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Abstract The ability to validate satellite observations with ground‐based data sets is vital for the
spatiotemporal assessment of productivity trends in semi‐arid ecosystems. Modeling ecosystem scale
parameters such as gross primary production (GPP) with the combination of satellite and ground‐based data
however requires a comprehensive understanding of the associated drivers of how the carbon balance of these
ecosystems is impacted under climate change. We used GPP estimates from the partitioning of net ecosystem
measurements (net ecosystem exchange) from three Eddy Covariance (EC) flux tower sites and applied linear
regressions to evaluate the ability of Sentinel‐2 vegetation indices (VIs) retrieved from Google Earth Engine to
estimate GPP in semi‐arid ecosystems. The Sentinel‐2 normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI) and the land surface water index (LSWI) were each assessed separately, and
also in combination with selected meteorological variables (incoming radiation, soil water content, air
temperature, vapor pressure deficit) using a bi‐directional stepwise linear regression to test whether this can
improve GPP estimates. The performance of the MOD17AH2 8‐day GPP was also tested across the sites.
NDVI, EVI and LSWI were able to track the phase and amplitude patterns of EC estimated gross primary
production (GPPEC) across all sites, albeit with phase delays observed especially at the Benfontein Savanna site
(Ben_Sav). In all cases, the VI estimates improved with the addition of meteorological variables except for
LSWI at Middleburg Karoo (Mid_Kar). The least improvement in R2 was observed in all EVI‐based estimates
—indicating the suitability of EVI as a single VI to estimate GPP. Our results suggest that while productivity
assessments using a single VI may be more favorable, the inclusion of meteorological variables can be applied
to improve single VIs estimates to accurately detect and characterize changes in GPP. In addition, we found that
standard MODIS products better represent the phase than amplitude of productivity in semi‐arid ecosystems,
explaining between 68% and 83% of GPP variability.

Plain Language Summary The study suggests that there is continued potential in estimating gross
primary production in semi‐arid ecosystems using satellite data in simple regression‐based methods. While
there are still some uncertainties in their performance, some of these can be reduced by combining satellite data
and site‐based meteorological variables in estimating gross primary production. Regarding the standardMODIS
GPP product, this showed to better represent the phase than the amplitude of GPP in three semi‐arid sites in
South Africa.

1. Introduction
The amount of carbon captured from the atmosphere by terrestrial plants during the process of photosynthesis is
referred to as terrestrial gross primary production (Chapin et al., 2011). This is the largest global carbon flux and it
drives important ecosystem processes such as respiration and growth (Beer et al., 2010). Importantly, the direct
contribution of GPP to human welfare is critical since it is the basis of food, fiber and wood production (Beer
et al., 2010; Chapin et al., 2011). In addition, by altering the amount of carbon dioxide in the atmosphere, the role
of terrestrial plants in photosynthesis and respiration continue to play a crucial part in the carbon cycle, with
around 30% of anthropogenic emissions being absorbed by terrestrial ecosystems each decade (Friedlingstein
et al., 2022). Dryland ecosystems occupy about 40% of the global land surface and are expected to expand in the
twenty‐first century (Feng & Fu, 2013; Huang et al., 2017). These systems are responsible for about 50% of the

RESEARCH ARTICLE
10.1029/2023JG007728

Key Points:
• Sentinel‐2 vegetation indices (VIs)

have the potential to estimate gross
primary production in semi‐arid
ecosystems

• Inclusion of meteorological variables
improves the performance of VI based
models to predict gross primary
production

• Standard satellite gross primary
production products better represent
the phase than amplitude of gross
primary production in semi‐arid
ecosystems

Correspondence to:
A. Maluleke,
24479861@sun.ac.za

Citation:
Maluleke, A., Feig, G., Brümmer, C.,
Rybchak, O., & Midgley, G. (2024).
Evaluation of selected Sentinel‐2 remotely
sensed vegetation indices and MODIS
GPP in representing productivity in semi‐
arid South African ecosystems. Journal of
Geophysical Research: Biogeosciences,
129, e2023JG007728. https://doi.org/10.
1029/2023JG007728

Received 1 AUG 2023
Accepted 14 MAR 2024

Author Contributions:
Conceptualization: Amukelani Maluleke,
Gregor Feig, Christian Brümmer,
Guy Midgley
Data curation: Amukelani Maluleke,
Gregor Feig, Christian Brümmer,
Oksana Rybchak
Formal analysis: Amukelani Maluleke
Methodology: Amukelani Maluleke
Resources: Oksana Rybchak
Supervision: Gregor Feig,
Christian Brümmer, Guy Midgley
Writing – original draft:
Amukelani Maluleke
Writing – review & editing: Gregor Feig,
Christian Brümmer, Oksana Rybchak,
Guy Midgley

© 2024. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

MALULEKE ET AL. 1 of 22

https://orcid.org/0000-0002-8968-2428
https://orcid.org/0000-0002-5285-4783
https://orcid.org/0000-0001-6621-5010
https://orcid.org/0000-0002-3258-5299
https://orcid.org/0000-0001-8264-0869
https://doi.org/10.1029/2023JG007728
https://doi.org/10.1029/2023JG007728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JG007728&domain=pdf&date_stamp=2024-04-01


trend in global terrestrial carbon sink with at least 40% of global terrestrial carbon inter‐annual variability also
attributed to these ecosystems (Ahlström et al., 2015).

Importantly, the opportunistic growth tactics of desert shrubs and ephemeral plants, including grasses and weeds,
which are acclimated to highly fluctuating water availability, account for a significant portion of the contribution
of dryland ecosystems to the inter‐annual variability of the global carbon flux. For example, dryland vegetation in
the southwestern region of the United States of America show high sensitivity to precipitation, where wet periods
are associated with a tendency of these systems becoming CO2 sinks, while becoming CO2 sources during dry
periods (Scott et al., 2015). With climate projections indicating that climate change is likely to deepen drought
periods and intensify heatwaves in dryland ecosystems, this is a major threat to these water‐limited environments
(C. J. Engelbrecht & Engelbrecht, 2016; Engelbrecht et al., 2015; Huang et al., 2016). For instance, surface
temperatures are projected to increase in southern Africa with the region also projected to become generally drier
under low‐mitigation climate change futures (Engelbrecht et al., 2009, 2015). Therefore, the global ability to
understand the behavior, vulnerability and resilience of terrestrial ecosystems and their role as carbon sinks is a
major focus of earth system science especially in the context of the responses of carbon sinks to the anthropogenic
pressures such as agriculture, urban expansion and climate change (Laurance et al., 2014).

Eddy Covariance (EC) CO2 flux measurements have offered a continuous and direct method to study the global
carbon cycle. EC flux towers generally measure continuous exchanges of CO2, latent heat and sensible heat
between ecosystems and the atmosphere, with global data archive lengths ranging from hours to decades, thus
enabling the evaluation of seasonal and interannual variability in these exchanges while also elucidating their
climatic controls (Baldocchi, 2003). A number of studies have applied the EC technique to study the temporal and
spatial characteristics of the carbon cycle in African ecosystems (Archibald et al., 2009; Kutsch et al., 2008;
Merbold et al., 2009; Räsänen et al., 2017; Scanlon & Albertson, 2004; Veenendaal et al., 2004). While these
studies have focused on savanna woodlands across differing precipitation gradients, there is still a great need for
representation of other biomes, especially in semi‐arid, water‐limited ecosystems.

The use of satellite observations in combination with climate data along EC data has been minimally explored in
African dryland ecosystems (Abdi et al., 2017, 2019; Jin et al., 2013; T. Kato et al., 2013; Sjöström et al., 2009,
2011, 2013). Modeling GPP empirically by associating vegetation greenness indices like the Enhanced Vege-
tation Indices (EVI) and the Normalized Difference Vegetation Index (NDVI), as well as water‐based indices
such as the Land Surface Water Index (LSWI) to EC estimated GPP is a widely used approach (Sjöström
et al., 2011). These greenness‐based VIs have been effective in monitoring vegetation parameters such as
phenology in semi‐arid ecosystems (Archibald & Scholes, 2007; Higgins et al., 2011; A. Kato et al., 2021), as well
as estimating productivity (Sjöström et al., 2009, 2011, 2013). MODIS NDVI and EVI were found to be highly
correlated with 8‐day sums of EC GPP in a sparse savanna in central Sudan with R2 values of 0.90 and 0.93,
respectively, while the applicability of LSWI as a water‐stress indicator was limited due to low fractional
vegetation cover—making the retrieval of accurate information on canopy water content a challenge (Sjöström
et al., 2009).

