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Isabel Dorado-Liñán l, Igor Drobyshev m,n, Sophia Etzold a, Patrick Fonti a, Arthur Gessler a,h, 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We examined the legacy effects of 
droughts in deciduous Quercus species. 

• Repetitive droughts resulted significant 
negative legacy effects. 

• Mediterranean oaks were more nega-
tively affected by repetitive droughts. 

• Sites showing positive correlations to 
winter temperature showed no growth 
depression after drought. 

• Growth sensitivity to climate and 
species-specific traits were related to the 
size of legacy effects.  

A R T I C L E  I N F O   

Editor: Elena Paoletti  

Keywords: 
Climate change 
Warming 
Repetitive droughts 
Legacy effects 
Acclimation 
Tree rings 

A B S T R A C T   

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns 
following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, de-
ciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemi-
sphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding 
post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and 
magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought charac-
teristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in 
the period 1940–2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from 
Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 
years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than 
expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger 
in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and 
Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species 
from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature 
showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer 
water balance showed decreased growth. This may indicate that although winter warming favors tree growth 
during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. 
Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how 
growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous 
oak species.   

1. Introduction 

Drought-induced tree mortality is increasing globally, with major 
consequences for the structure and functioning of forests and their 
ecosystem services (Allen et al., 2015; Hammond et al., 2022; Hartmann 
et al., 2022). Abrupt tree mortality during and after droughts can alter 
community composition towards the dominance of drought-tolerant 
tree and shrub species (Batllori et al., 2020; Etzold et al., 2019). In 
temperate regions, deciduous oaks (Quercus spp.) can tolerate relatively 
extreme droughts because of their deep-penetrating root systems and 
strong stomatal control, allowing them to maintain relatively high 
predawn water potentials during drought (Abrams, 1990; Madrigal- 
González et al., 2017). Further, deciduous oaks are usually ring-porous 
species producing large vessels in the early growing season, allowing for 
increased hydraulic conductivity and stomatal conductance (Martínez- 
Sancho et al., 2017; Peters et al., 2023), but such xylem is very 
vulnerable to frost- and drought-induced xylem cavitation (Sperry et al., 
1994). Several recent studies reported a growing dominance of decid-
uous oak species after drought-induced mortality events mainly 
affecting conifers (Galiano et al., 2010; Rigling et al., 2013; Vilà-Cabrera 

et al., 2013), albeit oaks may also experience increased defoliation 
(Michel et al., 2022) and dieback in response to severe dry spells 
(Camarero et al., 2021; Druckenbrod et al., 2019). Since drought- 
stressed trees are vulnerable to secondary pathogens (Haavik et al., 
2015), drought-pathogen interactions can play a critical role in oak tree 
performance (Wood et al., 2018) and post-drought recovery. Perfor-
mance and sensitivity of tree species during post-drought conditions will 
play an important role under future climatic conditions with increased 
frequency of extreme climate events and are predicted to have a lasting 
effect on ecosystem dynamics (Müller and Bahn, 2022) and associated 
changes in carbon storage and cycle (Schwalm et al., 2017; Trugman 
et al., 2018). Therefore, there is an urgent need to understand how 
previously drought-exposed trees would respond to future drought 
events to better mitigate potential adverse effects (Bose et al., 2020; 
Gessler et al., 2020). 

Post-drought growth recovery can be a result of species- or 
population-related response patterns (Kannenberg et al., 2019b; Peltier 
and Ogle, 2019), and persistent functional adjustments during and after 
droughts can induce acclimation to future droughts (Zweifel et al., 
2020). Such an acclimation process is characterized as ecological legacy 
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(Vilonen et al., 2022), which can significantly alter the responses of trees 
even several years after the drought event (Anderegg et al., 2015b; 
Ovenden et al., 2021; Wu et al., 2018). The alteration of tree growth due 
to legacies of past drought could occur through different sets of mech-
anisms (Bose et al., 2022; Marqués et al., 2022; Ogle et al., 2015). For 
example, drought could induce crown dieback (Klesse et al., 2022) or 
damage to water transport system (Anderegg et al., 2015a). The repair of 
damaged organs after drought could occur at the expense of biomass 
growth (Kannenberg et al., 2019b), which could result in negative 
drought legacies on radial growth (Anderegg et al., 2015b; Huang et al., 
2018). The negative legacy effect on growth can endure several years 
depending on post-drought climatic conditions, the magnitude of 
drought-induced damages, and species-specific recovery capacities 
(Ruehr et al., 2019). For example, based on a global analysis of tree-ring 
series, pine species experienced more persistent negative legacy effects 
of drought than oaks (Anderegg et al., 2015b). Furthermore, the 
magnitude of these negative legacy effects was found to be higher in dry 
sites compared to mesic sites. Moreover, Huang et al. (2018) reported 
that negative legacy effects were more pervasive when droughts 
occurred in the dry compared to the wet season. Studying two widely 
distributed deciduous oak species across a latitudinal gradient in 
Europe, Bose et al. (2021b) identified slow recovery to spring droughts 
in Q. petraea but not in Q. robur. The later species even grew better 
during the 2nd and 3rd post-drought years compared to pre-drought 
years, indicating a positive legacy effect. The switch from negative to 
positive legacy effects can occur through changes in tree-to-tree 
competition within a forest stand (Cavin et al., 2013). The changes in 
competition may occur through drought-induced mortality or growth 
decline of drought-sensitive species or individuals favoring the growth 
of drought-tolerant species or individuals capable of taking water from 
deeper soil layers (Ripullone et al., 2020). These findings suggest that 
the magnitude of drought legacy effects vary between drought-tolerant 
and -intolerant species. However, we currently lack a large global-scale 
synthesis on drought tolerant species, especially how their responses 
evolve during the post-drought years and whether they show positive 
legacy effects i.e., higher growth than expected due to droughts. 

