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Abstract
The aim of this study was to conduct single- and multi-trait genome wide association studies (GWAS) and identify quantita-
tive trait loci (QTLs) for the expression of phenotypic traits in Eucalyptus grandis. We evaluated an open-pollinated breeding 
population with 1772 genotypes composed of 25 different families established using a randomized complete block design. We 
performed single-trait GWAS using the fixed and random model circulating probability unification (FarmCPU) and multi-trait 
GWAS for genetically correlated phenotypic traits using the multi-trait mixed model (MTMM). Then, gene annotation was 
identified through the Phytozome database. The FarmCPU model identified 43 and 38 QTLs that are significantly associated 
with growth and wood quality traits, respectively. Similarly, 40 pleiotropic QTLs were discovered using the MTMM model. 
Gene ontology for single-trait analysis identified loci responsible for regulating several important biological processes in 
different tissues and at different stages of maturation. On the other hand, the multi-trait model identified loci associated 
with gibberellin signaling, which regulates several aspects of plant growth and development, as well as loci related to the 
reinforcement of cell wall composition. Our study demonstrates the complex nature of E. grandis quantitative traits and 
provides new evidence of loci not described before which are associated with the expression of important phenotypic traits.
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Introduction

Genome-wide association studies (GWAS) are used to iden-
tify significant associations among quantitative traits and 
genetic loci in plant and animal genomes (Bush and Moore 
2012). GWAS have been used extensively to understand the 
genetic complexity of economically important traits in tree 
species (Korte and Farlow 2013). Within the Eucalyptus 
genus, the species Eucalyptus grandis stands out because of 
its fast growth, high adaptability, and superior wood qual-
ity (Malan 1993). It is the most commonly planted hard-
wood tree globally, with a diverse range of applications in 

cellulose, paper, timber, and charcoal production (Malan and 
Gerischer, 1987; Grattapaglia 2008; Carocha et al. 2015).

Cellulose in particular is a key wood product that meets 
a wide variety of primary human needs, such as paper 
(Hollertz et al. 2017; Jin et al. 2021), pharmaceuticals 
(Beyger and Nairn 1986; Giri et al. 2020), biofuels (Carere 
et al. 2008; Rubin 2008; Carroll and Somerville 2009), 
and food (Lavanya et al. 2011; Shi et al. 2014). Therefore, 
tree breeding strategies should focus on selecting geno-
types considering not only growth characteristics, but also 
wood quality traits (Byram et al. 2005; Grattapaglia and 
Kirst, 2008; Apiolaza et al. 2013). To improve the quality 
of wood production, several studies have emphasized the 
importance of finding the genetic basis of wood quality 
traits such as lignin (Li et al. 2008; Hisano et al. 2009; 
Mizrachi et al 2017), syringyl/guaiacyl ratio (Stackpole 
et al. 2011; Denis and Bouvet, 2013), wood density (Oso-
rio et al. 2001; Stackpole et al. 2010), total extractives 
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(Gallo et al. 2018; Makouanzi et al. 2018), and cellulose 
yield (Schimleck et al. 2004; Kien et al. 2009). In this con-
text, the application of genomics on forest improvement 
(Grattapaglia et al. 2009) and the development of new 
GWAS strategies are essential for identifying associations 
between genomic regions of the traits of interest and those 
significantly associated with the phenotype (Hirschhorn 
and Daly 2005). Several studies have identified loci related 
to the expression of growth and wood quality traits in 
Eucalyptus (Thavamanikumar et al. 2014; Lamara et al. 
2016; Resende et  al. 2017; Müller et  al. 2017, 2019). 
Generally, growth traits tend to be more correlated with 
moderate levels of heritability, while wood quality traits 
are less correlated, but commonly present higher levels 
of heritability (Mphahlele et al. 2020). For Eucalyptus, 
Kainer et al. (2019) examined the genetic effects on oil 
yield, while Resende et  al. (2017) conducted regional 
heritability mapping for growth and wood quality traits 
to identify quantitative trait loci (QTLs). Nevertheless, 
few studies have sought to understand the genetic effect 
of pleiotropic loci in Eucalyptus by comparing single-trait 
and multi-traits GWAS (Tan and Ingvarsson 2018; Ram-
bolarimanana et al. 2018).

Pleiotropic effects occur when genetic loci have an 
influence on more than one trait (Solovieff et al. 2013). 
The application of pleiotropy in breeding means a move-
ment away from selecting for one trait at the genetic 
level to selecting for multiple traits at a phenotypic level 
(Paaby and Rockman 2013). Although single-trait GWAS 
has identified the polygenic inheritance effect of mark-
ers, several efforts have been made to understand the plei-
otropism between quantitative traits (Liu and Yan 2019), 
such as multiple trait selection assisted by genetic markers. 
Among single-trait GWAS algorithms, the fixed and ran-
dom model circulating probability unification procedure 
(FarmCPU) performs a multi-locus linear mixed model 
(MLMM) to effectively control for spurious associations 
(Liu et al. 2016). On the other hand, multi-trait mixed 
models (MTMMs) were developed by Korte et al. (2012) 
to perform multi-trait GWAS and examine the common 
genetic effects that act in pleiotropy on two correlated 
phenotypic traits.

The MTMM algorithm performs three different analyses, 
categorized as full, common, and interaction. While the full 
model considers both common and interaction effects, the 
common and interaction models separate these effects indi-
vidually. Thus, the common model performs a statistical 
analysis that demonstrates the coincident effects on two traits. 
Meanwhile, the interaction model identifies interacting genetic 
effects that act in the opposite direction between two traits 
(Korte et al. 2012). In the presence of pleiotropy, the power of 
the multi-trait GWAS is superior to single-trait GWAS because 
of the additional accuracy obtained when data for two traits 

are considered together (Korte et al. 2012; Korte and Farlow 
2013; Oladzad et al. 2019).