The relationship between GPP and EVI was particularly strong on a site‐by‐site basis and was further improved by
combining EVI with tower‐measured photosynthetically active radiation (PAR) and Evaporative Fraction (EF) (a
measure of water sufficiency), with the relationship between GPP and EVI × PAR × EF at Skukuza, in South
Africa observed with R2 = 0.60 and being the most variable amongst the sites (Sjöström et al., 2011). Further
studies looking at estimating productivity using remote‐sensing driven models in dryland ecosystems in China
continue to indicate that while remote sensing products can successfully capture temporal GPP for grasslands and
shrublands, there are still large overestimation biases in amplitude present (Li et al., 2021). Similarly for a dryland
site in North America (Yan et al., 2019), the limitations of greenness‐GPP relationships especially over short
timescales were observed as plant physiological functions change rapidly in response to biophysical drivers
compared to greenness which changes more slowly—highlighting the potential and limitations of modeling GPP
using remotely sensed greenness indices over dryland ecosystems.

The MOD17A2 GPP 1,000 m product was assessed for 12 African eddy sites where GPP seasonality was well
captured over wet and dry sites but its amplitude was underestimated for many of the dry sites specifically in the
Sahel (Sjöström et al., 2013). This underestimation persisted even in the updated MOD17A2H GPP (collection 6)
product featuring an increased resolution to 500 m with two data input substitutes for meteorological data and
fraction of photosynthetically active radiation (FPAR) products (Tagesson et al., 2017). This has been attributed
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to the maximum light use efficiency being set too low for semi‐arid ecosystems in the MODIS algorithm
(Tagesson et al., 2017). In addition, the performance of MOD17A2H was assessed on a global scale by com-
parisons with EC‐derived GPP measurements and it continued to underestimate EC‐derived GPP at most sites
with poor performances in estimating both annual (R2 = 0.62) and 8‐day GPP (R2 = 0.52) for sites featuring
evergreen needleleaf forests, evergreen broadleaf forests, deciduous broad forests, mixed forests, grasslands and
croplands (L. Wang et al., 2017)—necessitating the need for further updates and improvements to MODIS
standard products (Zhu et al., 2018).

The contribution of dryland ecosystems to the global carbon cycle continues to be important, especially under a
changing climate. With much of South Africa dominated by semi‐arid ecosystems, which are expected to face
warmer and drier periods under low mitigation efforts, it is vital to gain an improved spatial and temporal un-
derstanding of productivity. The strong relationship between water availability and the productivity of dryland
ecosystems means that any likely changes in phenological events in these ecosystems such as shifts in the growing
season length under the backdrop of these climate projections, there are likely impacts on the seasonal exchange
of CO2, energy and water between terrestrial ecosystems and the atmosphere (Richardson et al., 2013). Being able
to test the possibility to upscale site‐specific EC measurements to regional scales using satellite‐based data will
offer such an understanding and provide further progress on satellite driven primary production modeling for
semi‐arid ecosystems as well as improve on data gap‐filling approaches during periods of instrument failure.

The study intends to (a) compute site‐based multilinear regression models to test the applicability of Sentinel‐2
remotely sensed VIs (NDVI, EVI and LSWI) to track phase and amplitude patterns of EC estimated GPP and, (b)
to test whether the combination of VIs (NDVI, EVI, LSWI) with in situ meteorological variables, namely: vapor
pressure deficit (VPD), incoming solar radiation, soil water content (SWC) and air temperature can improve the
prediction of GPP patterns and; (c) to assess the performance of a Light Use Efficiency (LUE)‐based model
(MOD17AH2) to simulate GPP of Savanna and Nama‐Karoo sites differing in vegetation composition and annual
precipitation in South Africa.

2. Material and Methods
2.1. Site Characteristics

The study uses three (3) EC flux sites in South Africa where 2, namely: Benfontein Savanna (Ben_Sav) (28°
53′26.2″S, 24°51′40.0″E) and Nama‐Karoo (Ben_Kar) (28°51′23.0″S, 24°50′23.3″E) are located in the transition
zone between the Savanna and the Nama‐Karoo biomes, while the Middleburg site is located in the heart of the
Nama‐Karoo biome. These sites are illustrated in Figure 1 along others biomes in South Africa (Mucina &
Rutherford, 2006). The Benfontein Savanna and Nama‐Karoo towers were established in January 2020 and are
located about 4 km from each other at the Benfontein Nature Reserve (BNR) along the border of the Free State
and Northern Cape provinces of South Africa, about 15 km from the city of Kimberley. This area predominately
receives summer rainfall with a mean annual rainfall of 419 ± 134 mm (Kamler et al., 2012), with a mean annual
temperature of 18.5°C. Thunderstorms are common in summer and frost on occasion during winter. The savanna
footprint represents Kimberley thornveld vegetation, with the vegetation being open camel thorn, Vachellia
erioloba, and mix of mainly two grass species, namely Schmidtia pappophoroides and Stipagrostis uniplumis on
deep Kalahari sands. The Nama‐Karoo footprint is a fairly flat and homogeneous area dominated by Pentzia
globosa. The periods of interest were data selected from the 4 February 2020 to the 10 March 2023 for the
Ben_Sav and Ben_Kar sites.

The leniently grazed Middleburg site (Mid_Kar) (31°25′20.97″S, 25°1′46.38″E) is located in the Eastern Upper
Karoo vegetation type of the Nama‐Karoo biome and was installed in October 2015. The site receives an average
of 374 mm per year mainly falling during mid‐to late‐summer, withMarch usually being the wettest month, with a
mean annual temperature of 15°C. The footprint of this leniently grazed site is dominated by Digitaria eriantha
and Pentzia globosa over loamy soils. Data from the 4 February 2019 to the 10 March 2022 from Mid_Kar were
used in this study and is referred to as the period of interest.

2.2. Instrumentation and Measurements

The EC is a micrometeorological technique that relies on high frequency measurements of the fluctuating
components of vertical wind and a gas of interest (CO2) in the constant flux region of the surface boundary layer to

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007728

MALULEKE ET AL. 3 of 22

 21698961, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007728, W
iley O

nline L
ibrary on [01/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



directly measure the net ecosystem exchange (NEE) of CO2 (Baldocchi, 2003; Foken &Wichura, 1996; Madsen
et al., 2009). NEE was directly measured using a Campbell Scientific IRGASON® Integrated CO2/H2O Open‐
Path Gas Analyzer and three‐dimensional Sonic Anemometer (Campbell Scientific Inc., Logan, Utah, USA) at
10.5 and 3.5 m above ground at the Benfontein Savanna (Ben_Sav) and Nama‐Karoo (Ben_Kar) sites, respec-
tively. The data were acquired with a CR6 Campbell Scientific data logger at a frequency of 20 Hz and post‐
processed into 30‐min averages. The BNR sites were paired with identical instrumentation. Air temperature
was measured with a HygroVUE™ 10 (Campbell Scientific, Logan, Utah, United States) probe at 2.0 m, while
incoming solar radiation was measured using a CNR4 net radiometer (Kipp & Zonen, Delft, Netherlands). Soil
moisture content measurements at 2.5 cm were averaged from two CS616 reflectometers (Campbell Scientific,
Logan, Utah, United States) in two separate soil pits. Rainfall was measured using a TE525 tipping bucket rain
gauge (Campbell Scientific, Logan, Utah, United States).

A Li‐7200 enclosed path fast‐response Infra‐Red Gas Analyzer was coupled with a CSAT3 three‐dimensional
sonic anemometer (Campbell Scientific Inc., Logan, Utah, USA) to measure NEE at the Middleburg Karoo
(Mid_Kar) site at a height of 2.5 m and a frequency of 20 Hz. Air temperature was recorded using a Vaisala
HMP155 probe (Vaisala, Helsinki, Finland) while precipitation was measured using a TR 525 tipping bucket rain
gauge (Texas Electronics, Texas, USA). Incoming solar radiation was measured using a CNR4 net radiometer
(Kipp & Zonen, Delft, Netherlands). Soil moisture at 10 cm was measured using ML3x soil moisture probes
(Delta T, EcoTech, Bonn, Germany).

