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Local adaptation is key for ecotypic differentiation and species evolution1. Understanding the underlying 
genomic patterns allows the prediction of future maladaptation and ecosystem stability2. Here we report the 
whole-genome resequencing of 865 individuals from 100 range-wide populations of European beech (Fagus 
sylvatica), which is one of the most important forest tree species in Europe. We show that genetic variation 
closely mirrors geography. Adaptive variation identified by genotype-environment associations exhibits highly 
polygenic architectures, involving thousands of associated sequence variants across the genome. By modelling 
the ‘genomic offset’ of these sequence variants under projected future climate conditions, we identify broad- 
and fine-scale variation highlighting geographic regions as well as populations at potential elevated risk of 
mortality or local extinction. Our results emphasize the importance of considering natural genetic variation 
for forest conservation under climate change conditions. 
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Introduction: Terrestrial plants and specifically trees make up the majority of the Earth’s biomass3,4, thereby 
giving forests an essential role for global carbon fluxes. With storage potentials reaching up to 25% of the 
current atmospheric carbon pool, forest restoration might represent one of the most effective strategies for 
climate change mitigation5,6. However, rather than being restored to mitigate climate change, forests are 
themselves severely threatened by rapidly changing climates and may experience marked habitat 
reductions7,8. To better understand and counteract this threat, there is an urgent need for reliable estimates 
of species’ responses to climate change. Such estimates have classically been derived from species distribution 
models, which are based on current climate limits. However, these models do not account for dynamic 
population genetic processes. More and more studies and an increasing amount of genomic data call for an 
integration of natural genetic variation, local adaptation, selection and gene flow9-15. This integration of data 
is essential for precise predictions of future effects of climate change on keystone species and the 
corresponding ecosystems. 

Initial empirical validations already demonstrated that an integration of genomic and environmental 
information to estimate ‘genomic offset’, that is the prediction of future maladaptation or climate 
vulnerability, outperforms naive climate distance models in different species16,17. Genomic offset estimates 
can thus guide breeding and conservation efforts. This has been exemplified for animals and plants, such as 
the yellow warbler, a migratory songbird in North America18, or pearl millet, a cereal crop in West Africa19. But 
perhaps the most striking possible application for genomic offset estimates can be envisioned for long-lived 
organisms such as trees. Due to their long juvenile phase and exceedingly long generation times, the fitness 
of populations cannot easily be experimentally tested under different environmental conditions. If, however, 
the natural sequence variants associated with adaptation to specific environmental conditions are precisely 
characterized, future performance of populations can be predicted based on the gap between the current and 
the required future genetic make-up. Populations that appear perfectly healthy today may exhibit markedly 
different levels of maladaptation in the future.  
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In Central Europe, the ecologically and economically most important broadleaf species European beech (Fagus 
sylvatica L.), henceforward referred to as beech, represents a prime example of a long-lived species potentially 
affected by future climate maladaptation. Currently, beech still represents the dominant species of the 
potential natural vegetation (PNV) in many European countries20. Its wide distribution range extends from 
Spain in the southwest, to Sweden in the north all the way to Greece and Turkey in the southeast. However, 
its future might be less favorable, as growth rate declines of 20-50% are predicted by 2090, depending on the 
region and climate change scenario8. To better understand the genetic basis of local adaptation to different 
climates and predict future performance by integrating genetic information, we set out to characterize the 
range-wide genomic variation of beech. New developments in sequencing technologies make population 
genomics studies increasingly feasible in virtually any species of interest21. Despite some remaining 
methodological challenges22-24, predictions of future maladaptation of keystone forest tree species and future 
stability of forest ecosystems can therefore now be fully explored. 

