Sweet Sorghum, a Sustainable Crop for Energy Production in Europe

Results of 10 Years Experiments 1985 - 1995

EEC Contract AIR Ref. CT 920041

Final Report

Scientific Leader: Dr. N. El Bassam

Scientific Evaluation: Dr. N. El Bassam Dr. K. Jakob Bundosforschungsenstalt für Landwirtschaft Braunschweig-Völkenrode (FAL) ZENTRALBÜCHEREI 98/334

Institute of Crop Science Federal Agricultural Research Centre (FAL) Braunschweig, Germany 1997

F 3299

CONTENTS

1.	SUMMARY AND CONCLUSIONS 3
2.	INTRODUCTION 7
3.	OBJECTIVES 8
4.	MATERIALS AND METHODS94.1 Physical Measurements94.1.1 Soil physical analysis94.1.2 Meteorological data collection124.2 Genotype Screening144.3 Productivity Trials154.3.1 Species and cultivar154.3.2 Nitrogen treatments164.3.4 Biological measurements164.3.5 Chemical analysis164.4 Database Collection17
5.	RESULTS.185.1 Results of Genotype Screening.185.1.1 Experimental Year 1992.185.1.2 Experimental Year 1993.225.2 Distribution Frequencies for 1992 - 1995.235.3 Results of Production Trials.355.4 Results of Database Collection.395.5 Physiological Measurements435.6 Sugar Contents and Sugar Distribution.45
6.	DISCUSSION
7.	BIBLIOGRAPHY
8. 9.	ANNEX 1 ANNEX 2
10.	ANNEX 3

1. Summary and Conclusions

Title: Sweet Sorghum, a Sustainable Crop for Energy Production in Europe.

Scientific leader: Dr. N. El Bassam

Scientific evaluation: Dr. N. El Bassam and Dr. K. Jakob.

The objectives of the contribution from the Institute of Crop Science of the Federal Agricultural Research Centre (FAL) as an associated proposer (07) were defined within the activities of the actions of the coordinator (01) and focused on the following topics: assist in improvement of the potential and actual productivity model by common experiments focused on actual data; improvement on optimisation of the advantages of sweet sorghum, mainly optimisation of the input nitrogen; adaptation to low temperature which limits productivity and geographical extension; and constitution and improvement of potential and actual productivity by database exploitation.

The specific objectives can be summarised as follows: determination of aerial dry matter evolution and distribution in different organs during the whole crop cycle - under optimal and non-limiting nitrogen and weather supply conditions; determination of the relationship between dry matter and the rate of intercepted radiation; determination of sugar accumulation in different growth stages and partitioning in aerial organs: stems, leaves and panicles; to supply information in order to verify the productivity model under optimum conditions which relates the aerial biomass to the quantity of interrupted PAR (Photosynthetic Active Radiation) in the given climatic region; and to test different genotypes to evaluate their aptitude to produce total biomass, sugar and ethanol at this latitude and to increase the genetic variation.

The experiments included productivity investigations, genotype trials and database collection, evaluation and documentation. The productivity trials were conducted with three nitrogen levels (50, 150 and 200 kg N/ha). The harvesting was carried out at several growth stages (interval harvesting) and various measurements were done to be included in the productivity model, i.e. aerial biomass (total, leaf, stem and panicle), leaf area, leaf area index and sugar contents.

The number of genotypes (varieties, lines and hybrids) in the genotype trials varied each year. They were tested for their total biomass, sugar contents, sugar fractions and sugar yield.

The database collection, evaluation and documentation includes meanwhile 1350 accessions of sweet sorghum examined in field trials during the last 10 years (1985 - 1995).

Meteorological measurements such as air and soil temperature, rainfall, potential evaporation and incident solar radiation were conducted regularly. The main characteristics of the investigation site are:

Location: Braunschweig, F.R. Germany

Latitude: 52° 17' 35" n.

Longitude: 10° 26' 55" e.

Altitude: 81 m

Temperature: 8.7 °C annual mean

Precipitation: 617 mm/y

Soil: loamy sand

The results achieved in this project and consequences for further research may be summarised as follows:

- The major accumulation of dry matter took place in the period of late July to mid October and the sugar accumulation from late August to early November.
- The biomass growth rate was determined in periods in which the temperature was higher than 10 °C and the most productive growth stage has been ascertained when temperatures reached 17 °C and higher.
- There was nearly linear correlation between aerial dry matter accumulation and the cumulative values of Photosynthetic Active Radiation (PAR).
- The Leaf Area Index (LAI) could be considered as an adequate indicator to predict the growth rate of sweet sorghum crops. A significant correlation could be established between growth rate and LAI.
- Temperature is by far the most deciding and critical growth factor of all climatic parameters.

- The sugar concentration within the stalk seems to be more or less uniformly distributed within the whole length of the stalk. The concentration in a cross-section indicated that the highest sugar concentration was found directly interior to the thin outer layer and decreased again towards the center of the stalk.
- The application of the productivity model for sweet sorghum might be modified to include the sugar accumulation rate, as the sugar accumulation in stems is affected by the environment as well as by the genotype.
- The theoretical ethanol yield can be calculated from the formula:

Total sugar content (%) in fresh matter (FM) x 6.5 (conversion factor) x 0.85 (process efficiency) x total biomass (t FM/ha).

The best genotypes could produce up to 6000 l ethanol/ha.

- The influence of the different nitrogen levels was not significant. It seems that the additional mineralisation of soil nitrogen and the atmospheric N-deposition were high enough to elevate the effect of nitrogen mineral fertilisation. Aside from these aspects, the results reflect the fact that sweet sorghum is one of the best C4 crops concerning nitrogen utilisation efficiency.
- It also seems that at higher latitudes a total biomass of about 20 tons dry matter per hectare and 10 tons sugar per hectare are possible using adequate genotypes, but there was a large variation in the results of most genotypes concerning the biomass as well as sugar production within the same genotype in different years. Under common agricultural practice the following figures could be expected: Fresh matter yield 60-80 t/ha, dry matter yield 12-16 t/ha, sugar content 6-8% in FM and sugar yield 6-8 t/ha.
- The entire evaluation data from field trials which have been conducted on 1350 genotypes during the period 1985 1995 are given in annex 3. The data is available from the Institute of Crop Science (FAL), along with seeds in small quantities which could be supplied to interested institutions. The following table summarises these results. It should also be mentioned that for the same genotypes in different years of evaluation, in some cases, significant variation in the results was observed.

		Distribution	Frequency	· · · · · · · · · · · · · · · · · · ·
Fresh matter yield (t/ha)	0-40	40-80	80-100	> 100
frequency per class (%)	19.1%	53.2%	16.7%	11.0%
total number per class	244	681	214	141
Dry matter yield (t/ha)	0-8	8-16	16-24	> 24
frequency per class (%)	9.6%	48.8%	33.7%	7.9%
total number per class	122	623	430	101
Total sugar content (%)	0-4	4-8	8-10	> 10
frequency per class (%)	17.3%	65.7%	14.1%	2.9%
total number per class	195	739	158	33
Sugar yield (t/ha)	0-4	4-6	6-8	> 8
frequency per class (%)	57.9%	28.1%	11.3%	2.7%
total number per class	651	316	127	30

- It may also be concluded that the sweet sorghum genotypes which have resulted from KWS breeding activities are more suitable for cultivation in Middle-Europe than the other accessions tested from world assortments.
- The results of the interaction environment x genotypes indicated that most genotypes available could not compensate for changes in the climate in different years, i.e. the buffer capacity of the genotype is still not high enough.
- The major problem for a wide introduction of sweet sorghum in Middle and Northern Europe is the insufficient cold tolerance in the early growth stages, so that several weeks after sowing, no considerable growth takes place, which may lead to soil erosion and increased weed growth.
- Further activities to develop cultivars with higher adaptability and stability features for higher latitudes (northern parts of Europe) are therefore necessary. It would be strongly advised to put more emphasis on the breeding sector of sweet sorghum to improve the agronomic features with higher stability and adaptability features. Cold tolerance, lodging resistance, high yield potential and high sugar accumulation rates are further objectives of sweet sorghum breeding work for higher latitudes.

• The large scale cultivation of sweet sorghum is affected by several major obstacles. Crudeness and inefficiency of harvesting and processing machinery, as well as a short harvesting period due to the perishable nature of the crop and a rapid loss of sucrose in the stalk between harvest and juice extraction. These bottlenecks hamper a rapid introduction of this crop into the common agricultural system. These facts should be taken into consideration in the future research and development activities.

2. Introduction

. .

The genus Sorghum is in the sub-tribe Sorghastrae of the tribe Andropogoneae. Bicolor is the least specialised race of the five basic races of the sorghums, classified as subspecies bicolor. Now sporadically cultivated across the African savanna and in South and Southeast Asia, it includes modern sudan grass, sweet sorghum and broomcorn as sub-races (Anderlei, 1985; ICRISAT, 1985; Jvanjukovic, 1981; Mechelke, 1986).

It is a C4 plant species with high photosynthetic capacity. Compared with other species with high biomass yield, sweet sorghum has one of the highest dry matter accumulation rates on a daily basis. The traditional farmers in Africa and Asia grow *Sorghum bicolor* for multiple uses. Besides grain, the stem is used for fodder, fuel, rooting and fencing. Reports from developing countries indicate a decreasing of area under sorghum cultivation because of its poor demand compared to other crops such as rice and wheat. Alternate uses of sorghum in these countries are being examined. Sweet stalk sorghum can serve as a source to accomplish alternate usage objectives and will increase the market value of the crop as well as provide better use of resources of farmers.

The primary uses of sweet sorghum are as a syrup for human consumption and as a livestock feed. Recently, interest in sweet sorghum has risen in developed countries because of its potential as a source of sugar and raw material for production of energy as well as for its possible utilisation in different biotechnological processes (Dambroth and El Bassam, 1981; Wall and Ross, 1970). More recently, research activities were initiated in Europe to evaluate the potential of the sweet sorghum germplasm as a possible industrial and energy crop and to develop a sugar plant which might enlarge the diversity within the crop rotation and to overcome the enhancing phytopathological risks of nematodes and rhizomania in the sugar beet cultivated areas (Dambroth, 1985; Kresovich *et. al.*, 1983; Moritz, 1986; El Bassam *et. al.*, 1987). At the Institute of Crop Science of the Federal Agricultural Research Centre (FAL), Braunschweig, *Sorghum bicolor* has been investigated within the framework of the EU-Project CT 920041 "Sweet Sorghum, a Sustainable Crop for Energy Production in Europe," to improve the basic knowledge of the plant and to determine the most suitable genotypes with respect to growing conditions in northern Europe. The location of Braunschweig can be considered as one of the most extreme northern latitudes (52° 17' 35" north). The main objectives are to evaluate the performance of sweet sorghum and its potential yield under such climatic conditions at higher latitudes.

3. Objectives

The objectives of the contribution from the Institute of Crop Science of the Federal Agricultural Research Centre (FAL) as an associated proposer (07) were defined within the activities of the actions of the coordinator (01) and focused on the following topics:

- Action A 1: Assist in improvement of the potential and actual productivity model by common experiments focused on actual data.
- Action A 2: Improvement on optimisation of the advantages of sweet sorghum, mainly optimisation of the input nitrogen.
- Action A 3: Adaptation to low temperature which limits productivity and geographical extension.
- Action B 2: Constitution and improvement of potential and actual productivity by database exploitation.

The specific objectives can be summarised as follows:

- Determination of aerial dry matter evolution and distribution in different organs during the whole crop cycle under optimal and non-limiting nitrogen and weather supply conditions.
- Relationship between dry matter and the rate of intercepted radiation.
- Determination of sugar accumulation in different growth stages and partitioning in aerial organs: stems, leaves and panicles.