Figure 1. Biomes of South Africa and the location of selected study sites (Mucina &Rutherford, 2006). Panel 1 indicates the relative positions of the Benfontein Savanna
and Nama‐Karoo sites at the Benfontein Nature Reserve. Panel 2 shows the positioning of theMiddleburg Karoo site. Panels (a–c) show the footprint extents of each site
as well as the positioning of the polygons used to extract satellite data in relation to footprint extent.
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2.3. Data Processing

The datalogger programs at the Ben_Sav and Ben_Kar sites were set to perform a double rotation coordinate
system to transform the vertical and horizontal velocity components to zero and adjust for the misalignment of the
sonic anemometer (Wilczak et al., 2001). Block averaging was applied to detrend turbulent fluctuations by
removing the mean value from the time series (Kaimal et al., 1989; Massman, 2000). In addition, fluxes were
corrected for the spectral losses in the low and high frequencies due likely to sensor responses, data processing
choices as well as system characteristics (Moncrieff et al., 1997; Moore, 1986; Van Dijk, 2002). The Foken
et al. (2012) quality control and flagging methodology was applied to all fluxes. These flux correction steps
resulted in half‐hourly values of CO2 fluxes or NEE. The data post‐processing steps for Mid_Kar are described in
Rybchak et al. (2023). The half‐hourly flux data across the sites were filtered according to the Foken et al. (2012)
for Ben_Sav and Ben_Kar, while the Mauder and Foken (2011) was applied to discard bad quality data at Mid
Kar. Data flagged between “0–4” were used for the Ben_Sav and Ben_Kar sites, while data flagged between “0–
1” system were used for Mid_Kar—the remaining bad quality data were discarded.

2.3.1. Eddy Covariance Gross Primary Production Data

The measured NEE can be partitioned into fluxes of interest, namely: gross primary production and ecosystem
respiration (ER). The REddyProc flux partitioning tool was used to partition NEE by applying the Lasslop
et al. (2010) daytime‐based method which uses the common rectangular hyperbolic light‐response curve to es-
timate GPP (Falge et al., 2001; Lasslop et al., 2010) for all three sites (https://www.bgcjena.mpg.de/REddyProc/
ui/REddyProc.php). The resulting half‐hourly GPP estimates were aggregated to 5‐day averages, while half‐
hourly meteorological variables, namely incoming solar radiation, SWC, air temperature and VPD, were also
aggregated to 5‐day averages to temporally match with Sentinel‐2 VIs. The half‐hourly GPP data were further
aggregated to 8‐day sums to temporally match the MOD17AH2 8‐day GPP product. R statistical software version
4.2.3 (R core Team, 2023) was used to align GPP aggregations with the date sequences of Sentinel‐2 and
MOD17AH2 missions over each site—ensuring the data had the same temporal resolution. Following quality
control of removing values out of range on the satellite data, these were replaced with the mean of the previous
and the subsequent value in the each VI time series, with an average of six Sentinel‐2 observations each month.

2.3.2. Ecosystem Footprint Calculation

Mean ecosystem footprints were predicted over each site's period of interest using the simple two‐dimensional
parameterization flux footprint model based on novel scaling approach for the crosswind distribution of the
flux footprint (Kljun et al., 2015). The following variables were required for the footprint calculation: (zm)
measurement height above ground in meters; (d) displacement height; (z0) roughness length; (u_mean) mean
wind speed at measuring height; (L) Obukhov length; (σv) standard deviation of lateral velocity fluctuations after
rotation; (u*) frictional velocity; and wind direction. Polygons for the extraction of pixels for satellite data were
created on the mean footprint dimensions to create regions of interest. The mean footprints for each site were in
the dimensions of approximately 400 × 400 m (∼16 ha) for the Savanna site, 200 × 200 m (∼4 ha) for the Nama‐
Karoo site, and 200 × 100 m (∼2 ha) for the Middleburg Karoo site.

2.3.3. Satellite Data

The Copernicus Sentinel‐2 Multispectral Instrument (MSI) Level‐2A data were used for the computing of VIs
(Copernicus, 2023). The Sentinel‐2 MSI has a revisit time of 5 days while monitoring variability in land surface
conditions. The Level‐2A orthorectified atmospherically corrected surface reflectance data were retrieved from
Google Earth Engine using square polygons with a 20 m negative buffer located at the center of the mean flux
footprint over each study site. The negative 20 m buffer was set to minimize on the uncertainties of footprint and
pixel mismatch wherein the mean value of the pixels covering the extent of the tower footprint were retrieved at
each site.

A cloud filter was applied to the data for data with less than 20% cloud cover for the duration of the period of
interest. A further filtering function was applied within the polygons to mask out non‐vegetation and non‐soil
pixels. To remove the influence of cloud cover, the function “maskS2clouds” on Google Earth Engine enables
cloudy and cloud‐free pixels to be identified for both dense and cirrus clouds with an indicator specifying the
cloud type. The method identifies cloud pixels based on high reflectance in the blue spectral region (information
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on this cloud mask can be found at https://developers.google.com/earthengine/datasets/catalog/COPERNICUS_
S2_SR#description). The VIs detailed below were then retrieved by applying band calculations.

2.3.3.1. Normalized Difference Vegetation Index

VI are considered robust and empirical measurements of vegetation activity at the land surface, making use of
measured spectral responses through the combination of multiple wavebands usually in the red (0.6–0.7 μm) and
near‐infrared (NIR) radiation wavelengths (0.7–1.1 μm) regions (Didan et al., 2015). One of the most common VI
is the normalized difference vegetation index (NDVI):

NDVI = (NIR − Red)
(NIR + Red)

(1)

where NIR is reflectance in the near‐infrared (NIR) band (band 8) and Red is the reflectance in the red band (band
4). NIR radiance is reflected by leaf cells since absorption of these wavelengths would result in overheating of the
plant, while red radiance is absorbed by chlorophyll. The index is then normalized to improve the vegetation
signal as well as to reduce atmospheric errors, solar zenith angles and sensor viewing geometry. A well‐
documented problem of NDVI is the saturation at high biomass due to absorption of red light at ∼670 nm
peaking at higher biomass loads. To counter this, the Enhanced Vegetation Index (EVI) is designed to maintain
sensitivity in high biomass regions.

2.3.3.2. Enhanced Vegetation Index

In dealing with some of the atmospheric attenuation by aerosols, EVI minimizes the atmospheric effect by
estimating the atmospheric influence level by the difference in blue and red reflectances. When aerosol con-
centrations are high, the difference between the two bands is larger and this influence is used to stabilize the index
values against variations in aerosol concentration levels. By reducing atmospheric and soil background in-
fluences, EVI increases the vegetation signal and maintains sensitivity in high biomass regions (Huete
et al., 2002).

EVI = G
(NIR − Red)

(NIR + C1Red − C2Blue + L)
(2)

where Blue is the reflectance in the blue band (band 2). L is the canopy background adjustment for correcting the
nonlinear, differential NIR and red radiant transfer through a canopy; C1 and C2 are the coefficients of the aerosol
resistance term andG is a gain or scaling factor. The coefficients adopted for the EVI algorithm are L= 1, C1= 6,
C2 = 7.5, and G = 2.5.

2.3.3.3. Land Surface Water Index

Leaf water content influences the measured leaf reflectance in several regions (0.4–2.5 μm) of the electromagnetic
spectrum therefore shortwave infrared reflectance (SWIR) is negatively related to leaf water content. The region
between 1.3 and 2.5 μm is the largest in the SWIR interval where increased reflectance in these wavelengths
indicates a response to plant stress in general, including water stress. The LSWI uses the shortwave SWIR (band
12) and the NIR regions of the electromagnetic spectrum and is known to be sensitive to the total amount of liquid
water contained in vegetation and the soil background (Chandrasekar et al., 2010), and is computed as the
following:

LSWI = (NIR − SWIR)
(NIR + SWIR)

(3)

Since Sentinel‐2 provides the NIR and SWIR bands at different spatial resolutions (10 and 20 m), the NIR band
was resampled to 20 m on Google Earth Engine. Canopy water content is not the only parameter responsible for
variations in reflectance in the SWIR channels since variations in leaf structure and dry matter content influence
SWIR reflectance—effectively making the retrieval of vegetation water content using SWIR reflectance alone not
ideal. Therefore, to isolate the contribution of these parameters to SWIR reflectance, the use of NIR information
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which is affected by leaf structure and dry matter content but not by water is more useful for the combination of
these signals to improve the retrieval of vegetation water content (Fensholt & Sandholt, 2003).