Deep-rooted deciduous oaks are widely distributed in dry and mesic 
sites (Abrams, 1990) and considered drought tolerant (Arend et al., 
2011; Dickson and Tomlinson, 1996). In north-eastern America, 
Q. rubra, Q. montana, Q. stellata, and Q. velutina showed little to no- 
legacy effects of droughts (Kannenberg et al., 2019a), though pro-
jections of future oak abundance are reputed to considerably decrease in 
the U.S. (Novick et al., 2022). Those ring-porous species can recover 
quickly by developing new xylem (because they keep only a small 
number of tree rings active and therefore significantly change the 
quality of their hydraulics every year). In contrast, the diffuse-porous 
species need a longer time to repair (if possible at all) drought- 
induced hydraulic damages since they maintain a higher number of 
tree rings in the sapwood area and usually have longer leaf lifespans 
(Zweifel and Sterck, 2018). In the Mediterranean region, Q. pubescens 
showed a progressive decline in resistance to extreme droughts in 
northern Spain (Camarero et al., 2021; González de Andrés et al., 2021), 
while drought-induced growth decline and tree mortality have been 
reported for Q. pubescens, Q. frainetto, and Q. faginea in Southern Italy 
and Eastern Spain (Colangelo et al., 2017; Corcuera et al., 2004; 
Ripullone et al., 2020). Studying a Q. robur population mixed with Pinus 
sylvestris and Picea abies in southern Germany, Zang et al. (2012) re-
ported a faster recovery of Q. robur compared to two other species. This 
result for Q. robur is consistent with those reported by Steckel et al. 
(2020) and Bose et al. (2021b). However, the later study showed a 
weaker recovery potential in Q. petraea than Q. robur. In a mixed-species 
forest, Q. petraea was not significantly affected by droughts but 
benefited from the release of competition through drought-induced 
mortality of neighboring Fagus sylvatica (Cavin et al., 2013). Overall, 
the existing literature on deciduous oaks is primarily based on local to 
regional studies and indicates drought tolerance but also shows their 

vulnerability under extreme drought conditions. This inconsistencies in 
literature need to be addressed by examining the responses at a larger 
spatial scale and considering many oak species. 

We used a network of tree-ring chronologies of deciduous oak species 
from 458 stands covering 21 species and a large part of their distribution 
in North America, Europe, and Asia. Our main objective was to deter-
mine the occurrence, duration, and magnitude of legacy effects on tree 
growth induced by extreme droughts. Specifically, we asked: (i) do 
legacy effects occur in deciduous oaks and at which extent? (ii) are 
legacy effects more prominent in dry than mesic sites irrespective of 
species? (iii) do legacy effects vary by drought seasonality, drought 
repetitiveness and by species, and can species-specific traits explain 
this? and (iv) do legacy effects of extreme droughts in deciduous oaks 
depend on long-term growth-climate sensitivity? We hypothesized that 
post-drought growth legacies are mainly negative, and their absolute 
magnitude peaks one year after drought, particularly in dry sites. 

2. Methods 

2.1. Study area 

The study area spans from 122.03◦ W to 145.85◦E and includes a 
latitudinal band from 32.21◦N to 59.36◦N (Fig. 1), where oak forests are 
located in temperate and sub-tropical (e.g., Mediterranean) ecosystems. 
Across the study sites, the climate varies largely (Salinger, 2005), with 
mean annual temperatures, total annual precipitation sum, and climatic 
water balance (precipitation-potential evapotranspiration, P-PET) for 
the years 1986–2015 ranging between 0.88 and 18.93 ◦C (mean 
9.75 ◦C), 338 and 2133 mm (mean 833 mm), and − 36.28 and 131.0 mm 
(mean 15.08 mm), respectively. While temperatures increased by 
0.85 ◦C during 1986–2015 compared to the period 1956–1985, pre-
cipitation and climatic water balance remained relatively stable. 

