading to underestimated age values (Campana 
2001 , Carbonara and Follesa 2019 ). 

As otolith images and age data are collected in large quanti- 
ties by various institutions as part of routine stock assessment,
it is necessary to make the process of age reading scalable and 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
ess error-prone. In addition, the lack of age readers for a given
pecies can also be a limitation due to the extensive nature of
he training required. Even an expert on one species needs to
e trained again for another species due to the differences in
uidelines and protocols. Hence, it is not surprising that over
he recent decades, a lot of attempts have been made to explore
he possibility of automating the process. The first approaches 
ere based on classical image processing techniques cou- 
led with signal processing methods (Troadec 1991 , Formella 
t al. 2007 , Fisher and Hunter 2018 ). This usually involves
eading the intensity peaks within a specific sector of the
tolith, starting from the core (nucleus) down to the outer
dge. 

As the field of artificial intelligence (AI) has become more
nd more advanced, automation efforts shifted towards the 
se of approaches based on machine learning. Fablet and Le
osse (2005) designed one of the earliest studies utilizing ma-
hine learning algorithms to classify otolith images according 
o age groups. They explored the use of support vector ma-
hines (SVM) and artificial neural network (ANN) coupled 

ith some elements of classical image processing as part of
eature engineering. The work done by Bermejo et al. (2007) is
nother classical machine learning approach involving the use 
f hand-crafted morphological features combined with prin- 
ipal component analysis (PCA) and SVM. 

Recently, with the emerging popularity of deep learning,
he practice of feature engineering becomes obsolete due to 

he fact that this process is incorporated in the learning net-
ork itself (Bengio et al. 2013 ). Moen et al. (2018) became
ne of the earliest adopters of this technology when they used
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
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onvolutional neural network (CNN) and regression to ob-
ain good age estimates for Greenland halibut (Reinhardtius
ippoglossoides) otoliths. 
One main issue with this existing deep learning formula-

ion, however, is the seemingly black-box nature of the pro-
ess. It is able to give age estimates, but it provides no direct
nformation on how it derives such predictions. The follow-up
tudies by Ordoñez et al. (2020) and Martinsen et al. (2022)
imed to find some potential clues and explanations in the
orm of the heatmaps indicating individual pixel relevance.

hile they managed to show the focal regions considered by
he algorithm, some doubts still remain as these highlighted
arts are not the usual areas associated with the manual age
eading process. 

Another argument against the above-mentioned traditional
NN approaches is that they are known to require a large
mount of training data in order to avoid overfitting. Hence,
iven a limited set of image data, it is possible that the imple-
ented deep learning algorithm can only handle datasets that

re very similar to those used during training. Consequently,
t is very likely that the resulting deep learning model will not
e robust enough to generalize and extrapolate on seemingly
nfamiliar data. Recently, there have been several new studies

mplementing novel methods not covered in this study such
s the use of transformers by Sigur ð ardóttir et al. (2023) and
nsemble learning by Moen et al. (2023) , which potentially
an address the mentioned shortcomings of traditional CNN
hile the issues of explainability remain. 
In our study, we propose to overcome these limitations by

eformulating the problem and approaching it from the per-
pective of object detection and segmentation. That is, we di-
ectly adopt how the manual age reading process is done by
xplicitly performing detection and/or segmentation of annual
ings which will then be automatically counted to derive the
ge estimates. To accomplish this, we utilize two deep learning
lgorithms, namely Mask R-CNN (He et al. 2017 ) and U-Net
Ronneberger et al. 2015 ), which are known for their effec-
iveness in detecting or segmenting, respectively, any specified
egion of interest on a given image. 

In this proposed reformulation of the problem, we aim to
educe the level of abstraction inherent in the process and in-
rease the explainability of the deep learning-based approach
y making the procedure directly compatible with the tradi-
ional ring counting method used by humans. Also, we hy-
othesize that the number of required images for training will
e considerably less as each image is already composed of mul-
iple training instances in the form of labeled annual rings,
hich are treated as individual regions of interest. To demon-

trate the plausibility of the approach, we performed several
enchmarking tests that compare the overall performance of
he proposed approaches against published methods based on
eep learning as well as traditional signal processing. In ad-
ition, we also evaluate and compare the robustness of the
ethods as well as their capacity to extrapolate and adapt to
ew datasets. 

aterials and methods 

tolith images and their corresponding age readings were
rovided by the Thünen Institute of Sea Fisheries and the
hünen Institute of Baltic Sea Fisheries. The image collection,
s shown in Table 1 , can be divided into two sets: (1) the
orth Sea dataset ( https:// doi.org/ 10.5281/ zenodo.8341092 )
nd (2) the Baltic Sea dataset ( https:// doi.org/ 10.5281/ zenodo.
341149 ). The North Sea dataset consists of images from
everal demersal species, including North Sea cod ( Gadus
orhua ), saithe ( Pollachius virens ), haddock ( Melanogram-
us aeglefinus ), and whiting ( Merlangius merlangus ). To

chieve higher statistical power, we only used the otolith
mages with ages 1–11, as this range contains enough data
or both training and testing. For the Baltic Sea dataset, the
toliths are composed purely of Baltic cod ( G . morhua ). Like-
ise, we only used those with ages ranging from 1 to 5, as

hese age groups contain a sufficient number of images for the
nalyses. It is important to note that, in contrast to the North
ea set, the manual age readings from the Baltic Sea dataset
re all validated using tetracycline markings (Krumme et al.
020 ). For more details on both datasets, a table is included
 Table S5 ) under the Supplementary Materials . 

