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A B S T R A C T   

Spatially explicit and detailed information on tree species composition is critical for forest management, nature 
conservation and the assessment of forest ecosystem services. In many countries, forest attributes are monitored 
regularly through sample-based forest inventories. In combination with satellite imagery, data from such forest 
inventories have a great potential for developing large-area tree species maps. Here, the high temporal resolution 
of Sentinel-1 and Sentinel-2 has been useful for extracting vegetation phenology, information that may also be 
valuable for improving forest tree species mapping. 

The objective of this study was to map the main tree species in Germany using combined Sentinel-1 and 
Sentinel-2 time series, and to identify and address challenges related to the use of National Forest Inventory (NFI) 
data in remote sensing applications. We generated cloud free time series with 5-day intervals from Sentinel-2 
imagery and combine those with monthly Sentinel-1 backscatter composites. Further, we incorporate informa-
tion on topography, meteorology, and climate to account for environmental gradients. To use NFI data for 
training machine learning models, we address the following challenges: 1) link satellite pixels with variable 
radius NFI plots, for which the precise area is unknown, and 2) efficiently utilize mixed-species NFI plots for 
model training and validation. In the past, accuracies for pixel-level species maps were often estimated solely for 
homogeneous pure-species stands. In this study, we assess how well pixel-level maps generalize to mixed plot 
conditions. 

Our results show the potential of combined Sentinel-2 and Sentinel-1 time series with NFI data for tree species 
mapping in large, environmentally diverse landscapes. Classification accuracy in pure stands ranged between 
72% and 97% (F1-score) for five dominant species, while mapping less frequent species remained challenging. 
When including mixed forest stands in the accuracy assessment, accuracy decreased by 4–14 percentage points 
for the most dominant species groups. Our study highlights the importance of including mixed-forest stands 
when training and validating tree species maps. Based on these results, we discuss potentials and remaining 
challenges for tree species mapping at the national level. Our findings allow to further improve national-level 
tree species mapping with medium to high resolution data and provide guidance for similar approaches in 
other countries where ground-based inventory data are available.   

1. Introduction 

Spatially explicit and fine-scale information on tree species 

distribution plays an important role for sustainable forest management, 
carbon monitoring, conservation, and biodiversity (Gamfeldt et al., 
2013; Lehtomäki et al., 2015; Vihervaara et al., 2017), for developing 
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climate adaptation strategies (Hof et al., 2017), and for improving earth 
system models (Pongratz et al., 2018). In many countries forest species 
composition is estimated regularly using sample-based forest in-
ventories (Tomppo et al., 2010). However, forest inventories are only 
conducted in multi-year time intervals. They also do not provide 
spatially explicit wall-to-wall information. 

Remote sensing data are an important source to map forest attributes 
such as tree species (Holzwarth et al., 2020). During recent years, the 
multispectral Sentinel-2 (S2) satellites moved into the focus of large- 
scale analysis and monitoring of land cover (Phiri et al., 2020; Xu 
et al., 2022). Designed to provide global coverage with short revisit 
times of 6 days (often better for Central European conditions) and a 
spatial resolution of up to 10 m (Drusch et al., 2012), they provide the 
imagery for consistent time series analysis. This is critical for analyzing 
vegetated land cover, since the high temporal resolution captures sea-
sonal vegetation dynamics associated with phenology and land man-
agement (Kowalski et al., 2020; Meroni et al., 2021; Tian et al., 2021). 
S2 time series have been successfully used in the agricultural domain, for 
example for crop type mapping (Blickensdörfer et al., 2022; Csillik et al., 
2019; Ghassemi et al., 2022), grassland drought monitoring and mowing 
detection (Kowalski et al., 2023; Schwieder et al., 2022) or fruit tree 
delineation (Abubakar et al., 2023). S2 time series have also advanced 
forest applications, e.g., the mapping of tree species (Hemmerling et al., 
2021; Kollert et al., 2021) and understory plant communities in decid-
uous forest (Yang et al., 2023). Hemmerling et al. (2021) mapped tree 
species across a federal state in Germany. They demonstrated the utility 
of dense phenological time series for distinguishing nine main tree 
species. While past studies have shown the potential of S2 time series for 
tree species mapping, they have been confined to relatively small areas 
and therefore environmental and phenological gradients. It remains to 
be seen how well time-series based approaches apply to mapping tree 
species at the national scale. 

Combining data from synthetic-aperture radar (SAR) sensors and 
multispectral sensors has been shown to improve land cover mapping 
(Inglada et al., 2016; Prudente et al., 2022; Reiche et al., 2018; van 
Tricht et al., 2018). Both sensor types collect complementary surface 
information. Multispectral reflectance is influenced by vegetation 
physiology and biochemistry, while the signal from SAR is sensitive to 
vegetation structure and moisture. Further, SAR data are not dependent 
on clear-sky conditions and solar illumination, and therefore may be 
useful for augmenting optical observations in cloudy regions. The 
Sentinel-1 (S1) C-band systems provide SAR data with unprecedented 
combined high spatial and temporal resolution (5–20 m and 5-day 
revisit time; Torres et al., 2012). The synergy of the two S1 sensors 
was exploited successfully for mapping land cover (Venter and Syden-
ham, 2021) and crop types (Blickensdörfer et al., 2022; Ghassemi et al., 
2022). For forest attribute mapping, the benefit of combining S2 and S1 
has been demonstrated on smaller test sites (Lechner et al., 2022; Liu 
et al., 2023). Bjerreskov et al. (2021) mapped forest cover, type, and 
species for a larger area – the Danish state territory. However, they used 
biannual composites and therefore did not harness the full potential of 
the high temporal resolution of the two sensors. The literature shows 
that complementing optical S2 time series with S1 data can improve tree 
species mapping, but the potential that lies in their combined, high 
spatial and temporal resolution has not been exploited, yet. 

Forest inventory data are a great source for training classification 
and regression models with remote sensing data, and they are frequently 
used in forest attribute mapping (Adams et al., 2020; Ahlswede et al., 
2023; Breidenbach et al., 2021; Shang et al., 2020). Generally, two types 
of inventory data can be distinguished: stand-level inventories and plot- 
based inventories. Stand-level inventories collect aggregated forest sta-
tistics at the level of individual forest stands (polygons). Studies have 
used stand-level inventory data for mapping tree species with S2 or 
Landsat data (Grabska et al., 2019; Hemmerling et al., 2021; Hermosilla 
et al., 2022; Immitzer et al., 2019). Because geolocation of individual 
trees or even groups of trees within stand-level data is not possible, such 

studies are restricted to analyzing and reporting classification accuracy 
for larger pure, single-species stands. In comparison, plot-level in-
ventories have several advantages. They are based on a probability 
sampling design (Lawrence et al., 2010), which is important for esti-
mating area and map accuracy (Olofsson et al., 2014), and the spatial 
sampling units (plots) are referenced with global navigation satellite 
system (GNSS) coordinates. Thus, plot-level inventories are more easily 
matched with satellite data. However, an inventory plot may still 
contain a mixture of species. Since excluding plots may lead to biases, 
ways need to be found to also include mixed plots when training and 
validating tree species maps. 