- To supply information in order to verify the productivity model in optimum conditions which relates the aerial biomass to the quantity of interrupted PAR (Photosynthetic Active Radiation) in the given climatic region.
- To test different genotypes to evaluate their aptitude to produce total biomass, sugar and ethanol at this latitude and to increase the genetic variation.

4. Materials and Methods

The research activities included the following topics:

Physical Measurements Genotype Screening Productivity Trials and Physiological Measurements Database Collection

4.1 Physical Measurements

The Institute of Crop Science in Braunschweig - Völkenrode is located at:

	Nort	h Sea	and B	altic Sea (fig. 1).	
Situation of experimental fields:	approximately 200 km south of the				
Altitude:	81 m	neters			
Longitude (degrees, minutes, seconds):	10°	26'	55"	east	
Latitude (degrees, minutes, seconds):	52°	17'	35"	north	

4.1.1 Soil physical analysis

These investigations concentrated on the determination of the soil type of the experimental fields and the grain size of soil, i.e. fractions of sand, silt and clay.

The field trials were situated in Braunschweig - Völkenrode. The soil is a loamy sand with low organic matter content. The location is by nature of a moderate soil fertility. The topsoil is nearly neutral (pH = 6.5), the subsoil is weakly acidic. The C/N ratio is approximately 10. The depth of the ground water ranges between 7 - 10 m. Tables 1-4 summarise many of the soil's characteristics.

Table 1. Soil characteristics based on soil horizon levels.

Horizon	Depth	Soil	Sand	Silt	Clay	Porosity
	(cm)		(%)	(%)	(%)	(%)
Ap	0 - 23	uS				
Ah	24 - 30					
Ap/Ah	0 - 30		63.9	30.3	5.8	43.8
Bv	30 - 60	uS - S	64.7	29.4	5.9	37.8
Cv ₁	60 - 90	S				40.3
			ļ	ļ		

Table 2. Summary based on soil horizon levels.

Soil albedo	$\alpha_{PAR} = 0.15$
Depth	0.95 m
Porosity	42.04 %
Sand	64.3 %
Silt	29.9 %
Clay	5.8 %

Table 3. Grain-size distribution.

Depth (cm)	Sand (%)	Silt (%)	Clay (%)	Soil type
0 - 25	34	57	9	sandy loam
25 - 50	33	55	12	sandy loam
50 - 60	64	28	8	loamy sand
60 - 80	75	14	11	loamy sand

.

Table 4. Additional characteristics based on soil depth level.

Depth	Moist bulk density	Lower limit of plant extractable water	Water content
(cm)	(g/cm ³)	(vol. %)	(vol. %)
0 - 10	1.57	6.18	24.83
10 - 20	1.46	5.58	23.79
20 - 30	1.50	5.46	23.98
30 - 40	1.60	4.63	26.23
40 - 50	1.53	4.42	25.33
50 - 60	1.71	3.11	14.01

The initial water content in sowing is normally equal to the water content at saturation.

4.1.2 Meteorological data collection

The data measurements at the experimental site included the following parameters: Air temperature at 2 m height, lowest temperature at soil's surface, sunshine duration, global solar radiation, precipitation, evaporation and water balance. The meteorological data from each month (1985 - 1995) are listed in annex 1. Some weather data means are shown in table 5.

Table 5. Selected meteorological data at the Braunschweig site.

Year	Air	Soil	Solar	Hot	Heat	Cold	Precipi-	Evapo-
	temp.	temp.	radiation	days	total	total	tation	ration
	mean	abs.min.	total	(> 30°C)			total	total
	(°C)	(°C)	(J/cm ²)	(No.)	(°C)	(°C)	(mm/y)	(mm/y)
1990	10.5	-9.7	374289	5	3802.4	14.7	615	650
1991	9.0	-20.0	377 77 2	3	3435.0	115.3	470	603
1992	10.2	-10.6	375512	10	3757.4	58.8	611	721
1993	8.8	-17.9	357789	0	3367.5	142.6	686	568
1994	10.2	-18.8	377577	17	3806.4	70.3	752	659
1995	<u>9</u> .5	-17.6	379642	14	3610.9	126.0	621	637
61-90	8.9		351290	3.5	3399.3	154.6	619	541

Additional long-term climatological data (1951 - 1980):

Mean annual air temp.:	8.8°C
Atmospheric humidity:	79%
Wind, main direction:	southwest
Wind force:	3 - 4 km/h
Summer days (> 25°C):	24 d/y
Precipitation > 0.1 mm:	187 d/y
Precipitation > 1 mm:	116 d/y
Precipitation: > 10 mm:	14 d/y
Snow covering:	34 d/y

Differ	ences l	between	n highe	est and	lowest	month	ly mea	n air te	mperat	ure (°C	2)
JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC
4.8	5.6	6.8	8.7	9.7	9.6	9.4	9.8	8.5	7.2	5.1	4.5

Special features of the weather from 1990 to 1995 are described as follows:

1990

The vegetation period for 1990 was, as a whole, too dry, especially in May, July and August. At the end of April/beginning of May a first dry period was recorded. In the first two weeks of June there was considerable precipitation followed by a relative cold summer period to the middle of July. Thus, the evaporation was low and water requirement of plants not so high. After this period about the next 6 weeks were without rainfall. Starting with the beginning of September the weather changed completely. Continuous rainfall led to sufficient water supply for the plants.

1991

The vegetation period for 1991 began with a dry and warm spring. In addition, May, July and August were too dry, May and June too cold compared to the means. Only at the end of September did sufficient rainfall lead to a positive water balance.

1992

The vegetation period for 1992 was excessively dry and warm, except September. Spring was characterised by warm and humid weather. Up until the first week of May precipitation was sufficient. The time following dry periods of several weeks led, in combination with high evaporation, to a high water deficiency, especially at the end of May, middle of June and beginning of August. In the second week of August continuous periods of rain ended the dry stretch, interrupted only by a short dry period at the end of September.

The vegetation period for 1993 was too wet after the 5 dry summers of the previous years. Only March and the end of April showed a precipitation deficiency. March was very dry and led to a quick drying out of the soil. Thus, vegetation started early in the spring. The first two weeks of April had sufficient rainfall. There was a warm, dry period from the end of April to the middle of May. At the end of the month frequent rainfall led to sufficient soil water reserves for providing plants with water.

1994

The vegetation period for 1994 started with a wet spring from March until the middle of April. In May and June repeated precipitation had been recorded. After the first week of July a dry period of about 6 weeks started with very high temperatures. Due to a daily evaporation rate of 5 to 6 mm, soil moisture decreased rapidly. After this very dry period there was sufficient rainfall for further plant growth.

1995

The vegetation period for 1995 was characterised by a cold and wet spring followed by very dry summer weather. Precipitation in March was about 25 mm over the long term rain total, whereas the months from April to August showed a rain deficit in combination with very high temperatures when compared to those means from 1960 to 1990. At the end of August and September there was enough rain for filling the soil water reserve.

4.2 Genotype Screening

From different regions of the world numerous genotypes were investigated under field conditions to further identify cultivars which might be used in the future and also to evaluate new developed hybrids by different institutions. The major aspects investigated were cold tolerance, total biomass and sugar content. These genotypes originated from Germany, India, Hungary and Australia (see annex 2).

The genotypes were sown in the beginning of June each year. The distance between the rows was 0.70 m, the distance between the plants within the row was 0.10 m and the plot size was $1.50 \text{ m} \times 6.00 \text{ m} = 9.00 \text{ m}^2$. Each genotype was sown in 4 replications.

15

120 kg nitrogen was given to the plots after emergence. Phosphorus and potassium were applied before sowing according to the results of soil analysis (120 kg P_2O_5 and 240 kg K_2O per ha, respectively). Weed control was done by hand and by machine twice after emergence.

In some cases there were two harvest dates for investigation of change of different yield parameters during the ripening period of the sweet sorghum genotypes. The first harvest was carried out at the end of September followed by the second harvest towards the end of October.

For the genotype screening the topics included were: Fresh matter yield, dry matter yield, total sugar content, sugar yield, glucose content, fructose content, saccharose content, raw fibre content, dry matter content, growth height, panicle emergence time, vigour, cold susceptibility of young plants, wind influence upon young leaves, tillering, amount of disease on leaves, drought susceptibility, lodging tendency, and harvest date.

4.3 Productivity Trials

The productivity trials were discussed and designed by the productivity group in previous sessions held for this purpose. The aim was to determine the growth development during the whole vegetation period of 1 or 2 selected genotypes which might be most suitable for the given region. Also an agreement was achieved to carry out measurements on aerial biomass, leaf area index and sugar accumulation. These data were used to establish the productivity model by the main contractors.

4.3.1 Species and cultivar

For these studies 2 genotypes were chosen. The genotype 'Keller' was chosen first as a common genotype for all participants and the genotype 'Korall' was recommended for the northern part of Europe.

species:	Sorghum bicolor
cultivar:	Keller
type:	hybrid
source:	Kleinwanzlebener Saatzucht, Einbeck Germany

species:	Sorghum bicolor
cultivar:	Korall
type:	hybrid
source:	Kleinwanzlebener Saatzucht, Einbeck Germany

4.3.2 Nitrogen treatments

Three levels were applied:

low level (N_1)	=	50 kg N/ha
medium level (N ₂)	=	150 kg N/ha
high level (N ₃)	=	200 kg N/ha

The N₂ and N₃ levels were split into 2 and 3 applications, respectively. The higher level (N₃) could be considered as non-limiting. Potassium (K₂O as potassium magnesia) was applied at 240 kg/ha and Phosphorus (P₂O₅ as triple-superphospate) was applied at 180 kg/ha.

4.3.3 Experimental design

The experimental design consisted of three blocks each 21.0 m x 14.0 m. The three nitrogen levels each received their own block. The size of each elementary plot was large enough to allow periodical sampling in order to estimate aerial biomass accumulation on 2 m^2 areas. Fungicides and insecticides were not applied and were also not necessary.

4.3.4 Biological measurements

Approximately 5 weeks after emergence periodical harvesting was performed to determine the fresh matter and dry matter biomass contents. From these data, aerial dry matter, proportion of leaves, stems, leaf specific weight, leaf area and leaf area index (LAI), as well as plant height, were determined.

4.3.5 Chemical analysis

All samples from the different nitrogen treatments were prepared for sugar content determination by means of HPLC.

Once the samples were thawed in the refrigerating room at 2°C, they were homogenised in a small grinding mill. 10 g of this material was then weighed into a 250 ml graduated flask, and approximately 200 ml of double distilled water was added (double determination). This suspension was boiled for 20 minutes, after which time the cells were completely digested. After the solution was allowed to cool, the flasks were filled to the calibration mark with double distilled water; then a pleated filter was used to remove cell fragments and fibre components from the samples. Finally, using a throw-away filter holder (pore size 0.45μ m) the samples were ready for High Performance Liquid Chromatography (HPLC).

Specification of the HPLC conditions:

Flow rate:	0.3 ml/min
Mobile phase:	Double distilled water
Columns:	Polypore CA (manufactured by Kontron), main column 22 cm and guard column 3 cm Column diameter 4.6 mm
Temperature:	80°C ± 0.2°C
Detection:	RI
Evaluation:	External standard, 2-point calibration

Sweet sorghums sugar fractions are: Saccharose, Glucose and Fructose.

Soil samples from the field trials were analysed for the major nutrient components: Nitrogen, Potassium and Phosphorus.