2.2. Ring width data 

We compiled tree-ring width data (RW) of 21 deciduous Quercus 
species from 12,744 trees located in 458 sites in North America, Europe, 
and Eastern Asia (Fig. 1), covering a period approximately from 1940 to 
2016. The RW data were obtained from the International Tree-Ring Data 
Bank (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/ 
datasets/tree-ring) in November 2022 (n = 117), from Bose et al. 
(2021b) (n = 106), and from additional sites provided by the authors (n 
= 239). Based on the geographic distribution (Fig. 1) and their climatic 
envelope (Fig. SM1), the 21 oak species were grouped as North Amer-
ican oaks, temperate European oaks, Mediterranean oaks, and Mongo-
lian oaks (Table SM1). To reduce trends related to tree age and size, we 
detrended the raw ring-width (RW) series using a 30-year cubic 
smoothing spline with a 50 % frequency cut-off (Cook and Kairiukstis, 
1990). This detrending method retains 99 % of the variance at 5 years 
and 50 % of the variance at 15 years (Cook and Kairiukstis, 1990). We 
chose cubic spline method due to difference in age of the sampled trees. 
Although removing the effects of past forest management on tree-ring 
width chronologies is difficult with existing method, Esper et al. 
(2012) showed minor effects of harvesting on the climate-growth re-
lationships in temperate forests. We then averaged the individual level 
residual series of ring-width indices (RWI) to obtain site-level standard 
chronologies. 

2.3. Climate data and identification of droughts 

We obtained site-specific climate data from the CHELSA V1.2 
timeseries (Climatologies at high resolution for the earth's land surface 
areas) for each site using the latitude and longitude coordinates (Karger 
et al., 2017). Monthly precipitation sums and monthly mean, maximum, 
and minimum air temperatures from January to December were ob-
tained for the period 1940–2016. We then calculated the climatic water 
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balance (CWB) at monthly, seasonal, and annual scales. The CWB rep-
resents precipitation minus potential evapotranspiration (PET). The PET 
was obtained using the Thornthwaite function of the R package SPEI 
(Begueria and Vicente-Serrano, 2013). Seasonal climatic variables were 
computed by averaging (temperature) or summing (precipitation) 
monthly values (winter: December–February; spring: March–May; 
summer: June–August; and autumn: September–November). We iden-
tified extreme drought events at annual as well as at three seasonal 
scales (i.e., previous winter (December–February), current spring 
(March–May), and current summer (June–August)). CWB measures ab-
solute climate water balance and were chosen to characterize drought as 
it better captures the absolute water availability (Zang et al., 2019) and 
was also used by previous studies (Anderegg et al., 2015b; Bose et al., 
2021b). CWB that exceeded 1.5 standard deviations towards negative 
values were used to define an extreme drought “event”. The list of years 
when the extreme drought events occurred at annual and/or seasonal 
scales is presented in Table SM2 in the supplementary materials. We 
characterized each of those identified drought as (i) whether it has a 
repetitive drought (i.e., repetitive within the 5-year period post of a 
drought), termed as “has repetitive drought”, (ii) whether it is a repetitive 
drought termed as “is repetitive drought” and (iii) whether there were no 
other droughts within the 5-year post of the drought event, termed as a 
“single drought”. We characterized those three variables as binary vari-
ables (i.e., 0 or 1). The variable “is repetitive drought” was not significant 
for any of the analyses performed (see below), therefore excluded from 
the analyses. The variable “single drought” was correlated with “has re-
petitive drought” and not considered in the final analyses. 

2.4. Quantification of legacy effects 

We quantified the legacy effects of droughts as a departure of 
observed tree growth (RWI) from expected growth (based on the rela-
tionship between RWIs and climate) (Anderegg et al., 2015b). Consid-
ering the availability of climatic information from 1940 to 2016, we 
quantified legacy effects of all droughts occurred in this period. For each 
site, we first identified the most important climatic variable (i.e., CWB) 
based on the linear relationship between growth indices (RWI) and 
CWB. For that purpose, we considered monthly, seasonal, and annual 
CWB from previous year to current year growing season. For each site, 
the most important climatic variable (i.e., CWB) was then used to predict 
tree growth after each drought event. The difference between the 
observed and the predicted post-drought growth indices was used to 
determine the legacy effect. We determined legacy effects for a five-year 
period after the drought event. We compared the trend of observed and 
predicted growth irrespective of species (Fig. SM2) as well as separately 
for major species (Fig. SM3). 