Preliminary manual checks were done on the two image
atasets to ensure that no duplicates were taken and that all
mages were unambiguously named. Also, there were cases
here some otolith images had artifacts that obscured a signif-

cant portion of the otolith. For our purposes, it is important
hat those are not included. Lastly, since the methods require
t least one annual ring for the ground-truth preparation, im-
ges with age 0 were also excluded. 

For obtaining the North Sea otolith images, it is a common
ractice to apply some image filters via an imaging software
o make the rings more visible. Hence, for this dataset, all the
mages have already gone through some preprocessing for im-
ge enhancement. The Baltic images, on the other hand, were
tilized in their raw states. 

ata preparation and configuration of the methods 

or each dataset, we used randomized subsampling to create
he training set and consequently segregate the test set with
he remaining out-of-sample images. As shown in Fig. 1 , the
aw number of images for each age group varies considerably.
o avoid a prediction bias towards the age groups with more
ata, the subsampling was done such that there is a rebalanc-
ng of age groups after every randomized selection (i.e. given
 certain quantity, excess training images on some age groups
ere removed while those with fewer images were refilled). 
As shown in Table 2 , the partitioning of the datasets was

one for multiple experiments. Each age group contains the
ame number of training images with the exception of species-
ise experiments. Lastly, apart from splitting the data into

raining and test sets, there is also a need to select the val-
dation set that determines the training checkpoints (i.e. for
aving the model state in each epoch whenever there is an im-
rovement in the loss computed). Instead of further dividing
he training set to create the validation set, we opted to con-
truct it via data augmentation involving horizontal flipping
f the training images. 
The next step was to conduct ground-truth labeling, which

s required as part of the supervised learning process. In the
ext four subsections, we describe separately each algorithm
nvolved in the study to highlight their differences and some
implifications adopted for our purposes. The first two algo-
ithms, namely classical image processing and CNN regres-
ion, represent the methods that are already existing in the
iterature and which serve as baselines for comparison. Then,
e describe our proposed approaches based on Mask R-CNN

nd U-Net and elaborate the way these methods can perform

https://doi.org/10.5281/zenodo.8341092
https://doi.org/10.5281/zenodo.8341149
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
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Table 1. A summary of the number of images a v ailable per species, along with the sampling area and abbreviations used in this study. 

Species Area Number of Images 

Gadus morhua (N-cod) North Sea 194 
Pollachius virens (N-saithe) North Sea 351 
Melanogrammus aeglefinus (N-haddock) North Sea 78 
Merlangius merlangus (N-whiting) North Sea 37 
Gadus morhua (B-cod) Baltic Sea 1155 

For species-wise experiments and analyses, both the N-haddock and the N-whiting were not used as they have insufficient quantities. 

Figure 1. The number of images for each age group for both dat asets. A tot al of 660 otolith images (ages 1–11) were included for the North Sea dataset, 
while there were 1155 images in the Baltic Sea dataset (ages 1–5). For a detailed tabular summary of each age group, please refer to the 
Supplementary Material . 

Table 2. The number of images used for each data split, along with the number of runs or subsampling replicates done in each experiment. 

Experiment Type Training and Validation Testing Runs 

Basic evaluation 132–North Sea images 528–North Sea images 20 
150–Baltic Sea images 1005–Baltic Sea images 4 

Robustness test 132–North Sea images 528–North Sea images 20 
150–Baltic Sea images 1005–Baltic Sea images 4 

Age extrapolation 84–North Sea images 188–North Sea images 8 
120–Baltic Sea images 42–Baltic Sea images 4 

Interchanging domains 132–North Sea images 1155–Baltic Sea images 20 
150–Baltic Sea images 660–North Sea images 4 

Trained with N-cod 132–N-cod images 351–N-saithe images 8 
1155–B-cod images 8 

Trained with N-saithe 132–N-saithe images 194–N-cod images 8 
1155–B-cod images 8 

The validation data is derived entirely by data augmentation of training images via horizontal flipping operation; it hence has the same quantity as the training 
set. 
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age estimation totally compatible with traditional ring count- 
ing methods. To facilitate the understanding of the entire pro- 
cess, our source code (written in Python 3.8 (Van Rossum and 

Drake 2009 ) with machine learning libraries such as Keras 
2.2.4 (Chollet et al. 2015 ) and Tensorflow 1.15 (Abadi et 
al. 2015 )) is available on Github ( https:// github.com/ arjaycc/ 
ai _ otolith/ tree/ v1.2 ). Also, a schematic diagram outlining the 
main steps for the proposed deep learning approaches is given 

as a Supplementary Material ( Fig. S12 ). 
lassical image processing 
or the image processing approach, we chose to explore 
ainly the methods that use intensity peak counting, as this

pproach is quite popular and straightforward to use, as re-
iewed by Fisher and Hunter (2018) . Simplifying the ideas
rom the literature (Troadec 1991 , Formella et al. 2007 ), the
ethod we finally implemented was to simply create a polar