The use of pure, single-species reference data for model training 
represents a simplification of the forest landscape and likely limits the 
generalizability of classification models for more complex landscapes 
with mixed-species compositions (Fassnacht et al., 2016). This is a 
common limitation shared and discussed in multiple recent studies 
(Grabska et al., 2020; Hemmerling et al., 2021; Immitzer et al., 2019). 
One way to address this limitation is by combining reference labels from 
pure-species plots with pseudo-labeled samples from mixed-species 
forests. Pseudo-labeling is an approach in semi-supervised learning 
that derives reference class labels for unlabeled data (pixels) using su-
pervised learning trained with the labeled data (Hosseiny et al., 2024; 
Zhou, 2018). Pseudo-labels with the maximum predictive probability 
may then be selected for training. Other semi-supervised learning 
methods use prior knowledge of labeled pixels within a defined neigh-
borhood to select suitable pseudo-labels (Hu et al., 2020; Tan et al., 
2015). For example, if the pseudo-label matches the reference label in 
the pixel's neighborhood, the pseudo-label is more likely to be true. If the 
pseudo-label is not present in the neighborhood, the confidence in the 
assigned pseudo-label is low. In this study, we test a similar approach 
that uses the species occurrence information in the inventory data to 
constrain the generation of pseudo-labels. This way, we extend the 
training data set to be more representative of the entire study region. 

The issue of using pure reference samples also affects map validation. 
Since map validation is often based on the same reference data as used 
for model training, validation is often restricted to locations with pure- 
species compositions (Fassnacht et al., 2016). Such accuracies are a good 
measure of the separability of species (Grabska et al., 2019; Hemmerling 
et al., 2021), but they likely overestimate the true map accuracy since 
mixture effects and boundary effects are avoided. More precise data at 
the pixel level are needed to address this limitation. Very high-resolution 
datasets are one option to derive such information (Fassnacht et al., 
2016), but are not widely available for large areas. Plot-based forest 
inventories provide a means to assess tree species maps against all tree 
species recorded in the field. Comparing map labels against tree pro-
portions based on field measurements is not trivial. However, such 
comparisons may provide insights on map performance in heteroge-
neous and mixed forest areas. 

In this study, we present an approach for national tree species 
mapping based on S1/S2 time series and national forest inventory data 
to provide a foundation for future consistent European-wide species 
mapping efforts. We test our approach for the area of Germany using 
field data from variable-radius plots of the German National Forest In-
ventory (NFI). Specifically, we address the following research questions:  

1. Which accuracies can be achieved on a national scale when 
combining NFI observations with S1 and S2 time series data and 
environmental conditions for mapping major tree species groups?  

2. How different are the classification accuracies between homogenous 
pure-species and mixed-species forest stands?  

3. How do the mapped species areas compare to NFI-based area 
estimates? 
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2. Methods 

2.1. Study area 

Germany covers a total area of 357,581 km2, of which 32% is 
forested (Thünen-Institut, 2014a). The forests are temperate forests 
dominated by broadleaf species (42%). About 76% are comprised of 
multiple species, and the remaining 24% are single species stands 
(Thünen-Institut, 2014b). The most common species belong to the 
groups (genus) spruce (Picea), pine (Pinus), beech (Fagus) and oak 
(Quercus). They are the dominating species in about 29%, 23%, 16%, 9% 
of the German forests, respectively (Thünen-Institut, 2014c). Environ-
mental conditions cover a large gradient from northern lowland plains, 
through the central uplands with mountains ranging up to 1500 m a.s.l., 
to alpine ecosystems in the south (Fig. 1). Continental climate pre-
dominates the eastern parts, while western regions are under oceanic 
influence with less extreme winter and summer temperature (Zöller 
et al., 2017). The current tree species distributions are partly linked to 
those environmental conditions (e.g., the larger shares of spruce in 
higher altitudes of South Germany and in the Central Uplands, Polley 
et al., 2018). Regional deviations from the potential natural vegetation 
are also prominent (e.g., vast Scots pine stands in North-East Germany 
resulting from reforestation campaigns after the Second World War). In 
temperate forests, the plant phenological cycle is mainly driven by 
temperature (Hanes et al., 2013). The timing of phenological key events, 
which are critical for species differentiation (Grabska et al., 2019; 
Hemmerling et al., 2021; Immitzer et al., 2019), can vary throughout the 
study area by up to two weeks (Brügger et al., 2003; Kowalski et al., 
2020; Templ et al., 2018). 

2.2. Sentinel-2 time series 

We used all available S2 images with a cloud cover of <90% acquired 
between March 15th and November 31st of 2017 and 2018, respec-
tively. Image pre-processing was performed in the Framework for 
Operational Radiometric Correction for Environmental Monitoring 
(FORCE; Frantz, 2019), including image coregistration (Rufin et al., 
2020), cloud and cloud shadow removal (Frantz et al., 2018), atmo-
spheric and topographic correction to surface reflectance and nadir- 
BRDF reflectance adjustment. The bands with 20 m spatial resolution 
were sharpened to 10 m using a spectral-only setup of the ImproPhe 
algorithm (Frantz, 2019; Frantz et al., 2016). We used the bands of the 

visual (bands 2–4), red edge (5–7), near infrared (8) and short-wave 
infrared wavelength regions (11− 12). In addition, the Normalized Dif-
ference Vegetation Index (NDVI; Tucker, 1979) was calculated and 
included, as it was found to be a reliable and valuable index for tree 
species classification in previous studies (Bjerreskov et al., 2021; Hem-
merling et al., 2021; Immitzer et al., 2018). 

The availability of data was highly variable in space and time 
throughout the study area, depending on cloud coverage and S2 orbit 
overlaps (Fig. 2). We homogenized the data by interpolating data gaps to 
consistent 5-day time series using a weighted radial basis convolution 
function (RBF) filter ensemble with variable kernel widths (σ, Schwieder 
et al., 2016). This approach was successfully used for a similar study 
covering the German federal state of Brandenburg (Hemmerling et al., 
2021). The different filters of the ensemble were weighted according to 
the observation density in the kernel window and thereby adapted the 
degree of smoothing to data availability. After testing different combi-
nations of kernel widths, a set of five kernels was found to generate 
consistent results for the forested areas in our study region: 
σ ∈ {5,7, 10,20,30}. 

2.3. Sentinel-1 time series 

S1 data was accessed through the German cloud computing platform 
CODE-DE (Benz et al., 2020). CODE-DE provides monthly backscatter 
composites of co-polarized (VV) and cross-polarized (VH) data calcu-
lated from gamma nought backscatter data. The data was recorded in 
Interferometric Wide Swath mode with a spatial resolution of 5 m × 20 
m. The composites were processed in the Sentinel toolbox (Ground 
Range Detected border and thermal noise removal, calibration, and 
terrain correction; Benz et al., 2020). Monthly composites from 2017 
and 2018 were included in the analysis and resampled to the 10 m 
resolution to fit the S2 data structure. In contrast to the S2 time series, 
we also used winter composites from S1 as cloud cover is not a 
restricting factor and the SAR signal is sensitive to species-specific, 
structural differences between seasons (Rüetschi et al., 2018). Based 
on the composites, we additionally calculated the Radar Vegetation 
Index (RVI; Nasirzadehdizaji et al., 2019), which is sensitive to vege-
tation cover and biomass: RVI = 4*VH

VH+VV, and the cross ratio (CR) of co- 
and cross-polarized backscatter, which is known to be sensitive to 
biomass, vegetation water content and forest phenology (Frison et al., 
2018; Le Toan et al., 1992; Vreugdenhil et al., 2018): CR = VH

VV. 

Fig. 1. Overview of Germany's topography (left) and the variation of NFI sampling grid densities (right). Federal States: BW: Baden-Wurttemberg, BY: Bavaria, BE: 
Berlin, BB: Brandenburg, HB: Bremen, HH: Hamburg, HE: Hesse, LS: Lower Saxony, MV: Mecklenburg-Vorpommern, NW: North Rhine-Westphalia, RP: Rhineland- 
Palatinate, SL: Saarland, SN: Saxony, ST: Saxony-Anhalt, SH: Schleswig-Holstein, TH: Thuringia. Elevation data: Earth Resources Observation and Science Cen-
ter (2017). 