The present study focused on using GWAS to assess the 
genetic architecture of growth and wood quality traits of an 
open-pollinated E. grandis seed orchard. The specific objec-
tives of the present study were to (1) develop and compare 
the significant loci using single- and multi-trait GWAS mod-
els in the identification of significant SNP markers related 
to growth and wood quality traits, (2) identify QTLs signifi-
cantly associated with the expression of phenotypic traits, 
and (3) understand the pleiotropic effects and the genetic 
architecture of important traits.

Material and methods

Plant material and phenotypes

The study population was an open-pollinated seed orchard 
of E. grandis located in the municipality of São Miguel 
Arcanjo, São Paulo, Brazil (− 23.890188, − 47.937138). 
The population was established in September 2012 by the 
Suzano company’s breeding team. The experiment consisted 
of a randomized complete block design, with four blocks, 
each containing 25 families (treatments) and one clonal con-
trol test (commercial clone), with four plots of 20 individu-
als each (five plants per plot). The spacing between plants 
was 3 m × 2 m, resulting in a planted area of 1.344 ha with 
2240 trees. The open-pollinated seeds used to establish the 
experiment were collected from seven different locations 
across Brazil (Rio Claro — São Paulo (SP); Teixeira de 
Freitas — Bahia; Biritiba Mirim — SP; Salto — SP; Sara-
pui — SP; Mogi Guaçu — SP; and São Simão — SP) and 
one from Zimbabwe, Africa. The 25 families are originally 
from Coff’s Harbour (New South Wales, NSW) and Ather-
ton (Queensland, QLD), Australia.

For the analysis, we considered the genomic and phe-
notypic information from 1772 individuals. The control 
genotype was an E. grandis commercial clone used by the 
SUZANO company. The phenotypic information was sub-
divided into growth traits (GWTs) and wood quality traits 
(WQTs). Growth traits were measured at two different ages 
(3 and 6 years after planting) and were classified as height 
(HEI3 and HEI6) in meters and diameter at breast height 
(DBH3 and DBH6) in centimeters. The DBH (DBH3/
DBH6) and height (HEI3/HEI6) were used to estimate tree 
volume at 3 and 6 years of age (VOL3 and VOL6, respec-
tively) in cubic meters according to the formula described 
by Schumacher and Hall (1933):

Furthermore, we analyzed six wood quality traits related to 
cellulose production. To do so, an increment borer was used at 

VOL = DBH2 ×
�

40000
× HEI × f
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breast height to collect wood cores of 12 mm at 6.5 years after 
planting. Then, wood material was sent to the laboratory for 
processing to obtain spectral information using near-infrared 
spectroscopy (NIRS).

Sawdust samples from 69 genotypes were used to create 
the curve calibration. The wood material was retained in a 
mesh sieve and placed in circular cells. The NIR reflectance 
spectra were obtained using scans of wavelength ranges. Curve 
calibration was based on samples from five different species 
(Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus brassi-
ana, Eucalyptus tereticornis, and Eucalyptus pellita) collected 
in three different regions of Brazil (Maranhão, São Paulo, and 
Bahia) at 6 years after planting. An internal company calibra-
tion (SUZANO S. A.) model was developed using the Bruker 
FT-NIR spectrophotometer MPA II. The resulting calibration 
database containing NIR wood spectra was obtained through 
following methods outlined in the reference literature. The 
prediction of constituent values based on existing calibration 
curves was used to estimate the following wood quality traits: 
pure cellulose yield (PCY) in percentage, basic wood density 
(WBD) in cubic meters, syringyl/guaiacyl ratio (SGR), soluble 
lignin (SOL) in percentage, total solid content (TSC), and total 
extractives (TEX) in percentage.

Phenotypic data analysis

Each of the 1772 samples was evaluated using the Bonferroni 
outlier test to find the mean-shift outlier with studentized resid-
uals in linear mixed models. Thus, outliers were removed by 
deleting observations based on standard deviation with the car 
package in the R software environment (Fox et al. 2012). Then, 
the normal distribution of phenotypic data was verified using 
the Shapiro–Wilk test, and data normalization was performed 
using the bestNormalize package in R (Peterson 2021). Finally, 
with the normalized dataset, the best linear unbiased predic-
tions (BLUPs) (Rodriguez et al. 2020) were estimated for each 
trait with the breedR package in R (Muñoz and Sanchez, 2015) 
using the following mixed model:

where � is the average mean; bj is the fixed effect of the jth 
block; tj is the fixed effect of the jth family effect (progeny); 
Pk is the random effect of the jth plot with p ~ N(0, �2

P
 ); and 

�ij is the residual error that represents the nongenetic effects. 
The matrices X and Z are the incidence matrices for the fixed 
and random effects, respectively. Deregressed best linear 
unbiased prediction/predictor (dBLUP) was then estimated 
to avoid shrinkage properties (Henderson 1975) according to 
the formula ĝ

r2
 (Garrick et al. 2009), where ĝ is the genomic 

BLUP, and r2 is the reliability, estimated as 1 − (PEV∕�2

g
) , 

where PEV is the prediction error variance, and �2

g
 is the 

genotypic variance. Pearson’s genetic correlation tests were 

Yijk = � + Xbj + Zti + Zpk + �ij

then performed using the BLUPs to verify the correlation 
between the 12 growth and wood quality traits. Correlation 
distributions were plotted using the ggcorrplot package in R 
(Kassambara 2019). The significant p-values were estimated 
using function “p.mat”.