2.5. Statistical analyses 

We used linear-mixed effect models (Zuur et al., 2009) for detecting 
the effects of predictor variables on legacy effects. The values of the 
legacy effects were standardized for better quantifying the effect size of 
predictor variables and comparing effect sizes across predictor variables. 
The modelling was performed using the function lme of the R package 
nlme (Pinheiro et al., 2014; Pinheiro and Bates, 2000; R Development 
Core Team, 2022). For predictor variables, we considered site types 
(dry, moderate, and mesic), regional species groups (Mongolian oak, 
temperate European oaks, Mediterranean oaks and North American 
oaks), elevation, latitude, longitude, drought intensity, drought types (i. 
e., “has repetitive drought”), site-specific growth sensitivity types (sensi-
tive and non-sensitive) and years since droughts. We considered the 
additive and two-way interactions of those variables. We developed 
statistical models incorporating different combinations of additive and 
interaction effects of the variables mentioned above and selected the 
best model based on the Akaike Information Criterion corrected for 
small sample sizes (AICc) (Mazerolle, 2011). 

Similar to Anderegg et al. (2015b), site type was assigned by long- 
term precipitation averages including dry, moderate and mesic sites 
associated with total annual precipitation (TAP) sums <600 mm, 
601–999 mm, and > 1000 mm, respectively. The sites were also cate-
gorized as sensitive (i.e., when tree radial growth correlates significantly 
with any CWB seasonal, monthly, or annual i.e., by p < 0.05) and non- 
sensitive sites. Multiple droughts nested within a site and multiple sites 
nested within a species group were considered as random effect 
variables. 

For species-specific analysis, we merged moderate and mesic sites as 
the results from earlier analyses showed no difference between them. 
The analysis was performed separately for the seven species (Q. petraea, 
Q. robur, Q. faginea, Q. mongolica, Q. macrocarpa, Q. alba, and Q. rubra) 
with at least 20 sites, including the same model structure as before. 

We also examined whether there was a significant relationship be-
tween species-specific drought legacy effects and selected functional 
traits representing the leaf and wood economics spectra (Chave et al., 
2009; Wright et al., 2004) including maximum height, specific leaf area 
(SLA), mass-based leaf N concentration, sapwood density, and the xylem 
tension causing 50 % loss of hydraulic conductivity (P50). These species- 
specific traits were obtained from Liu et al. (2019). We also considered 
relationships with species shade and drought tolerance indices devel-
oped by Niinemets and Valladares (2006). The functional traits data 
were not available for all species. Therefore, the analyses were limited to 
only those species (i.e., Q. alba, Q. frainetto, Q. petraea, Q. robur, Q. rubra, 
and Q. stellata) where the data was available. For each species, we 
summed the legacy effect values of 1–5-post drought years and termed 
as “integrated legacy effects” similar to Anderegg et al. (2015b). We then 
used linear regression to detect relationship between integrated legacy 
effects and species-specific functional traits. 

Fig. 1. Location of oak sites from where tree-ring width data was collected. Shaded areas represent the distribution of deciduous oak species across the North-
ern Hemisphere. 

A.K. Bose et al.                                                                                                                                                                                                                                  



Science of the Total Environment 926 (2024) 172049

5

For detecting the role of drought timing or seasonality (Bose et al., 
2021b; D'Orangeville et al., 2018; Huang et al., 2018), we first quanti-
fied the legacy effects of all seasonal droughts (Table SM2) occurred in 
the study period (1940–2016) following the same methods explained 
above. We considered three seasons including the previous winter, 
current spring, and current summer. The legacy effects were then 
modelled as a function of site types, seasons, regional species groups, 
and years since droughts and the same random effect structure 
(explained earlier). 

3. Results 

Repetitive droughts caused significant negative legacy effects (i.e., 

lower growth than expected) in radial growth in dry (TAP 350–598 mm) 
and mesic sites (TAP >1000 mm) but not in moderate sites (TAP 
600–1000 mm) (Table SM3 and Fig. 2A). The negative legacy effects of 
repetitive droughts were not fully recovered in dry sites and the size of 
negative legacy effects was larger in dry sites compared to other mesic 
sites but not initial two-years after droughts (Fig. 2A). However, nega-
tive legacy effects turned to positive (i.e., higher growth than expected) 
both in mesic and moderate sites during 3–5-years after the non- 
repetitive extreme droughts. Contrary to moderate and mesic sites, the 
initial non-significant legacy effects turned to negative legacy effects in 
dry sites from the 3rd year after the non-repetitive extreme droughts. 

We detected significant negative effect of repetitive droughts irre-
spective of site-specific growth-climate sensitivity (Table SM4). 