4.4 Database Collection

The Institute of Crop Science, FAL, has prepared a database for all genotypes, cultivars and hybrids investigated in the last 10 years (1985 - 1995). This amounts to 1350 forms of sorghum which have been examined in field trials for their suitability for cultivation and their quality features. The entire evaluation data are well documented and attached as annex 3. The following parameters were included in the evaluation programme:

Parameter	Item Investigated	Parameter	Item Investigated
No.		No.	
1	Fresh matter yield (dt/ha)	2	Dry matter yield (dt/ha)
3	Total sugar content (%)	4	Sugar yield (dt/ha)
5	Glucose content (%)	6	Fructose content (%)
7	Saccharose content (%)	8	Raw fibre content (%)
9	Dry matter content (%) mean	10	Growth height (cm)
11	Panicle emergence time	12	Vigour
13	Cold susceptibility young plant	14	Wind influence upon young leaf
15	Tillering	16	Amount of disease on leaf
17	Drought susceptibility	18	Lodging tendency
19	Harvest date		

These data could also be supplied for all other interested institutions. This documentation represents the largest data collection concerning sweet sorghum.

5 Results

5.1 Results of Genotype Screening

5.1.1 Experimental year 1992

As of the 9th of June all genotypes had emerged. The genotypes ZH 2916 from Germany, Colman 70/9685-11 from Hungary and ICSV-91003 from India showed a lower rate of emergence than all other genotypes.

The time from sowing to panicle emergence varied greatly between the genotypes. The date of panicle emergence was between the 12th of August and the 16th of October for the German genotypes (Tab. 6). The genotypes ZH 2910 and ZH 2927 started their panicle emergence on the 12th of August, the genotype ZH 2931 was last on the 16th of October.

Table 6. Days from sowing to panicle emergence, number of shoots and plant height of sweet sorghum genotypes.

	time fi	rom sow	ing to		shoots	;	pl	ant heig	ght
	panicle	emerger	nce (d)	(n	umbe	r)		(cm)	
Origin (n)	mean	min.	max.	mean	min.	max.	mean	min.	max.
Germany (44)	89.9	69	134	3.1	1	7	198.8	105.0	279.4
India (8)	107.8	77	124	2.9	1	5	225.0	177.9	258.2
Hungary (2)	89.5	77	102	5.5	5	6	243.2	198.1	271.3
Australia (1)	110.5	109	113	3.5	3	4	270.1	266.0	276.3

The Hungarian and German genotypes needed on average 20 days less time from sowing to panicle emergence than the genotypes from India and Australia. The Hungarian genotypes showed the highest shooting capacity. The plants developed between 5 and 6 shoots per plant. The maximum number of shoots was reached by the German genotype ZH 2908 with 7 shoots/plant. The one Australian genotype (Early Orange) was distinguished by plant height between 266.0 and 276.3 cm. Although the German genotypes showed only an average plant height of 198.8 cm, the maximum from all genotypes was reached by the German genotype ZH 2914 (279.4 cm).

The Australian genotype (Early Orange) produced 101.43 t fresh matter per ha (Tab. 7). It was the highest FM-yield compared to all other genotypes. This Australian genotype reached on average 87.32 t/ha, followed by the Indian genotypes with 60.28 t/ha FM-yield. The German genotypes produced the lowest FM-yield. There was the same order for the yield parameter dry matter yield.

19

The analysis of dry matter content showed that the Indian genotypes were characterised by very high dry matter content up to a maximum of 68.85 %. In addition, the Indian genotypes were distinguished by a high sugar content. The stems contained 7.81 % sugar (mean) with a maximum of 11.96 %. The highest sugar content was produced by the German genotypes. The sugar content ranged from 2.16 % to 12.87 % in the fresh matter. The German genotypes went one better than all other genotypes only in this yield parameter. The Australian and Hungarian genotypes reached sugar contents of 6.82 % and 6.01 %, respectively.

According to the highest FM-yield, the Australian genotype reached the highest mean sugar yield with 6.12 t/ha, followed by the Indian genotypes with 4.67 t/ha. Because of their low sugar content the Hungarian genotypes had the lowest mean sugar yield of 3.59 t/ha. The sugar yield of all genotypes ranged from 1.14 to 8.68 t/ha. In the vegetation period 1992 the maximum sugar yield was produced by the German genotype 2913 (8.68 t/ha).

			Germany	India	Hungary	Australia
FM-yield	t/ha	mean	48.52	60.28	54.36	87.32
		min.	29.31	50.18	33.10	73.22
		max.	77.40	87.89	79.00	101.43
DM-yield	t/ha	mean	18.52	28.68	22.40	36.34
		min.	8.92	16.03	14.12	30.89
		max.	29.92	51.35	32.57	41.80
DM substance	%	mean	38.67	47.69	43.65	43.77
		min.	19.16	32.74	28.96	30.45
		max.	60.35	68.85	60.56	57.09
Sugar content	%	mean	8.72	7.81	6.01	6.82
		min.	2.16	3.29	3.30	5.61
		max.	12.87	11.96	8.60	8.03
Sugar yield	t/ha	mean	4.29	4.67	3.59	6.13
		min.	1.14	1.67	1.09	4.11
		max.	8.68	7.39	6.80	8.14

Table 7. Yield parameters of the sweet sorghum genotypes.

Like other crops with tropical origin, sweet sorghum started its growth late in the spring because it needs higher soil and air temperature for sprouting. According to maize growth there is a yield increase up to the first frost in autumn. For defining the optimal harvest date it is worth while to observe how the yield parameters change during the ripening period of sweet sorghum.

Figure 2 shows the frequency of FM-yield in different yield classes over all genotypes. In harvest I most genotypes reached FM-yields between 50 and 60 t/ha. In addition figure 2 shows that the yield class with the greatest frequency moved from 50-60 t/ha in harvest I to 40-50 t/ha in harvest II. The fresh matter yield decreased as a whole from 52.69 to 46.92 t/ha on average.

On the other hand dry matter yield showed the contrary tendency (Fig. 3). It increased with longer ripening time. In harvest I most genotypes produced a dry matter yield between 15 and 20 t/ha. The dry matter yield class with the greatest frequency increased to 25-30 t/ha in harvest II.

Figure 2. Frequency of fresh matter yield of all genotypes at two different harvest dates, 1992.

21

Figure 3. Frequency of dry matter yield of all genotypes at two different harvest dates, 1992.

Figure 4. Frequency of stem sugar content of all genotypes at two different harvest dates, 1992.

Figure 4 shows that the dominant stem sugar content frequency classes in harvest I were between 4 and 14%. In harvest II sugar content decreased and the dominant frequency classes changed to those between 0 and 12%. The mean sugar content decreased from 9.44 % in harvest I to 7.46 % in harvest II.

The parameter, sugar yield, consisting of fresh matter yield and sugar content followed the main tendency and decreased from harvest I to harvest II (Fig. 5). The mean sugar yield of all genotypes decreased from 4.97 t/ha to 3.74 t/ha. In harvest I most genotypes produced sugar yields between 5 and 6 t/ha. In harvest II the greatest frequency was reached with the yield class 4-5 t/ha

Figure 5. Frequency of sugar yield of all genotypes at two different harvest dates, 1992.

5.1.2 Experimental Year 1993

In 1993 the genotypes produced a lower fresh matter yield compared to 1992 (Fig. 6). The plants also did not reach the plant height from 1992 (Tab. 8). Nonetheless these plants produced more stem biomass than in 1992. The mean of the two years FM-yield was 46.15 t/ha (Tab. 8).

Total sugar content in the FM ranged from 3.06 to 9.74 % in 1992. The mean sugar content of 92/93 was 8.27 %. Remarkable is the low saccharose content of 4.71 % produced in 1993 compared to that of 1992 (7.30 %).

The sugar yield produced in 1993 was about 1.5 t/ha lower compared to 1992, resulting from the lower FM-yield in combination with the low sugar content. The mean of 92/93 was 3.96 t/ha.

Figure 6. Fresh matter yield of sweet sorghum genotypes, 1992, 1993 and mean.

Table 8. Yield parameters of 33 sweet sorghum genotypes.

			92			93		92/93
		mean	min.	max.	mean	min.	max.	mean
FM-yield	t/ha	48.68	29.31	77.40	43.62	18.44	70.70	46.15
FM stem	t/ha	31.62	15.72	56.91	33.31	10.96	61.25	32.46
DM-yield	t/ha	15.22	9.36	22.97	13.18	6.04	20.61	14.20
DM stem	t/ha	9.07	4.44	15.53	8.34	1.92	15.48	7.80
DM content	%	31.48	27.89	36.47	30.48	25.74	35.17	30.98
DMC stem	%	28.77	25.02	33.76	25.06	17.53	28.82	26.92
sugar	%	9.61	5.04	12.87	6.94	3.06	9.74	8.27
fructose	%	1.07	0.65	1.59	1.29	0.62	2.29	1.18
glucose	%	1.24	0.52	1.85	0.94	0.52	1.71	1.09
saccharose	%	7.30	3.37	9.75	4.71	1.01	7.90	6.01
plant height	cm	184.70	111.00	267.00	167.73	84.00	250.00	176.21
sugar yield	t/ha	4.73	2.25	8.68	3.20	0.94	6.82	3.96

5.2 Distribution Frequencies for 1992 - 1995

Calculations were conducted to determine the distribution frequency of the sorghum genotypes which were cultivated in the 4 year period between 1992 and 1995. These results are displayed based on the year in figures 7 to 10.

22

Figure 7 shows the distribution frequency of fresh matter yield in tons per hectare for 114 genotypes cultivated in the year 1992. The dominant frequency class was 40-60 t/ha of fresh matter which contained 45.6 % of the distribution or 52 genotypes. The next dominant class was 20-40 t/ha which contained 29.8 % of the distribution or 34 genotypes. Along with the 60-80 t/ha class which held 22.8 % or 26 genotypes, the three classes amounted to 98.2 % of the total distribution or 112 genotypes. The remaining 1.8 % was made up of the 0-20 t/ha and the > 100 t/ha classes which each had 0.9 % or 1 genotype. No genotypes had a fresh matter yield between 80-100 t/ha.

Figure 8 shows the distribution frequency of dry matter yield in tons per hectare for 111 sorghum genotypes cultivated in the year 1992. The dominate frequency class was 12-16 t/ha of dry matter which contained 35.1 % of the distribution or 39 genotypes. The next dominant class was 16-20 t/ha with 31.5 % or 35 genotypes. Along with the 8-12 t/ha class which held 22.5 % or 25 genotypes, the three classes amounted to 89.1 % of the total distribution or 99 genotypes. The remaining 10.9 % was made up of the 0-4 t/ha class which had 0.9 % or 1 genotype, the 4-8 t/ha class which had 1.8 % or 2 genotypes, the 20-24 t/ha class which had 7.2 % or 8 genotypes and the > 24 t/ha class which had 0.9 % or 1 genotype.

Figure 9 shows the distribution frequency of total sugar content for 113 sorghum genotypes cultivated in the year 1992. Because they were both of virtually equal frequency, the dominant frequency classes were 4-6 % and 6-8% total sugar content which contained 26.5 % and 25.7 % or 30 and 29 genotypes respectively. The next dominant class was 8-10 % which had 17.7 % or 20 genotypes, followed by the 10-12 % class which had 15.9 % or 18 genotypes. These four classes made up 85.8 % of the genotype distribution or 97 genotypes. The remaining 14.2 % was made up of the 0-2 % class which had 3.5 % or 4 genotypes, the 2-4 % class which had 6.2% or 7 genotypes, and the > 12 % class which had 4.4 % or 5 genotypes.