DNA extraction and quality control

Cambium tissue was collected individually from 1772 trees 
and processed using the CTAB Lysis Buffer. DNA was 
extracted using the CTAB method (Doyle and Doyle 1987). 
DNA integrity was confirmed in 1% agarose gel electro-
phoresis and quantified by the Nanodrop spectrophotometer 
(Thermo Fisher, Waltham, MA, USA). DNA genotyping was 
performed using the EUChip60K high-density Illumina 
Infinium SNPchip for Eucalyptus species (Silva‐Junior 
et al. 2015). Duplicate SNPs were eliminated from the raw 
dataset based on markers with the lowest call rate. Qual-
ity control was conducted using the R package snpReady 
(Granato et al. 2018). Markers were removed if they were 
monomorphic or had a call rate lower than 95%. Alleles 
with minor allele frequency (MAF) lower than or equal to 
0.05 were also excluded. The genotypes were coded as “0” 
and “2” for homozygotes and “1” for heterozygotes. The 
remaining genotypic data was imputed using the R package 
snpReady considering Wright’s equilibrium of the probabil-
ity of occurrence considering the combination of allelic fre-
quency and heterozygosity observed from the markers (Gra-
nato et al 2018). Later, the filtered markers were submitted 
to linkage disequilibrium (LD) pruning, removing markers 
with a pairwise r2 higher than 0.99. This step was performed 
using the SNPRelate package in R (Zheng et al. 2012). After 
quality control, high-quality SNPs were selected for associa-
tion mapping.

SNP repositioning

We repositioned the markers using the information from 
the SNP probes in Illumina. Probe sequences were used to 
align with the second version of the Eucalyptus grandis ref-
erence genome (v2.0) (https:// data. jgi. doe. gov/ refine- downl 
oad/ phyto zome? genome_ id= 297) with the bowtie 2 aligner 
(Langmead and Salzberg 2012) and sensitive global align-
ment settings. The SNP position from version 2.0 was used 
in the GWAS analysis. We removed all scaffolds from the 
Brasuz v2.0 that were not in the linkage groups (from chro-
mosome 1 to 11). The success of the repositioning was ana-
lyzed using a comparison map, and the dotplot coincidence 
graphs of the positioning of the two reference genomes (v1.0 
and v2.0) were plotted using the R packages RIdeogram 
(Hao et al. 2020) and ggplot2 (Wickham 2011), respectively.
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Genetic parameters and population structure

The effective population size ( Ne ) was estimated using the 
molecular linkage disequilibrium method (Waples and Do 
2008) as implemented in NeEstimator V2.1 (Do et al. 
2014). Population genetic parameters were estimated using 
the popgen function in the R package SNPReady (Granato 
et  al. 2018), and include Nei’s genetic diversity, as 
GD = 1 − p2

j
− q2

j
 ; polymorphic information content, 

where PIC = 1 −
(

p2
j
+ q2

j

)

− (2p2
j
q2
j
) ; and minor allele 

frequency using the formula MAF = min(pj, qj ). The 
observed heterozygosity ( Ho ) was obtained with the for-
mula: Ho = nHj∕N  , where Hj is the number of heterozy-
gous individuals, and N  is the number of individuals. For 
each trait, we estimated the narrow-sense ( h2

a
= �2

a
∕(�2

a
+ �

2

e
 ) 

and broad-sense ( h2
g
= �2

a
+ �2

d
∕(�2

a
+ �2

d
+ �2

e
 ) genomic 

heritability, where �2

a
 represents the additive variance, �2

e
 

is the residual variance, and �2

d
 is the dominance variance. 

The narrow and broad sense heritabilities were estimated 
using the ASReml R package (Gilmour et al. 2017). Then, 
the degree of differentiation between the two origin popu-
lations ( FST ) was estimated using the formula 
FST = 1 − HS∕HT  , where HS is the average expected het-
erozygosity for each population (two different origins), 
and HT  is the expected heterozygosity in the total 
population.

The population structure was first analyzed by a prin-
cipal component analysis (PCA) using genotypic data, 
where the first two principal components (PC1 and PC2) 
were used to determine the extent of population structur-
ation. The two different origins were represented by dif-
ferent colors. We subsequently used the ADMIXTURE 
software to identify different genetic clusters with a fixed 
number of populations (K) ranging from 1 to 40. Genetic 
correlation between phenotypes was estimated using the 
BreedR package in R (Munoz and Rodriguez 2014). 
Correlation was estimated in pairs considering the same 
model used to estimate BLUPs (Item 2.2). The genomic 
kinship matrix ( Ga ) was obtained using the SNPReady 
package in R (Granato et al. 2018), following VanRaden 
(2008), with the following equation:

where ZA is a matrix coded as 0 for homozygote A1A1 , 1 for 
heterozygote A1A2 , and 2 for homozygote A2A2 ; pi is the 
frequency of an allele from locus i ; and Z is an n × m matrix 
of marker incidence (n is the number of genotypes, and m is 
the number of markers). In order to compare the difference 
between genomic and pedigree information, we estimated 

Ga =
ZAZ

T
A

2
∑mi

1
pi
�

1 − pi
�

the pedigree relationship matrix (A) using the R package 
pedigreem (Bates and Vazquez, 2013).

LD decay

Genome-wide pairwise linkage disequilibrium (LD) was 
estimated for each chromosome using the function LD.decay 
from the sommer package v 2.9 in R v 4.0.2 (Covarrubias-
Pazaran 2016). LD was estimated by the squared allele fre-
quency correlation r2 between marker pairs, and the decay 
was plotted considering the first distance classes based on the 
marker matrix and a map with distances between SNPs on a 
loess curve. To investigate the average LD decay in the whole 
genome and within chromosomes, significant intra-chro-
mosomal r2 values were plotted against the genetic distance 
between markers using the ggplot2 package in R (Wickham 
2011).