Fig. 2. Mean legacy effects of droughts for 1 to 5 years (x axes) under the presence and absence of repetitive drought events. (A) Legacy effects across dry (annual 
precipitation <600 mm), moderate (600–1000 mm), and mesic sites (>1000 mm), (B) Legacy effects observed across sensitive (tree growth significantly correlated 
with the climatic water balance) and non-sensitive sites, and (C) Legacy effects across four species groups based on regions of distribution. The red dashed line 
indicates no difference between observed and predicted growth and shaded areas in all panels represent the mean ± standard error. 
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Significant negative legacy effects were observed only in sensitive sites 
(where growth significantly correlated with CWB), and that occurred 
only in the first year after the drought event (Fig. 2B and Table SM4). 
The negative legacy effects then turned to positive and stayed positive 
from 2 to 5 years after the droughts. 

Repetitive droughts caused significant negative legacy effects in 
Mediterranean oaks and such negative legacy effects were not fully 
recovered during 1–5-year post-drought period (Fig. 2C). However, non- 
repetitive droughts resulted significant positive legacy effects in Medi-
terranean oaks and not in other species group (Fig. 2C). Negative legacy 
effects were found in temperate European, North American, and Mon-
golian oaks, but only in the 1st year after the extreme droughts (Fig. 2C). 
The frequency of negative legacy effects was lower compared to positive 
legacy effects except in the first year after the drought event (Fig. SM4). 

Species-specific analysis revealed that repetitive droughts had sig-
nificant effects in determining legacy effects of Q. petraea and Q, faginea 
but not of other species (Fig. 3). Q. petraea, Q. macrocarpa, and Q, faginea 

could not fully recover the growth in dry sites after repetitive droughts 
for the entire 1–5 years post-drought period. However, we observed 
positive legacy effects in mesic sites for Q. petraea, and Q. macrocarpa 
(Fig. 3). Significant difference between mesic and dry sites were 
observed only for Q. macrocarpa. The differences between mesic and dry 
sites were tested only for four species (Q. macrocarpa, Q. petraea, 
Q. robur, and Q. faginea) because of insufficient number of observations 
for other species. Significant negative legacy effects that occurred during 
1–2 years after the extreme droughts were fully recovered for Q. faginea 
and Q. rubra. We did not observe significant changes in legacy effects 
over 1–5 years after the drought event for Q. robur and Q. mongolica. The 
magnitude of positive legacy effects was higher for Q. faginea as 
compared to other species after non-repetitive droughts (Fig. 3). When 
we integrated the legacy effects of 1–5 years by species, we detected 
significant relationship between integrated legacy effects and P50, SLA, 
and nitrogen mass, although the species-specific trait data was available 
for only six oak species (Fig. 4). 

Fig. 3. Mean legacy effects of repetitive and non-repetitive droughts for different deciduous oak species. The analyses were performed separately for each species 
with at least 20 observations (i.e., number of sites). All sites of Q. alba, Q. rubra, and Q. mongolica were from mesic regions and therefore the effect of site type was not 
considered in the analysis for those three species. Legacy effects were quantified as the difference between observed and predicted growth (unitless index) after 
extreme climatic drought. The red dashed line indicates no difference between observed and predicted growth, and shaded areas in all panels represent the mean ±
standard error. 
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We found a strong positive relationship between the legacy effect 
and growth sensitivity to past-year winter temperature (Fig. 5A) and a 
negative relationship between the legacy effect and growth sensitivity to 
past-year summer water balance (Fig. 5B). These analyses revealed a 
switch from positive to negative legacy effects in dry sites while negative 
to positive legacy effects in mesic sites over the 5 years after the extreme 
droughts (Fig. 5A). This switch has also been identified in Mediterra-
nean oaks which showed negative legacy effects during the first year 
after the extreme droughts followed by positive legacy effects during 

later years (Fig. 5B). The effects of mean annual temperature on legacy 
effects also switched from negative to positive during 1–5 years after the 
extreme droughts (Fig. SM5). 

In mesic sites, significant negative legacy effects of winter droughts 
were found and lasted 1–4 years after the drought event while signifi-
cant positive legacy effects of winter droughts were found in dry sites 
(Fig. 6A). Contrary to winter droughts, significant negative legacy ef-
fects of spring and summer droughts occurred in dry sites and lasted 1–5 
years after the droughts. The size of negative legacy effects of winter 

Fig. 4. Relationship between integrated legacy effects (integrated of legacies from 1 to 5 years after drought) and species-specific traits. In plot (A), the P50 units are 
MPa and the P50 data was available for Q. alba, Q. frainetto, Q. petraea, Q. robur, Q. rubra, and Q. stellata. The data for specific leaf area and N concentration were 
available for Q. alba, Q. faginea, Q. petraea, Q. robur, Q. stellata, and Q. velutina. Shaded areas in all panels represent the mean ± standard error. 