L. Blickensdörfer et al.                                                                                                                                                                                                                         



Remote Sensing of Environment 304 (2024) 114069

4

2.4. Environmental data 

Spectral and temporal characteristics in the S2 and S1 time series 
differ by tree species and enable species differentiation. However, the 
diversity of environmental factors throughout the study area can create 
considerable variation within classes. Annual meteorological conditions 
steer tree growth and phenology (Brügger et al., 2003), which are 
physical traits captured by the remote sensing signal. At the same time, 
long term environmental conditions are key determinants for species 
distribution (Dyderski et al., 2018). Thus, including variables describing 
the environmental gradients of the study area as predictors can improve 
species separability (Grabska et al., 2020; Hościło and Lewandowska, 
2019). In this study, we compiled a comprehensive dataset on topo-
graphic, climate, meteorological and soil variables, which were input as 
predictors to the classification algorithm (Table 1). To characterize long- 
term environmental conditions, we used data on seasonal mean air 
temperature and precipitation (1981–2010) with a spatial resolution of 
1 km × 1 km (DWD, Deutscher Wetterdienst, 2018d; DWD, Deutscher 
Wetterdienst, 2018e). To describe intra-annual conditions, we included 
monthly mean temperature, precipitation, and soil moisture content for 
2017 and 2018 (DWD, Deutscher Wetterdienst, 2018a, 2018b, 2018c). 
Local topographic conditions were considered by including elevation, 
slope and aspect derived from a 10 m × 10 m digital elevation model 
(DEM; BKG, 2016). Finally, topography induced wetness and water 
availability was included by deriving the Topographic Wetness Index 

(TWI) from the DEM (TWI = ln
[

A
tan(β)

]
, with A being the specific 

catchment area at the location of interest and β the local slope angle, 
Gruber and Peckham, 2009). 

2.5. National forest inventory 

Reference data for this study were derived from the German NFI 
conducted in 2011/2012. The NFI surveys a total of 59,839 field plots 
within forest to provide information on forest area, condition, diversity, 
and production potential at the national scale (Riedel et al., 2017). The 
survey is based on a permanent cluster sample using a systematic sam-
pling grid with three strata of different sampling density (Fig. 1). It is 
repeated every ten years, but a sub-sample is recorded every five years 
based on a reduced set of inventory variables for the national carbon 
inventory. Each cluster consists of four inventory plots spaced 150 m 
apart. At each inventory plot numerous variables are recorded regarding 
individual trees, forest structure and composition, forest habitat types, 
and dead wood 

Surveyed trees are selected through variable-radius sampling 

Fig. 2. Number of clear-sky S2 observations per year between March 15th and November 31st (left: 2017, right:2018), superimposed by the FORCE tiling grid of the 
data cube structure. 

Table 1 
Overview of predictor variables included as predictor for machine learning in 
the analysis.  

Variable [unit] Spatial 
resolution 

Temporal resolution 
(Observations per year) 

Source 

Sentinel-2 
blue (band 2) [%] 

green (3) [%] 
red (4) [%] 
red-edge (5–7) 
[%] 
near-infrared 
(8) [%] 
short-wave 
infrared (11,12) 
[%] 
NDVI [− ] 

10 m 5-day interpolated (55 
per band; 15th Mar. – 
31st Nov.) 

Own processing;  
Frantz (2019)  

Sentinel-1 
VV [dB] 

VH [dB] 
10 m monthly composites (12 

per band) 
Benz et al. (2020) 

CR [− ] 
RVI [− ] 

10 m monthly composites (12 
per index) 

Calculated based 
on Benz et al. 
(2020)  

Topography 
altitude [m] 10 m constant (1) BKG (2016) 
slope [◦] 10 m constant (1) Calculated based 

on BKG (2016) 
aspect [◦] 10 m constant (1) Calculated based 

on BKG (2016) 
TWI [− ] 10 m constant (1) Calculated based 

on BKG (2016)  

Climate 
temperature [◦C] 1 km seasonal (4) DWD (2018e) 
precipitation 

[mm] 
1 km seasonal (4) DWD (2018d)  

Meteorology and soil 
temperature [◦C] 1 km monthly (9; Mar. – Nov.) DWD (2018b) 
precipitation 

[mm] 
1 km monthly (9; Mar. – Nov.) DWD (2018a) 

soil moisture [% 
NFK] 

1 km monthly (9; Mar. – Nov.) DWD (2018c)  
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(Bitterlich, 1984). Here, a tree's sampling probability is proportional to 
its basal area (defined through the diameter at breast height, DBH, being 
1.3 m). The opening angle, defined by the basal area factor (BAF), can be 
adjusted to increase or decrease the number of trees included in the 
sample (Fig. 3). Hence, variable-radius plots have no distinct extent and 
shape. In the NFI, tree species, tree position relative to the plot center 
and DBH of individual trees, are recorded for a small sample of trees 
selected through variable-radius sampling with a BAF of four (in the 
following this sample is referred to as VRS-4). However, VRS-4 tree lo-
cations cannot be linked to remote sensing data due to the small number 
of selected trees and the uncertainty in positional accuracy of the GNSS 
measurement of the center coordinate (Hogland and Affleck, 2019). 
Centered on the same point, the species composition of trees higher than 
4 m and part of the main forest cover is recorded through a variable- 
radius sample with a BAF of one or two, depending on tree density (in 
the following this sample is referred to as VRS-1). This means, VRS-1 
includes more trees than VRS-4, however their individual position and 
DBH are not recorded. We selected the VRS-1 as our reference as it 
consists of a larger sample of trees, which reduces the uncertainty 
related to positional accuracy (Hogland and Affleck, 2019; Stehman and 
Wickham, 2011). We use the term dominant species for the species with 
the largest basal area share in the VRS-1. 

To extract S1/2 pixels associated with each variable-radius plot, we 
estimated the ground area of each plot by calculating the plot radius 
associated with the largest tree: r = D

2*
̅̅̅̅̅̅̅
BAF

√ , where r is the plot radi-
us, BAF is the basal area factor used in VRS-1, and D is the largest DBH 
recorded in VRS-4. In the following, we refer to the estimated plot area 
as reference plot. We used these reference plots to select reference pixels 
for training and validating the tree species classification models and the 
VRS-1 observations as reference labels. On average, reference plots 
covered 18 S1/2 pixels. Plot diameters ranged between 9 m (2 pixels) 
and 41 m (47 pixels) for 90% of the reference plots. 

2.6. Species classification 

We followed the species grouping of the NFI to develop a tree species 
classification comprising eleven classes. The classification differentiates 
four evergreen coniferous classes (spruce (Picea), pine (Pinus), Douglas 
fir (Pseudotsuga menziesii), fir (Abies)), one deciduous coniferous class 
(larch (Larix)), and four deciduous broadleaf classes (beech (Fagus), oak 
(Quercus), other deciduous trees with high life span (ODH), and other 
deciduous trees with low life span (ODL)). We further included birch 
(Betula) and alder (Alnus) due to their high area shares at regional level, 
as separate classes from the ODL group (> 5%, birch in Mecklenburg- 
Vorpommern, Lower Saxony, Saxony, and Schleswig-Holstein, alder in 
Mecklenburg-Vorpommern and Schleswig-Holstein, Thünen-Institut, 
2014e). In Germany, the number of tree species in each genus is rela-
tively low (Table 2). The spruce, pine, and beech genera are represented 
by a single species for ≥98% of their area. The Quercus genus consists 
mostly of two species that have about equal area shares (Quercus robur 
and Quercus pubescens). Also, the less common tree genera are domi-
nated by single species: fir (Abies alba, 95%), alder (Alnus glutinosa, 
91%), birch (Betula pendula, 90%) and larch (Larix decidua, 73%). 
Against this background, we hereafter refer to the listed genera and 
species groups as tree species to improve readability. 