Figure 10 shows the distribution frequency of sugar yield in tons per hectare for 1124 sorghum genotypes cultivated in the year 1992. The dominant frequency class was 2-4 t/ha of sugar which contained 46 % of the distribution or 52 genotypes. The other classes consisted of 0-2 t/ha which contained 17.7 % of the distribution or 20 genotypes, the 4-6 t/ha class which had 23.9 % or 27 genotypes, the 6-8 t/ha class which had 10.6 % or 12 genotypes and the > 8 class which had 1.8 % or 2 genotypes.

Figure 7. Distribution frequency of fresh matter yield from sorghum genotypes (1992).

Figure 8. Distribution frequency of dry matter yield from sorghum genotypes (1992).

Figure 9. Distribution frequency of total sugar content from sorghum genotypes (1992).

Figure 10. Distribution frequency of sugar yield from sorghum genotypes (1992).

1993

Figure 11 shows the distribution frequency of fresh matter yield in tons per hectare for 100 genotypes cultivated in the year 1993. The dominant frequency class was 20-40 t/ha of fresh matter which contained 46 % of the distribution or 46 genotypes. The next dominant class was 40-60 t/ha which contained 27 % of the distribution or 27 genotypes. Along with the 60-80 t/ha class which held 16 % or 16 genotypes, the three classes amounted to 89 % of the total distribution or 89 genotypes. The remaining 11 % was made up of the 0-20 t/ha and the > 80 classes which had 7 % and 4 % or 7 and 8 genotypes respectively.

Figure 12 shows the distribution frequency of dry matter yield in tons per hectare for 100 sorghum genotypes cultivated in the year 1993. The dominate frequency class was 8-12 t/ha of dry matter which contained 33 % of the distribution or 33 genotypes. The distribution of the 4-8 t/ha, the 12-16 t/ha and the 16-20 t/ha classes was almost equal, with 21 % or 21 genotypes for the 4-8 t/ha class, 20 % or 20 genotypes for the 12-16 t/ha class and 19 % or 19 genotypes for the 16-20 t/ha class. These four classes amounted to 93 % of the total distribution or 93 genotypes. The remaining 7 % was made up of the 0-4 t/ha class which had 1 % or 1 genotype and the > 20 t/ha class which had 6 % or 6 genotypes.

Figure 13 shows the distribution frequency of total sugar content for 100 sorghum genotypes cultivated in the year 1993. The most dominant frequency class was the 2-4 % total sugar content, having 37 % or 37 genotypes. Because they were all of virtually equal frequency the next dominant frequency classes were 2-4 % which contained 18 % or 18 genotypes and the 4-6 %, 6-8 % and > 8 % classes, which had 15 % or 15 genotypes each.

Figure 14 shows the distribution frequency of sugar yield in tons per hectare for 100 sorghum genotypes cultivated in the year 1993. The dominant frequency class was 0-2 t/ha of sugar, which contained 62 % of the distribution or 62 genotypes. The other classes consisted of 2-4 t/ha which contained 27 % of the distribution or 27 genotypes, the 4-6 t/ha class which had 9 % or 9 genotypes and the > 6 class which had 2 % or 2 genotypes.

Figure 11. Distribution frequency of fresh matter yield from sorghum genotypes (1993).

Figure 13. Distribution frequency of total sugar content from sorghum genotypes (1993).

Figure 12. Distribution frequency of dry matter yield from sorghum genotypes (1993).

Figure 14. Distribution frequency of sugar yield from sorghum genotypes (1993).

The distribution of fresh matter yield and dry matter yield in 1994 and 1995 were greatly influenced by the cultivation of fibre sorghum genotypes which were high yielding, especially with respect to dry matter yields. Figure 15 shows the distribution frequency of fresh matter yield in tons per hectare for 35 genotypes cultivated in the year 1994. The dominant frequency class was 60-80 t/ha of fresh matter which contained 40.0 % of the distribution or 14 genotypes. The next dominant class was > 100 t/ha which contained 22.9 % of the distribution or 8 genotypes. Along with the 20-40 t/ha class which held 14.3 % or 5 genotypes and the 40-60 t/ha class which held 17.1 % or 6 genotypes, the four classes amounted to 94.3 % of the total distribution or 33 genotypes. The remaining 5.7 % was made up of the 0-20 t/ha and the 80-100 t/ha classes which had 2.85 % or 1 genotype each.

Figure 16 shows the distribution frequency of dry matter yield in tons per hectare for 35 sorghum genotypes cultivated in the year 1994. The dominate frequency class was 16-20 t/ha of dry matter, which contained 25.7 % of the distribution or 9 genotypes. The next dominant class was 24 - 28 t/ha with 17.1 % or 6 genotypes, followed by the > 32 t/ha class with 14.3 % or 5 genotypes, the 20-24 t/ha class with 11.4 % or 4 genotypes, the 8-12 t/ha, 12-16 t/ha and 28-32 t/ha classes which each had 8.6 % or 3 genotypes and the 4-8 t/ha class with had 5.7 % or 2 genotypes. There were no genotypes with yields in the 0-4 t/ha class.

Figure 17 shows the distribution frequency of total sugar content for 32 sorghum genotypes cultivated in the year 1994. The most dominant frequency class was shared by the 4-6 % and 6-8 % total sugar content classes, having 34.4 % or 11 genotypes each. The two classes amounted to 68.8 % of the total distribution, or 22 genotypes. The remaining 31.2 % was made up of the 8-10 % distribution class with 15.6 % or 5 genotypes, the 2-4 % class with 9.4 % or 3 genotypes and the > 10 % class with 6.3 % or 2 genotypes. There were no genotypes with total sugar contents in the 0-2 % class.

Figure 18 shows the distribution frequency of sugar yield in tons per hectare for 32 sorghum genotypes cultivated in the year 1994. The dominant frequency class was 4-6 t/ha of sugar, which contained 46.9 % of the distribution or 15 genotypes. The next dominant class was 2-4 t/ha which had 31.3 % or 10 genotypes. Together these two class made up 78.2 % or 25 genotypes. The remaining 21.8 % consisted of the 6-8 t/ha class which contained 12.5 % of the distribution or 4 genotypes, the 0-2 t/ha class which had 6.3 % or 2 genotypes and the > 8 class which had 3.2 % or 1 genotype.

Figure 15. Distribution frequency of fresh matter yield from sorghum genotypes (1994).

Figure 16. Distribution frequency of dry matter yield from sorghum genotypes (1994).

Figure 17. Distribution frequency of total sugar content from sorghum genotypes (1994).

Figure 18. Distribution frequency of sugar yield from sorghum genotypes (1994).

1995

Figure 19 shows the distribution frequency of fresh matter yield in tons per hectare for 42 genotypes cultivated in the year 1995. The dominant frequency class was 40-60 t/ha of fresh matter which contained 38.1 % of the distribution or 16 genotypes. As the distribution classes (t/ha) increased, the frequency decreased at practically a steady rate. The 60-80 t/ha class contained 31.0 % of the distribution or 16 genotypes, the 80-100 t/ha class held 19.0 % or 8 genotypes and the > 100 t/ha class had 11.9 % or 5 genotypes. No genotypes had a fresh matter yield between 0-40 t/ha.

Figure 20 shows the distribution frequency of dry matter yield in tons per hectare for 42 sorghum genotypes cultivated in the year 1995. The dominate frequency class was 12-16 t/ha of dry matter, which contained 33.3 % of the distribution or 14 genotypes. The next dominant class was 16-20 t/ha with 28.6 % or 12 genotypes. Along with the 8-12 t/ha class which held 23.8 % or 10 genotypes, the three classes amounted to 85.7 % of the total distribution or 36 genotypes. The remaining 14.3 % was made up of the 20-24 t/ha class which had 9.5 % or 4 genotypes and the > 24 t/ha class which had 4.8 % or 2 genotypes. No genotypes had a dry matter yield between 0-8 t/ha.

Figure 19. Distribution frequency of fresh matter yield from sorghum genotypes (1995).

Figure 20. Distribution frequency of dry matter yield from sorghum genotypes (1995).

5.3 Results of Productivity Trials

The cultivar 'Korall' was sown on 12.05.93 with a drilling machine. The distance between the rows was 0.70 m and 0.085 m within the rows between the plants. Nitrogen fertilisation was applied at three different levels of 50, 150 and 200 kg N/ha, respectively. Starting on 28.06. each second week time harvests were carried out. The plants were finally harvested on 18.10.93.

The rate of emergence was about 75%. The plants showed uniform emergence and growth at all three nitrogen levels. Nonetheless, there was a difference between the nitrogen plots concerning time from sowing to panicle emergence. Plants at the highest nitrogen level started panicle emergence on 31.08.93, all other plants on 06.09.93.

Figure 21 shows the development of the dry matter yield of sweet sorghum cultivar Korall from July to October of 1993 at three different nitrogen levels as estimated from sample harvests. In addition, the proportions of stems, leaves and panicles of the whole plant are to be seen. Plants continuously developed stems, leaves and panicles with the treatment of 50 kg N/ha throughout the entire vegetation period. At the higher nitrogen levels plants had a lower growth rate at the end of July compared to those of 50 kg N/ha, but there was an increasing growth rate of dry matter yield in August obviously at the higher nitrogen supplies of 150 and 200 kg N/ha.

With respect to the dry matter content of stems, leaves and panicles in 1993 it can be seen in figure 22 that the dry matter content of each of these three plant parts had a final value greater than that of the initial value.

For each of the three nitrogen levels the dry matter content in stems had a first harvest value of between 6 and 9 % and a final harvest value of 21 %. The dry matter content in leaves had a first harvest value of 13-14 % and a final harvest value of 23-27 %. The dry matter content in panicles had a first harvest value of 12-15% and a final harvest value of 37-40 %.

Figure 22. Dry matter content of stem, leaf and panicle at different harvest dates for sorghum genotype Korall, 1993.

Figure 23 shows the development of dry matter yield of sweet sorghum cultivar Korall from July to September in 1994 at three different nitrogen levels as estimated from sample harvests. In addition, the proportions of stems, leaves and panicles of the whole plant are to be seen.

1994 contrasted 1993 in that the yields from the first two harvests were lower in 1994 than in 1993, but the 3rd through the 7th harvests had consistently higher yields. Another difference is that in 1994 the final yield from each nitrogen level was lower than one of the previous harvests. Figure 23. Estimated dry matter yield at different harvest dates for sorghum genotype Korall, 1994.

With respect to the dry matter content of stems, leaves and panicles in 1994 it can be seen in figure 24 that the dry matter content of each of these three plant parts had a final value greater than that of the initial value.

For each of the three nitrogen levels the dry matter content in stems had a first harvest value of between 10 and 11 % and a final harvest value of 34 % for the 50 and 150 kg N/ha levels and 24 % for the 200 kg N/ha level. The dry matter content in leaves had a first harvest value of 13-17 % and a final harvest value of 23-27 %. The dry matter content in panicles had a first harvest value of 20-22 % and a final harvest value of 34-37 %.

The sugar accumulation in the stems showed at steady increase throughout the 7 harvests, with the 50 and 150 kg N/ha levels having a first harvest sugar content of approximately 1.4 % and a final harvest content of about 10.8 %. The 200 kg N/ha level had a first harvest sugar content of approximately 1.5 % and a final harvest content of approximately 1.5 % and a final harvest content of about 9.5 % (Fig. 25).

36

Figure 24. Dry matter content of stem, leaf and panicle at different harvest

dates for sorghum genotype Korall, 1994.

Figure 25. Sugar accumulation in the stems of sorghum genotype Korall, 1994.