2.3.3.4. MOD17AH2 GPP Product

The MOD17AH2 Version 6 Gross Primary Productivity (GPP) product is provided by NASA LP DAAC at the
USGS EROS Center and was retrieved using the Google Earth Engine (Running & Zhao, 2015). This collection 6
version features updated Biome Property look‐up tables (BPLUT) as well as an updated version of the daily
Global Modeling and Assimilation Office meteorological data. The product is based on the LUE concept
(Monteith, 1972), which uses the relation between incident photosynthetically active radiation (PAR), the fraction
of photosynthetically active radiation absorbed by plants (FPAR) and the actual light use efficiency term of the
vegetation in the following model:

GPP = ε × APAR (4)

where APAR, a product of FPAR and PAR, is the absorbed photosynthetically active radiation, where an 8‐day
estimate of FPAR is retrieved from MOD15 and daily estimates of PAR values are retrieved from the Global
Modeling Assimilation Office reanalysis for each pixel (Running & Zhao, 2015). The PAR conversion efficiency,
ε, values are derived from the attenuation from its maximum value, εmax, which is constrained by two envi-
ronmental stresses, namely, (a) minimum temperature, Tmin, which can truncate GPP on days when air tem-
perature is below 0°C and (b) VPD where high VPD can reduce stomatal conductance. Ultimately, the
MOD17AH2 GPP product offers a cumulative 8‐day composite of GPP values per 500‐m pixel from the MODIS
sensor onboard the Terra satellite. The polygons were applied here without the buffer since the extent of the
footprints fell within one pixel of the product across all sites. A timeseries of the GPP pixel values in kg C m− 2

were extracted at each site and converted to g C m− 2 for consistent units between EC GPP and the MODIS GPP
product.

2.3.4. Statistical Analysis

The EC estimated GPP, meteorological data and satellite‐based VIs from each site were partitioned into training
(70%) and (30%) testing sets. Simple linear regressions were computed for individual VIs with GPPEC to build
initial VI‐based models across each site on the training data set. To improve these models, a bi‐directional
(forward and backward) stepwise linear regression was used on the training set to build vegetation‐index
coupled with meteorological data from individual VIs (NDVI, EVI, LSWI) in combination with a varied se-
lection of meteorological data (incoming solar radiation, air temperature, SWC, VPD (not available for Mid_-
Kar)). To rank the applicability of these experimental models, the Akaike information criterion (AIC) was applied
to select models with the lowest AIC score at each site during the model selection process at each site, for each VI‐
based model. The models with the lowest AIC score were selected, with their respective β coefficients for each VI
and the selected supporting meteorological variables from each site.

The simulated data from both model experiments and observed data were assessed using the coefficient of
determination (R2) and residual standard error (RSE) to describe their performance against EC estimated gross
primary productivity (GPPEC) for both training and testing data sets. To evaluate the performance of all computed
VI‐based models, Taylor diagrams were computed to assess the correlation, the root‐mean‐square differences and
the ratio of the variance for the test data set. The same performance test protocol was applied between
MOD17AH2 against GPPEC evaluations. All analyses were performed using R statistical software version 4.2.3
(R core Team, 2023).

3. Results
3.1. Site Conditions

Time series of meteorological, eddy‐covariance, and satellite data during the periods of interest are shown in
Figure 2. Seasonal dynamics of GPP, NEE and ER illustrate the wet and dry season periods of productivity across
the ecosystems which are associated with seasonal rainfall inputs. The wet season is between October and April
—peaking in February and March for Ben_Sav and Ben_Kar with the dry season dominating between May and
early September. Ecosystem productivity at Mid_Kar is observed during the wet season periods of November and
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April—peaking also during February and March. While there are periods of early rains during the dry season
across all sites, this does not translate to immediate net ecosystem productivity. While the majority of the rainfall
is observed during November and April across the sites, there are periods of rainfall during the dry season,
especially during the 2021/2022 dry season (associated with La Niña conditions).

Highest NEE, GPP and ER values were observed during the wet season, with NEE however remaining above
− 5 g Cm− 2 day− 1 (negative values indicate more carbon uptake by the ecosystems, while positive values indicate
carbon release into the atmosphere) across all sites, except for the 2021 wet season at the Ben_Sav site. GPP and
ER were highest during the wet season at Ben_Sav, followed by Ben_Kar and Mid_Kar, reaching values above
∼6 g C m− 2 day− 1 across Ben_Sav and Ben_Kar. GPP and ER values were the lowest at Mid_Kar (below
4 g C m− 2 day− 1), with the 2020 wet season being the most productive compared to the other years. Air tem-
perature was closely matched at the Benfontein sites and remained within range of theMid_Kar site. Ben_Sav and
Ben_Kar were observed to receive more rainfall compared to Mid_Kar for year‐on‐year comparisons. SWC was
variable across the Benfontein sites, due likely to soil properties, while SWC at 10 cm at Mid_Kar was
considerably higher during dry periods compared to the top layers (2.5 cm) measured at the Benfontein sites.
NDVI, EVI and LSWI estimates also followed the seasonality observed for ecosystem productivity, rainfall,
SWC and air temperature across the sites.

3.2. Correlation Matrix Between GPPEC Versus Vegetation Indices and Meteorological Variables

Pearson correlations were computed between GPPEC and VIs andmeteorological variables for the training portion
of the data set (70%) as shown in Table 1. GPPEC was positively correlated with all variables, except for VPD at

Figure 2. Meteorological, eddy covariance, and satellite data for study sites (a–c) GPP (green), net ecosystem exchange (NEE) (blue) and ecosystem respiration (ER)
(red) in g Cm− 2; (d–f) daily rainfall in mm and soil water content (SWC) in percentage at depths 2.5 cm at Ben_Sav and Ben_Kar, and 10 cm at Mid_Kar; (g–i) Sentinel‐
2 5 days NDVI (red), EVI (black) and land surface water index (LSWI) (blue); (j–l) air temperature in °C.
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Ben_Kar, with the strongest correlations observed between GPPEC and the greenness‐based VIs; where r ranged
between 0.85 (Ben_Sav) and 0.86 (Ben_Kar) for GPPEC and NDVI and, ranged between 0.88 (Ben_Sav) and 0.91
(Ben_Kar) for EVI.

Strong positive correlations were observed between GPPEC and LSWI across all sites, especially for the Nama‐
Karoo type vegetation sites (0.84 for Ben_Kar and 0.83 for Mid_Kar) compared to the savanna‐type site (0.72).
SWC correlations with GPPEC were however not as strong as with LSWI at Ben_Sav (0.46) compared to Ben_Kar
(0.67) and Mid_Kar (0.76), with no major redundancy observed between LSWI and SWC across all sites—
correlations ranged between 0.34 (Ben_Sav) and 0.65 (Mid_Kar). GPPEC correlations with Tair and Rg fol-
lowed similar patterns across the sites, where the highest correlations were observed at Ben_Sav for Tair and
Rg (0.70 and 0.60), followed by 0.56 and 0.40 at Ben_Kar while the lowest were observed at Mid_Kar
(0.36 and 0.19) for Tair and Rg, respectively. On all occasions, the strong positive correlations were
significant (p < 0.001).