Since there is a time lag of six years between the NFI survey (2011/ 
2012) and the satellite data acquisitions (2017/2018), we removed all 
NFI plots that may have been disturbed or harvested during that time. To 
identify these NFI plots, we used the disturbance map by Senf and Seidl 

Fig. 3. Schematic representation of the variable-radius sampling method (not 
to scale). For a survey with an opening angle α (dependent on the chosen BAF), 
only trees wider than the angle opening are included: T1, T2 and T3 represent 
trees with equal DBH. T1 is excluded from the sample while T2 is included. T3 is 
located at the furthest distance to the plot center to still be part of the sample 
and is displayed to represent the reference plot radius for the given DBH and 
opening angle α. Own figure after Zöhrer (1973). 

Table 2 
Sample size and basal area shares per species group for the training and vali-
dation of pure species stands and all stands (pure and mixed-species stands 
combined, Thünen-Institut, 2014e). * multiple Populus and Salix Species with 
area shares <0.5% make up the ODL class and are summarized under their genus 
for clarity.  

Class 
name 

Tree species 
(>0.5% area 
share) 

Number of NFI plots 
for training 

Number of NFI plots for 
validation 

Pure- 
species 
plots 

Mixed- 
species 
plots 

Pure- 
species 
plots for 
pixel-based 
validation 

All-species 
plots for 
plot-based 
validation 

Pine Pinus sylvestris 
(22,9%) 

3323 925 8738 9499 

Spruce Picea abies 
(31,4%) 

3280 1019 6623 8777 

Douglas 
fir 

Pseudotsuga 
menziesii (2,0%) 

434 81 202 793 

Fir Abies alba 
(2,0%) 

210 49 93 970 

Larch Larix decidua 
(1,9%) 
Larix kaempferi 
(0,7%) 

264 99 115 726 

Beech Fagus sylvatica 
(15,1%) 

2960 845 1472 7172 

Oak Quercus robur 
(4,5%) 
Quercus 
pubescens (4,4%) 

1265 253 563 4248 

Birch Betula pendula 
(2,1%) 

395 151 173 691 

Alder Alnus glutinosa 
(2,6%) 

509 26 229 745 

ODH Fraxinus 
excelsior (1,9%) 
Carpinus betulus 
(1,4%) 
Acer 
pseudoplatanus 
(1,5%) 

408 64 171 2127 

ODL Populus * (0,9%) 
Salix * (< 0.5%) 

176 11 52 398  
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(2020) and excluded all plots that were affected by a stand replacing 
disturbance after 2011 (severity value threshold by Senf and Seidl, 2020 
> 50%). For training the species classification model, we used a random 
selection of 2/3 of remaining NFI sample clusters. 

A common approach is to use samples from pure-species forest stands 
for training the classification models (Axelsson et al., 2021; Bjerreskov 
et al., 2021; Persson et al., 2018; Wessel et al., 2018). This can lead to an 
unbalanced training data set, underrepresenting less-dominant species 
that mostly occur as minor admixtures in mixed forest. To increase the 
training sample size and representativeness for those underrepresented 
species, we developed an approach that creates pseudo-reference class 
labels for pixels at mixed inventory plots. As the pseudo-labels are used 
to enlarge the training data set, it is important that labels are assigned 
with high confidence. Similar to some semi-supervised approaches (Hu 
et al., 2020; Tan et al., 2015), we leveraged prior knowledge about the 
pixel neighborhood to increase the confidence in the assigned pseudo- 
label. Specifically, we used the NFI plot information to constrain 
pseudo-label generation to locations with specific species distributions. 
While discriminating multiple tree species in remote sensing data is 
complex, it is reasonable to assume that deciduous and evergreen spe-
cies can be distinguished with high accuracy, given their spectral 
reflectance and different phenological behavior. Therefore, we only 
considered mixed-species plot locations with two tree species in our 
approach: one deciduous species and one evergreen species. Assigning 
pseudo-labels to pixels in selected mixed-species plots was conducted in 
two steps (Fig. 4): First, we used the training samples (central pixel of 
NFI plot) from single-species plots - where the dominant species occu-
pied >80% of the basal area in the VRS – to build binary random forest 
classification models (Breiman, 2001) for the existing two-species ad-
mixtures. Each model was trained with a single deciduous species and a 
single evergreen species to ensure high classification confidence. In a 
second step, we then applied these models to assign one of the two 
corresponding tree species classes to pixels within the respective two- 
species mixed reference plots. After this, each pixel within the respec-
tive reference plots has a pseudo label containing a single species class. 
All pixels with a random forest confidence >75% were then selected as 
additional training samples. We combined these training samples 
derived from mixed plots (Table 2, mixed-species plots) with the 
training samples from pure species plots (Table 2, Pure-species plots) to 
train the final tree species classification model to map all eleven classes. 

We used a random forest classifier as it is insensitive to overfitting 

and able to handle high-dimensional data with multiple correlated 
features (Belgiu and Drăguţ, 2016; Breiman, 2001). It essentially in-
cludes a variable selection in the process of building the individual de-
cision trees (Breiman, 2001; Lyons et al., 2018; Meyer and Pebesma, 
2021). Therefore, all classification models used the full set of predictors 
(1240 features, Table 1). Each model was trained with 1000 trees. The 
number of random features considered at each split was set to the square 
root of the total number of predictor variables. Class imbalance in the 
training data set can affect the performance of random forest and result 
in a skewed predictive probability distribution towards the over-
represented class (Maxwell et al., 2018). Therefore, we trained the bi-
nary classifiers, which we used in the first step of classifying mixed- 
species plots, on a balanced sample subset by down-sampling the 
dominant class to match the sample size of the small class. For training 
the final classification model, we only down-sampled the pine and 
spruce classes, for which substantially larger sample sizes were available 
due to their high share of pure-species plots (Table 2). We down-sampled 
the pine and spruce class to match the sample size of the third largest 
class (beech) as this yielded a more balanced classification accuracy. 

The species classification was applied to forested areas by using a 
mask that approximates the NFI definition of stocked forest (Langner 
et al., 2022): To mask un-stocked areas, Langner et al. (2022) used the 
tree cover density (TCD) High Resolution Layer (HRL; EEA, 2017) pro-
vided through the Copernicus land monitoring service and excluded 
areas with a TCD value <50%. Further, they excluded trees under non- 
forest use by excluding agricultural and urban areas through the Forest 
Additional Support Layer (FADSL) HRL (EEA, 2017) and by only 
considering areas within the classes forest, bog and swamp within the 
German digital landscape model (DLM) of 2018 (BKG, 2022). Finally, a 
minimum mapping unit of 0.25 ha (queen's contiguity) was applied to 
exclude remaining hedges and groves, which are formally not consid-
ered forest. 

2.7. Validation 

Map accuracy for tree species maps is frequently estimated for single- 
species stands, as reference data does not resolve single trees or species 
mixtures with sufficient detail (Grabska et al., 2020; Hemmerling et al., 
2021). We expand on this by using the NFI data to estimate map accu-
racy first for single-species stands, but additionally for the entire forest 
area, including mixed forest. We used an independent validation sample 

Fig. 4. Classification workflow and map validation. The data-cube contains all preprocessed predictor variables listed in Table 1.  
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– a random subset of 1/3 of all NFI clusters withhold from model 
training – to build confusion matrices and estimate overall, user's and 
producer's accuracies (Congalton, 1991), and F-score (Sokolova and 
Lapalme, 2009). Accuracy statistics and corresponding standard errors 
were estimated based on a stratified estimator (Stehman, 2014) that 
allows the use of separate strata for sampling and estimation, respec-
tively. To estimate map accuracy, the inclusion probability of each 
sample unit needs to be considered. In our case, the inclusion probability 
differs with the NFI sampling density. Hence, we used the three regions 
with common NFI grid spacing as sampling strata (Fig. 1). The map 
classes served as strata for estimation. To estimate the accuracy of pure- 
species stands, we used all inventory plots with a dominant species 
group that accounted for >80% of the total basal area in the VRS-1 
(Table 2, Fig. 4). The pixel at the plot center served as sampling unit. 
In the following, we refer to the resulting accuracy estimates as pure- 
stands accuracy. To estimate the map accuracy including species mix-
tures, we selected all validation samples (Table 2, Fig. 4). Here, the 
entire reference plot served as sampling unit (Section 2.5). Reference 
class labels were assigned according to the species with the largest basal 
area share in the VRS-1 plot. This approach is also used in the NFI to 
define the forest stand type of the inventory plots. The map class label 
was defined as the mode class of all classified pixels within the reference 
plot. To account for the variable reference plot size when estimating 
accuracy, each sampling unit received a weight in accordance with its 
area representation (Stehman and Wickham, 2011). In the following, we 
call these accuracy estimates all-stands accuracy. 