Figure 26 displays the fresh matter yield, dry matter yield, sugar yield and total sugar content of the sweet sorghum genotype Korall for the evaluation years 1990, 1992, 1993 and 1994. The fresh matter yield ranged from 48.8 t/ha in 1992 to 60.4 t/ha in 1990. The dry matter yield ranged from 10.0 t/ha in 1992 to 19.1 t/ha in 1994. The sugar yield ranged from 3.2 t/ha in 1993 to 6.2 t/ha in 1992. The sugar content ranged from 6.15 % in 1992 to 12.6 % in 1991.

	1990	1992	1993	1994
Fresh matter yield (t/ha)	60.4	48.8	51.3	51.9
Dry matter yield (t/ha)	14.0	10.0	13.8	19.1
Sugar yield (t/ha)	5.1	6.2	3.2	5.3
Total sugar content (%)	8.4	12.6	6.2	10.3

Figure 26. Yield and content parameters of sorghum genotype Korall for 4 evaluation years (1990, 1992, 1993 & 1994).

5.4 Results of Database Collection

Calculations were conducted to determine the distribution frequency of the sorghum genotypes which were cultivated in the 10 year period between 1985 and 1995. These are displayed in figures 27 to 30. Figure 27 shows the distribution frequency of fresh matter yield in tons per hectare for 1280 sorghum genotypes cultivated during the 10 year period. The dominant frequency class was 40-60 t/ha of fresh matter which contained 28.1 % of the distribution or 360 genotypes. The next dominant class was 60-80 t/ha which

contained 25.1 % of the distribution or 321 genotypes. The frequency classes 20-40 and 80-100 t/ha held 16.8 % and 16.7 % or 215 and 214 genotypes respectively. These four classes made up 86.7 % of the genotype distribution or 1110 genotypes. The remaining 13.3 % was made up of the 0-20 t/ha class which had 2.3 % or 29 genotypes, the 120-140 t/ha class which had 2.3% or 30 genotypes, and the > 140 t/ha class which had 0.7 % or 9 genotypes.

Figure 28 shows the distribution frequency of dry matter yield in tons per hectare for 1276 sorghum genotypes cultivated during the 10 year period. The dominate frequency class was 12-16 t/ha of dry matter which contained 26.3 % of the distribution or 336 genotypes. Next in dominance were both the 8-12 t/ha and the 16-20 t/ha classes with 22.5 % and 22.1 % or 287 and 282 genotypes respectively. These three classes made up 70.9 % of the genotype distribution or 905 genotypes. The remaining 29.1 % was made up of the 0-4 t/ha class which had 1.4 % or 18 genotypes, the 4-8 t/ha class which had 8.2 % or 104 genotypes, the 20-24 t/ha class which had 11.6 % or 148 genotypes, the 24-28 t/ha class which had 3.8 % or 49 genotypes, the 28-32 t/ha class which had 1.0 % or 13 and the > 32 t/ha class which had 3.1 % or 39 genotypes. The > 32 t/ha class contained several values that were significantly higher than 32 t/ha. Although their validity is uncertain they do not affect the general distribution.

Figure 29 shows the distribution frequency of total sugar content for 1125 sorghum genotypes cultivated during the 10 year period. Because they were both of virtually equal frequency, the dominant frequency classes were 4-6 % and 6-8 % total sugar content which contained 33.2 % and 32.5 % or 373 and 366 genotypes respectively. The next dominant class was shared by the 2-4 % and 8-10 % classes which contained 14.1 % and 14.0 % or 159 and 158 genotypes respectively. These four classes made up 93.8 % of the genotype distribution or 1056 genotypes. The remaining 6.2 % was made up of the 0-2 % class which had 3.2 % or 36 genotypes, the 10-12 % class which had 2.5% or 28 genotypes, and the > 12 % class which had 0.4 % or 5 genotypes.

Figure 30 shows the distribution frequency of sugar yield in tons per hectare for 1124 sorghum genotypes cultivated during the 10 year period. The dominant frequency class was 2-4 t/ha of sugar which contained 37.5 % of the distribution or 422 genotypes. The next dominant class was 4-6 t/ha which contained 28.1 % of the distribution or 316 genotypes. These two classed made up 65.6 % of the genotype distribution or 738 genotypes. The remaining 34.4 % was made up of the 0-2 t/ha class which had 20.4 % or 229 genotypes, the 6-8 t/ha class which had 11.3 % or 127 genotypes, the 8-10 t/ha class which had 2.2 % or 25 genotypes, the 10-12 t/ha class which had 0.3 % or 3 genotypes and the > 12 class which had 0.2 % or 2 genotypes.

Figure 28. Distribution frequency of dry matter yield from sorghum genotypes (1985-1995).

Figure 29. Distribution frequency of total sugar content from sorghum genotypes (1985-1995).

It may be concluded from this study that the sweet sorghum types which have resulted from Kleinwanzlebener Saatzucht, Germany (KWS) development are more suitable for cultivation in Middle-Europe than the tested forms from the "World Assortment." These genotypes which are also considered as "experimental hybrids" are more adapted for cooler regions. These hybrids showed relatively higher sugar content in the stalks.

Also Petrini et. al., 1996 stated that remarkable results have been seen by KWS which focused their activity on the sweet sorghum producing Korall hybrid. This hybrid is particularly adapted to the northern areas of sweet sorghum cultivation: Germany, France, Belgium, etc.

5.5 Physiological Measurements

In order to verify the productivity model and to establish correlations between aerial biomass and environmental constraints, several physiological measurements were conducted in this context:

- Leaf area and leaf area index (LAI) have been determined at different stages of growth.
- Interval biomass harvesting has been conducted in order to obtain the different fractions, i.e. leaves, stems, panicles and total yield.
- Meteorological data have been collected *in situ* (temperature, precipitation, global radiation, sunshine duration, humidity and evapotranspiration).

The major accumulation of dry matter was determined during the period from late July to mid October and the sugar accumulation from late August to early November.

There was nearly linear correlation between dry matter contents and the cumulative values of Photosynthetic Active Radiation (PAR) (Fig. 31). It was obvious that the biomass growth rate was determined in periods in which temperature values were higher than 10° C. The most productive stage (the highest growth rate) started when temperatures reached 17° C and more (Fig. 32 and 33).

Figure 31. The relationship between dry matter and absorbed PAR, under nonlimiting conditions.

Figure 32. The correlation between leaf area index (LAI) and temperature.

Figure 33. The correlation between leaf area index (LAI) and temperature, using base 17 °C and base 10 °C.

A total amount of about 500 MJ m^{-2} has resulted in the production of almost 20 tons dry matter per hectare. It could be concluded that the leaf area index (LAI) can be considered as an adequate indicator to predict the growth rate of sweet sorghum. There was a significant correlation between growth rates and LAI.

5.6 Sugar Contents and Sugar Distribution

The sugar contents were made up almost exclusively of sucrose, fructose and glucose. More than 50 % of the total sugar content consisted of sucrose, 28 % of glucose and 19 % fructose. The sugar distribution in the stem seems to be relatively uniform. The analysis of the panicle and the leaves has shown that the total sugar content of both plant parts lies between 2 and 3 %.

The determination of the sugar concentration within a cross-section of the stalk indicated that the highest sugar content (9.85 % in the fresh matter) was accumulated in the layer directly interior to the thin outer layer. The lowest concentration was found in the outer layer (7.22 %) and in the center of the stalk (7.5 %). Except for the outer layer, sugar concentrations decreased with each layer moving towards the center of the stalk (Fig. 34). These results may have importance for juice extraction technologies and for the harvesting and storage methods.

44

Figure 34. Sugar concentration in a cross-section of a stalk of sweet sorghum.

6. Discussion

Sorghum, Sorghum bicolor (L.) Moench, is known under a variety of names: great millet and guinea corn in West Africa, kafir corn in South Africa, durra in Sudan, mtama in eastern Africa, jowar in India and kaoliang in China (Purseglove, 1972). In the United States it is usually referred to as milo or milomaize.

Sorghum belongs to the tribe Andropogonae of the grass family Poaceae. Sugar cane, *Saccharum officinarum*, is a member of this tribe and a close relative of sorghum. The genus *Sorghum* is characterised by spikelets borne in pairs. Sorghum is treated as an annual, although it is a perennial grass and in the tropics it can be harvested many times.

In 1753 Linnaeus described in his Species plantarum three species of cultivated sorghum: Holcus sorghum, Holcus saccaratus and Holcus bicolor. In 1794 Moench distinguished the genus Sorghum from the genus Holcus, and in 1805 Person suggested the name Sorghum vulgare for Holcus sorghum (L.). In 1961 Clayton proposed the name Sorghum bicolor (L.) Moench as the correct name for cultivated sorghum and this is currently being used.

The classification of sorghum by Snowden (1936) is detailed and complete. Other classifications proposed since that time have been modifications or adaptations of the Snowden system. Harlan and de Wet (1972) published a simplified classification of sorghum which has been checked against 10,000 head samples. They divided cultivated sorghum into five basic groups or races: bicolor, guinea, caudatum, kafir and durra. The wild type and shatter cane are considered two other spikelet types of *S. bicolor*. A study of polymorphisms of 11 enzymes permitted classification of sorghum into three enzymatic groups. The first includes mainly guinea varieties of West Africa; the second southern African varieties of all five races; and the third durra and caudatum types of Central and East Africa (Ollitrault, Escoute and Noyer, 1989).

The cultivated sorghum of the present arose from a wild progenitor belonging to the subspecies *verticilliflorum*. The greatest variation in the genus *Sorghum* is observed in the region of the northeast quadrant of Africa comprising Ethiopia, the Sudan and East Africa (Doggett, 1988). It appears that sorghum moved into eastern Africa from Ethiopia around 200 AD or earlier. It was adapted and carried to the savannah countries of eastern and southern Africa by the Bantu people, who used the grain mainly to make beer. The Bantu people probably began their expansion from the region of southern Cameroon about the first century AD, moved along the southern border of the Congo forest belt and reached eastern Africa possibly before 500 AD. The present-day sorghums of central and southern Africa are closely related to those of the United Republic of Tanzania and more distantly related to those of West Africa, as the equatorial forests were an effective barrier to this spread.

Sorghum was probably taken to India from eastern Africa during the first millennium BC. It is reported to have existed there around 1000 BC. Sorghum was probably taken in ships as food in the first instance; how traffic has operated for some 3,000 years between East Africa (the Azanean Coast) and India via the Sebaean Lane in southern Arabia. The sorghums of India are related to those of northeastern Africa and the coast between Cape Guardafui and Mozambique.

The spread along the coast of Southeast Asia and around China may have taken place about the beginning of the Christian era, but it is also possible that sorghum arrived much earlier in China via the silk trade routes.

Grain sorghum appears to have arrived in America as "guinea corn" from West Africa with the slave traders around the middle of the nineteenth century. Although sorghum arrived in Latin America through the slave trade and by navigators plying the Europe-Africa-Latin America trade route in the sixteenth century, the crop did not become important until the present century. The case is similar for Australia.

Grain sorghum grown primarily for food uses can be divided into milo, kafir, hegari, feterita and hybrids (Purseglove, 1972). There are other classes of sorghums such as sorghos, grass sorghums, broom-corn sorghum and special-purpose sorghum.

Sweet sorghum, because of its juicy, sweet stalks, has been a subject of scientific investigation for over 150 years (Cowley and Smith, 1972). Interest in sweet sorghum is especially important in areas of the world where other sources of sugar are difficult or impossible to produce. Its importance also increases during years when imported sugar supplies are threatened or interrupted by political or economic problems. Sweet sorghum has been used for over 100 years to produce a concentrated syrup. Sweet sorghums may differ from grain sorghums by only a few genes: those controlling plant height, the presence of juice in the stem, and the presence of sugar in the juice. Sweet sorghums have also been widely used for the production of forage and silage for animal feed.