ransformation of the sector slices from otolith images and 

onvert them into square tiles using the relative distances of

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://github.com/arjaycc/ai_otolith/tree/v1.2
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
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he pixels starting from the otolith nucleus or core down to
he outer edge. A schematic diagram of the process is given in
ig. S15 in the Supplementary Materials . 
As a preliminary step, we needed to first identify the outer

tolith contour and the nucleus from the images. A simple ap-
lication of the watershed algorithm [from the Python Skim-
ge Library (Van der Walt et al. 2014 )] isolates most otoliths
rom their corresponding background with great accuracy,
rom which the outer contour can be obtained. There are a few
ases that appear to generate erratic contours, especially if the
uter otolith edges are not clearly distinguishable. For our pur-
oses, we simply identified and manually corrected these er-
atic contours by using a standard image annotation tool. We
pted to use the Visual Geometry Group (VGG) Image Anno-
ation tool abbreviated as VIA (Dutta and Zisserman 2019 ),
ue to its simplicity and extensibility. In fact, we managed to
ncorporate our own code into this tool, where we created a
rush feature to facilitate the annotation, as it is also needed
or the ground-truth preparation of the other methods. 

For identifying the nucleus of the otoliths, several classical
mage processing techniques are also widely popular (Fablet
nd Cao 2006 , Harbitz 2009 ). We chose a simple heuristic
ased on ellipse approximation (Harbitz 2009 ) to locate the
pproximate nucleus position, which worked quite well for
he Baltic Sea dataset. However, for North Sea images, some
ucleus coordinates were missed, so we had to do manual ad-
ustments using the same annotation tool so as not to intro-
uce another source of error and to focus only on the steps
nvolving annual rings. 

Overall, the entire process relies on the assumption that
here is a proportionality among the growth of the rings on
 certain local portion of the otolith (Fablet and Le Josse
005 ). Hence, it is expected that when the otolith sectors are
liced and divided into small enough pieces, the transformed
ings will be approximately aligned ( Fig. 2 a). With these trans-
ormed images, it is straightforward to generate a good inten-
ity signal plot by taking either the mean or median of pixel
ows from top to bottom across multiple slices along the ma-
or axes ( Fig. 2 b). To derive the age reading, we performed
 peak counting procedure using a peak detection algorithm
ased on a standard implementation available from the liter-
ture (Billauer 2009 ). 

NN regression 

NNs are one of the most widely used algorithms to deal
ith image datasets (Krizhevsky et al. 2012 ). The core idea

s roughly inspired by the biological neural network, where
he concept of neurons is represented using mathematical in-
erconnected nodes (O’Shea and Nash 2015 ). The informa-
ion propagation is made through a process of weight updates
long these interconnected nodes using intricate mathemati-
al operations with the goal of making the predictions be as
lose as possible to the actual or expected value through the
valuation of one or more loss functions during each training
poch. These nodes are typically grouped into layers and each
ode can have multiple connections into other nodes located
t the next layer. What primarily differentiates CNNs from
raditional ANNs is the number of layers; for the former, it is
everal orders of magnitude higher (i.e. the layers go deeper)
han for the latter. 

The most basic use of a CNN is in a supervised manner,
hich could be formulated as either classification or regres-

ion (Martinsen et al. 2022 ; Moen et al. 2018 , Ordoñez et al.
020 , Politikos et al. 2021 ). That is, a discrete or continu-
us value will be returned as a prediction, which directly cor-
esponds to the probable category or measurement that it
earned from the labeled training data. In the case of regres-
ion, a basic loss function for the CNN is usually in the form
f mean squared error (MSE) (Martinsen et al. 2022; Moen
t al. 2018 ), which is given in the following equation: 

Loss = 

1 

N 

N ∑ 

i=1 

( y i −̂ y i ) 2 . 

For the CNN method used by Moen et al. (2018) , they
hose to use regression, where the age estimates are turned
nto a continuous value. Also, they used another useful con-
ept of CNN known as transfer learning, where a pre-trained
odel, primarily InceptionV3 (Szegedy et al. 2015 ), was

eused by preloading its weight into the network prior to
raining. 

To use this approach, mainly as a benchmark reference, we
btained the exact implementation from Moen et al. (2018) ,
vailable at https:// doi.org/ 10.21335/ NMDC-1949633559 . It
nly involves a simple data loading step where a list of im-
ge paths and their corresponding age labels are placed in
 comma-separated file. This file will then be taken by the
lgorithm to start the supervised training. One minor issue,
owever, is their use of otolith pairs (left and right otoliths),
hich is not applicable in our study. Therefore, as a simple
orkaround, we flipped each otolith image horizontally to

omehow have a pseudo-pairing and make the implementa-
ion compatible. 

ask R-CNN 

ikewise, as implied by its name, Mask R-CNN is also a deep
earning algorithm based on CNNs (He et al. 2017 ). The main
utput, however, is primarily in the form of detection masks
nd bounding box coordinates of the object of interest as
ound within the image. That is, detection masks are pixel
arkings that indicate the spots occupied by the object of in-

erest, while the bounding box consists of numeric coordinates
ithin the image that contains this object of interest. This fea-

ure of the Mask R-CNN algorithm allows it to perform both
bject detection and instance segmentation simultaneously. 
For this algorithm, there is an implementation from Matter-

ort ( 2017 ) containing the entire learning workflow, starting
rom the data loading step up to the training as well as the
esting. To utilize the code, we first need to provide its needed
nputs, namely the image and its ground-truth annotations. As
iscussed above, we selected the VIA tool (Dutta and Zisser-
an 2019 ) for annotating the images due to its simplicity. We
arked the parts of the images along the left and right ma-

or axes that represent a portion of the winter annuli to be
reated as the objects of interest for detection. Figure 3 shows
n example of the annotation using the VIA tool. 