Fig. 5. Mean drought legacies during 1–5-year following extreme droughts as (A) a function of site type and growth-climate sensitivity to winter temperature and as 
(B) a function of regional species group and growth-climate sensitivity to previous summer climatic water balance (CWB). RWI is the ring-width index. 
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droughts was larger in North American oaks compared to the other 
species groups (Fig. 6B). We observed non-significant differences among 
temperate European, Mediterranean, and Mongolian oaks when 
responding to winter droughts. Temperate European oaks were more 
negatively affected by spring droughts as the negative legacy effects 
were larger compared to other species groups. Spring droughts induced 
positive legacy effects in Mongolian oaks. Contrary to spring droughts, 
Mongolian oaks were more negatively affected by summer droughts 
compared to other species groups (Fig. 6B). 

4. Discussion 

While prior research has assessed the enduring impacts of severe 
droughts on tree species' radial growth at various geographical levels 
(Anderegg et al., 2015b; Bose et al., 2021b; Huang et al., 2018; Kan-
nenberg et al., 2019a; Peltier et al., 2016; Wu et al., 2018), our study 
provides a first empirical confirmation for deciduous oak species, typi-
cally seen as resilient species to extreme drought events. We acknowl-
edge that the spatial coverage of our data set is limited largely to 
temperate and Mediterranean biomes, although it encompasses sub-
stantial variation in climatic conditions within these regions. We showed 
that the magnitude and the direction (positive or negative) of legacy 
effects in deciduous oaks largely depend on species-specific functional 
traits, drought repetitiveness, drought seasonality, growth sensitivity to 

the previous year climate, and site type related to long-term precipita-
tion averages. Our results revealed significantly different post-drought 
growth trajectories between oak trees growing in mesic vs dry sites. 
We detected a strong legacy effect of droughts especially when occurred 
in successive years on tree growth of deciduous oaks. The legacy effects 
occurred even when climatic conditions return to normal. Given that 
tree growth is a central component of carbon storage often correlated 
with productivity and that oaks are a major (forest) component, these 
legacy effects have the potential to contribute to the inter-annual vari-
ability of ecosystem-level carbon cycling and long-term carbon storage. 

Negative legacy effects were more pronounced in dry sites where the 
annual precipitation was <600 mm compared to mesic sites (TAP 
>1000 mm) and when trees experienced repetitive droughts. Although 
several studies in the past identified the roles of repetitive droughts (e.g., 
Anderegg et al., 2020; Serra-Maluquer et al., 2018), our study is the first 
effort that examined the roles of repetitive droughts for determining the 
legacy effects of extreme droughts. We indeed found significant negative 
legacy effects of repetitive droughts especially in dry sites and in Med-
iterranean oaks. Compared to Mediterranean oaks (e.g., Q. faginea) other 
species were not significantly vulnerable to repetitive droughts as 
showed by our species-species analyses (Fig. 3). It is important to 
mention that approximately 20 % of our identified droughts were re-
petitive, therefore not all sites and species experienced repetitive 
droughts (Table SM6). 

Fig. 6. Mean legacy effects of seasonal droughts across (A) site type and (B) regional species groups. Three seasons were considered including previous winter 
(previous year December – current February), current spring (March–May) and current summer (June–August). Legacy effects were quantified as the difference 
between observed and predicted growth (unitless index) after extreme climatic drought. Red dashed line indicates no-difference between observed and predicted 
growth (RWI, ring-width index) and shaded areas in all panels represent the mean ± standard error. 
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Although the size of negative legacy effects was larger in mesic sites 
during the 1st post-drought year a faster recovery or even positive leg-
acies were observed in mesic sites compared to dry sites. Overall, the 
frequencies of positive legacy effects were higher during 1–5 years after 
the extreme droughts; however, the size of the positive legacy effects 
varied across species, drought seasonality, drought repetitiveness, and 
site-specific growth sensitivity to climatic variables. The positive legacy 
effects were mostly observed in the Mediterranean and temperate Eu-
ropean oak species after non-repetitive droughts (Fig. 2). In the Medi-
terranean, deep root systems, thicker leaves, and deciduousness enable 
deciduous oaks to maintain relatively high pre-dawn water potentials in 
leaves and high water-use efficiency during droughts (Abrams, 1990; 
Granda et al., 2018). For example, Q. pubescens growing in Southern 
France under extremely dry conditions showed early leaf senescence to 
avoid cell damage and maintained water potentials above critical 
thresholds (Damesin and Rambal, 1995). A similar finding was observed 
for Q. petraea at a dry site where oaks maintained water transport, 
photosynthesis and growth by using stem water reserves (Neuwirth 
et al., 2021). The greater frequencies of positive legacy effects of 
extreme droughts in deciduous oaks might have resulted from a release 
in competition among trees within a forest stand, where mortality or 
growth decline of drought-sensitive species may favor the growth of 
deep-rooted deciduous oak species (Ripullone et al., 2020). In addition, 
dominant and co-dominant trees were selected for our study and these 
larger trees could also benefit from the growth decline of the 
companion-suppressed neighboring trees. In the UK, Cavin et al. (2013) 
reported that Q. petraea increased its growth rate by 20 % in the period 
immediately following a drought, which was due to the release of 
competition as a result of growth decline and mortality of the competing 
F. sylvatica. The decline in competitiveness of companion species over 
deciduous oaks during and after droughts has also been identified by 
other studies in recent years (e.g., Dorado-Liñán et al., 2017; Jourdan 
et al., 2020; Rubio-Cuadrado et al., 2018; Scharnweber et al., 2011; 
Weber et al., 2008). 