Some varieties of high sucrose sweet sorghum were developed for crystallised sugar production by the US Department of Agriculture (USDA) and the Texas Agriculture Experiment Station with the idea of prolonging the milling period of sugar factories since the milling periods of sugarcane and sweet sorghum complement each other. With the development and release of the varieties Rio, Roma, and Ramada and the development of a method for crystallising sugar from sweet sorghum juice in the early 1970's (Smith *et. al.*, 1970), it became possible to produce crystallised sugar from sweet sorghum juice. A pilot industrial run confirmed the viability of the process in the Rio Grande Valley of Texas in the late 1970's. The following year, however, the world price of sugar dropped and the production of sugar from sweet sorghum has remained unprofitable since then.

The oil crises of 1973 and 1976 renewed interest in the commercial production of sweet sorghum for biological transformation into ethyl alcohol for use as fuel and fuel additives (Schaffert and Gourley, 1982). In 1975 Brazil created a national alcohol program (PROALCOOL) that resulted in a dramatic increase in alcohol production, principally from sugarcane (Schaffert *et. al.*, 1986b).

49

The great concentration of large distilleries (120,000 to 2 million litres per day capacity) and unavailable land space initially made the idea of processing sweet sorghum for alcohol impractical. However, the idea of using micro-developing and mini-distilleries (1000-20,000 litres per day capacity) in outlying areas for fuel self-sufficiency on large farms, as well as for small cooperatives and outlying small communities, awoke interest in the use of sweet sorghum for alcohol production. In central Brazil, which is agroclimatically similar to the SADCC countries, the harvesting period for sweet sorghum is from late February to May. Sugarcane is normally harvested from June to November.

There are several advantages to using sweet sorghum instead of sugarcane, as the biomass source for alcohol production (Schaffert, 1992):

- Sweet sorghum may be harvested in 4 months (whereas the first cut of sugarcane is 18 months after planting).
- Sweet sorghum production can be completely mechanised.
- The sweet sorghum crop is established from seed.
- Sweet sorghum grain may be used as either food or feed.
- The bagasse from sweet sorghum has a higher biological value than the bagasse from sugarcane when used as a forage for animals.

Petrini *et. al.*, (1992a) indicated that sweet sorghum was introduced into the USA during the 1850s. One of the first varieties grown was imported from China and distributed as Chinese Amber. Further genotypes such as Orange, Sourless, Goose-neck, White Africa, Sumac and Honey, were introduced by Leonard Wray in 1854 from South-Africa (Doggett, 1988). At the end of the nineteenth century, the varieties most widely grown for syrup production were Honey, Sugar Drip, White African, and the Ambers. Some of them, despite their susceptibility to leaf anthracnose and stalk red rot, had a wide distribution and were cultivated for a long time (Coleman, 1970).

48

Natural hybridisation was at first exploited as a source of variability. From the beginning of the century, rapid progress in the improvement of sorghum was reached with deliberate hybridisations between superior lines, followed by the selection in the segregating generations. Release of varieties was particularly successful during the period 1920-1950. At the end of the fifties, sorghum hybrids were available due to the finding of a successful source of cytoplasmic male sterility (Stephens and Holland, 1954). The genetic improvement of sweet sorghums followed, with a certain delay, the routes opened by grain sorghum breeders: inbred lines obtained by intentional hybridisation permitted the development of a number of varieties (Coleman, 1970). Particularly important for the introduction of new varieties for sugar and syrup production, was the role of the U.S. Sugar Crops Field Station, Meridian, Mississippi.

At Meridian, the breeding work was focused on the production of crystallised sugars and syrup. The ideal plant to be bred at the station was characterised by high yield of stalks, high percentage of extractable juice, high germination capacity, early vigour of seedlings and tolerance to lodging and diseases. Juices low in inverted sugars dextrose, levulose, starch and aconitic acid were also preferred due to their better crystallisation. Breeding was also aimed to solve the major problem of sweet sorghum susceptibility to leaf anthracnose and stalk red rot. In this respect, no significant improvements were obtained until a set of genotypes, collected by Carl O. Grassl in Africa, was imported in the middle 1940s. Many of these were resistant to the most important sorghum diseases.

At Meridian several varieties with improved carbohydrate yields were released: Sart, released in 1951, a late maturing variety, resistant to anthracnose and stalk red rot and producing a good quality syrup; Wiley, also late maturing, released in 1956, immune to red rot and leaf anthracnose, less resistant to lodging than Sart; Tracy, released in 1953, a high tonnage variety in the midseason group, susceptible to some diseases and with a high starch content in the juice; Brandes, a late-maturing variety released in 1968, very resistant to lodging (Freeman *et. al.*, 1973); Brawley and Rio, high yielding varieties, released respectively in 1958 and in 1965, selected for potential use as a sugar crop (Coleman, 1970); Theis, released in 1974, late maturing, high productivity and with intermediate resistance to lodging (Broadhead *et. al.*, 1974); Wray, a high sucrose sorghum released in 1978, resistant to maize dwarf mosaic virus, moderately susceptible to downy mildew, *Sclerospora sorghi*, (Broadhead *et. al.*, 1978). Because of the strong influence of the sugarcane industry on policymaking in Brazil and the misconception concerning correct sugar levels that arose, the cultivation of sweet sorghum as an adequate biomass source for alcohol production in Brazil was severely delayed.

The sweet sorghum breeding improvement program in Brazil was initiated in 1980 (Schaffert *et. al.*, 1986a). It was decided that the stalks and leaves of sweet sorghum would be milled in micro- and mini-distilleries in central and southern Brazil during the season when sugarcane is not normally milled (February to June). The normal planting season for annual crops begins in October and November with the first rains of the cropping year.

New sweet sorghum cultivars for alcohol production, BR 506 and BR 507, derived from the cross of Brandes x Wray, were developed by CNPMS/EMBRAPA for central Brazil. The cultivars, selected for high extractable sugar and a stable Period for Industrial Utility, PIU, (greater than 21 days), were released in 1987. Both varieties are photoperiod nonsensitive, have excellent disease resistance, are intermediate in grain production, and have high biomass production.

The primary uses of sweet sorghum were as a syrup for human consumption and as a livestock feed. The interest in sweet sorghum has risen in developed countries because of its potential as a source of sugar and raw material for production of ethanol as an energy source, as well as for its possible utilisation in different biotechnological processes.

In order to successfully carry out a breeding program for crop improvement, the plant breeder must have a thorough understanding of how the end product will be used. In the case of sweet sorghum, whether for sugar or alcohol production, a complete knowledge of the transformation process and the period of the industrial process must be known. In this report the improvement of sweet sorghum for transformation into alcohol is considered.

Research activities were initiated in Europe (Hungary, Italy, Germany and France) to evaluate the potential of the sweet sorghum germplasm as a possible alternative crop and to develop a sugar plant which might enlarge the diversity within the crop rotation and to overcome the increasing phytopathological risks of nematodes and rhizomania in the sugar beet cultivated areas (Dambroth, 1985; Kresovich *et. al.*, 1983; Moritz, 1986; El Bassam *et. al.*, 1987).

Specific aims of the Italian programme are: the transfer of male sterility and low size in some sugar varieties for obtaining hybrids with high vigour and high fermentable sugar content; the selection of inbred lines either monostelic or polistelic to employ as varieties or as pollinants in hybrid production. Transfer of male-sterility and low size is obtained through a backcross in which in the last few years several sterile-male lines with their isogenic maintainer have been made available for the breeding of hybrids with high sugar content. The selection programme so far carried out allowed to constitute 28 inbreeds, 13 of them monoculm (Petrini *et. al.*, 1992b).

In Germany, KWS, (Kleinwanzlebener Saatzucht AG) started in 1982 to evaluate the performance of sweet sorghum varieties from a world-wide collection and started in 1985 with a special breeding program to produce adapted varieties. This programme was aimed at producing the following types of sweet sorghum (experimental hybrids):

Sugar types (high sugar content) Fibre types (high fibre content) Combination types Fresh matter types (high fresh matter yield)

The most well known sweet sorghum variety of KWS is Korall.

Another German seed company which offers sweet sorghum seeds is DSV, (Deutsche Saatgutveredelung), Lippstadt. This company supplies the market with two varieties: Lisorax and Sorsa 7.

With respect to this report, "Sweet Sorghum, a Sustainable Crop for Energy Production in Europe," the research was aimed at obtaining information on potential productivity in tested environments and on the available sorghum genotypes. It always considered reference to quality of the product for industrial uses.

The wide adaptability of sorghum of tropical origins has been pointed out by Smith *et. al.* (1987). They demonstrated that in the USA, in an area between 21° and 47° parallel the stalk production ranged from between 50 to 90 tons fresh matter per hectare, while the fermentable sugar production from 4 to 17 tons per hectare.

The results achieved at the latitude $(52^{\circ} 17' 35'' \text{ north})$ within the framework of this EU-project ranged from 8.7 to 34.5 tons of dry matter per hectare and sugar yield up to 8.7 tons per hectare. The highest sugar content obtained was 12.9 %.

Previous studies at this location (El Bassam *et. al.*, 1987; El Bassam and Seidewitz, 1988; Dambroth and El Bassam, 1990) showed that the highest yield in 1985 was 140 tons fresh matter and in 1986 160 tons fresh matter per hectare. For those studies in the first year 18 genotypes and in the second evaluation year 32 genotypes produced more than 90 tons per hectare. The number of accessions which delivered more than 90 tons per hectare of fresh matter in both years was 10.

The investigations (El Bassam *et. al.*, 1987) have also shown that the dry matter contents of the different genotypes could rise as high as 30 %. The highest sugar content in the investigated cultivars was as high as 9.2 % in the first year and 11.1 % in the second year. Eleven genotypes showed a sugar content of higher than 10 %.

The sugar yield is a function of the biomass yield and the sugar content of the different types of sweet sorghum. On average for the high sugar yielding accessions more than 50 % of the sugar consists of saccharose, 28 % of glucose and 19 % fructose. The sugar distribution in the stem seems to be uniform between 9 and 12 %. The sugar contents of the panicles and the leaves ranges between 2 and 3 % (El Bassam *et. at.*, 1987).

The sugar content was made up almost exclusively of sucrose, fructose and glucose (dextrose). It is known that dextrose and fructose hamper the crystallisation of sucrose during the sugar production process, but they are extremely important starting materials for biotechnological processes and in the production of syrup. Sorghum types having 10 % and more sugar content in the biomass have an average sucrose content of approx. 53 %, a dextrose content of 28 % and a fructose content of 19 %.

Apart from the genetic constitution, it must also be expected that the sugar/starch ratio in any given plant will also vary with the climatic conditions. This affects the further processing of the raw materials obtained from the biomass as well as the alcohol yield. The alcohol yield can be illustrated by the following calculations based on two types of sugar sorghum.

Taking a relatively high yielding genotype with a yield of 115.4 t biomass/ha at a sugar content of 10.6 % (7.0 % sucrose, 3.6 % dextrose + fructose). The theoretical ethanol yield is as follows:

7.0 x 0.6776 = 4.74 l ethanol/100 kg biomass (sucrose) + 3.6 x 0.6439 = 2.31 l ethanol/100 kg biomass (dextrose + fructose)

i.e. this results in a total yield of 7.05 l ethanol/100 kg biomass.