Table 1
Pearson Correlation Matrix for GPPEC Versus Vegetation Indices and Meteorological Variables for Ben_Sav, Ben_Kar and
Mid_Kar (Training Data)

GPPEC Tair SWC Rg VPD EVI NDVI LSWI

Ben_Sav

GPPEC 0.70*** 0.46*** 0.60*** 0.26** 0.88*** 0.85*** 0.72***

Tair 0.70*** 0.27** 0.73*** 0.72*** 0.55*** 0.52*** 0.28**

SWC 0.46*** 0.27** 0.14 − 0.27** 0.48*** 0.44*** 0.34***

Rg 0.60*** 0.73*** 0.14 0.63*** 0.33*** 0.33*** 0.06

VPD 0.26** 0.72*** − 0.27** 0.63*** 0.14 0.14 − 0.00

EVI 0.88*** 0.55*** 0.48*** 0.33*** 0.14 0.92*** 0.89***

NDVI 0.85*** 0.52*** 0.44*** 0.33*** 0.14 0.92*** 0.86***

LSWI 0.72*** 0.28** 0.34*** 0.06 − 0.00 0.89*** 0.86***

Ben_Kar

GPPEC 0.56*** 0.67*** 0.40*** − 0.04 0.94*** 0.86*** 0.84***

Tair 0.56*** 0.28** 0.67*** 0.66*** 0.50*** 0.49*** 0.32**

SWC 0.67*** 0.28** 0.10 − 0.36*** 0.64*** 0.47*** 0.58***

Rg 0.40*** 0.67*** 0.10 0.66*** 0.28** 0.39*** 0.14

VPD − 0.04 0.66*** − 0.36*** 0.66*** − 0.08 0.02 − 0.22*

EVI 0.94*** 0.50*** 0.64*** 0.28** − 0.08 0.87*** 0.90***

NDVI 0.86*** 0.49*** 0.47*** 0.39*** 0.02 0.87*** 0.81***

LSWI 0.84*** 0.32** 0.58*** 0.14 − 0.22* 0.90*** 0.81***

Mid_Kar

GPPEC 0.36*** 0.76*** 0.19 0.91*** 0.86*** 0.83***

Tair 0.36*** 0.16 0.66*** 0.31** 0.24* 0.17

SWC 0.76*** 0.16 0.03 0.70*** 0.67*** 0.65***

Rg 0.19 0.66*** 0.03 0.07 − 0.02 0.05

VPD

EVI 0.91*** 0.31** 0.70*** 0.07 0.93*** 0.92***

NDVI 0.86*** 0.24* 0.67*** − 0.02 0.93*** 0.83***

LSWI 0.83*** 0.17 0.65*** 0.05 0.92*** 0.83***

Note. The number of asterisks indicate the level of significance (p < 0.001***, p < 0.01**, p < 0.05*).
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3.3. Model Training for VIs

The applicability of NDVI, EVI and LSWI as well as the inclusion of meteorological variables to improve the
estimates was tested. Notably, all the VIs were able to track the seasonal patterns of GPP across the sites.
However, there was a temporal delay and periods of overestimation in GPPNDVI and GPPEVI estimates partic-
ularly in periods approaching the peak of the wet season as well as the periods leading up to the dry season
especially at Ben_Sav and Ben_Kar. LSWI estimates of GPP performed poorly at Ben_Sav and Ben_Kar—
overestimating GPP during the dry season and lagging behind wet season increases especially at Ben_Sav.
Nevertheless, LSWI was able to track the fire period during September 2021 at both Ben_Sav and Ben_Kar where
sharp decreases in GPPLSWI were observed—indicating substantial losses in vegetation, especially at Ben_Sav
where the grass layer was completely burnt from the fire.

The model selection results are shown in Table 2, where the included meteorological variables for each improved
model are indicated across all the sites with their respective β coefficients. The improved VI‐based GPP estimates
with selected meteorological variables are referred to as GPPNDVI− , GPPEVI− and GPPLSWI− (an addition of an
underscore from the previous estimates). The structure of the applied equation for each VI and selected mete-
orological variables for each site is indicated as follows:

GPP = β0 + βVI + βTair + βRg + βVPD + βSWC (5)

where β0 indicates the intercept of the equation, βVI indicates the selected VI, βTair indicates the coefficient for
temperature, βRg indicates the incoming solar radiation coefficient, βVPD indicates the VPD coefficient (except for
Mid_Kar), and βSWC indicates the coefficient for SWC for each site as reported in Table 2.

The simulated GPPNDVI− , GPPEVI− estimates indicated considerable improvement particularly in phase than in
amplitude agreement with GPPEC at Ben_Sav as shown in Figure 3. While both phase and amplitude im-
provements were observed for GPPLSWI− at Ben_Sav, amplitude disagreement between GPPEC peaks during the
third wet season and GPPEVI− and GPPLSWI− was a still notable limitation at Ben_Sav. The simulated estimates at
Ben_Kar and Mid_Kar matched in phase and in amplitude with GPPEC during the training process. Linear re-
gressions were computed for NDVI, EVI and LSWI as well as GPPNDVI, GPPEVI and GPPLSWI with GPPEC at
each site and the results for estimates with and without meteorological variables for the complete period and
between the wet and dry seasons are shown in Table 3. More than 80% of GPPEC variability was explained by the
improved models across all the sites.

3.4. Model Evaluation

All the models were evaluated on the remaining 30% and were tested against GPPEC across the sites and the time
series of the results are shown in Figure 4. Considerable phase agreement was observed in all model estimates
across the sites. Notably, underestimation of GPPEC amplitude was observed for GPPNDVI at Ben_Sav (R

2= 0.77;

Table 2
Akaike Information Criterion (AIC) Model Selection Summaries and Coefficients of All Included Variables for Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) Models
Coupled With Meteorological Variables

Site Model β0 βVI βTair βRg βVPD βSWC AIC AIC_2

Ben_Sav GPP_NDVI_ − 4.36 13.01 0.16 0.01 − 0.12 − 20 − 21.22

GPP_EVI_ − 3.34 7.04 0.14 0.01 − 0.13 − 0.08 − 30.77

GPP_LSWI_ − 2.34 13.00 0.22 0.02 − 0.16 − 39.47 − 40.38

Ben_Kar GPP_NDVI_ − 3.22 10.19 0.12 0.00 − 0.10 0.10 − 31.52

GPP_EVI_ − 2.82 7.37 0.08 0.01 − 0.10 − 80.69 − 81.94

GPP_LSWI_ − 0.89 11.83 0.14 0.01 − 0.10 0.06 − 29.82

Mid_Kar GPP_NDVI_ − 3.32 8.14 0.00 0.09 − 93.13 − 94.26

GPP_EVI_ − 2.58 5.54 0.00 0.07 − 121.74 − 123.64

GPP_LSWI_ − 0.85 7.19 0.06 0.10 − 76.51 − 78.41
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Figure 3. Time series from training of vegetation index based models (GPPNDVI, GPPEVI, and GPPLSWI) and improved regression estimates (GPPNDVI− , GPPEVI− , and
GPPLSWI− ) of GPP versus GPPEC estimates for Ben_Sav (left panels), Ben_Kar (middle panels) and Mid_Kar (right panels). In each horizontal panel, the black lines
represent GPPEC, the red lines represent vegetation index (VI)‐based models and the blue lines represent the improved model estimates.

Table 3
Coefficient of Determination and Residual Standard Error Between GPPEC and GPP Estimates From Vegetation Index
(VI)‐Based Estimates (GPPNDVI, GPPEVI, and GPPLSWI) and Model Estimates Improved With Meteorological Variables
(GPPNDVI − , GPPEVI− and GPPLSWI− ) for Complete Periods and Between Wet and Dry Seasons During the Training Period

Site Period

GPPNDVI GPPNDVI− GPPEVI GPPEVI− GPPLSWI GPPLSWI−
RSE R2 RSE R2 RSE R2 RSE R2 RSE R2 RSE R2

Ben_Sav Complete 1.11 0.73*** 0.81 0.88*** 1.07 0.76*** 0.77 0.90*** 1.25 0.51*** 0.74 0.90***
Dry 0.73 0.44 0.59 0.55 0.51 0.38 0.41 0.51 0.41 0.13 0.51 0.39

Wet 1.27 0.70 0.78 0.84 1.32 0.68 0.76 0.96 1.47 0.55 0.71 0.88

Ben_Kar Complete 0.95 0.75*** 0.74 0.87*** 0.70 0.89*** 0.58 0.92*** 0.99 0.71*** 0.75 0.87***
Dry 0.51 0.02 0.61 0.36 0.22 0.94 0.26 0.90 0.41 0.55 0.42 0.71

Wet 1.01 0.75 0.71 0.87 0.82 0.86 0.64 0.91 1.12 0.71 0.77 0.85

Mid_Kar Complete 0.66 0.74*** 0.56 0.84*** 0.56 0.83*** 0.49 0.88*** 0.70 0.69*** 0.59 0.81***
Dry 0.29 0.65 0.32 0.71 0.16 0.87 0.14 0.92 0.49 0.25 0.29 0.78

Wet 0.79 0.75 0.56 0.84 0.70 0.82 0.57 0.87 0.81 0.70 0.64 0.81

Note. The number of asterisks indicate the level of significance (p < 0.001***).
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RSE = 0.54 g C m− 2 5 day− 1) and Ben_Kar (R2 = 0.87; RSE = 0.74 g C m− 2 5 day− 1). GPPEVI better estimated
GPPEC across the sites compared to GPPNDVI in terms of amplitude, however initial periods leading up to the wet
season were overestimated at Ben_Sav. GPPLSWI was within phase at Ben_Sav but overestimated during the dry
season while underestimating during the wet season. While all the models without the inclusion of meteorological
variables were in phase agreement at Mid_Kar, they underestimated wet season GPPEC.