In addition to the sample-based accuracy assessment, we assessed the 
plausibility of the mapped species-specific area at the national and 
federal state levels. Among many other variables, the NFI evaluation 
procedure estimates the stocked area shares by leading species and 
federal state (Thünen-Institut, 2014c), which we compared to area 
shares for the mapped species. It is important to note that species shares 
estimated with NFI data are based on basal area as opposed to canopy 
cover captured by remote sensing. 

3. Results 

3.1. Pure-stands accuracy 

The overall accuracy of pure-species stands was 87.07 ± 0.3%. The 
two most frequently occurring coniferous species, spruce and pine, were 
mapped with high accuracies of 90.39 ± 0.31% and 96.63 ± 0.17% (F- 
score; Table 3). The lower F-score for spruce is a result of a lower pro-
ducer's accuracy (84.82 ± 0.49%) due to class confusions with Douglas 
fir and fir along with a higher share of mixed stands, which leads to a 
slight underestimation of spruce. The two dominant deciduous species, 
beech and oak, were mapped with F-scores of 88.79 ± 0.57% and 72.64 
± 1.33%, respectively. Here, confusion between the two classes and 
confusion with ODH results in a slight overestimation of both classes 
(lower user's accuracy). While alder occupies a smaller area share, it was 
mapped with equally high accuracy of 82.21 ± 2.29%. These five clas-
ses, which were mapped with high accuracy, make up about 92% of the 
pure-species stands in Germany. 

Class-wise accuracies for minor tree species were less balanced 
indicating either over- or underestimation of their mapped area 
(Table 3, Fig. 5). For example, producer's accuracy of Douglas fir (86.10 
± 2.63%) and fir (66.33 ± 5.75%) were much higher than their 
respective user's accuracy (37.07 ± 1.33% and 24.65 ± 1.95%), leading 
to an overestimation of their area. A similar pattern, however less pro-
nounced, was observed for larch and birch. On the contrary, ODH and 
ODL were mapped with higher user's accuracy compared to producer's 
accuracy resulting in an underestimation of area. While those minor 
species were not mapped accurately, classification errors occurred 
mostly between physiologically and phenologically similar species 
(Douglas fir, fir, spruce) or within the broadleaf or coniferous groups 
(Table 3). Broadleaf and coniferous species, which have pronounced 
spectral and phenological differences that are captured well within the 
time-series (Fig. 6), were generally well separated (F-scores of 95.20% 
and 98.25%, respectively). On the contrary, within the broadleaf group, 
high spectral-temporal similarity is paired with high within-species 
variation leading do reduced separability. 

A visual assessment of the map confirms the reported accuracy 
metrics (Fig. 7): homogeneous pure-species stands were mostly classi-
fied as one single class and delineated well to neighboring forest stands 

Table 3 
Confusion matrix for single-species NFI plots to derive pure-stands accuracy. Sample units for accuracy estimation are S1/2 pixels. Cell values indicate percent area. 
Cells representing over 1% area are highlighted in bold. ODH: Other deciduous trees with high life span; ODL: Other deciduous trees with low life span.  

Map class Reference class (area %) Σ (%) Accuracy (%) 

Pine Spruce Douglas 
fir 

Fir Larch Beech Oak Birch Alder ODH ODL Map Ref. Producer's User's F-score 

Pine 33.90 0.30 0.03 – 0.01 – 0.00 0.07 – 0.00 0.00 34.31 35.84 94.57 ±
0.29 

98.79 ±
0.17 

96.63 ±
0.17 

Spruce 0.51 29.08 0.09 0.16 0.00 0.16 0.02 0.02 0.02 0.00 0.00 30.07 34.29 
84.82 ±
0.49 

96.73 ±
0.29 

90.39 ±
0.31 

Douglas 
fir 0.28 2.21 1.57 0.06 0.00 0.07 0.03 – 0.00 0.00 0.00 4.24 1.83 

86.10 ±
2.63 

37.07 ±
1.33 

51.83 ±
1.39 

Fir 0.01 1.56 0.09 0.55 – 0.02 0.02 – – 0.00 0.00 2.25 0.84 66.33 ±
5.75 

24.65 ±
1.95 

35.94 ±
2.23 

Larch 0.29 0.25 0.04 – 1.01 0.02 0.03 0.08 – 0.01 0.06 1.78 1.16 87.05 ±
3.39 

56.67 ±
2.87 

68.64 ±
2.36 

Beech 0.06 0.40 0.01 0.03 0.05 13.09 0.85 0.09 0.14 0.76 0.08 15.57 13.92 
94.07 ±
0.69 

84.08 ±
0.85 

88.79 ±
0.57 

Oak 0.18 0.13 – – 0.04 0.47 4.23 0.22 0.23 0.51 0.23 6.24 5.42 
78.17 ±
2.01 

67.84 ±
1.75 

72.64 ±
1.33 

Birch 0.52 0.13 – 0.01 0.03 0.02 0.08 1.19 0.05 0.06 0.07 2.17 1.75 68.12 ±
4.38 

54.98 ±
2.81 

60.85 ±
2.45 

Alder 0.03 0.03 – – – 0.00 0.01 0.03 1.66 0.04 0.05 1.85 2.20 75.73 ±
3.50 

89.89 ±
2.39 

82.21 ±
2.29 

ODH 0.03 0.17 0.00 0.01 0.00 0.04 0.06 0.00 0.08 0.37 0.04 0.82 1.84 
20.18 ±
3.48 

45.46 ±
5.94 

27.95 ±
3.53 

ODL 0.04 0.02 0.00 0.00 0.01 0.01 0.07 0.05 0.00 0.10 0.40 0.70 0.93 
42.80 ±
7.73 

56.77 ±
6.52 

48.80 ±
5.57 

Overall accuracy = 87.07 ± 0.3  
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(pines in Fig. 7 A/C, Douglas fir and larch in Fig. 7 B/D). Class confu-
sions were mostly observed for minor species. A higher map inconsis-
tency was observed at forest stand borders and in stands with sparse 
forest cover. Those areas were often falsely classified as larch or birch 
(Fig. 7 A/C). Species that make up the major share in mixed stands were 
mostly recognized as such in the map (beech stand in Fig. 7 D), while 
mixed stands with more balanced species shares were more challenging 
to classify (Fig. 7 B/D: beech/oak/pine mixed-species stand bordering 
the larch stand to the south and west). 

3.2. All-stands accuracy 

Including plots from mixed-species stands decreased the estimated 
map accuracy by 11.5 percentage points (overall accuracy = 75.53 ±
0.07%), compared to the accuracy of pure stands. As observed for pure 
stands, the major species had a high accuracy (F-score, Table 4): pine 
(89.05 ± 0.10%), spruce (86.79 ± 0.08%), beech (79.46 ± 0.09%). Oak, 
the second most frequent deciduous species after beech, achieved an 
accuracy of 64.22 ± 0.15%. Compared to pure-stands accuracy, the 
confusion of oak with beech and the overestimation within the ODH 
class was more frequent. The accuracy of larch and birch, which have 
high shares of mixed-species stands, was lower and reached to F-scores 
of 50.48 ± 0.43% and 32.27 ± 0.64%, respectively. 