Results and discussion: To sample the range-wide genetic diversity of beech and elucidate the genetic basis 
of local adaptation and potential future climate vulnerability, we took advantage of a common garden 
comprising trees from 100 populations from across the distribution range (Supplementary Fig. 1, 
Supplementary Table 1). We randomly selected nine trees per population for whole-genome resequencing 
with an average sequencing depth of 42.5x (Supplementary Table 2). Mapping the sequencing data to the 
chromosome-level beech reference genome25, we identified a total of 3.68 million high-confidence sequence 
variants, that is SNPs and short indels, of which about half a million were largely independent, exhibiting 
linkage disequilibrium (LD) values below 0.2. Analysis of the independent variants revealed the presence of 
close relatives, such as half sibs or first cousins, in some populations (Supplementary Fig. 2). The material used 
for the establishment of the common garden thus only involved a limited number of seed trees in some cases. 
To avoid any artefacts in our subsequent analyses due to kinship structure, we removed individuals with 
pairwise relatedness of 2nd degree or higher. Additionally, we excluded one genetically highly divergent 
population from Bulgaria, potentially representing the sister species F. orientalis, and one apparently admixed 
population from Germany (Supplementary Fig. 3). This left us with a final set of 653 individuals from 98 
populations (Supplementary Table 3).  

Strikingly, a two-dimensional visualization of these 653 individuals by principal component analysis (PCA) 
revealed a close correspondence with the map of Europe (Fig. 1a). Especially individuals from the western part 
of the range, that is Spain, France, Germany, Denmark and Sweden, exhibited a remarkable correlation 
between the first two principal components (PCs) and geography. The correlation between PC1 and longitude 
was high across all populations with a Pearson’s correlation coefficient of -0.94 (p < 2.2e-16) (Fig. 1b, c). 
Marked geographical structure can be observed up to PC6 (Supplementary Fig. 4). These results demonstrate 
a high level of accuracy of the common garden used for our analyses and the absence of any pronounced 
human impact, especially by seed transfer, on the genetic composition of beech. All populations, except a 
single one from the Southern Czech Republic, appear largely autochthonous and can therefore be considered 
representative of the environmental conditions of their origins. Considering the large amplitude of 
environmental differences, relatively strong selection for adaptive differentiation can be expected. This opens 
the exciting possibility to identify genotype-environment associations (GEAs) and elucidate the genetic basis 
of local adaptation.  
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Figure 1: Genomic variation across the distribution range of European beech (Fagus sylvatica) mirrors geography. (a) Overlay of a 
map of Europe and the results of a principal component analysis (PCA) using 540k independent genome-wide variants in 653 largely 
unrelated (less than 2nd degree) individuals from 98 populations shows correlation between geography and PC1 and PC2, which explain 
1.1% and 0.8% of the total genetic variation, respectively. Each point represents one of the 653 individuals plotted according to their 
PC1 and PC2 values. Colors correspond to the country of the origin of their source populations: Spain = red, France = orange, Germany 
= yellow, Denmark = light green, Sweden = dark green, other countries = blue. (b) Geographic origins (longitude and latitude) of the 98 
analyzed populations are depicted by circles. Colors indicate the population means of PC1. (c) Correlation analysis between PC1 and 
longitude reveals a Pearson’s correlation coefficient r of -0.94 (p < 2.2e-16). Each population is marked by a black cross. Bold gray line 
and shading indicate linear regression and 95% confidence interval of the model, respectively. 