Genome‑wide association study

We performed single-trait GWAS using the fixed and ran-
dom model circulating probability unification (FarmCPU) 
(Liu et al. 2016) and multi-trait GWAS using the multi-trait 
mixed model (MTMM) (Korte et al. 2012) to identify genetic 
factors associated with the expression of phenotypic traits. 
The corrected phenotypic data (BLUP) and the genotypic 
information were used for single- and multi-trait GWAS. 
The single-trait association was performed using the genome 
association and prediction integrated tool (GAPIT) (Lipka 
et al. 2012; Tang et al. 2016). The population structure based 
on PCA matrix (Q) and kinship (K) were automatically gen-
erated (VanRaden 2008; Lipka et al. 2012) using genotypic 
data and the default GAPIT parameters. Using the GWAS 
results, we estimated the phenotypic variance explained by 
a significant marker ( PVE ), described as follows:

where � is the effect of allele substitution, and MAF is the 
minor allele frequency of markers. The pleiotropic effect 
among phenotypic traits, which is a SNP marker having 
an effect on two or more traits, was estimated using the 
multi-trait mixed model (MTMM) (Korte et al. 2012). We 
performed multi-trait GWAS in pairs for the significantly 
associated growth and wood quality phenotypic traits. The 
R scripts provided by Korte et al. (2012) partition the inter-
action effects into three different analysis models: interac-
tion, common, and full. Thus, considering two traits using 
a single marker model, the MTMM model can be written as 
(Korte, 2012):

PVE = 2 ∗
(

�2
)

∗ MAF ∗ (1 −MAF)

y =

[

y1
y2

]

= s1�1 + s2�2 + x� +
(

x × s1
)

� + �
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where y1 and y2 are phenotypic values for genotype 
interactions of two traits. The y value is estimated as 
X� + uG + uG×E + e , considering uG and uG×E are the geno-
type and genotype-by-environment interaction values; s1 and 
s2 are vectors of 1 or 0 for all values of the trait in question;�1 
and �2 are the means; x is the marker effect; � represents 
the effect size of fixed effects; and � is the prediction error. 
The interaction and common models identify markers that 
act differentially or in the same direction for two traits. On 
the other hand, the full model identifies SNPs with either 
an interaction or common effect. The significance thresh-
old used for the p-values estimated by single- and multi-
trait GWAS was calculated using the Bonferroni method 
(α = 0.05). The p-values (-log10 P) for each evaluated SNP 
and model was used to generate Manhattan and QQ (quan-
tile–quantile) plots using the R package CMPlot (Yin, 2018).

Gene ontology

The significant SNPs for growth and wood quality traits 
were used to conduct a gene ontology analysis according 
to the physical distance within the GWAS peak regions. 
Since there were no strong LD blocks along the genome, 
which is probably related to LD-pruning, the downstream 
and upstream distance to search for candidate loci were 
estimated considering the distance of the two nearest 
f lanking markers to the significant SNP. The genetic 
annotation and predicted functional effect of each gene 
were obtained by searching the database for version 2.0. 
of E. grandis from Phytozome v11.0 (Egrandis_297_
v2.0.gene.gff3.gz). Venn diagrams were developed using 
the jvenn plot (Bardou et al. 2014).

Results

Phenotypic data

The number of outliers removed varied among the 12 
phenotypic traits (DBH3: 63; HEI3: 111; VOL3: 2; 
DBH6: 0; HEI6: 6; VOL6: 1; PCY: 22; WBD: 21; SGR: 
111; TSC: 23; SOL: 78; and TEX: 83). The genetic cor-
relation among phenotypic traits ranged from − 0.96 
(PCY/TSC) to 1 (DBH6/VOL6) (Fig. 1a and b). Simi-
larly, the highest correlation between wood quality traits 
was found between TEX and SOL (0.62). The PCA biplot 
represents the first two components for the full set of 12 
traits (six growth and six wood quality). The first two 
axes account for 50.7% and 17.9% of the variation in the 
phenotypic data (Fig. 1c).

Population structure and genetic diversity 
parameters

The PCA using genotypic data revealed that the first compo-
nent was mainly responsible for the genetic variation (55%) 
(Fig. S1). Although there was a slight grouping of geno-
types according to their origin by PCA, the ADMIXTURE 
analysis showed an absence of population genetic structure 
(Fig. S2). Accordingly, the genetic differentiation (FST) 
between individuals from two different origins presented 
a value of 0.036, indicating limited genetic divergence 
between them. A similar pattern was found for the kinship 
matrix (VanRaden 2008), where different subpopulations 
were identified but with no evidence of a strong popula-
tion structure (Fig. 2a). Also, we notice that the genomic 
relationship matrix increased the prediction accuracy when 
compared with the pedigree information (Fig. 2b), with 
genotypes more and less related. Although the genotypes 
evaluated are originally from two native populations, the 
seeds which were used to establish the breeding population 
are from open-pollinated trials installed in eight different 
locations. Thus, we believe that crossings among genotypes 
from different origins may have generated stratification in 
the population.

In general, genetic diversity parameters showed mod-
erate values. Nei’s genetic diversity of the whole popu-
lation ranged from 0.07 to 0.50, with an average of 0.35. 
The marker polymorphic information content (PIC) ranged 
from 0.07 to 0.38, with an average of 0.28. The minor allele 
frequency (MAF) showed a mean value of 0.26, ranging 
from 0.06 to 0.50. The observed heterozygosity ( Ho ) had 
an average of 0.40, ranging from 0.24 to 0.47. Similarly, the 
inbreeding coefficient ranged from 0.04 to 0.50, with a mean 
value of 0.26. We found an effective population size ( Ne ) of 
31.5 considering linkage disequilibrium between markers 
( LDNe).

SNP repositioning and quality control

In general, several SNPs changed their original relative 
position between the first (Myburg et al. 2014) and second 
(Bartholomé et al. 2015) versions of the E. grandis reference 
genome, and some even changed chromosomes. However, 
the genome-scale SNP collinearity (Fig. 3) between the two 
versions showed that most SNPs maintained similar posi-
tions. We did note a high collinearity pattern and more reli-
able linkage maps with version 2.0 (Bartholomé et al. 2015). 
Thus, we chose SNP positions estimated using the second 
version to perform GWAS analysis and identify QTLs and 
candidate loci related to trait expression.