As mentioned above, there can be different ways to imple-
ent loss functions for each algorithm. For Mask R-CNN, in-

tead of the basic MSE, it needs to have multiple loss functions
n order to check how far the predicted masks are from the ac-
ual regions while also computing the errors for the predicted
ounding boxes (He et al. 2017 ). In the study by Zimmermann
nd Siems (2019) , they further added another loss function
elated to the edges of the contours generated from the pre-
icted masks. We used this version since it was demonstrated
o learn faster and more efficiently (Zimmermann and Siems

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://doi.org/10.21335/NMDC-1949633559
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Figure 2. (a) A set of image strips that were transformed from otolith sector slices along a reading axis. (b) The resulting intensity plot when the 
ro w-wise a v erage w as tak en f or a single strip with the resulting peak count at the top. 

Figure 3. An example of ground-truth preparation made using the VIA annotation tool showing the annotations (yellow) that mark the regions of interest 
within an otolith image. 
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2019 ). Also, for this implementation, transfer learning was in- 
volved, where an existing model (Matterport 2017 ) trained 

from the COCO dataset (Lin et al. 2014 ) was preloaded in- 
stead of training from scratch. 

The output of Mask R-CNN still needs to undergo a 
post-processing step in order to derive the age estimates.
A schematic diagram was included in the Supplementary 
Materials ( Fig. S16 ) that summarizes the process. The core 
idea is to scan the masks and to find their alignment towards 
the center, which indicates that they belong in the same read- 
ing axis. The process starts by locating the nucleus and mea- 
suring the distances of the masks to this reference point. Then,
each mask is visited from the nearest to the farthest to label 
their positions. To perform labeling, the angle (in radians with 

respect to the nucleus) of a mask is measured through its end- 
points. Two masks are aligned if their angles overlap. To label 
a mask, increment by 1 the label of the most recently visited 

mask that aligns to it. If there is none, then label it as 1. Once 
ll the masks are visited, sort the labels, then find the highest
alue, which will indicate the highest ring count (correspond- 
ng to the age reading). 

-Net 
-Net also makes use of the CNN architecture (Ronneberger 

t al. 2015 ), similar to the two previously presented deep
earning algorithms. The main difference, however, is that for 
-Net, the final output is composed only of a segmentation
ask for the entire image, corresponding to the pixels detected

epresenting the object of interest. Because of this, U-Net is
sually utilized for problems involving the semantic segmen- 
ation of images. 

To train the algorithm, ground-truth masks are likewise 
eeded to mark the regions to be segmented by the U-Net.
n this study, two ways of ground-truth labeling were fol-
owed. One method involved masking the entire concentric 
nnuli and the other involved masking only a certain portion

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
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f the annuli along the reading axes. For the former, new sets
f ground truth masks have to be created using the VIA an-
otation tool. For the latter, we reused the same reading axes
nnotations made previously for Mask R-CNN. 

In contrast to Mask R-CNN, only the segmentation masks
re returned by U-Net and no bounding boxes are gener-
ted. Hence, there is usually only one loss function involved,
hich determines whether each pixel of the image was prop-

rly marked either 1 or 0, depending on whether they are
art of the object of interest or not, respectively. The basic
oss function can be the MSE of these per-pixel differences,
ut it can be modified as needed. In fact, for this study, we
sed the extension proposed by Ronneberger et al. (2015) ,
here more weights are given on the pixels in between the
bjects of interest. That is, the algorithm has to be more care-
ul when marking those pixels between each annulus because
he errors from these portions weigh more than the rest. Oth-
rwise, without weighted loss, the U-Net has the tendency
o return overlapping contours, especially when the rings
re near each other, which is particularly happening at the
dges. 

Similar to Mask R-CNN, the segmentations cannot be read-
ly isolated from the rest of the pixels. Hence, it is there-
ore also necessary to perform a post-processing step in order
o remove noise and easily count the proper segmentations
here age estimates are derived. This process is summarized

n Fig. S16 of the Supplementary Materials . As there are no
etection scores like the ones from Mask R-CNN, we applied
 simple noise filter based on the size and relative position of
he segmentation. That is, if a segmentation is found, it is first
hecked whether it is just a random noise before including it
n the ring count. This is similar to the criteria also applied in
eak detection methods, where certain peaks are eliminated
ccording to their relative sizes and positions. 