To explore this possibility, we extracted 19 bioclimatic variables from the WorldClim database26. These 
interpolated monthly precipitation and temperature data provide a powerful resource to assess genotype-
environment associations, although additional environmental data types and sources may further improve the 
corresponding analyses27. As expected from the geographic origins of our populations, the bioclimatic 
variables showed broad mostly normal distributions (Supplementary Fig. 5, Supplementary Table 4). Each 
variable exhibited thousands of significant GEAs scattered across the genome in a latent factor mixed model 
(LFMM) analysis28 indicating a highly polygenic architecture of local adaptation (Fig. 2a, Supplementary Fig. 6).  
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Figure 2: Genotype-environment associations reveal highly polygenic architecture. (a) Manhattan plot of 540k independent genome-
wide variants in 653 individuals from 98 populations. The significance of the associations of each variant along the 12 beech 
chromosomes with the mean annual temperature (bio1) of the population origins is indicated by the -log10 p-values on the y-axis. In 
total, 2,758 variants exceed the Bonferroni threshold marked by the horizontal dashed line. (b) Geographic distribution of the 
genotypes for the sequence variant with the highest association, which is located at the beginning of chromosome 2, is shown by pie 
charts. Colors indicate genotypes: homozygous for the reference allele (REF, yellow), heterozygous (HET, green) or homozygous for 
the alternative allele (ALT, blue). Only populations with more than three individuals are depicted. (c) The frequency of the reference 
allele for the same variant shown in (b) and mean annual temperature of the population origins exhibit a significant linear association 
(adjusted R2=0.25, p=1.205e-07). Each population is marked by a black point. Bold blue line and shading indicate linear regression and 
95% confidence interval of the model, respectively. Histogram on the right shows distribution of mean annual temperature for the 98 
populations. 

Notably, theory predicts that such polygenicity makes natural selection most efficient29. In line with the 
emerging picture of polygenic adaptation rather than large-effect mutations and selective sweeps, putatively 
adaptive genetic variants in beech mostly represent common alleles that are not fixed and confined to specific 
populations or geographic regions but are segregating across the entire distribution range (Fig. 2b, c, 
Supplementary Fig. 7). The resulting high levels of potentially adaptive standing genetic variation suggest high 
levels of adaptability of beech populations to climate change in general. Nevertheless, allele frequency 
changes at many small-effect loci will be required for climate adaptation. Specific populations may thus differ 
in their risk of future maladaptation depending on their current genetic make-up. To formally test such 
differences across the landscape and potentially identify regions with elevated risk of mortality or even local 
extinction, we employed a genomic offset model called ‘risk of non-adaptedness’ (RONA). RONA predicts 
fitness under predicted future climate conditions based on distances between current allele frequencies of 
putatively adaptive variants (e.g., the 2,758 significantly associated variants for mean annual temperature in 
Fig. 2a) and required future allele frequencies. These distances are estimated from linear regressions weighted 
by the strength of their associations30,31.  
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RONA estimates for two bioclimatic variables, that is mean annual temperature (bio1) and total annual 
precipitation (bio12), under an intermediate climate change scenario (representative concentration pathway, 
RCP 4.5) revealed marked variation between populations across Europe (Fig. 3). In general, RONA values, and 
thus potential future maladaptation, are higher towards the southern edges of the distribution range. This is 
consistent with predictions based on tree ring data8 and indicates regions where future climate may exceed 
the species capacity of adaptation. Importantly, our analysis also highlighted geographically fine-scale 
variation as exemplified by some populations from Southern Germany for bio12, which exhibit more than 
twice the levels of genomic offset compared to adjacent populations (Fig. 3d). Overall, predicted RONA values, 
which can be interpreted as the allele frequency change required for adaptation to future climate conditions, 
are moderate. Allele frequency shifts in the range of 0.01 per generation were identified at neutral and 
adaptive loci in a different tree species32. According to our RONA estimates, shifts in that range could close 
the genomic offset gap and adapt most of the analyzed beech populations to average future climates (Fig. 3c, 
d). However, extreme weather conditions such as drought events could markedly change this picture. Also, 
when considering a more pessimistic climate change scenario (RCP 8.5), RONA values markedly increase for 
large parts of the distribution range and may put several populations at risk of local extinction (Supplementary 
Fig. 8). 