The class confusions which dominate the pure stands are in general 
also driving the error rates in mixed-species forests. For example, high 
confusion rates between spruce, Douglas fir and fir were observed for 
pure- and mixed-species stands alike (Table 3, Table 4). However, size 
and direction of differences between user's and producer's accuracies, 
especially for minor tree species, vary between pure and mixed stands 
(Fig. 5). Most notably are differences in user's and producer's accuracy 
for Douglas fir, larch and birch with reduced producer's accuracy, and 
for fir and ODH with increased user's accuracy in the all-stands accuracy 
assessment. The confusion rate between coniferous and deciduous spe-
cies was higher in mixed stands than in pure-species stands (summari-
zing species into one broadleaf and one coniferous class archives an F- 
scores 92.85% for both classes). This confusion between coniferous and 
deciduous species was mainly observed for beech and spruce, pine and 

oak, and pine and birch, respectively. Nevertheless, as in pure-species 
stands, the confusions which make up the largest map area are re-
ported between different broadleaf species (beech, oak, ODH, Table 4). 

The comparison of mapped area shares per species with NFI area 
estimates of the different forest stand types were in line with the pixel- 
and plot-based accuracy assessment and show a good fit for the main 
species throughout Germany (Pearson's r = 0.95, Fig. 8). At the national 
level, larger differences between mapped and estimated area exist for 
the minor species Douglas fir (area overestimated in the map due to 
confusion with spruce, Table 4) and ODH (underestimated in map due to 
confusion with beech and oak, Table 4). Overall, the large variety in 
species composition in federal states is also captured well in the map and 
a large majority of federal states show correlation coefficients between 
mapped and NFI area shares of 0.9 or greater. However, regionally 
dominant forest-stand conditions and structures influenced the respec-
tive predicted species area: The challenge to differentiate spruce, 
Douglas fir and fir, due to their phenological and physiological simi-
larity, affects the respectively predicted area shares. We observed a 
pronounced overestimation of fir in Baden-Wurttemberg and Douglas fir 
in Rhineland-Palatinate, causing area underestimation of spruce in both 
states. The challenge to differentiate broadleaf species, especially when 
occurring in mixed-species stands, is most apparent in regions with a 
high share of complex mixed broadleaf-stands (e.g., Rhineland- 
Palatinate and Saarland with the smallest correlation coefficients of 
0.842 and 0.713 respectively; note that the large standard errors for 
Saarland are due to the small NFI sampling size in the state, Fig. 8). In 
both states, confusion among broadleaf species resulted in an over-
estimation of beech. 

4. Discussion 

In this study, we demonstrated the capability of combining S2, S1, 
and environmental data with NFI observations to create a national tree 
species map. Overall and species-specific accuracies of pure-species 
stands compared well to findings of previous regional studies in 
temperate forests (Grabska et al., 2020; Hemmerling et al., 2021; Kollert 
et al., 2021; Welle et al., 2022). Previous work demonstrated the 

Fig. 5. Metrics for pure-stands accuracy, all-stands accuracy and species-specific differences between pure- and all-stands accuracy. Error bars show the stan-
dard error. 
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Fig. 6. Mean NDVI and RVI profiles for selected tree species exemplifying spectral-temporal differences between species and within-species variation. Line represents 
the mean index value for Germany, shaded area represents index range covering 95% of all pure-species reference samples per species (Section 2.5 and 2.6). 

Fig. 7. Tree species classification at NFI plot locations with respective species shares recorded in the NFI displayed in pie charts. The variable size of reference plots 
stems from the approximation of reference area associated with the variable radius plots (Section 2.5). Note: only three inventory plots are shown in A and C as the 
fourth plot is located outside of the forest. High Resolution Imagery: Digital Orthophotos, Federal Agency for Cartography and Geodesy, © GeoBasis-DE / BKG, 2022. 
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capability of S2 time series to accurately separate major species in 
smaller regions with more narrow environmental gradients, e.g., Hem-
merling et al. (2021) for a region in the German lowlands, Grabska et al. 
(2020) for the Polish Carpathians, and Kollert et al. (2021) for a region 
in the Austrian Alps. Here we showed that major species can also be 
mapped well at a national scale, covering a diverse area ranging from 
alpine environments to low lying planes under oceanic influence. 

When mapping tree species over large areas, it is not only important 
to retrieve a representative reference sample, but also to address the 
challenge of spectral within-class variability related to the diversity of 
environmental conditions. We accounted for this variability by 
including environmental data as explanatory variables in the classifi-
cation model. Other studies relied on partitioning the study area into 
temporally fixed subregions and regionalized classification models 
(Hermosilla et al., 2022; Welle et al., 2022). Such regional models are 
confined to a smaller environmental variation and, in some cases, a 
subset of tree species. However, depending on the size of subregions, 
acquiring sufficient reference data for rare species groups in each sub-
region can be challenging, if those are distributed throughout the entire 
study area. Also, using a global model may reduce regional biases 
introduced by separate models. In this study, we circumvent those 
problems by presenting a workflow to achieve high map accuracy with a 
single, global model. 

In this study we combined S1 and S2 data for improving tree species 
classification. Previous research found that dense, interpolated time 
series are well suited for the homogenization of S2 data for tree species 
mapping when study area sizes exceed single S2 image tiles and S2 
swaths, and cover variable cloud cover conditions (Hemmerling et al., 
2021). In our study, the variability in clear-sky observations was sub-
stantially higher at the national scale. Thus, we combined cloud cover 
independent S1 data with the S2 time series to fill potential data gaps. 
Studies that used only S1 time series data, show that S1 alone can 
differentiate broadleaf and coniferous trees as well as a few coniferous 
species (Lechner et al., 2022). Large overlaps of value ranges covered by 
different species throughout the time series (Fig. 6) exemplify the need 
of dense temporal information from multiple sensors to capture peno-
logical trajectories in the data. To overcome the high image noise and 
speckle – inherent to S1 images (Moreira et al., 2013) and generated by 

external factors like moist or snow-covered canopy – we used monthly 
backscatter composites. This reduces the high temporal observation 
densities of S1 to improve the signal to noise ratio. Other S1-time series 
products focus more strongly on the temporal dimension to capture 
backscatter variation over time, like interferometric repeat-pass coher-
ence (Moreira et al., 2013; Rosen et al., 2000). Those capture vegetation 
phenology (Villarroya-Carpio et al., 2022) and might provide additional 
information for species differentiation, but also require more computa-
tional resources to derive and additional image preprocessing, like snow 
masking, to minimize external noise-creating factors. The comparison of 
an exhaustive set of time-series products from the different sensors was 
not part of this national scale study, but further research in this direction 
focusing on S1 data could further improve the information content of the 
feature set. 

To reduce classification bias and to improve the representation of 
minor species, we developed an approach that extends model training 
beyond pure-species stands. We adapted the idea from semi-supervised 
learning approaches that use prior knowledge of the pixel neighborhood 
(Hu et al., 2020; Tan et al., 2015) to assign pseudo-labels to pixels in 
mixed forest stands. Ideally, reference samples are collected for fixed 
areas using precise GNSS data, and for mixed stands, precise reference 
cover fractions. Moving forward, such reference data could be derived 
by matching inventory plots to canopy crown segments from very high- 
resolution imagery (Freudenberg et al., 2022), lidar data (Cao et al., 
2023; Ferraz et al., 2016), or both combined. However, such data are in 
most cases not available for national mapping, yet. 