In this study, we explored different configurations for this
lgorithm in order to identify the best-performing variant.
irst, two different ground-truth methods were tested: one
nnotation set marks only the portion along the major axes,
hile the other annotation covers as many annuli as visible

n the image. Secondly, we also compared the performance of
mplementing U-Net with transfer learning using pre-trained
GG weights (Simonyan and Zisserman 2015 ), similar to the

mplementation of Abdellatif (2021) , against the default im-
lementation, which is trained from scratch. At this point, it is
orth mentioning that for all the pre-trained models used in

ach deep learning method explored in this study, the training
et from which they were originally trained on are all com-
osed of images from common objects and not specifically for
tolith. 

enchmarking 

here are three basic benchmark tests that we conducted in
rder to thoroughly assess and compare the overall perfor-
ance of the algorithms, which we measured in terms of per-

entage agreement. For the first test, we performed the usual
raining, validation, and testing using images from the same
ata source. This test also involved identifying initially the
est hyperparameters and configurations of each algorithm
hat would be used for subsequent experiments. For the CNN-
egression method, we used the default or suggested hyper-
arameters taken from the study of Moen et al. (2018) . For
he other algorithms, we implemented a simplified grid search
n the different configurations and hyperparameters and eval-
ated their performance on a subset of the test data. 
For the second test, we performed some variations of the

rst test to evaluate two criteria: (1) the robustness of the al-
orithms when slight changes/perturbations on the images are
ntroduced, and (2) the ability of the algorithms to extrapolate
higher) age groups when they are explicitly removed from
he training data. The former involved simple background
emoval with increased brightness on the test images to see
hether the algorithms have taken cues on unreliable features

uch as background artifacts or even the differences in light-
ng. The latter involved the complete removal of any train-
ng data from higher age groups (ages 8–11 for the North Sea
ataset, age 5 for the Baltic Sea dataset) to see if the algorithms
ould extrapolate these higher age ranges without encounter-
ng them during training. 

Lastly, for the third batch of tests, we checked for inter-
ataset and inter-species performance to assess how adaptable
he models are when analyzing new sets of data from a com-
letely unfamiliar species or domain. For the basic case, we

nterchanged the test sets for North Sea and Baltic Sea otoliths
nd assessed the new performance (i.e. the models trained
rom North Sea images were tested against Baltic Sea test im-
ges and vice versa). For the other case, we segregated the im-
ges further into different species to see whether training them
n a specific species makes the algorithms completely unable
o generalize on the other species. Conversely, we also aimed at
nding out whether training the algorithms on a given species
llows them to handle the same species from a completely dif-
erent source. For simplicity, in this experiment, we use the
erm inter-species loosely, despite also treating the North Sea
od and Baltic Sea cod as separate groups. 

oefficient of variation analysis 

n the context of age reading evaluation, apart from percent-
ge agreement, another important metric is the so-called co-
fficient of variation (CV), which is especially useful during
ge reading workshops where readers from various institu-
ions gather to cross-check the possible differences in the way
hey perform age readings. This value can be computed using
he following formula (Campana 2001 ): 

CV = 

σ

μ
· 100 , 

where σ = standard deviation and μ = mean of age esti-
ates from the readers. 
For reference, we used two separate ICES workshops, one

or North Sea cod ( 2008 ) and another for Baltic Sea cod
 2020 ), where participating readers performed age estimation
n cod images using their own methodologies. It was reported
hat for both the North and Baltic Sea workshops, the readers
ad a significant disagreement indicated by the computed CV
f about 40% (39.8% to be precise) and 15%, respectively.
ptionally, for the North Sea workshop, we may exclude the

alues contributed by broken otoliths and refer only to the re-
ult for sectioned otoliths, which is around 22.5%. Hence, for
his study, similar to the formula used by Moen et al. (2018) ,
e also computed the CV by treating the automated and man-
al readings as individual readers and assess whether the age
stimate variations fall within the same range attained by hu-
an readers. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data
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Figure 4. Mask R-CNN object detections with the corresponding bounding bo x es and scores. Higher scores indicate higher model confidence, which 
can be used to filter out those predictions that do not surpass a certain detection threshold (i.e. a hyperparameter that can be adjusted as needed). 
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Statistical analysis 

To check for the statistical significance of the comparisons, we 
used the standard pairwise t -test available in the R program- 
ming language (R Core Team 2020 ) along with the correc- 
tion proposed by Nadeau and Bengio (2003) , which is imple- 
mented in the correctR package (Henderson 2023 ). We care- 
fully considered the fact that some assumptions of the stan- 
dard t -test are violated by the data partitioning used to create 
the training and test splits. As mentioned earlier, we employed 

a small variation of the randomized subsampling for creating 
the training and test sets, which means that the images used for 
each run are not completely independent (i.e. the training and 

test sets of one run could have images that were also included 

in the other runs). This leads to a high probability of type I 
error causing a problematic rejection of the null hypothesis in 

pairwise comparison of algorithms (Dietterich 1998 ). Fortu- 
nately, the ground-breaking study made by Nadeau and Ben- 
gio (2003) suggests that a simple correction of the standard t - 
test can overcome this limitation. Therefore, for the main test 
involving general performance comparisons, this corrected re- 
sampled t -test is used as it satisfies the conditions needed for 
the statistical analysis. For the other test cases which deviate 
greatly from standard randomized subsampling (e.g. age-wise 
and species-wise test), we used the standard t -test while taking 
into account the potential pitfalls mentioned. 

Results 

One straightforward advantage of the CNN-regression algo- 
rithm used by Moen et al. (2018) is that the age readings are 
readily available and directly outputted in the model predic- 
tions. For all the other methods, however, an intermediate out- 
put has to be generated first before the actual age reading can 

be derived. 
For the classical image processing approach, the interme- 

diate results are in the form of signals that indicate the im- 
age intensity values from the nucleus to the outer edge of the 
otoliths as shown in Fig. 2 b. 