 

 

Figure 3: Prediction of future maladaptation reveals populations and regions with potential elevated risk of local extinction. (a,b) 
Predicted changes in mean annual temperature (bio1, °C) and total annual precipitation (bio12, mm) in 2081-2100 compared to near-
current conditions are shown for the 98 analyzed beech populations considering an intermediate climate change scenario (RCP4.5, 
MPI-ESM1-2-HR). (c,d) The ‘risk of non-adaptedness’ (RONA) with respect to changes in bio1 and bio12 was modelled using 2,758 and 
2,207 putatively adaptive variants, respectively. Colors indicate estimated RONA values. The size of the circles marks the number of 
individuals per population (n=2-10). 
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Our genomic offset results demonstrate the potential for employing putatively adaptive genetic variation to 
predict general adaptive capacity to future climate conditions of a largely autochthonous forest tree species. 
Notably, differences in the predicted values of future performance of geographically adjacent populations 
stress the relevance of a high spatial resolution. Our results suggest that each forest stand should be assessed 
individually rather than relying on interpolated data, as a continuous distribution of adaptive alleles may not 
always be warranted. Another important consideration concerns variable selection. The future offset of 
adaptive variants can strongly differ between different environmental variables as exemplified for bio1 and 
bio12 (Fig. 3c, d). The strength of the genetic association may not always be sufficient for determining the 
most relevant environmental variables. Under different environmental conditions different environmental 
variables and thus, different adaptive alleles will be most important for shaping the species range.  

Before practical implementation, the empirical validation of the robustness of genomic offset predictions is of 
critical importance. To this end, the effect of adaptive variants on tree performance can be assessed in 
common gardens in a space-for-time approach16. If the genomic offset measures are representative of the 
performance of populations under future climate conditions, offset values calculated between the origins of 
the populations and the common garden should correlate with fitness in the garden. However, the site should 
ideally feature conditions similar to the conditions predicted under climate change. Our common garden, on 
the contrary, represents an environment with low levels of abiotic stress. Winter and summer temperatures 
are moderate and water availability is near optimal throughout the year (Supplementary Table 4). Accordingly, 
trait differentiation between populations is minimal with the population origin (provenance) explaining less 
than 3% of the total phenotypic variation of the selected trees in stem circumference (one-way ANOVA, 
p=0.0017, adjusted R²=0.026), a highly integrated trait that can serve as a proxy for fitness and was measured 
for all resequenced individuals (Supplementary Table 5). Nevertheless, about half of this variance could be 
explained by our RONA estimates for bio12 in a linear regression model (p=0.1, adjusted R²=0.016). Despite 
not reaching statistical significance at the 5% level, these data indicate that our estimates are robust in 
principle. Future validation experiments should focus on common gardens with conditions similar to the ones 
expected under climate change. Under more stressful hotter and drier conditions, populations are expected 
to exhibit pronounced differences in climate maladaptation. Also, sample size should be increased to more 
than 10 individuals per population. 

In conclusion, using genomics to predict future species performance and ecosystem stability is a rapidly 
developing field. Especially in long-lived trees it promises great potential for forest management and 
conservation. Careful variable selection and rigorous validation will be necessary for practical implementation. 
Nevertheless, our analyses and previous work33 using genome-wide data across the range of keystone forest 
tree species already show the value of adding genomics to the prediction of climate change effects. With 
increasing genomic and phenotypic data, it will be possible to enhance the prediction models, contribute to 
conserving and restoring forest as one of the most important carbon sinks, and thus mitigate climate change. 