For quality control, from the initial total of 64,639 mark-
ers, 3425 duplicate SNPs were removed considering the call 
rate, leaving 61,214 markers. After SNP repositioning, 1946 
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Fig. 1  a Genotypic correlation 
and b distribution of phenotypic 
traits for growth and wood qual-
ity categories across the 1772 
Eucalyptus grandis genotypes; 
c principal component analysis 
for wood quality and growth 
traits. DBH3 diameter at breast 
height at 3 years; DBH6 DBH 
at 6 years; VOL3 volume 
at 3 years, VOL6 volume at 
6 years; HEI3 height at 3 years; 
HEI6 height at 6 years; PCY 
pure cellulose yield; WBD basic 
wood density; SGR Syringyl/
guaiacyl ratio; SOL = soluble 
lignin; TSC total solid content; 
and TEX total extractives
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markers were removed as they were located in small scaf-
folds. A total of 28,957 markers were removed due to MAF 
(0.05), and 8,229 markers were removed due to the call rate 
(0.9), leaving 22,082 markers. Furthermore, 1.08% missing 
points were imputed. Finally, after LD pruning, 828 SNPs 
with high linkage disequilibrium were removed, leaving a 
final total of 21,254 markers for the analysis.

The informative SNPs selected were uniformly distrib-
uted across the 11 chromosomes of the E. grandis genome. 
Figure 3a shows the occurrence of SNPs along the E. gran-
dis chromosomes, where the number of SNPs is summed 
within adjacent 1 Mb windows. LD showed a quick and 
similar decay pattern across the 11 E. grandis chromosomes 
(Fig. 3b). The ad hoc value of r2 (0.10) indicated an aver-
age LD across chromosomes ranging from 150 to 200 kb 
(Fig. S4).

Genome‑wide association studies

Broad‑ and narrow‑sense heritability and single‑trait 
genome‑wide association study

For growth traits, we found moderate values of narrow-
sense heritability, ranging from 0.4299 (HEI3) to 0.5816 

(DBH6) (Table 1). Three wood quality traits (SGR, SOL, 
and TEX) presented relatively low narrow-sense herit-
ability (0.1599, 0.1845, and 0.1515, respectively). On the 
other hand, pure cellulose yield (PCY) presented the high-
est broad-sense heritability (0.7107) among all growth and 
wood quality traits.

The FarmCPU model successfully performed single-trait 
GWAS, indicating significant associations between growth 
and wood quality traits in E. grandis. After Bonferroni cor-
rection, a total of 81 SNPs with a significant association 
were identified for six growth traits (43 SNPs) and five wood 
quality traits (38 SNPs). Only the wood quality trait total 
extractives (TEX) showed no significant associations with 
markers (Table 1). The number of significant markers asso-
ciated with phenotypic traits ranged from 2 (DBH6) to 14 
(WBD) (Fig. 4a and b, respectively).

The average minor allele frequency (MAF) for the sig-
nificant markers ranged from 0.0946 (DBH6) to 0.3164 
(TSC). For all significant SNPs, the total phenotypic vari-
ance explained by a given SNP (PVE) was low, ranging from 
0.0529 (SOL) to 0.2110 (PCY). Marker EuBR04s9558885 
(PCY) showed the highest phenotypic variance (0.1014), 
suggesting a strong influence of this marker on phenotypic 
expression. Several markers were found associated with 

Fig. 1  (continued)
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Fig. 2  Kinship heatmaps for the 
a marker relationships matrix 
estimated using the 21,254 
SNPs based on the VanRaden 
method and b pedigree relation-
ship matrix for the Eucalyptus 
grandis breeding population of 
1772 individuals
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multiple phenotypic traits for trait expression and candidate 
gene annotation (Fig. 4).

The number of annotated loci associated with the expres-
sion of phenotypic traits ranged from 0, with no gene anno-
tation for the significant SNP (DBH6) to 46 (WBD). We 
found QTLs significantly related to more than one trait for 
both categories (Table S1; Fig. S3). In general, functional 
gene annotation presented several categories and descrip-
tions associated with tissue growth on cell walls, cellulose 
biosynthetic process, transporter activity, DNA, ion and 
protein biding, oxidation–reduction process, and catalytic 
activity, among others. The function and description of all 
candidate loci for both growth and wood quality traits are 
shown in Table S1.

The pleiotropic effect among loci for growth traits was 
first seen for the SNP marker EuBR09s24960947, which pre-
sented the most significant association for traits DBH3 and 
HEI3, with p-values of 9.34 ×  10−9 and 1.91 ×  10−9, respec-
tively. This marker tags seven different loci (Eucgr.I01459, 
Eucgr.I01460, Eucgr.I01461, Eucgr.I01462, Eucgr.I01463, 
Eucgr.I01464, and Eucgr.I01465). In general, the single-trait 
GWAS revealed 13 candidate loci significantly associated 
with DBH3. Similarly, most loci found for HEI3 also showed 
comparable genome locations and molecular functions. Con-
sidering the trait HEI3, we found no annotation for candidate 
loci located near three significant SNPs (EuBR07s925067, 
EuBR06s38139098, and EuBR08s70063929) (Table S1). 
On the other hand, for HEI6, we found 44 annotated loci 
related to trait expression with different descriptions and 
gene ontology terms.