However, the efficiency of the fermentation process is only approximately 90%, and that of the distillation step 95 %. This results in a corrected total yield of 7.05 x 0.855 = 6.03 l ethanol/100 kg biomass. Given a total yield of 115.4 t biomass/ha, this means an ethanol yield of 6,960 l/ha. Applying the same mathematical formula to a genotype having a relatively low yield performance (78 t biomass/ha, 2.6 % sucrose and 4.4 % dextrose + fructose) gives a total ethanol yield of 3,060 l/ha.

Further attempts have been carried out in order to characterise the sugar distribution in the stalks. Sugar analysis of the biomass in several internodes showed that sugar concentration in the stalk from the top to the first internode at the bottom was more or less similar. This is an indication that the transport, accumulation and transformation of the assimilates is well balanced.

The determination of the sugar content in samples taken from a cross-section profile from a stalk of sweet sorghum ZH 108 shows that the higher sugar concentration (9.85% in the fresh matter) was accumulated in the layer directly interior to the thin outer layer. The lowest concentration was found in the outer layer (7.22%) and in the center of the stalk (7.50%). Except for the outer layer, sugar concentrations decreased with each layer moving towards the center of the stalk.

It can be concluded, from the results obtained in this project, that there are some hybrids which delivered over 2 years good results concerning the biomass and sugar production, i.e. Korall, ZH 105 and ZH 108 which might be recommended for locations similar to our latitude.

The investigation of the relationship among sorghum characteristics evaluated in these experiments contributes to the definition of the most suitable plant type which optimises biomass and sugar production. The conclusion stated by Belletti *et. al.*, (1991), that the traits are connected to the duration of the emergence-flowering period, assuming that the late maturing genotypes have higher potentialities in terms of biomass and total sugar yield can not be confirmed at this stage of investigations. In order to find out the best cycle length, several factors should be considered, among them the pedoclimatic conditions of the area and the interest constraints.

The major accumulation of dry matter took place in the last vegetation period August until October, the sugar accumulation started later and continued till harvesting time.

The relationship between aerial dry matter weight and PAR absorbed by the crop was studied from data obtained at different growth stages and from daily solar radiation data recorded *in situ*. The efficiency PAR (photosynthetic active radiation) absorption was estimated as a function of LAI using the K determined INRA.

The results achieved indicate the relationship between the sum of PAR absorbed during the vegetation time and the dry matter accumulation at the Braunschweig location. A sum of about 500 MJ/m^2 was enough to produce nearly 20 tons dry matter per hectare, which is almost identical with the site in Grignon, France of higher PAR.

Also there was a significant correlation between leaf area index (LAI) and the sum of temperature during the growing season. It could be concluded that the development of the LAI should be used as an indication of the productivity at a given location and environment.

These results indicate that sweet sorghum can be considered as a potential source for producing biomass and sugar compounds for industrial and biotechnological uses. Biomass yields of 100 tons/ha and sugar production of 10 tons/ha were possible some of the years with certain cultivars, but can not be taken as a realistic level for production under practical management systems. Moreover, it seems to be quite possible that yields of 60-80 t fresh matter and sugar contents of 6-8 % in fresh matter can be achieved in average also under German conditions.

7. Bibliography

- Anderlei, J. (1985) Eine vorläufige Anbautechnik der Zuckerhirse. KWS seligenstadt, pp. 1-4.
- Anderlei, J., Mechelke, W., Seitzer, J.R., Schiweck, H. and Steinle, G. (1987) Sweet Sorghum (Sorghum bicolor L.), a renewable energy source? -Results of first experiments in Southern Germany. In: G. Grassi, B. Delmon, J.F. Molle and H. Zibetta (Eds.), Energy from Biomass and Industry. Proc. 4th EC Conf., Elsevier Appl. Sci., pp. 129-132.
- Belletti, A., Petrini, C., Minguzzi, A., Landini, V., Piazza, C. and Salamini, F. (1991) Yield potential and adaptability to italian conditions of sweet sorghum as biomass crop for energy production. Maydica 36: 283-291.
- Bolik, C.-J. (1991) Sweet Sorghum, Coordinated R & D activity in the sector of biomass production - Sweet Sorghum network. In: G. Grassi, P. Moncarda and H. Zibetta, Proceedings of Energy from Biomass Contractor's Meeting, CEC, DG XII/77/1991.
- Bolik, C.-J. (1994) Anbau und Nutzung der Zuckerhirse im süddeutschen Raum. Dissertation, Technischen Universität München.
- Broadhead, D,M., Freeman, K.C. Colemann, O.H. and Zummo, N. (1974) Theis - A new variety of sweet sorghum for sirup production. Miss. Agric. or Exp. Stn. Res. Highlights. Information Sheet 1236.
- Broadhead, D,M., Freeman, K.C. and Zummo, N. (1978) Wray A new variety of sweet sorghum for sugar production. Miss. Agric. or Exp. Stn. Res. Highlights, 4 (1).
- Brook, R.v., Anderlei, J. and Seitzer, J.F. (1988) Sweet sorghum, a possibility for biomass production in Europe? In: H.S. Stephens & Ass., Proceeding of the Euroforum New Energies, Vol. 3, (Saarbrücken, FRG, October 1988), pp. 486-487.
- Coleman, H.O. (1970) Syrup and sugar from sweet sorghum. In: J.S. Wall and W.M. Ross (Eds.) Sorghum Production and Utilization. The AVI Publishing Company, Inc., Westport, Connecticut
- Cowley, W.R. and Smith, B.A. (1972) Sweet sorghum as a potential sugar crop in South Texas. Proceedings of 14th Congrass, ISSCT.
- Dambroth, M. (1985) Lösung der Agrarmarktprobleme durch den Industriepflanzenanbau. Agronomische Rundschau 4/5, pp. 14-20.
- Dambroth, M. and El Bassam, N. (1981) Agrarprodukte. Diercke Weltwirtschaft 1, dtv/Westermann München und Braunschweig.
- Dogget, H. (1988) Sorghum. London, Longman Scientific and Technical.
- El Bassam, N., Dambroth, M. and Rühl, G. (1987) Die Zuckerhirse eine neue Rohstoffbasis für die Zuckerindustrie. Landbauforschung Völkenrode 37, pp. 201-206.

- Freeman, K.C., Broadhead, D.M., Zummo, N. (1973) Culture of sweet sorghum for sirup production. USDA Agricultural Handbook No. 441, Washington D.C.
- Harlan, J.R. & de Wet, J.M.J. (1972) A simplified classification of cultivated sorghum. Crop Sci., 12: pp. 172-176.
- ICRISAT, (1985) A guide to sorghum breeding species classification, pp. 5-9.
- Jvanjukovic, L.K. (1981) Specific and intraspecific classifications of sorghum species. Kulturpflanze XXIX, pp. 273-280.
- Kresovich, S., Moreno, E., Braun, H.E. and Molina J.J. (1983) Sweet sorghum breeding line evaluations. The Texas Agricultural Experiment Station, Texas, pp. 1-16.
- Mechelke, H. (1986) Written correspondence.
- Moritz, H. (1986) Bald Biosprit aus Zuckerhirse. Österreich, Top Agrar 29, pp.124-127.
- Ollitrault, P., Escoute, J. & Noyer, J.-L. (1989) Polymorphism of enzymes in sorghums. I. Description of 11 enzymatic systems, genetical control and linkage. Agron. Trop., 44: pp. 203-210.
- Petrini, C., Belletti, A. and Salamini, F. (1992a) Breeding and growing sweet sorghum for fuel. Chapter for Energy in World Agriculture Volume VII, Biomass and Wind Energy Non-Woody Biomass Section. Elsevier Science Publishers BN.
- Petrini, C., Belletti, A., Scozzoli, A. and Bazzicchi, R. (1992b) Sweet Sorghum Breeding for Energy Production. In: Biomass for Energy and Industry. 7th E.C. Conference. Italy, 1992. pp. 447-451.
- Petrini, C., Scozzoli, A., Moretti, C. and Belletti, A. (1996) Sweet sorghum breeding: state of art and future perspectives. In: Abstract, First European Seminar on Sorghum for Energy and Industry. Toulouse, France. p. 7.
- Purseglove, J.W. (1972) Tropical crops: monocotyledons, Vol. 1. London, Longman Group Limited. 334 pp.
- Schaffert, R.E. (1992) Sweet sorghum substrate for industrial alcohol. In: Utilization of sorghum and millets (Gomez, M.I., House, L.R., Rooney, L.W. and Dendy, D.A.V., eds.), pp. 131-137, India: International Crops Research Institute for the Semi-Arid Tropics.
- Schaffert, R.E., Borgonovi, R.A. and Casela, C.R. (1986a) Metodologia usada para desenvolver novas cultivares de sorgo sacarino. Relatorio Tecnico Anual do Centro Nacional de Pesquisa de Milho e Sorgo 1980-1984. Sete Lagoas, Minas Gerais, EMBRAPA/CNPMS, Brazil.
- Schaffert, R.E., Borgonovi, R.A. and Casela, C.R. (1986b) Parametros para selecção de progenies de sorgo sacarino. Relatoria Tecnico Anual do Centro Nacional de Pesquisa de Milho e Sorgo 1980-1984. Sete Lagoas, Minas Gerais, EMBRAPA/CNPMS, Brazil.

- Schaffert, R.E. and Gourley, L.M. (1982) Sorghum as energy source. In: House, L.R., Mughogho, L.K. and Peacock, J.M. (Eds.) Sorghum in the Eighties. Patancheru, A.P., India: ICRISAT.
- Smith, B.A., Smith, R.C., Roma, R.A., de la Cruz, and Griffiths, F.P. (1970) Removal of starch from sweet sorghum juices. Sugar Journal 32:25-30.
- Snowden, J.D. (1936) The cultivated races of sorghum. London, Adlard and Son. 274 pp.
- Stephens, J.C. and Holland, R.F. (1954) Cytoplasmic male-sterility for hybrid sorghum seed production. Agron. J. 46: 20.
- Wall, T.S. and Ross, W.M. (1970) Sorghum production and utilization. The AVI Publishing Company Westport Connecticut.

8. Annex 1

Meteorological data for the period 1985 - 1995. Complete data on different meteorological parameters are given in annex 1. These data are essential to evaluate and discuss the results of the database collection.

MONTHLY SUMMARY OF WEATHER DATA 1985-1995

Water	balance	ľ		34	÷	13	23	-36	50	-15	-43	-18	-13	23	44	57
ation		nonth's	otal	G	14	19	48	88	64	84	88	48	31	13	14	517
Evapor	'n.	-	nax. It	0.5	-	2.1	5.3	6.8	5.8	5.9	8	3.3	3.8	1.2	1.6	8
tation	E	nonth's	total r	40	11	32	11	52	114	69	45	30	18	36	58	574
Precipi	E		max. It	7.8	5.2	6.6	14.2	16.7	25.2	13	8.9	7	9.6	7.4	14.4	25.2
		month's	total	8149	15247	20232	35873	52655	51938	55293	46713	30150	16684	7820	4331	348405
radiation	(2)	month's	mean	263	545	653	1196	1806	1731	1784	1507	1005	538	261	140	955
ilobal solar	(J/cm		min.	69	37	141	240	570	520	600	665	278	116	46	34	34
0			max.	505	1016	1417	2383	2677	3012	2702	2370	1582	1330	681	362	3012
duration	IIS	month's	total	39	66	68	146	231	190	232	213	144	06	44	22	1518
Sunshine	in ho		тах.	6.3	8.3	9.4	12.6	14.9	15.5	15.2	13.5	10.5	10.3	6.9	5.6	15.5
perature	face (°C)	month's	nean	-9.3	-7.1	-1.0	3.2	6.5	7.8	10.5	10.0	8.4	5.5	-1.9	1.4	2.8
Lowest terr	at soil's sur		min.	-26.6	-19.1	-6.7	-4.0	-1.6	2.6	3.5	6.4	2.3	-4.4	-12.1	-14.7	-26.6
(C)		month's	mean	-4.6	-2.0	3.3	8.3	14.2	13.9	17.3	16.7	13.7	9.9	1.6	5.0	8.1
mperature (2 m height		min.	-18.7	-15.0	-4.2	-2.0	1.4	6.1	7.2	8.6	6.4	-0.8	-6.4	-8.9	-18.7
Air tei	at		max.	8.0	9.7	12.7	22.9	29.1	27.0	30.5	33.1	26.6	26.4	16.4	14.9	33.1
1985				January	February	March	Aprił	May	June	July	August	September	October	November	December	Summary

.