Estimating map accuracy for mixed-species stands is challenging. 
Therefore, many studies have restricted the map evaluation to pure- 
species forest stands (Grabska et al., 2019; Hemmerling et al., 2021; 
Immitzer et al., 2019; Welle et al., 2022). Our study showed that map 
accuracy substantially decreased if mixed stands were included in the 
assessment, but the accuracy for major tree species was still acceptable. 
The decrease in accuracy may have multiple reasons: First, the occur-
rence of mixed pixels increases in mixed forests and spectral-temporal 
mixtures of multiple species lead to higher class confusion. Second, 
geolocation errors in the map and reference data have a stronger effect 
in mixed stands than in pure-species stands. Increasing the sampling unit 
from a pixel to a plot when estimating map accuracy for all stands 

Table 4 
Confusion matrix for all NFI plots to derive all-stands accuracy. Sample units for accuracy estimation are NFI reference plot areas. The dominant species group at the 
NFI plot determines the forest stand type, other species are ignored. Cell values indicate percent area. Cells representing over 1% area are highlighted in bold. ODH: 
Other deciduous trees with high life span; ODL: Other deciduous trees with low life span.  

Map class Reference class (area %) Σ (%) Accuracy (%) 

Pine Spruce Douglas 
fir 

Fir Larch Beech Oak Birch Alder ODH ODL Map Ref. Producer's User's F-score 

Pine 14.87 0.22 0.08 0.00 0.05 0.04 0.12 0.22 0.02 0.01 0.02 15.66 17.74 
83.83 ±
0.15 

94.96 ±
0.10 

89.05 ±
0.10 

Spruce 0.74 22.29 0.29 0.70 0.19 1.11 0.27 0.14 0.12 0.18 0.01 26.04 25.31 
88.04 ±
0.10 

85.57 ±
0.12 

86.79 ±
0.08 

Douglas 
fir 

0.46 0.71 1.42 0.13 0.08 0.38 0.20 0.10 0.02 0.10 0.02 3.60 2.25 
63.21 ±
0.57 

39.46 ±
0.35 

48.58 ±
0.32 

Fir 0.07 0.57 0.13 1.72 0.01 0.14 0.00 – – 0.03 0.00 2.67 2.65 64.70 ±
0.56 

64.29 ±
0.41 

64.49 ±
0.35 

Larch 0.35 0.29 0.03 0.00 1.03 0.09 0.25 0.09 0.01 0.01 0.01 2.17 1.90 
54.13 ±
0.71 

47.29 ±
0.53 

50.48 ±
0.43 

Beech 0.33 0.81 0.18 0.08 0.19 21.25 2.13 0.35 0.25 2.47 0.12 28.17 25.32 
83.92 ±
0.14 

75.44 ±
0.12 

79.46 ±
0.09 

Oak 0.58 0.28 0.08 0.01 0.32 2.18 9.16 0.55 0.44 1.93 0.36 15.89 12.64 72.48 ±
0.24 

57.65 ±
0.18 

64.22 ±
0.15 

Birch 0.21 0.06 0.01 0.01 0.04 0.06 0.12 0.50 0.02 0.04 0.01 1.08 2.04 24.63 ±
0.70 

46.76 ±
0.93 

32.27 ±
0.64 

Alder 0.06 0.06 0.02 0.01 – 0.05 0.27 0.07 1.52 0.28 0.01 2.36 2.42 
63.08 ±
0.61 

64.67 ±
0.53 

63.87 ±
0.40 

ODH 0.04 0.02 0.00 0.01 0.00 0.03 0.03 0.00 0.00 0.96 0.08 1.17 6.26 
15.35 ±
0.30 

82.23 ±
0.65 

25.86 ±
0.42 

ODL 0.02 0.01 0.00 0.00 0.00 0.01 0.07 0.01 0.01 0.25 0.81 1.19 1.47 55.00 ±
0.83 

67.72 ±
0.75 

60.70 ±
0.59 

Overall accuracy = 75.53 ± 0.07  
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(including mixed stands) will likely mitigate some of the uncertainties 
(Stehman and Wickham, 2011). The pronounced difference between 
pure-stands and mixed-stands accuracies highlights the need for accu-
racy assessments that include all forest stands, and identifies mixed, 
diverse forests as a remaining challenge in tree species classification and 
starting point for future research. 

This study demonstrated the value of NFI data for creating and 
validating remote sensing based national-scale tree species maps. The 

large sample sizes and wide range of variables recorded for each sample 
unit enabled the training of robust species classification models. The 
systematic sampling grid (Lawrence et al., 2010) allowed for following 
best practice recommendations for the map accuracy assessment 
(Olofsson et al., 2014; Stehman and Foody, 2009). Inventory cycles 
typically stretch over five or ten years, within which countries conduct a 
periodic complete inventory, or employ an annual or rolling inventory, 
surveying a subset of plots every year. The definition of the inventory 

Fig. 8. Mapped area of species groups compared to area estimated for corresponding forest stand types by NFI. Pearson correlation coefficient is denoted by r. 
Vertical lines represent the 95% confidence interval of the NFI estimate. 
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plot also varies between countries, with concentric circular plots, fixed 
area plots and variable-radius plots being most common (Gschwantner 
et al., 2016; Lawrence et al., 2010). In the past, multiple studies already 
exploited NFI data, e.g., for forest composition and structure mapping in 
North America (Ohmann and Gregory, 2002), estimation of forest area 
by tree types in Norway (Breidenbach et al., 2021), and growing stock 
volume estimation in Italy (Chirici et al., 2020). With increasing avail-
ability of Copernicus data (Phiri et al., 2020) and technological ad-
vancements in data processing and storage, large-scale, time-series 
based remote sensing analyses become increasingly accessible for sci-
ence and for operational use (Woodcock et al., 2020). Looking beyond 
Germany to the European scale, NFI data, Copernicus image time-series 
and environmental data are in principle available and can be used to aim 
at European wide species mapping in future. 

To fully exploit the potential of NFI data in remote sensing, a good 
match between NFI-records and time-series data is crucial. NFI 
surveying methods were not designed to support or augment remote 
sensing analyses. Usually, NFI are optimized for the precise and accurate 
statistical estimation of target variables as well as economic efficiency 
during data collection. For example, for variable-radius plots, not all 
trees which contribute to canopy coverage at the sample location are 
included and surveyed in the NFI. This makes the use of variable radius 
plots in remote sensing challenging. We chose to use fixed radius plots, 
but adjusted the radius for each plot dependent on the measured DBH 
distribution of the respective forest stand. While this did not solve the 
problem of missing plot geometry, we adjusted the reference plot size to 
local forest conditions and addressed the dependency of plot extent on 
DBH distribution. Kirchhoefer et al. (2017) approached this problem by 
using a high-resolution canopy height model and the relationship be-
tween tree height and DBH to model variable-radius sampling tree in-
clusion for each plot. However, high-resolution canopy height models 
are rarely available at national or even continental level and results from 
Kirchhoefer et al. (2017) showed only limited advantage over the use of 
fixed radius plots. Immitzer et al. (2016) found that combining multiple 
concentric fixed radius plots with different diameters works well for 
regression based growing stock estimation at the plot level. This 
approach remains to be adjusted and tested for pixel-based classification 
approaches. Looking at potential national applications within and 
outside Europe, inventory data can vary greatly (Gschwantner et al., 
2016; Tomppo et al., 2010) and high-resolution auxiliary data is often 
not available. The presented approach is flexible enough to fit different 
inventory plot designs and does not require additional high-resolution 
data, making it suitable for large-scale application beyond Germany. 