Material and methods 

Plant material and sampling. For the sample collection of beech genotypes from across the distribution range, 
we employed one of 38 common garden experimental sites (provenance trials) planted in 1995 and 1998. 
Specifically, we used the site near Schädtbek (trial code BU1901), where individuals from 100 different 
populations are growing in a randomized complete block design34,35. The coordinates of these populations 
(provenances) and the trial site are given in Supplementary Table 1. In each of the three blocks, three 
individuals were randomly selected from each population, totaling 900 samples. The only selection criterion 
was that the crown of the sampled trees is part of the canopy, to allow phenotyping with unmanned aerial 
vehicles (UAVs) from above. Tree circumference at breast height was measured for all resequenced trees in 
December 2022 (Supplementary Table 5). 
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DNA extraction and Illumina resequencing. Young leaves were sampled in the field in May and June 2021 and 
placed on ice in collection microtubes (QIAGEN, Hilden, Germany) in a 96-well format. Samples were stored 
at -20°C until DNA extraction, following a previously described protocol36. DNA sample QC, library preparation 
and sequencing were performed by Novogene Europe. Of the 900 samples, 26 failed sample QC, probably due 
to low amounts of starting material. For the remaining 874 samples, Illumina sequencing libraries were 
prepared and an average of 22.98 Gb of 150 bp paired-end data, which corresponds to approximately 42.5x 
coverage of the beech reference genome25, were generated on the Illumina Novaseq 6000 platform with an 
S4 flow cell. Additional details on the sequencing statistics can be found in Supplementary Table 2. 

Variant calling. Variant calling was performed using GATK version 4.0.5.1 following the best practices for 
germline short variant discovery where possible37. After read filtering, which consisted of (1) removing reads 
containing adapters (5' Adapter: 5'-
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT-3', 3' Adapter: 5'-
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGATGACTATCTCGTATGCCGTCTTCTGCTTG-3'), (2) removing 
reads containing more than 10% undetermined bases, and (3) removing reads of low quality, that is reads 
with a Qscore<= 5 for more than 50% of the bases, the clean data were mapped against the chromosome-
level beech reference genome25 using bwa-mem version 0.7.12 (ref. 38) with the following parameters: -k 32 -
M -R. Duplicate reads were marked with Picard tool’s (v2.26.2) ‘MarkDuplicates’ 
(http://broadinstitute.github.io/picard/). Using GATK’s ‘HaplotypeCaller’, gVCF files were generated which 
were combined by GATK’s ‘CombineGVCFs’. Finally, joint genotyping was performed using GATK’s 
‘GenotypeGVCFs’ (ref. 39). 

Variant filtering. Hard variant filtering, instead of the recommended VQSR that requires a validated set of 
variants as a truth or training set not available for beech, was based on variant quality scores, variant coverage, 
missing data, linkage disequilibrium, minor allele frequencies and heterozygosity. Specifically, we first filtered 
the SNP and indel data independently, considering the recommendations from the technical documentation 
on “Hard-filtering germline short variants” on the GATK website. We therefore removed variants based on 
strand bias (FisherStrand (FS) > 60 & StrandOddsRatio (SOR) > 3) and mapping quality (RMSMappingQuality 
(MQ) < 40, MappingQualityRankSumTest (MQRankSum) < -12.5). Based on the distribution of the variant 
confidence score QualByDepth (QD) we choose a more stringent cutoff of QD > 10, to remove any low-
confidence variants. Filtering was performed with bcftools v1.7 (ref. 40).  

We then extracted the variant sequencing depth values (DP) using vcftools v0.1.15 (ref. 41) to visualize the DP 
distributions. To avoid any potentially hemizygous or duplicated sequence variants not resolved in the 
reference genome, we chose relatively stringent coverage cutoffs based on the mode of the distribution. We 
only allowed for DP values from 25% below to 50% above the mode of the distribution, which represent values 
in between haploid and diploid or diploid and tetraploid coverage, respectively. This resulted in cutoffs from 
24.9 to 49.8 for SNPs and from 24.8 to 49.7 for indels. Additionally, we filtered out variants with more than 
10% missing data and only kept biallelic variants. This resulted in a final dataset of 11.97 million variants for 
874 individuals. 