Under xeric conditions, deciduous oaks maintained higher osmolyte 
concentrations and reduced stomatal size compared to evergreens to 
avoid tissue loss. While studying 12 oak species, Ramírez-Valiente et al. 
(2020) showed that growth was not reduced even when deciduous oaks 
lowered hydraulic conductivity and leaf size under drought. This is also 
in line with findings of the European-wide crown conditions surveys 
under ICP Forests revealing that temperate and Mediterranean oaks 
species showed the smallest (or even no significant) increase in mean 
defoliation from 2002 to 2021 among all inspected tree species (Michel 
et al., 2022). Ring-porous oak species transport the main share of water 
in the outermost ring allowing them to recover quickly from drought 
damage by developing new xylem tissues in the following year after 
drought (Zweifel and Sterck, 2018). In contrast, in mixed species stands, 
diffuse-porous species, which use multiple rings for effective water 
transport, need several years to fully replace damaged vessels (Alla and 
Camarero, 2012). We also observed compensatory growth responses (i. 
e., positive legacy effects) after growth decline, which is consistent with 
previous studies (Anderegg et al., 2015b; Bose et al., 2021b; Huang 
et al., 2018). The transition from negative to positive legacy effects may 
occur from drought-induced tree mortality, which relieves surviving 
individuals from competition (Hajek et al., 2022). This particular posi-
tive growth response can, however, also be a physiological reaction of 
trees, given the higher amount of ray parenchyma tissues (and therefore 
xylem non-structural carbohydrates) of angiosperms as compared to 
gymnosperms (Morris et al., 2016), to compensate for losses during 
periods of stress (Gessler et al., 2020; Trugman et al., 2018). 

Our analyses have shown that the legacy effects of extreme droughts 
observed for dry and mesic sites and across regional-species groups 
depend on the growth-climate sensitivity. This relationship is shown 
when we relate the legacy effects with growth-climate sensitivity for 
previous winter temperature and previous summer water balance 
(Fig. 6). Anderegg et al. (2015b) also observed a direct link between the 

magnitudes of legacy effects and growth-climate sensitivity in the semi- 
arid regions of the northern hemisphere. In our study, higher growth 
sensitivity to winter temperature was positively related to the size of 
legacy effects, indicating that future warming in winter will favor the 
growth of trees (even with droughts). In contrast, the correlation coef-
ficient of growth with previous summer CWB was negatively associated 
with the size of legacy effects, which may indicate that higher precipi-
tation in previous summer can predispose oak trees to more negative 
growth responses to extreme droughts in current summer. This can be 
interpreted as a memory effect due to structural overshoot, i.e., the 
development of high shoot-to-root ratios in response to favourable 
climate conditions, which could predispose to drought damage (Jump 
et al., 2017; Zweifel et al., 2020). Comparable structural overshoot due 
to high early spring water availability and consequently increased 
drought susceptibility in the summer of the same year has been observed 
for F. sylvatica (Leuschner, 2020) and for Q. ilex (Misson et al., 2010). 

Seasonality of drought occurrence (D'Orangeville et al., 2018; Huang 
et al., 2018) was also important in determining the size and temporal 
patterns of legacy effects in deciduous oak species. The drought that 
occurred in previous winter induced negative legacy effects in mesic 
sites but zero to positive legacy effects in dry sites. Oak trees growing in 
relatively mesic sites are probably taller and associated with a faster 
growth tendency which may require higher water availability during the 
winter compared to slow-growing, shorter trees growing in dry sites 
(Harvey et al., 2020). The temperate European oak species group is 
associated with Q. robur and Q. petraea and was sensitive to spring 
droughts which have also been reported by Vanhellemont et al. (2019) 
and Bose et al. (2021b). Although Mediterranean and North American 
oaks were not significantly different from temperate European oaks in 
terms of their responses to spring droughts, the size of negative legacy 
effects was larger for temperate European oaks indicating their vulner-
ability to drought damage. In contrast to these species spring droughts 
increased the growth of Mongolian oaks resulting in positive legacies. 
This difference may be related to the wetter summers experienced by 
Mongolian oaks in eastern Asia and related to the monsoon. 