Considerable improvements were observed in the performance of all models with the inclusion of meteorological
variables at Ben_Sav in terms of amplitude agreement with GPPEC however GPPNDVI− underestimation continued
still from the start of the wet season. GPPEVI− performed well overall, explaining 94% (RSE = 0.61 g C m− 2

5 day− 1) of the variability in GPPEC at Ben_Sav, while GPPNDVI− and GPPLSWI− both explained 91%
(RSE= 0.51 g Cm− 2 5 day− 1) and 90% (RSE= 0.64 g Cm− 2 5 day− 1), respectively. GPPNDVI− showed amplitude
improvements too at Ben_Kar, however wet season GPPEC was still underestimated (R

2 = 0.79; 0.62 g C m− 2

5 day− 1). Negligible improvements were observed for GPPEVI− and GPPLSWI− at Ben_Kar.

The performance of GPPNDVI− at Mid_Kar was the weakest compared to the other sites—explaining only 54%
(RSE = 0.58 g C m− 2 5 day− 1) of variability in GPPEC. The performance of GPPEVI− was however better than
GPPNDVI− , explaining 68% (RSE = 0.57 g C m

− 2 5 day− 1) of GPPEC variability, while GPPLSWI− explained only
62% (RSE = 0.63 g C m− 2 5 day− 1) of variability in GPPEC—a reduction in R

2 from GPPLSWI. During periods of
low GPP during the dry season, all the improved models estimated values below zero at Mid_Kar. Coefficient of

Figure 4. Time series from testing of vegetation index based models (GPPNDVI, GPPEVI, and GPPLSWI) and improved regression estimates (GPPNDVI− , GPPEVI− , and
GPPLSWI− ) of GPP versus GPPEC estimates for Ben_Sav (left panels), Ben_Kar (middle panels) and Mid_Kar (right panels). In each horizontal panel, the black lines
represent GPPEC, the red lines represent vegetation index (VI)‐based models, and the blue lines represent the improved model estimates.
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determination and RSE results for the evaluated estimates with and without meteorological variables for the
complete period and between the wet and dry seasons are shown in Table 4.

Taylor Diagrams were computed to illustrate how three complementary model performance statistics: correlation
coefficient, the standard deviation and the centered root‐mean‐square error vary simultaneously across the sites as
shown in Figure 5. The GPPNDVI− , GPPEVI− GPPLSWI− as well as GPPNDVI, GPPEVI and GPPLSWI predictions were
compared against GPPEC observations. At Ben_Sav, the closest simulated data to the observed values were from
GPPNDVI− in terms of standard deviation, a high correlation and a CRMSE close to zero compared to all other
models. While GPPLSWI− , GPPEVI− and GPPEVI were also in close proximity, GPPLSWI− and GPPEVI were lesser
correlated and GPPEVI− had a higher standard deviation.

GPPEVI− and GPPEVI showed the highest standard deviation compared to observed GPPEC values, while GPPNDVI;
GPPNDVI− and GPPLSWI estimates were clustered, indicating less similarity with observed values in terms of their

Table 4
Coefficient of Determination and Residual Standard Error Between GPPEC and GPP Estimates From Vegetation Index
(VI)‐Based Estimates (GPPNDVI, GPPEVI, and GPPLSWI) and Model Estimates Improved With Meteorological Variables
(GPPNDVI − , GPPEVI− and GPPLSWI− ) for Complete Periods and Between Wet and Dry Seasons During the Testing Period

Site Period

GPPNDVI GPPNDVI− GPPEVI GPPEVI− GPPLSWI GPPLSWI−
RSE R2 RSE R2 RSE R2 RSE R2 RSE R2 RSE R2

Ben_Sav Complete 0.54 0.77*** 0.51 0.91*** 0.85 0.83*** 0.61 0.94*** 0.68 0.55*** 0.64 0.90***
Dry 0.44 0.75 0.26 0.90 0.61 0.76 0.29 0.92 0.62 0.51 0.40 0.82

Wet 0.46 0.77 0.56 0.84 0.83 0.80 0.67 0.89 0.64 0.53 0.73 0.81

Ben_Kar Complete 0.60 0.71*** 0.62 0.79*** 0.82 0.84*** 0.77 0.87*** 0.72 0.70*** 0.63 0.86***
Dry 0.20 0.37 0.51 0.21 0.38 0.42 0.26 0.63 0.48 0.20 0.44 0.39

Wet 0.73 0.59 0.62 0.83 0.99 0.77 0.94 0.81 0.82 0.64 0.72 0.81

Mid_Kar Complete 0.67 0.19** 0.58 0.54*** 0.57 0.59*** 0.57 0.68*** 0.44 0.64*** 0.63 0.62***
Dry 0.21 0.68 0.35 0.54 0.10 0.84 0.22 0.63 0.19 0.22 0.20 0.58

Wet 0.88 0.15 0.65 0.46 0.72 0.50 0.58 0.66 0.52 0.61 0.55 0.64

Note. The number of asterisks indicate the level of significance (p < 0.001***, p < 0.001**).

Figure 5. Taylor diagrams to compare all computed vegetation index (VI) model predictions versus GPP estimates from eddy covariance flux towers. Left is Ben_Sav,
middle is Ben_Kar and right is Mid_Kar.
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standard deviation and CRMSE values at Ben_Kar. GPP values simulated with GPPLSWI− were the closest to the
observed GPPEC values in terms of standard deviation, with a high correlation and a CRMSE closer to zero
compared to the rest of the models at Ben_Kar. At Mid_Kar, GPPLSWI, GPPLSWI− , GPPEVI, GPPEVI− and GPPNDVI−
were generally clustered together and similarly correlated with GPPEC estimates. GPPNDVI was the farthest to
observed values, indicating the worst performance of all models. While no model outcompeted the rest, GPPLSWI
and GPPEVI− were the closest estimates to the observed GPPEC values.

3.5. GPPEC Versus LUE‐Based MODIS MOD17AH2 GPP 8‐Day Cumulative Product

MODIS MOD17AH2 GPP 8‐day product (GPPMODIS) versus EC derived GPP 8‐day sums (GPPEC) for February
2020 to January 2022 were compared for Ben_Sav, Ben_Kar and Mid_Kar as shown in Figure 6. MODIS_GPP
was observed to follow the seasonal cycles of GPPEC throughout the measuring period. However, moments where
GPPEC receded during the fire at the end of September 2021 were not tracked by GPPMODIS at Ben_Sav and
Ben_Kar—indicating some limitations in GPPMODIS capturing key ecosystem disturbances especially over a
short period. Overall the relation between the two data sets indicated that variability in GPPEC was captured by
GPPMODIS across all sites, however there were periods of disagreement during both the wet and dry seasons.

Coefficient of determination values (R2) were 0.68 at Ben_Sav, 0.70 at Ben_Kar—indicating moderate fit be-
tween the GPPMODIS product and GPPEC 8‐day cumulative sums. An R

2 value of 0.83 was observed at Mid_Kar,
with a better fit between the GPPMODIS product and 8‐day sums of GPPEC as shown on Figure 7. Differences in
correlation, standard deviation and RSE error between the cumulative GPPEC and GPPMODIS values were
simultaneously compared using Taylor diagrams for each site as shown in Figure 8. The data were normalized for
the wet and dry season comparison by dividing both the RMS difference and the standard deviation of GPPMODIS
by the standard deviation of GPPEC. While good correlations between GPPMODIS and GPPEC were observed
across the sites overall (complete), there were differences between GPPEC and GPPMODIS and were attributed to
standard deviation differences on a seasonal basis.