Using PLINK v1.9 (ref. 42) we first checked for general patterns in our dataset using a principle component 
analysis (--pca). This analysis highlighted nine individuals, all from the Easternmost provenance from Bulgaria, 
as outliers (Supplementary Fig. 3a). Since the origin of the Bulgarian provenance (provenance 158) is close to 
the distribution range of the second beech species in Europe, Fagus orientalis 
(https://www.euforgen.org/species/fagus-orientalis), these individuals may not represent Fagus sylvatica and 
were therefore removed from the dataset. Additionally, we excluded one population from Northern Germany 
that appeared admixed (provenance 32) and one individual from a German population (individual B9) that was 
closely related to individuals from a population from Slovakia (provenance 135) and may represent a planting 
error (Supplementary Fig. 3b). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.11.540382doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540382
http://creativecommons.org/licenses/by/4.0/


8 
 

We then filtered for minor allele frequency of 0.01 and pruned variants in complete linkage disequilibrium 
(LD) in windows of 100 variants (--indep-pairwise 100 25 0.99). Variants with extreme deviation from Hardy-
Weinberg equilibrium (p < 1e-08) were removed43. Finally, we checked for individuals with excessive levels of 
missing data or heterozygosity, as previously described44,45. We removed a single individual with high levels of 
missing data (78% vs less than 1.6% for all other individuals). Additionally, we removed eight individuals based 
on high levels of heterozygosity, exceeding three standard deviations from the mean.  

To identify related individuals, we used the program KING v2.3.0 (ref.46) with 540 thousand mostly 
independent variants (LD < 0.2 in windows of 50 variants). This analysis identified 192 individuals with a 
relatedness of second degree (first cousins) or higher, which we removed using the function ‘--unrelated -
degree 2’ Our final dataset comprised 3.68 million variants, of which 540,566 variants exhibit LD values below 
0.2 in windows of 50 variants, for 653 “unrelated” individuals. 

Genotype-environment association (GEA) and genomic offset analyses. For the analysis of genotype-
environment associations we first extracted 19 bioclimatic variables from the WorldClim database26 (v2.1) 
with a resolution of 5x5 km for all 98 populations using the R packages geodata47 and terra48. This resolution 
approximately matches the precision of the geographic coordinates of our populations. Employing the R 
package LEA v3.10.1 (ref.49), we imported our final 540,566 independent variants using the function 
‘ped2lfmm’. Population genetic structure was evaluated with a principal component analysis and an admixture 
analysis that are both implemented in LEA and called by the pca()- and snmf()-function, respectively. Both 
methods indicated 3 genetic clusters in our data and thus, we chose K = 3 latent factors to account for 
confounding effects caused by population structure. Missing genotype data were imputed using the impute()-
function in LEA. We fitted the latent factor mixed model (LFMM) using the lfmm()-function in LEA with 5 
repetitions, 10 000 iterations and a burnin of 5 000. The bioclim variables were used as environmental file. P-
values were then extracted using the lfmm.pvalues()-function and a conservative Bonferroni significance 
threshold was applied. 

To estimate genomic offset of our studied populations, we employed the 'risk of non-adaptedness’ (RONA) 
measure30,31 for two bioclimatic variables, i.e. mean annual temperature (bio1) and total annual precipitation 
(bio12). In order to calculate the population-specific allele frequencies of significant variants, RONA requires 
the p-value of every variant as determined by the LFMM analysis for the respective bioclim variable and the 
imputed genotype matrix as used for the LFMM analysis. Further, present bioclim variables as well as a future 
climate scenario are needed. For every population and for our common garden in Schädtbek (54°3' "N 10°28' 
"E) we extracted future (2081 – 2100) environmental data for bio1 and bio12 from the WorldClim CMIP6 for 
the MPI-ESM1-2-HR model50 with a moderate (RCP 4.5) and a more pessimistic (RCP 8.5) shared 
socioeconomic pathway (sscp) with a 2.5-minutes resolution (5x5 km). All environmental data are given in 
Supplementary Table 4. 

Statistics and data visualization. For all statistical analyses and data visualization we used R v4.2.2 (ref.51) and 
the ggplot2 package52.  

Data availability 

All sequencing data are being uploaded to NCBI’s SRA. For access to any of the processed data, please contact 
the corresponding author to discuss options for data transfer. 
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