The SNP EuBR11s17004419 (HEI6) showed four dif-
ferent f lanking loci (Eucgr.K01383, Eucgr.K01384, 
Eucgr.K01385, and Eucgr.K01386). The marker 
EuBR06s23565060 was identified for both ages for volume 
(VOL3 and VOL6) and for DBH3 (p-values 8.29 ×  10−8, 
1.01 ×  10−8, 8.44 ×  10−8, respectively). We found a similar 
pattern of significant SNPs correlated with more than one 
phenotypic trait for wood quality in single-trait GWAS. 
For PCY and TSC, three different SNPs (EuBR07s252985, 
EuBR08s57640594, and EuBR10s1696823) were signifi-
cantly correlated with the expression of these traits. These 
two phenotypic traits (PCY and TSC) presented the highest 
negative correlation (− 0.96), indicating that negative cor-
relations can be effective in identifying pleiotropic loci.

Regarding pure cellulose yield, SNP marker 
EuBR04s9558885 had the highest significance (p-values 
1.06 ×  10−11), presenting five different flanking loci related 
to trait expression (Eucgr.D00522, Eucgr.D00523, Eucgr.
D00525, Eucgr.D00526, and Eucgr.D00527). Additionally, 
SNP EuBR10s1696823 was related to PCY, with the pres-
ence of gene Eucgr.J00155, a wound-induced protein. Simi-
larly, for TSC, we found 12 annotated loci significantly asso-
ciated with trait expression. The marker EuBR01s39512949 

presented six different loci related to its expression (Eucgr.
A02909, Eucgr.A02910, Eucgr.A02911, and Eucgr.
A02912).

Multi‑trait genome‑wide association study

The multi-trait GWAS showed good performance for all sig-
nificant combinations among traits (Fig. S3). We found sig-
nificant marker-phenotype associations for growth and wood 
quality traits that were not identified with the single-trait 
GWAS. Considering the 33 phenotypic correlations among 
the 12 traits, 22 combinations showed significant associa-
tions (Table 1; Fig. S3). The MT models (full, common, 
and/or interaction) for some models were unable to properly 
perform the GWAS since the p-values seemed to be deflated, 
and the QQ-plot showed more noise (e.g., Fig. S4d). These 
models were also unable to find significant associations con-
sidering the Bonferroni correction, which suggests no influ-
ence of possible false positives on the results.

The combinations among growth traits in multi-trait 
GWAS resulted in the highest number of significant SNPs 
with pleiotropic effects (24). Furthermore, the multi-trait 
GWAS analysis among wood quality (6) and between the 
two categories (GWT and WQT) (10) tended to express less 
significant markers. The multi-trait GWAS revealed 40 SNPs 
influencing the expression of multiple phenotypic traits 
(Table S6). Not surprisingly, the multi-trait methodology 
showed greater power to identify associations considering 
that most single-trait analyses using the MTMM methodol-
ogy (Korte et al. 2012) could not identify associations due to 
the strict Bonferroni cutoff (α = 0.05; p-value = 1.63 ×  10−5).

Significant associations between the same trait in dif-
ferent years of data sampling (e.g., EuBR03s72654230 
for DBH3 and DBH6; EuBR04s246324 for HEI3 and 
HEI6; EuBR02s2712998 for VOL3 and VOL6) indicate 
a strong pleiotropic effect on trait association. The SNP 
EuBR06s39120397 presented a strong p-value, and this 
marker was also statistically significant in the expression of 
HEI3, DBH6, and VOL6. This pattern may be related to the 
strong genetic correlation among these traits. Similarly, SNP 
EuBR01s28498846 was also found for the combination of 
traits TSC, DBH6, VOL6, and VOL3, indicating evidence 
of a pleiotropic effect of the marker on growth and wood 
quality traits.

We identified one SNP that was significantly associ-
ated with two trait combinations (HEI3 and DBH6; HEI3 
and VOL6) (EuBR06s39120397; p-values 7.57 ×  10−6 and 
1.14 ×  10−5, respectively), with nine candidate loci related 
to its expression (Eucgr.F02939 ~ Eucgr.F02947). One 
SNP was found to be significant by the full model between 
the combinations of traits DBH3 and DBH6 and DBH3 
and VOL6 (EuBR03s72654230; p-values 1.59 ×  10−5 and 
1.02 ×  10−5, respectively).
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The SNP EuBR03s43394028 was significant for three 
combinations of traits (HEI6 and VOL6, VOL3 and HEI3, 
and DBH3 and HEI6) (p-values 9.33 ×  10−7, 1.01 ×  10−5, 
and 1.54 ×  10−6). However, between traits HEI3 and 
HEI6, although SNP marker EuBR03s22449999 (p-value 
8.41 ×  10−6) was identified as significant by the common 
model, there were no annotations for candidate loci. On the 
other hand, SNP EuBR04s246324 was significant for the 
common and full models with a high p-value (9.05 ×  10−7). 
Considering that both traits HEI3 and HEI6 represent plant 
height, the power of multi-trait GWAS to detect significant 
candidate loci proved to be effective even for the same trait, 
considering different developmental stages.

One SNP marker was detected as significant for traits 
DBH3 and VOL3 (EuBR05s62102817; p-value 2.19 ×  10−6) 
(Table S1). Similarly, between traits VOL3 and DBH6, 
the marker EuBR07s16969079 showed significant asso-
ciation (p-value 1.38 ×  10−5). We found two significant 
markers for the first WQT combination SOL and TEX 
(EuBR06s19529730 and EuBR06s52964694; p-values 
2.66 ×  10−7 and 5.06 ×  10−6, respectively). The multi-trait 
GWAS combination between the traits SGR and TEX 
identified three significant markers (EuBR11s43922247, 
EuBR11s44284539, and EuBR03s16484895; p-values 
7.26 ×  10−6, 1.16 ×  10−5, and 9.83 ×  10−6) through the full 
and interaction models. Similarly, the genomic regions for 

marker EuBR11s44284539 revealed two flanking candidates 
loci (Eucgr.K03516 and Eucgr.K03517).