For the Mask R-CNN, the final detections need to be post- 
processed first as described in the “Materials and methods”
section in order to directly appear on the image as shown 

in Fig. 4 . Apart from the colored masks, it can be seen that 
here are bounding boxes that are also depicted containing 
he prediction scores. These values range from 0.0 to 1.0 and
irectly correlate with the model’s confidence on the predic- 
ions. 

For the U-Net algorithm, the intermediate result also needs 
o undergo post-processing before the age estimates can be 
erived. Figure 5 shows an example of a raw mask output
f the U-Net as well as the resulting image masks after the
ost-processing procedure similar to the one performed for 
he Mask R-CNN output. 

After the post-processing stage for each algorithm, the de- 
ived age estimates are then plotted against the manual age
eadings, as shown in Fig. 6 . It can be seen that there is a diag-
nal trend that becomes apparent with these plots, indicating 
he relative agreement, between the automated and the man- 
al readings. The plot also shows how far the under- and over-
stimates are from the diagonal, indicating the biases of each
ethod. For illustration, only the test results of a single run
ith North Sea images are shown in the figure. For the plots
f all the runs, including those of the Baltic Sea images, refer
o the Supplementary Material . 

Figure 7 provides a clearer comparison of the performance 
f the different algorithms tested. The resulting trend is differ-
nt for the North Sea dataset and the Baltic Sea dataset. The
NN regression has a clear edge with 55% and 87% mean ac-

uracy for North Sea and Baltic Sea images, respectively. The
ask R-CNN has a slightly poorer performance on North Sea

mages (46%) but it has a decent mean accuracy on Baltic Sea
mages (72%). On the other hand, the U-Net algorithm man-
ges to be competitive with 54% mean accuracy on the North
ea dataset and 72% mean accuracy for the Baltic Sea dataset.
astly, the traditional automation method using classical im- 
ge processing attains the poorest performance, showing only 
6% and 54% mean accuracy for the North Sea and Baltic
ea datasets, respectively. Hence, this approach was no longer 
sed for further analysis to focus more on the deep learning
lgorithms. 

Using the corrected resampled t -test, the null hypothesis 
hat CNN-regression results do not differ from the results of
oth the proposed methods has failed to be rejected in the
orth Sea dataset ( P -values > 0.05), while it was rejected for

he Baltic Sea dataset ( P -values < 0.05). This indicates that the

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae020#supplementary-data


8 Cayetano et al. 

Figure 5. The raw U-Net output alongside a sample end result after the post-processing step. The direct output of a U-Net model is a mask indicating 
the regions it segmented (a) that can be post-processed to generate the ring count (b). 

Figure 6. The plots of automated age estimates against the manual age readings on a test set in v olving North Sea images using the various approaches, 
namely (a) image processing, (b) CNN regression (rounded off ), (c) Mask R-CNN, and (d) U-Net. 
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roposed methods have a similar performance to the CNN re-
ression on the North Sea images but fail to attain the same
ompetence on the Baltic Sea images, where the CNN regres-
ion shows its clear advantage. 
To assess if an automated method is good enough to be
reated like an individual human reader, we also computed
he CV for each method as shown in Table 3 . With a ref-
rence value of 40% and 15% taken from the North Sea
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Figure 7. Overall performance of the different algorithms on the North Sea and Baltic Sea datasets across multiple runs with randomly subsampled test 
sets ( n = 20 for the North Sea dataset, n = 4 for the Baltic Sea dataset). Applying the corrected resampled t -test to compare each proposed 
deep-learning method (M-RCNN and U-Net) to the published CNN-regression method yields corresponding P -values = 0.14 and 0.43 ( > 0.05) for North 
Sea images and P -values = 0.003 and 0.048 ( < 0.05) for Baltic Sea images. 

Table 3. The coefficient of variation (CV) of the different methods against 
the manual readings. 

Method 
North Sea 

dataset 
Baltic Sea 

dataset 

ImgProc 19 .1% 16 .4% 

CNN-Reg 7 .4% 3 .8% 

M-RCNN 10 .9% 10 .1% 

U-Net 10 .5% 9 .6% 

The reference value is 40% for the North Sea dataset and 15% for the Baltic 
Sea dataset, which correspond to the CVs from a group of readers during 
two ICES workshops on cod otoliths. 
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and Baltic Sea workshops, respectively, it can be seen that 
the computed CVs for the deep learning methods fall signifi- 
cantly below these thresholds, indicating that they are indeed 

already at the level of human readers. It is important to note 
that for the North Sea workshop, we may only consider the 
results for sectioned otoliths and ignore the values for bro- 
ken otoliths, which is not relevant in this study. Hence, even 

if the reference value is adjusted to 22.5%, the same con- 
clusion is still valid. That is, the CV results from this study 
still fall below the workshop reference values. This means 
that theoretically, if the AI-based methods are included in a 
workshop with human readers, the readings they provide will 
deviate within the same range as the ones from the human 

readers. 
The next set of experiments evaluates the robustness of the 

different methods when the test images are subjected to slight 
variations (i.e. involving background removal and increased 

brightness). Figure 8 reveals one surprising disadvantage of 
the published CNN-regression method compared to the pro- 
posed methods. Just with the mentioned image perturbations,
a very drastic change in performance is seen for the CNN re- 
gression in both the North and Baltic datasets. Only a slight 
degradation of performance is observed for Mask R-CNN and 

U-Net. 
Another interesting experimental setup was designed to 

measure the ability of the methods to extrapolate on the data 
hey had not encountered before. In this experiment, we re-
oved the training images with high age values and limited

he range to ages 1–7 for the North Sea dataset and ages 1–4
or the Baltic Sea dataset. Then, we tested the resulting mod-
ls on a test set containing only images with age values greater
han those used during training. Figure 9 summarizes the re-
ult and demonstrates the extrapolation abilities of the differ- 
nt methods. 