Figure 6. 8‐Day sums of GPPMODIS estimates versus 8‐day sums of GPPEC across the sites. Red lines indicate GPPEC and blue lines indicate GPPMODIS. Left is Ben_Sav,
middle is Ben_Kar and right is Mid_Kar.
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The largest standard deviation differences were mainly observed during the wet season for GPPMODIS and GPPEC
values at Ben_Sav, while dry season GPPEC and GPPMODIS values were moderately related. This can be attributed
to the substantial underestimation of GPPEC peaks by GPPMODIS during the wet season leading to increased
variability between the two data sets, albeit they are temporally in good agreement. At Ben_Kar, MODIS_GPP

Figure 7. Linear regression of 8‐day sums of GPPMODIS estimates versus 8‐day sums of GPPEC across the sites during dry (red) and wet seasons (blue). Left is Ben_Sav,
middle is Ben_Kar and right is Mid_Kar.

Figure 8. Taylor diagrams to compare GPPMODIS versus observed GPPEC estimates from flux towers during the wet and dry seasons. Left is Ben_Sav, middle is Ben_Kar
and right is Mid_Kar.
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values were strongly correlated with GPPEC observations during both seasons, with dry, wet and complete season
estimates clustering—indicating minimal deviations from observed values. At Mid_Kar, there was increased
deviation and reduced correlation between GPPEC and GPPMODIS during the dry season compared to the wet
season. This is also attributed to the overestimation of GPPEC by GPPMODIS during the consecutive dry season
periods at Mid_Kar.

The 8‐day GPPMODIS and GPPEC sums were cumulated for the whole study period at each site, where GPPMODIS
had a cumulative sum of 1,756 g C m− 2 versus 3,244 g C m− 2 by GPPEC between 2 February 2020 and 10
February 2023 at Ben_Sav (difference of 1,488 g C m− 2) as shown in Figure 9. The cumulative sums between the
two data sets showed a lesser difference (840 g C m− 2) at Ben_Kar where 1,622 g C m− 2 was recorded for
GPPMODIS compared to 2,462 g C m

− 2 for GPPEC for the same period at Ben_Sav (with two months of missing
data between May and June at Ben_Kar). A difference of 483 g C m− 2 was observed at Mid_Kar where a total of
1,627 g C m− 2 was estimated by GPPMODIS during 2 February 2019 to 6 March 2022 compared to 1,144 g C m

− 2

by GPPEC.

4. Discussion
In this study we first set out to test the applicability of 5‐day Sentinel‐2 VIs retrieved via Google Earth Engine,
namely NDVI, EVI and LSWI in computed regression models to validate against EC estimated GPP, and second,
to test whether the inclusion of selected meteorological variables, incoming solar radiation, air temperature, SWC
and vapor pressure deficit (VPD not available at Mid_Kar) to greenness‐based VIs (NDVI, EVI) and a water‐
based index (LSWI) can improve the performance of the estimates. Lastly, we compared 8‐day sums of a
LUE‐based GPP model (MOD17AH2) versus EC estimated GPP during the wet and dry seasons in semi‐arid
ecosystems in South Africa.

We found very strong to moderate correlations between daily GPPEC with NDVI and EVI and LSWI across the
sites—indicating potential for modeling GPP in these semi‐arid ecosystems using sentinel‐2 VIs. Typically,
greenness and water based indices are highly correlated with changes in aboveground biomass and canopy

Figure 9. Cumulative sums of GPPMODIS (blue) and GPPEC (red) across each site. Ben_Sav (left), Ben_Kar (middle) are cumulative sums from 2 February 2020 to 10
February 2023 and Mid_Kar (right) is from 2 February 2019 to 6 March 2022.
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structure and have also been shown to be highly correlated to gross primary production (Biudes et al., 2021;
Browning et al., 2017; Sjöström et al., 2009). However, the detection of vegetation senescence in dryland systems
may be challenging as some drought deciduous species continue photosynthesizing by shedding only some of
their leaves during the dry season (Jolly & Running, 2004) while others may shut down photosynthesis during
drought while still carrying all their leaves (Smith et al., 2018).

4.1. Vegetation Index‐Based Models to Predict GPPEC

The validation of VIs with EC estimated GPP showed that both greenness‐based and water‐based indices were
able to generally track the phase and amplitude of GPP during both dry and wet seasons better in the grass‐shrub
homogenous sites of Nama‐Karoo vegetation compared to the mixed Savanna site. Archibald and Scholes
(Archibald & Scholes, 2007) found that this is likely due to Savanna trees having a less variable phenological
cycle compared to grasses. Therefore an ecosystem footprint would represent a mixed ecosystem scale signal
where not all plants would react in unison such as in a mixed savanna site.

In addition, GPPEC is affected by PAR and hydrometeorological conditions which vary highly within a day such
as humidity, temperature and soil moisture which affects leaf level gas exchange (Running et al., 2004; Sims
et al., 2006). While on the other hand, vegetation greenness depends on factors which vary slower than the
abovementioned hydrometeorological conditions, namely, leaf chlorophyll content and canopy structure (Carlson
& Ripley, 1997; Gitelson & Merzlyak, 1997), thus having a delayed impact on plant gas exchange regulation.
Therefore, when grasses in a semi‐arid savanna ecosystem stop photosynthesizing during drought or cold tem-
peratures while the leaves are green, GPPEC may begin to decline while the trees are still relatively active. There
might be an apparent lag when satellite sensors detect such changes thus contributing to the apparent lag in
comparing fast‐response EC estimated GPP with satellite sensor estimated GPP, especially from a savanna site.

Similar instances were observed where MODIS EVI (8‐day, 500 m) and flux tower GPP were out of phase during
the same phenological stages in grassland, shrubland and mixed savanna sites (Sjöström et al., 2011). However, in
our results, for the shrub dominated sites, NDVI and EVI based models were in phase and within amplitude of
GPPEC, which is likely due to the higher spatial and temporal resolution of Senintel‐2 data sets. LSWI, which is
sensitive to leaf water content while retaining a correlation with biomass, was also out of phase with GPPEC most
notably at Ben_Sav, and often overestimated GPPEC across all sites during the dry season. This could be due to
how LSWI correlates well with vegetation and soil moisture content (Zhao et al., 2009), especially when
vegetation is sparse (such as during the dry season). This in contrast to A. Kato et al. (2021) where LSWI better
detected phenological stages of dryland ecosystems compared to NDVI and EVI. This can be attribute to the
sensitivity of LSWI to also soil moisture changes rather than only vegetation green‐up signal thus affecting LSWI
and GPP relationships in sparse vegetation situations (Chandrasekar et al., 2022). For example, correlations
between LSWI and SWC improved in Nama‐Karoo vegetation types compared to a Savanna type vegetation type
in the current study.

4.2. Combination of Meteorological Variables and Vegetation Indices to Predict GPPEC

The addition of meteorological variables improved the performance of all models except for GPPLSWI at
Mid_Kar. The models explained between 62% and 94% of GPPEC variability across the sites when tested
compared to between 19% and 85% from the VI models without the inclusion of meteorological variables. While
EVI performed better than NDVI overall in terms of R2 values, NDVI and LSWI showed the most improvement
with the inclusion of meteorological data—highlighting the suitability of EVI to perform better as a single VI in
estimating GPP. The performance of greenness‐based VIs such as NDVI and EVI in estimating GPP has been
found to be better in deciduous sites than evergreen sites (Shi et al., 2017; Zhou et al., 2022), with their per-
formance constrained by environmental conditions and features of both climate and vegetation structure playing
an important role. These limitations have been highlighted by Smith (Smith et al., 2018) where a phase
disagreement in the detection of vegetation senescence was observed and greenness indices estimated a later date
of the end of photosynthesis than that observed from ground‐based measurements of GPP.

This study also observed that the initial phase disagreements between NDVI, LSWI and GPPEC at Ben_Sav
considerably improved with the addition of meteorological variables. The constraining of both NDVI and
LSWI by Tair, Rg and VPD indicates that the addition of meteorological data to fine resolution satellite data
provides a convenient approach to estimating site based GPP. However, in situ data may not always be
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available, thus being a notable limitation in some situations. Nevertheless, these models can be an alternative to
LUE models or terrestrial biosphere models which are often reliant on course resolution meteorological inputs
and provide a challenge in terms of parameterization (Shi et al., 2017). However, LUE models still present
advantages in that while VIs such as NDVI and EVI are highly correlated with the light use efficiency, the
structure of multiple linear regressions compared to LUE models lacks the environmental stress reductions on
LUE, such as temperature and vegetation water stress and the various ways they are integrated into LUE‐based
models (Zhang et al., 2015). Second, regarding the nonlinearity of relationships between GPP, Rg and VPD and
how they are modulated by available water (SWC) within and between seasons, using multilinear regressions
for estimating GPP in this case may oversimplify the estimation of GPP even with the inclusion of meteo-
rological variables.