The comparison between NFI estimates and species-specific mapped 
areas showed a strong agreement at the national level and for most sub- 
regions. This is an additional indicator of map quality, which can be 
considered when the data is used in forest monitoring or research. Large- 
area tree species maps are especially valuable for applications where 
spatially continuous data is needed that is not provided by sample-based 
inventories. One example is the economic and ecological assessment of 
forest disturbance. Multiple remote sensing approaches exist to map 
forest disturbance (Puhm et al., 2020; Senf and Seidl, 2020; Verbesselt 
et al., 2012) which can be considered to improve the spatial and tem-
poral resolution of large-scale forest inventories. To characterize 
disturbed forest areas and assess resulting ecological and economic 
consequences, species information, among other data on forest attri-
butes, are critical (Thom and Seidl, 2016). In our study, areas of the most 
common species groups, which make up the major share of harvested 
timber and are economically most important (Thünen-Institut, 2014d), 
are captured well in most regions. However, rare species, which 
contribute to the ecological diversity and resilience (Gang et al., 2023; 
Thurm et al., 2018), show a larger difference between mapped and NFI- 
estimated areas in some federal states. This indicates some regional 
species-specific over- or underestimation. Such inconsistencies between 
NFI area estimates and the mapped tree species area are mostly related 
to classification errors. However, some of the observed miss-match 

might also be caused by differences in definitions. The satellite-based 
estimates represent crown coverage of tree species in the upper can-
opy layer (when crown cover is sparse, second layer or undergrowth 
vegetation adds additional complexity). The leading species per NFI-plot 
is assigned based on basal area shares by species, which can differ from 
canopy cover fractions, especially when comparing broadleaf to conif-
erous species. Therefore, we would expect higher canopy cover fractions 
for broadleaf trees, and smaller canopy cover fractions for coniferous 
trees when compared to basal area shares due to the differences in crown 
shape, which is consistent with our results. We recommend that the 
insights from national and regional species-specific area comparisons 
are used in combination with the accuracy assessment to assess the 
species maps added value for each specific use case. 

5. Conclusion 

In this study, we present a tree species mapping approach for large 
areas capable of classifying prominent species with high accuracy, 
rendering the approach suitable for a wide range of applications. We 
demonstrated the potential of exploiting all available S2 and S1 data in 
combination with NFI data as a reference to map the dominant tree 
species on national scale. First, the suitability of interpolated dense S2 
time series data, supplemented with S1 and environmental data, for tree 
species mapping was confirmed for an area with strong variation in 
clear-sky observation density. Second, we demonstrated the potential of 
a large data set designed for statistical sample-based forest inventory to 
be used in large-scale remote sensing applications, which is promising 
when considering the large amount of data recorded in NFIs of many 
countries. Before this background, the presented approach can serve as a 
steppingstone for tree species mapping efforts at the European scale. Our 
study also showed the main challenges related to NFI data in the context 
of remote sensing: the uncertainty in positional accuracy of inventory 
plot data, inventory methods that are not optimized for remote sensing 
data analysis, and the small sample sizes for rare species as systematic 
sampling grids lead to proportional representation of tree species shares. 
By exploiting the full NFI data set, we also showed, that the remaining 
challenges for species classification are associated to complex structured 
mixed-species stands and minor species which predominantly occur as 
minor admixture alongside dominant species. 

Remote sensing-based tree species mapping for large study areas 
with diverse environmental conditions and forest compositions remains 
an active field of research. From a remote sensing perspective, further 
research is needed on how to map mixed-species stands and minor 
species groups more accurately. In addition, further research on how the 
long-standing time series of NFI observations can be augmented to 
facilitate their use in remote sensing data analysis without compro-
mising the independence and integrity of the surveys would be benefi-
cial for a wide range of applications. Such approaches bear the potential 
to support point-based NFI estimates with wall-to-wall estimates at na-
tional scale. 

The map of dominant tree species generated in this study is available 
under: https://atlas.thuenen.de/layers/geonode:Dominant_Species 
_Class. 

CRediT authorship contribution statement 

Lukas Blickensdörfer: Writing – original draft, Visualization, Soft-
ware, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization, Writing – review & editing. Katja Oehmichen: 
Writing – review & editing, Supervision, Methodology, Conceptualiza-
tion, Project administration. Dirk Pflugmacher: Writing – review & 
editing, Methodology, Conceptualization, Writing – original draft. Bir-
git Kleinschmit: Writing – review & editing, Conceptualization. Pat-
rick Hostert: Writing – review & editing, Supervision, 
Conceptualization. 

L. Blickensdörfer et al.                                                                                                                                                                                                                         

https://atlas.thuenen.de/layers/geonode:Dominant_Species_Class
https://atlas.thuenen.de/layers/geonode:Dominant_Species_Class


Remote Sensing of Environment 304 (2024) 114069

13

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research was funded through a special research funding for 
greenhouse gas monitoring from the German Federal Ministry of Food 
and Agriculture. The authors are grateful to the German Federal Agency 
for Cartography and Geodesy for providing the Digital Landscape Model 
data, and the European Copernicus Land Monitoring Service for 
providing the Pan-European High-Resolution Layers. We are grateful to 
the European Space Agency and the European Commission for making 
Sentinel-1 and Sentinel-2 data freely available and to CODE-DE for 
providing the Sentinel-1 monthly mean composites. Our thanks also go 
to Niklas Langner for processing the forest mask and Marcel Schwieder 
for assisting with data processing in FORCE. Finally, we would like to 
thank the anonymous reviewers for their constructive feedback on 
earlier versions of the article, which helped to improve the manuscript 
to its final version. 

References 

Abubakar, M.A., Chanzy, A., Flamain, F., Pouget, G., Courault, D., 2023. Delineation of 
orchard, vineyard, and olive trees based on phenology metrics derived from time 
series of Sentinel-2. Remote Sens. (Basel) 15, 2420. 

Adams, B., Iverson, L., Matthews, S., Peters, M., Prasad, A., Hix, D.M., 2020. Mapping 
Forest composition with Landsat time series: An evaluation of seasonal composites 
and harmonic regression. Remote Sens. (Basel) 12, 610. 

Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., 
Demir, B., Kleinschmit, B., 2023. TreeSatAI benchmark archive : a multi-sensor, 
multi-label dataset for tree species classification in remote sensing. Earth System 
Science Data 15, 681–695. 

Axelsson, A., Lindberg, E., Reese, H., Olsson, H., 2021. Tree species classification using 
Sentinel-2 imagery and Bayesian inference. International Journal of Applied Earth 
Observation and Geoinformation 100, 102318. 
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Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., 
Straub, C., Ghosh, A., 2016. Review of studies on tree species classification from 
remotely sensed data. Remote Sens. Environ. 186, 64–87. 

Ferraz, A., Saatchi, S., Mallet, C., Meyer, V., 2016. Lidar detection of individual tree size 
in tropical forests. Remote Sens. Environ. 183, 318–333. 

Frantz, D., 2019. FORCE—Landsat + Sentinel-2 analysis ready data and beyond. Remote 
Sens. (Basel) 11, 1124. 

Frantz, D., Stellmes, M., Roder, A., Udelhoven, T., Mader, S., Hill, J., 2016. Improving the 
spatial resolution of land surface phenology by fusing medium- and coarse- 
resolution inputs. IEEE Trans. Geosci. Remote Sens. 54, 4153–4164. 

Frantz, D., Haß, E., Uhl, A., Stoffels, J., Hill, J., 2018. Improvement of the Fmask 
algorithm for Sentinel-2 images: separating clouds from bright surfaces based on 
parallax effects. Remote Sens. Environ. 215, 471–481. 

Freudenberg, M., Magdon, P., Nölke, N., 2022. Individual tree crown delineation in high- 
resolution remote sensing images based on U-net. Neural Comput. & Applic. 34, 
22197–22207. 

Frison, P.-L., Fruneau, B., Kmiha, S., Soudani, K., Dufrêne, E., Le Toan, T., Koleck, T., 
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Rutishauser, T., Busto, M., Chmielewski, F.-M., Hájková, L., Hodzić, S., Kaspar, F., 
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