It can be immediately seen that the published CNN regres-
ion fails almost completely in getting any correct estimate 
or higher age groups that were not included during training.
n contrast, both the proposed algorithms manage to attain a
ecent accuracy level, showing their ability to extrapolate on 

nknown data. 
For the last test, we further highlighted the capacity of each

lgorithm to handle datasets that were not introduced during 
raining. For the first case, we interchanged the test images
f both datasets and re-tested the previously trained models 
ithout re-training on the new set. That is, the existing models

rained from the North Sea dataset were tested on the Baltic
ea test images, and vice versa. Figure 11 demonstrates yet
nother advantage of our proposed algorithms compared to 

he published CNN-regression method. 
Overall, it can be seen that the CNN-regression algorithm 

ttains the worst performance when given a new and unfamil-
ar data source or domain. This means that it learned features
oo specific on the dataset it was trained on resulting to its
ailure to generalize on the other dataset with seemingly new
tolith characteristics, different microscopy lighting, and im- 
ge capture techniques. In fact, this concept , referred to as
omain adaptation, has also been explored in the study by
rdoñez et al. (2022) , where they also evaluated this capacity
n a similar standard CNN implementation but with classi-
cation instead of regression. They used images of the same
pecies (Greenland halibut) from two different sources: one 
ataset came from the Norwegian laboratory, while the other 
ataset was taken from their counterpart in Iceland. Similar
o what we have observed, they also reported that this stan-
ard CNN formulation performed poorly when tested across 
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Figure 8. Degradation of the predictive performance of each algorithm when the background of the otoliths on the test images is removed while 
subsequently increasing the image brightness. Comparing the changes in accuracy of the proposed methods against that of the CNN-regression yields 
P -values < 0.05 using a standard t -test ( n = 20 for the North Sea, n = 4 for the Baltic Sea). 

Figure 9. Performance of each deep learning algorithm on higher age groups that were excluded during training. For the North Sea runs ( n = 8), images 
with ages 8–11 were used for testing as they were excluded from training. For the Baltic Sea runs ( n = 4), only age 5 images were left out during training 
and were consequently used for testing. The standard t -test gives P -values < 0.05 for the pair-wise comparison against CNN regression. 
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he two different data sources. Hence, they proposed certain
odifications to the default implementation, but this is be-

ond the scope of our study. 
To elaborate on this observation further, we conducted

nother test focusing mainly on inter-species performance.
or this setup, we explicitly trained the algorithms using
nly one specific species and performed tests on the other
pecies. Figure 11 a shows the comparison of test performance
cross species when the training involves only North Sea cod
mages, while Fig. 11 b shows the results if only North Sea
aithe images were included. 
There are some interesting observations worth emphasiz-
ng for this batch of results. First, it can be immediately seen
rom both plots that the overall inter-species accuracy of the
roposed methods surpasses that of the previously published
NN-regression method, indicating that the proposed meth-
ds have more generalization capacity . Specifically , the perfor-
ance discrepancy is quite large when it comes to the Baltic

est images. This is somehow surprising when compared to
he result from the previous experiment. It seems that purely
sing North Sea cod images for training makes the perfor-
ance of the published CNN-regression method to become
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Figure 10. Performance of the deep learning models trained on one dataset and tested against the other dataset and vice versa. For the Baltic Sea test 
case ( n = 20), the standard t -test show significant difference ( P < 0.05) when comparing the CNN regression against the proposed methods. 
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even worse compared to using a mixed set ( Fig. 9 ) or even pure 
North Sea saithe images ( Fig. 11 b). This result is directly in 

contrast to the results from the two proposed methods, where 
the accuracy values for predicting a new set of images coming 
from a different source (e.g. Baltic dataset of purely cod) be- 
come higher when the training set involves the same species 
(i.e. North Sea cod in Fig. 11 a) compared to a completely dif- 
ferent species (i.e. North Sea saithe in Fig. 11 b). This implies 
that there could be species-specific patterns utilized by the pro- 
posed algorithms to help in the prediction of a new set of the 
same species. 

In summary, from Figs 9 , 10, and 11 , it can be concluded 

that the CNN-regression method exhibited the least adapt- 
ability when it was subjected to a completely unfamiliar 
dataset. This means that to use this algorithm for each new 

species or even just a new age group, a new batch of training 
has to be performed to update the model, or, in the worst case,
a complete retraining has to be conducted to create a totally 
different model. In contrast, for the two new algorithms pro- 
posed, the previous knowledge they had on one species can 

potentially still be usable for another species. 