Discussion

Single and multi-trait GWAS were effective in properly iden-
tifying QTLs as well as annotated loci related to phenotypic 
expression in the studied E. grandis breeding population. 
Additionally, the quality control process was able to remove 
uninformative markers, leaving a total of 21,254 highly 
informative markers that were used in the GWAS analysis. 
In general, most of the markers removed (28,957) during 
quality control were due to a low minor allele frequency 
(< 5%), which is the frequency of the second most common 
allele in the population. In relation to the rearrangement of 
the E. grandis genome assembly, Bartholomé et al. (2015) 
identified 43 non-collinear and 13 non-synthetic regions. 
Thus, although there are modifications in marker collinear-
ity found by the linear trend between the two versions of the 
genome, the new arrangement may be related to modifica-
tions in genome assembly.

Although there were some rearrangements during SNP 
reposition, using new SNP positions for v2.0 of the genome 
was effective in finding QTLs and annotated loci. We rein-
force that as far as we know, this is the first GWAS study 
developed using repositioned SNP probes that compares the 
positions of the two genome versions. Furthermore, consid-
ering that gene annotation is based on the second version of 
the Eucalyptus genome (Bartholomé et al. 2015), we believe 
that the possibility of errors was reduced.

Fig. 3  a SNP density plot across each chromosome representing the 
number of SNPs after quality control within a 1 Mb window size; b 
pairwise LD-decay across the 11 chromosomes of the 1772 individu-
als genotyped using the EUChip60K. Different colors represent dif-
ferent SNP density, and “Chr” represents the E. grandis chromosomes

◂

Table 1  Significant associations 
for growth and wood quality 
traits using the single-trait 
model (FarmCPU) for a 
Eucalyptus grandis breeding 
population. Traits are divided 
into growth (GWT) and wood 
quality (WQT). The number 
of SNPs, MAF, PVE, and 
number of loci are related 
to the significant number of 
associations found by the 
FarmCPU model

h2
a
 narrow-sense heritability, h2

g
 broad-sense heritability, SNPs number of significant SNPs, MAF average 

minor allele frequency, PVE sum of phenotypic variance explained by the significant SNPs, Loci number 
of loci found, GWT  growth traits, WQT wood quality traits, DBH3 diameter at breast height at 3  years, 
DBH6 DBH at 6 years, VOL3 volume at 3 years, VOL6 volume at 6 years, HEI3 height at 3 years, HEI6 
height at 6 years, PCY pure cellulose yield, WBD basic wood density, SGR syringyl/guaiacyl ratio, SOL 
soluble lignin, TSC total solid content, TEX total extractives

Type Trait h2
a

s.e h2
g

s.e SNPs MAF PVE Loci

GWT DBH3 0.57 0.08 0.68 0.06 5 0.1868 0.0976 10
HEI3 0.43 0.07 0.55 0.06 8 0.2549 0.2108 28
VOL3 0.56 0.08 0.65 0.06 6 0.1615 0.1039 15
DBH6 0.58 0.08 0.68 0.06 2 0.0946 0.0551 0
HEI6 0.56 0.08 0.68 0.06 13 0.2285 0.1502 44
VOL6 0.55 0.08 0.63 0.06 9 0.1789 0.1910 21

WQT PCY 0.61 0.07 0.71 0.06 8 0.3146 0.2110 22
WBD 0.57 0.07 0.59 0.06 14 0.2404 0.1991 45
SGR 0.16 0.05 0.18 0.05 7 0.2363 0.0867 10
SOL 0.18 0.05 0.19 0.05 6 0.2423 0.0529 28
TSC 0.54 0.05 0.59 0.05 3 0.3164 01,197 14
TEX 0.11 0.05 0.15 0.05 0 – – 0
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Another important point to consider is related to popula-
tion structure. Herein, we found no clear structuration of 
the population between individuals, which may be related 
to the population’s breeding history. Although there are two 
origins and it is likely that there would have been popula-
tion structure, the breeding population was established from 
eight different provenances, which might have promoted out-
crossing between individuals from different origins. Accord-
ing to Hayes (2013), not considering population structure 
in GWAS can cause false-positive associations. Thus, both 
models (single- and multi-trait GWAS) were tested against 
population structure, and we believe that this effect did not 
have an impact on our results as they were considered in 
the analysis.

Several genetic mapping through association studies have 
been used to assess the complexity of the genetic architec-
ture of growth (Freeman et al. 2013; Müller et al. 2017, 
2019), wood quality traits (Cappa et al. 2013; Freeman et al. 
2013; Resende et al. 2017; Dasgupta et al. 2021), and non-
wood traits (Resende et al. 2017; Kainer et al. 2019; Mhoswa 
et al. 2020) of Eucalyptus. Using the second version of the 
Eucalyptus genome, it was possible to more accurately iden-
tify QTLs. Many studies have also developed single-trait 
GWAS for growth, wood quality, and disease resistance in 
Eucalyptus spp. (Resende et al. 2017; Kainer et al. 2019; 
Müller et al. 2019; Ballesta et al. 2020; Mhoswa et al. 2020; 
Valenzuela et al. 2021). However, few studies have evalu-
ated the multi-trait association models for growth and even 
fewer for wood quality in eucalypts (Rambolarimanana et al. 
2018; Tan and Ingvarsson 2018). As expected, although sev-
eral markers were found to be significant, the results from 
the single- and multi-trait GWAS indicate limited genetic 
variance, which can explain the relatively low number of 
associations. This pattern might be related to the polygenic 
nature of quantitative traits (Grattapaglia et al. 2018), indi-
cating that there are many loci related to trait expression, 
as predicted by Fisher’s infinitesimal model (Fisher 1918).