4.3. Evaluation of LUE‐Based Model Versus GPPEC

GPPMODIS performed reasonably well across the sites in terms of following the temporal patterns of GPPEC,
however there were amplitude differences observed between seasons across the sites. In most cases, GPPMODIS
underestimated GPPEC especially during the wet season at Ben_Sav resulting in the observed large difference in
standard deviation between GPPEC and GPPMODIS during the wet season, while dry season values were generally
within range. This is consistent with other sites where GPPMODIS generally underestimated GPPEC by about 34%
across 15 Fluxnet sites (L. Wang et al., 2017), with strong underestimation also observed in semi‐arid ecosystems
in the Sahel (Tagesson et al., 2017) where about 67% variability of GPP was explained by GPPMODIS. About 60%
of GPPEC variability was explained by GPPMODIS at scrub site in the Mexican highland (Guevara‐Escobar
et al., 2021). These are within range with Ben_Sav and Ben_Kar (68%–70%), while at Mid_Kar (83%), GPPMODIS
performed considerably better.

While the study was able to relate EC estimated GPP with satellite retrieved estimates and find reasonable
agreement between the two data sets over an 8‐day scale, there were several differences and limitations to these
findings. Notably, the mismatch in spatial extents of the EC footprint and the 500 m pixel representing MODIS
GPP product can explain some of the differences in observed amplitude differences in GPP, especially during the
dry season at Mid_Kar. Here, the pixel average of 500 m might be too coarse to compare with tower GPP data
particularly over a site with grazing paddocks. In addition, this coarse resolution can be challenging in detecting
changes in GPP such as sporadic green‐up events where surface vegetation is sparse with a matrix of more than
one vegetation type within the footprint—characterizing much of semi‐arid ecosystems (Chu et al., 2021). In
other cases, challenges can be presented in situations where the MODIS footprint is much larger or smaller than
the flux tower footprint, the VI signal may be made up of different vegetation sections, introducing the likelihood
of different phenology patterns than those captured within the footprint of the EC flux tower.

Limitations regarding the application of the MOD17A2H GPP product have been documented (L. Wang
et al., 2017). Amongst these are that existing errors from input data in the MOD17AH2 product which lead to
estimation inaccuracies originate from FPAR than the meteorological data. These however can be optimized by
using site‐specific data where the product improved to explain 91% of GPP variability in arid and semi‐arid
ecosystems in China (H. Wang et al., 2019). Another issue is that the land cover classification has proved to
have frequent misclassification errors, for example, evergreen needleleaf forests were mistook for savannas while
grasslands were mistook for open shrublands (L. Wang et al., 2017). The maximum light use efficiency term used
in the product was also found to be smaller than the recalculated inferred LUE max for the majority of land cover
types. While the evaluation of MOD17AH2 is based on the assumption that the GPP derived from EC flux tower
measurements are reliable, there are multiple sources of uncertainty associated with EC derived GPP. These
include systematic and random errors associated with instrument precision, calibration and placement as well
turbulent transport and statistical errors relating to footprint heterogeneity (Hollinger & Richardson, 2005;
Loescher et al., 2006). While aggregating NEE from days to seasons reduces some random errors, the procedures
involved in the filtering, filling gaps in the data and the partitioning of NEE into GPP and Re are associated with
additional errors.

5. Conclusion
The greenness‐based VIs were able to track the general patterns of GPPEC across all sites, albeit temporal delays
between GPPEC and all VIs were observed, particularly at Ben_Sav. The inclusion of meteorological variables to

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007728

MALULEKE ET AL. 18 of 22

 21698961, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007728, W
iley O

nline L
ibrary on [01/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



support single VI estimates of GPP proved most effective at Ben_Sav in reducing the temporal gaps between
GPPEC and each VI (especially NDVI and LSWI); while the predictive strength of NDVI was also substantially
improved at Mid_Kar. The least improvement in terms of predictive power with the inclusion of meteorological
variables was observed for EVI across all sites—indicating its suitability for estimating GPP in semi‐arid eco-
systems even without supporting variables. The notable limitation for EVI was a slight temporal delay with
GPPEC for the savanna site. While productivity assessments using a single VI may be more favorable, our results
suggest that the coupling with meteorological variables could be applied to improve single VIs and accurately
detect and characterize productivity transitions especially for NDVI and LSWI. It is this coupling that models
including meteorological variables provided better estimates of GPPEC in terms of standard deviation and cor-
relation when tested across the sites.

The use of a single VI such as EVI has however shown to be suitable for both homogenous vegetation types such
as Nama‐Karoo as well as mixed ecosystems such as the savanna. While multilinear regressions may not be ideal
for the integration of VIs with meteorological variables, the study has demonstrated the potential of site‐based
satellite driven models for scaling up GPP in semi‐arid ecosystems and for the likely use of such models as
potential site‐based GPP gap‐filling strategies during lengthy periods of instrument failure. The applicability of
the MODIS GPP product in these semi‐arid ecosystems was proven to be within phase with EC‐derived GPP
across all sites but differed in amplitude with issues of overestimation and underestimation for wet and dry season
peaks attributed mainly to pixel‐footprint mismatches and BPLUT not in agreement with ecosystem properties.
Figure 9 illustrates some of the limitations of the MODIS GPP product where for sites that are observed to
function differently, are characterized similarly by the product—indicating less variability in cumulative GPP for
the period of interest. These biases are highlighted here to illustrate that while this product provides the necessary
spatial coverage for vegetation assessments, the BPLUT may still be a notable source of uncertainty when
applying this product. This carries significant implications for global vegetation productivity assessments,
especially for semi‐arid ecosystems where in this study the MODIS GPP product has almost underestimated
productivity of these sites by about 50%. In addition, we highlighted the value of in situ meteorological data in
improving model performance—a feature that the MODIS GPP product has not yet achieved.

In addressing the in situ data limitations noted in the study on a continental scale, there is a great need to
establish and maintain a network of validation sites in semi‐arid ecosystems especially due to their growing
influence on the interannual variability of the global carbon cycle. This will allow such work to continue
reducing the uncertainty of modeling productivity in semi‐arid ecosystems. In addition, the relative contribution
of trees versus grasses to the measured NEE will need to be partitioned to understand the phenology and
functional differences between grasses and trees within the footprint of the Savanna site in the aim to explain
some of the lags observed between satellite and EC data. Thus, continuing to study patterns of productivity
through incorporating satellite observations and in situ data will improve the ability of planning and man-
agement to rely on accurate vegetation assessments to understand the varying controlling effect of ecosystem
drivers such as fire, rainfall, incoming radiation and air temperature under varied ecosystem conditions and the
reality of climate change.
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Data Availability Statement
Eddy covariance data for the Benfontein Savanna and Nama‐Karoo sites was used for the analysis of Sentinel‐2
VIs and MODIS GPP product. This EC data (Maluleke & Feig, 2024) is available on SAEON data portal at
https://catalogue.saeon.ac.za/records/10.15493/EFTEON.15012024. Eddy covariance data used for the Mid-
dleburg Karoo site (Brümmer et al., 2024) is under the custodianship of the Thünen Institute Climate‐Smart
Agriculture and is available at https://zenodo.org/records/10670256. The MODIS Gross Primary Productivity
data (Running et al., 2021) is provided by NASA LP DAAC at the USGS EROS Center at https://doi.org/10.
5067/MODIS/MOD17A2H.061. Copernicus Sentinel Data (2023) for Sentinel data was accessed at https://
sentinel.esa.int/web/sentinel/user‐guides/sentinel‐2‐msi/processing‐levels/level‐2. The data analysis workflow
(Maluleke, 2024) for the retrieval of MODIS GPP and Sentinel‐2 data sets on Google Earth Engine, as well as
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the notebooks for the analysis and plotting of figures in R software version 4.2.3 are available at https://zenodo.
org/records/10650562.
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