Despite spatial variations among or even within bioclimatic regions, 
we found clear differences in drought legacy effects among regional 
species groups. This indicates that regional climatic conditions 
(Fig. SM1), species traits, and possible local adaptation of oak pop-
ulations (cf. Du et al., 2020) could play an important role in determining 
the type (positive or negative) and magnitude of legacy effects. Among 
seven species, only Q. petraea, Q. faginea and Q. macrocarpa from dry 
sites did not fully recover from the negative legacy effects after repeti-
tive droughts over the 1–5 years post-drought period. The higher 
sensitivity of Q. petraea to extreme droughts has also been observed in 
earlier studies (Bose et al., 2021b; Camarero et al., 2021; Cochard et al., 
1992). 

The P50 and SLA were significantly associated with the size of legacy 
effects, although data was available for only six species. Our analyses 
showed that oak species associated with higher P50 showed lower leg-
acy effects of extreme droughts. These results may indicate that the 
repair of damaged organs including the water transport system and leaf 
area after drought occurred at the expense of radial growth in oaks from 
more mesic sites. Greater damage to those tree organs might have 
stagnated the growth of deciduous oaks and resulted in negative legacy 
effects of extreme droughts as reported by Anderegg et al. (2015b). We 
also found that higher N concentration in leaf biomass was positively 
associated with legacy effects indicating that higher N in leaf biomass 
can foster the recovery process by enhancing photosynthesis rate and 
carbon uptake and can even result in positive legacy effects after 
drought. However, Ouyang et al. (2023) recently reported that higher 
soil N before drought could predispose Q. petraea seedlings to drought- 
induced mortality as N promotes disproportionally higher above-ground 
biomass (i.e., structural overshoot) making seedlings vulnerable to hy-
draulic failure (Gessler et al., 2017). In the present study, it is evident 
that larger oak trees are benefiting from higher leaf N during the post- 
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drought recovery phases, but future research should investigate long- 
term relationships between post-drought resilience and nutrient use 
efficiency by trees (e.g., Wang et al., 2023). 

Tree-ring based studies are biased by design towards trees that sur-
vived droughts (Nehrbass-Ahles et al., 2014). Stand-level analysis could 
provide additional insights on whether and how legacy effects vary 
across trees of different sizes, stand structures, and located in pure or 
mixed stands (Au et al., 2022; Teets et al., 2018; Weigel et al., 2023) and 
whether droughts disproportionately lower the growth of smaller trees 
while benefiting the growth of their larger counterparts or vice versa 
(Bose et al., 2021a; Forrester, 2019). Long-term monitored soil water 
information could improve the quantification of drought indices and 
identification of extreme drought years (Meusburger et al., 2022) and 
could provide additional insights into whether deciduous oaks are 
indeed utilizing water from deep soil layers during and after drought 
events (Ripullone et al., 2020). In addition, how drought-pathogen in-
teractions influence drought impacts and recovery in deciduous oaks 
needs to be included as they have a considerable potential to modify 
legacy effects (Haavik et al., 2015). 

Considering the increased frequency of extreme droughts in Europe 
(Spinoni et al., 2018) and elsewhere in the world (Spinoni et al., 2014), 
our results provide novel insights that repetitive droughts can signifi-
cantly enlarge negative legacy effects (i.e., significantly lowering the 
radial growth than expected) in deciduous oak species which are 
considered tolerant to extreme drought events. These results have 
important implications for future ecosystem-scale drought resilience 
and carbon balance as deciduous oaks are often suggested to mix with 
drought sensitive species for increasing the ecosystem-level resistance 
and resilience to droughts (Steckel et al., 2020). However, when drought 
has not been occurred in successive years, oak trees showed strong re-
covery potential especially in mesic sites. In addition, not all species of 
deciduous oaks were affected by repetitive droughts (Fig. 3). Therefore, 
site conditions and selection of oak species is crucial for mixed-species 
plantation. For example, Q. robur was not affected by repetitive 
droughts and even showed positive legacy effects after the droughts. 

Overall, our results showed that deciduous oak species have a strong 
recovery potential after drought events but not when drought occurs in 
successive years. Recovery trajectories over time since drought plausibly 
vary between dry and mesic sites. The switch from negative to positive 
legacy effects occurred in a shorter time in mesic sites compared to dry 
sites and was dependent upon mean annual temperature and climate- 
growth sensitivity. The legacy effects lasted longer in dry and climati-
cally non-sensitive sites. However, dry sites were not sensitive to winter 
droughts but to spring or summer droughts. This indicates that in 
addition to site aridity drought seasonality determines the size and 
prevalence of legacy effects of extreme droughts in deciduous oak 
species. 
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