Although the complexity of multiple loci influences the 
expression of quantitative traits, the number of significant 
SNPs identified herein, and consequently the number of 
QTLs for both single and multi-trait GWAS, was similar to 
previous studies (Müller et al. 2019; Ballesta et al. 2020). 
Additionally, besides the reliable accuracy achieved by the 
single- and multi-trait GWAS, the phenotypic information 
used in the present study was obtained from a single environ-
ment, which may have limited the phenotypic precision of 
each individual. Thus, our study reinforces the importance 

of using multi-trait models combined with single-trait mod-
els for highly complex quantitative traits. According to Liu 
et al. (2016), the FarmCPU model offers the best trade-off 
between predictive power and false positives. On the other 
hand, the power of the MTMM approach considering the 
correlation between two traits (multi-trait GWAS) can 
improve the identification of more evident pleiotropic effects 
than those found using a single marginal trait analysis (Korte 
et al. 2012).

The implementation of GWAS using phenotypic informa-
tion from different traits can lead to the discovery of effects 
stronger than those identified by single-trait analysis (Korte 
et al. 2012). To increase the statistical power of GWAS, sev-
eral studies have used multi-trait analysis to identify signifi-
cant genetic-phenotypic associations (Jaiswal et al. 2016; 
Thoen et al. 2017; Yoshida and Yáñez 2021). Thus, multi-
trait GWAS can increase the power of single-trait GWAS 
using different measures or multiple traits with a high 
pattern of genetic correlation (Porter and O’Reilly 2017). 
Regarding Pearson’s genetic correlations between pheno-
typic traits, the strongest associations between growth vari-
ables found herein are expected because diameter, height, 
and volume are directly related. On the other hand, wood 
quality traits did not show strong patterns of association, 
except for PCY which presented several significant and posi-
tive associations with growth traits. This finding suggests 
that selection for growth traits might lead to a large increase 
in cellulose yield, which, for example, could have a further 
effect of reducing the total solid content production. Thus, 
pleiotropic QTLs are important when using marker-assisted 
selection for multiple traits.

Generally, our results show that multi-trait GWAS was 
able to increase the power of single-trait GWAS (FarmCPU) 
to identify loci that directly affect mutual traits, thus increas-
ing the capacity to identify markers with minor effects. Fur-
thermore, compared to the multi-trait GWAS (MTMM), the 
FarmCPU showed a lack of power to identify pleiotropic 
markers and correlated traits with low phenotypic correla-
tion, as shown in previous studies (Korte et al. 2012). The 
joint association analysis, which considered the full, com-
mon, and interaction models, suggested genetic factors act-
ing in the same direction, differentially, or with an interac-
tion or common effect for the expression of the growth and 
wood quality traits.

Considering single-trait GWAS, several studies identified 
that FarmCPU increased the power of GWAS for complex 
traits (Tang et al. 2016; Kusmec and Schnable 2018; Miao 
et al. 2019). Our study corroborated this finding, identifying 
81 significant markers for growth (43) and wood quality (38) 
traits. Furthermore, FarmCPU was able to control for false 
positives caused by population structure and kinship because 
of the distribution of quantile–quantile (QQ) plots. On the 
other hand, the MTMM model performed in the multi-trait 

Fig. 4  Manhattan and QQ-plots of GWAS for growth traits (a, c) and 
wood quality traits (b, d), respectively, using the FarmCPU model 
for an Eucalyptus grandis breeding populations with 21,254 markers. 
Different colors represent different tested traits. Dashed line indicates 
the Bonferroni threshold (α = 0.05)

◂
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GWAS identified a smaller number of significant markers 
(31) among all significant trait combinations (Table S6). The 
importance of finding pleiotropic QTLs is related to marker-
assisted selection, which can be used together to select mul-
tiple regions related to the expression of both growth and 
wood quality traits (Gupta et al. 2010). Regarding genomic 
heritability, low/moderate heritability levels were found for 
growth traits. The high/moderate heritability for the wood 
quality traits PCY and WBD indicates that they are less 
influenced by the environment. However, three wood quality 
traits (SGR, SOL, and TEX) showed a critically low herit-
ability, making GWAS not appropriate for these traits.

Herein, the pleiotropic effect of loci influencing the 
expression of phenotypic traits was primarily found through 
single-trait GWAS analysis. A similar tendency was found 
by Ward et al. (2019) comparing yield traits in soft red 
winter wheat, where several markers presenting loci with 
pleiotropic effects were identified by the FarmCPU model. 
Here, pleiotropy was identified for both growth and wood 
quality traits in E. grandis. However, the markers with a 
pleiotropic effect identified for different traits by single-
trait GWAS were not identified when using the multi-trait 
GWAS. The difference of significant SNPs found in these 
analyses might result from the different statistical method-
ologies that explore GWAS associations (Hayes 2013).

Conclusion

Our study highlights the importance of examining associa-
tions between markers and phenotypes for eucalypt species. 
Herein, we identified markers that act individually on each 
trait using the single-trait GWAS and markers that have plei-
otropic effects and influence several traits using multi-trait 
GWAS. The results corroborate previously published data for 
eucalypt species using moderate-size populations along with 
high-density SNP datasets. As far as we know, most of the 
markers identified herein have never been described in previ-
ous GWAS for eucalypt species. The results discussed herein 
provide a better understanding of gene expression and offer 
important information to inform marker-assisted selection.

In terms of identifying QTLs using single- and multi-
trait GWAS, we were able to find clear results related to 
gene interaction. Gene ontology analysis of GWAS was also 
important in identifying the biological context of loci. The 
different GWAS methodologies applied involved the scan-
ning of the whole genome from different trees and identify-
ing genetic markers that can be used to predict phenotypic 
traits. As a result, GWAS effectively identified candidate loci 
related to the expression of phenotypic traits. We believe 
that the results can be used in genetic selection to increase 
the productivity of eucalypt plantations and improve future 
breeding programs. Nevertheless, further studies should be 

conducted to identify significant associations with multi-
ple environmental conditions. Thus, it is essential to con-
tinue evaluating the genetic effects and the complexity of 
the genetic architecture of economically important traits to 
continue to accumulate genetic gains in each breeding cycle.
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