Discussion 

Various studies have already shown that the standard CNN 

classification or regression performs satisfactorily when it 
comes to age estimation of various fish species (Moen et al.
2018 , Politikos et al. 2021 , Martinsen et al. 2022 ). Apart from 

the predictive power, another big advantage of their approach 

is the training simplicity, where minimal ground truth prepa- 
ration is needed. However, to be widely accepted, this formu- 
lation has one big issue, and that is its black-box nature. The 
follow-up study done by Ordoñez et al. (2020) tried to find a 
way to explain the decisions for this type of CNN but it still 
leads to more questions and counter-intuitive observations. 

In the work presented here, we have shown that the use of 
object detection and segmentation algorithms can be a good 

alternative formulation when it comes to automating the fish 
ge reading process. In addition to having a comparable per-
ormance on multiple test sets, we demonstrated that it also
as several advantages compared to multiple methods that can 

e found in the literature. In particular, we showed that the re-
ulting models are more robust even when some perturbations 
re introduced into the images. Also, we demonstrated its abil-
ty to extrapolate and generalize on datasets that were not in-
roduced during the training phase, especially those coming 
rom a completely different source. Lastly, and maybe most 
mportantly, this new way of applying deep learning on auto-
ated age reading makes the overall process more explainable 
ue to its direct compatibility with traditional manual meth- 
ds. 
One major drawback is the seemingly tedious process of 

oing data preparations, especially the ground-truth labeling.
hile this may be true, it is important to note that this will

nly be the case if we need to train a new model with each new
ataset that we obtain. However, as demonstrated by the re-
ults, there is a potential for the object detection and segmen-
ation models to be reusable with a completely new dataset.
his means that the ground-truth preparation will eventually 
ecome less and less required as retraining becomes unneces- 
ary in some instances. In contrast, the standard CNN regres-
ion formulation will always need to be trained with each new
ataset due to its lack of adaptability. 
It is important to note, however, that all these observations

nvolving the CNN regression formulation are only tested us- 
ng the implementation from the study conducted by Moen 

t al. (2018) . It is possible that with newer designs and archi-
ecture, these limitations may no longer be true. Also, there are
lready novel approaches that exist in the literature that seem
romising when it comes to handling the known limitations 
f older deep learning designs, such as the use of transform-
rs (Sigur ð ardóttir et al. 2023 ) and ensemble learning (Moen
t al. 2023 ). It will indeed be interesting to conduct further
enchmarking with these new approaches to see if the advan-
ages of our proposed methods remain valid. Also, it is worth
entioning that the statistical tests performed in this study,
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Figure 11. Performance of the methods across species (and stock) when the training in v olv es (a) only North Sea cod images. (b) only North Sea saithe 
images. The standard t -test ( n = 8) shows high significance ( P < 0.05) on the Baltic cod test case for both Mask R-CNN and U-Net after pairwise 
comparison against the previously published method. 
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amely the standard t -test and the corrected resampled t -test,
ave limitations with respect to reducing type I and type II sta-
istical errors (Nadeau and Bengio 2003 , Bouckaert and Frank
004 ), so more repetitions are needed to make stronger claims.
t is hence an option to explore other statistical methods apart
rom a t -test, which will ensure that both the type I and type
I errors are minimized during benchmarking. 

Lastly, one important concept of CNN that is widely used
n this study is the concept of transfer learning. For all the deep
earning approaches we tested, we took advantage of this facil-
ty and preloaded some pre-trained models. Therefore, there
s an apparent future direction where the process of reusing
 newly trained model can be improved further and train-
ng can be done using a base pre-trained otolith model (in-
 c  
tead of VGG16 or InceptionV3). Also, for U-Net and Mask
-CNN, this base model can possibly aid on generating new
round-truth labels for future datasets and then enable a self-
ustaining loop where each updated model will be reused to
enerate annotations for newer datasets and so on. In this way,
he creation of annotations will be AI-assisted and not entirely
one from scratch, needing only a simple manual correction
f necessary. 

onclusion and future outlook 

ith the growing size of the otolith image datasets that are
eing collected and processed by various institutions, it is be-
oming apparent that the advances in the fields of big data an-
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alytics, computer vision, and machine learning can be of great 
use. This study is another step towards scalable otolith anal- 
ysis, and it successfully demonstrated how one can utilize the 
well-known techniques in object detection and segmentation 

to automatically perform age reading on otolith images. 
As the age estimates of AI-based methods match closer and 

closer to those from manual age readings, it becomes clearer 
that the predictive performance is not the only criterion to- 
wards their general acceptance. Features such as robustness,
adaptability, and, in particular, explainability are also impor- 
tant considerations, which were all exhibited by the proposed 

approaches in this study. 
With an automated system for age estimation, the process 

of analyzing a large number of images can be highly efficient,
scalable, and less susceptible to logistic and subjective limi- 
tations. Using the proposed algorithms, we aim to create a 
framework or a system (i.e. a web application) that can be 
used as a platform for high-speed processing of large datasets.
As a general toolkit for otolith image analysis, it can be made 
to provide not only age information but also other relevant 
measurements such as otolith radius and annulus distances,
which are useful parameters for certain biological and ecolog- 
ical models. Lastly, we also hope that this future framework 

can be an avenue for a more collaborative effort within the 
community where models, images, and even annotation data 
can be shared efficiently and even allow continuous enhance- 
ments of existing models and techniques. 

Supplementary material 

The following Supplementary material is available at ICES 
Journal of Marine Science online. 
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