Water	balance			57	-	39	မု	-36	-10	\$	-26	9	80	5	128	128
ation		ionth's	tal	10	80	20	42	88	95	103	92	42	41	24	13	579
Evapora	in m	2	nax. Itc	0.6	0.8	1.9	3.2	6.3	5.7	14	7.2	2.3	3.6	2.2	1.1	7.2
tation	ε	nonth's	otal In	67	6	59	. 36	52	85	69	99	52	49	22	141	707
Precipi	ш		max. 1	10.1	2.2	9.5	7	14.8	35.6	15.1	17.6	28.8	13.7	6.1	25.5	35.6
		month's	total .	6536	16863	22252	31249	55810	60218	55989	47167	28242	20009	9972	5757	360909
radiation	12)	month's	mean	211	602	718	1042	1800	2007	1806	1522	941	645	332	186	986
tobat solar	(J/cm		min.	64	99	69	149	414	321	662	317	285	164	22	27	27
			max.	393	1133	1480	2080	2782	3043	2777	2417	1648	1338	655	393	3043
duration	IIS	month's	lotal	33	66	26	108	216	241	201	189	116	128	68	47	1563
Sunshine	in hoi		max.	6.3	8.4	9.7	11.8	14.4	14.8	14.3	13.2	10.7	9.2	7.5	5.9	 14.8
perature	face (°C)	month's	mean	-2.6	-14.0	-1.5	1.4	6.6	8.1	10.1	10.3	6.1	4.7	2.8	-0.6	2.6
Lowest ten	at soil's su		min.	-16.0	-27.2	-21.4	-9.1	-1.0	2.6	2.5	5.4	0'0	-2.6	-6.6	-8.5	-27.2
(C)		month's	mean	0.7	1.7-	3.5	6.7	14.4	16.2	17.4	16.5	11.4	10.5	7.5	2.9	8.4
mperature	2 m height		min.	-11.8	-20.6	-14.4	-5.4	3.4	4.5	7.9	8.2	3.5	1.8	-2.8	-6.2	-20.6
Air tei	at		max.	10.5	4.2	14.1	19.1	26.0	29.2	30.7	32.2	21.2	24,0	16.1	11.7	32.2
1986	_			January	February	March	April	May	June	July	August	September	October	November	December	Summary

at 2 m height at soil's surface (°C) in hours max. min. month's month's month's max. min. month's month's month's month's uary 6.6 -22.2 0.0 -18.0 -5.3 9.5 65 1171 nth max. 10.1 7.7 45 672 mh. nth 12.2 -14.5 0.05 -20.4 -7.2 9.7 142 154 nth 25.8 -2.1 0.9 -5.3 9.5 65 177 nth 25.8 -2.1 10.4 -15 3.1 155 2498 nth 21.6 -5.3 9.5 155 2498 2773 nth 21.6 15.9 15.5 2598 2773 2918 nth 21.6 11.7 10.2 15.3 211 2378 nth 21.6 10.9 10.1 10.2 15.3 <th>erature Sunshine duration</th> <th>Global so</th> <th>ar radiation</th> <th></th> <th>Precipitation</th> <th>Evapora</th> <th>tion</th> <th>Water</th>	erature Sunshine duration	Global so	ar radiation		Precipitation	Evapora	tion	Water
max. month's max. month's max.	ace (°C) in hours	Č	cm2)		in mm	in mn	_	balance
max. min. mean min. mean max. lotal max. lotal max. max. max. max. max. max. max. max. max. min. max. <	onth's month's		month's	month's	month	u s	ionth's	
Intary 6.6 -22.2 -6.4 -29.7 11.0 7.7 45 672 bbuary 8.3 -12.0 0.0 -18.0 -5.3 9.5 6.5 1171 arch 2.12 -14.5 0.5 -18.0 -5.3 9.5 6.5 1171 arch 2.12 9.0 -5.9 -2.4 13.6 167 2456 arch 21.6 3.5 10.4 -1.3 3.9 15.5 155 2959 arch 21.6 3.5 10.4 -1.3 3.9 15.5 156 2773 by 21.6 3.5 16.4 -1.3 3.9 15.5 156 2773 by 28.5 6.9 17.0 4.0 10.2 15.3 2077 guast 30.1 15.3 2.1 2.87 2077 permet 21.3 0.5 2.9 2.1 2.87 opermet 21.3 0.	ean max. total	max. min.	mean	total ma	ix. total	max. Ito	otal	
bruary 8.3 -12.0 0.0 -18.0 -5.3 9.5 65 1171 arch 12.2 -14.5 -0.5 -20.4 -7.2 9.7 142 1564 ni 22.6 -2.1 0.9 -5.9 -2.4 13.6 157 1564 ni 21.6 3.5 10.4 -1.3 3.9 15.5 155 2999 ne 31.0 5.8 14.2 1.5 8.0 14.5 156 2773 ly 28.5 6.9 17.0 4.0 10.2 15.3 211 2878 gust 30.1 6.0 17.0 4.0 10.2 15.3 211 2878 operationer 21.3 0.6 9.8 2.7 4.8 9.3 113 1287 operationer 21.3 0.6 9.8 2.7 4.8 9.3 137 1287	11.0 7.7 45	672 8	1 258	7793	11.5	47 0.8	8	41
arch 12.2 -14.5 -0.5 -20.4 -7.2 9.7 142 1554 ni 25.8 -2.1 9.9 -5.9 -2.4 13.6 167 2498 ay 21.6 3.5 10.4 -1.3 3.9 15.5 155 2898 ay 21.6 3.5 10.4 -1.3 3.9 15.5 155 2898 na 31.0 5.8 14.2 1.5 8.0 14.5 1773 na 21.0 6.9 17.0 4.0 10.2 15.3 211 2878 gust 30.1 6.0 15.9 2.9 15.3 211 2878 gust 30.1 6.0 14.4 -2.0 9.1 11.7 139 2077 cober 21.3 0.5 9.8 -2.7 4.8 9.3 1307 cober 21.3 0.5 9.8 0.3 138 1907 <td< td=""><td>-5.3 9.5 65</td><td>1171 6</td><td>4 431</td><td>12054</td><td>12.8</td><td>52 1.1</td><td>12</td><td>40</td></td<>	-5.3 9.5 65	1171 6	4 431	12054	12.8	52 1.1	12	40
ori 25.8 -2.1 9.9 -5.9 -2.4 13.6 167 2498 ay 21.6 3.5 10.4 -1.3 3.9 15.5 155 2959 ina 31.0 5.8 14.2 1.3 3.9 15.5 155 2959 ina 31.0 5.8 14.2 1.5 8.0 14.5 156 2773 ina 31.0 5.8 17.0 4.0 10.2 15.3 211 2878 igust 30.1 6.0 15.9 20 9.1 11.7 139 2077 igust 26.8 1.0 14.4 -2.0 9.1 10.6 138 1907 cober 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 cober 21.7 -1.1 6.0 -4.1 3.3 3.0 9 355	-7.2 9.7 142	1554 32	3 949	29412	5.5	37 1.6	18	19
ay 21.6 3.5 10.4 -1.3 3.9 15.5 155 2959 ine 31.0 5.8 14.2 1.5 8.0 14.5 156 2773 ine 31.0 5.8 14.2 1.5 8.0 14.5 156 2773 ine 31.0 5.8 17.0 4.0 10.2 15.3 211 2878 ing 20.1 6.0 15.9 2.0 9.1 11.7 138 2077 ingenter 26.8 1.0 14.4 -2.0 9.1 10.6 138 12077 cober 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 vember 11.7 -1.1 6.0 -4.1 3.3 3.0 9 355	-2.4 13.6 167	2498 36	2 1354	40631	6.9	24 7.5	69	45
Ine 31.0 5.8 14.2 1.5 8.0 14.5 156 2773 ily 28.5 6.9 17.0 4.0 10.2 15.3 211 2878 Just 30.1 6.0 15.9 2.9 10.9 11.7 139 2077 Just 26.8 1.0 14.4 2.0 9.1 10.6 138 2077 clober 26.8 1.0 14.4 2.0 9.1 10.6 138 1207 clober 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 ovember 11.7 -1.1 6.0 -4.1 3.3 3.0 9 355	3.9 15.5 155	202959 20	5 1534	47551	16.5	44 4.3	59	-15
Ity 28.5 6.9 17.0 4.0 10.2 15.3 2.11 2878 ugust 30.1 6.0 15.9 2.9 10.9 11.7 139 2077 ugust 30.1 6.0 15.9 2.9 10.9 11.7 138 2077 applember 26.8 1.0 14.4 -2.7 9.1 10.6 138 1907 cobe 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 cobe 21.7 4.8 9.3 3.0 9 355 355	8.0 14.5 156	2773 21	7 1512	45375	21.7	109 4.4	54	55
gust 30.1 6.0 15.9 2.9 10.8 11.7 139 2077 splember 26.8 1.0 14.4 -2.0 9.1 10.6 138 1907 clober 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 clober 21.7 -1.1 6.0 -4.1 3.3 3.0 9 355	10.2 15.3 211	2878 63	5 1781	55224	18.8	70 5.5	11	-7
pptember 26.8 1.0 14.4 -2.0 9.1 10.6 138 1907 clober 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 clober 21.7 4.1 3.3 3.0 9 355	10.9 11.7 139	2077 36	7 1267	39279	11.4	71 6	64	7
ctober 21.3 0.5 9.8 -2.7 4.8 9.3 113 1287 vember 11.7 -1.1 6.0 -4.1 3.3 3.0 9 355	9.1 10.6 138	1907 42	2 1002	30074	12.4	75 3.8	51	24
ovember 11.7 -1.1 6.0 -4.1 3.3 3.0 9 355	4.8 9.3 113	1287 8	4 633	19619	9.2	30 2.2	36	φ
	3.3 3.0 5	355 1	6 168	5047	20.3	62 0.9	13	49
scember 14.98.4 2.9 - 12.5 0.4 4.6 2.3 357	0.4 4.6 23	357 2	7 135	4178	10.6	48 0.8	8	40

200

466

5

666

21.7

336237

921

16

2959

1360

5.5

2.5

-29.7

8

22.2

Summary

1988	Air te	mperature	ຍຼ	Lowest ter	mperature	Sunshine	e duration	_	Global solar	r radiation		Precip	oitation	Evapo	oration	Water
	at	2 m heigh	Ĩt	at soil's su	Inface (°C)	in hc	Surs		(J/cn	12)		n L	m	ņ	E	balance
			month's		month's		month's			month's	month's		month's		month's	
	max.	min.	mean	min.	mean	max.	total	max.	min.	mean	total	max.	total	max.	total	
January	12.6	-2.5	4.6	-5.6	1.0	6.2	51	522	36	226	6992	6	65	1.1	16	43
February	10.7	-2.0	3.3	-5.3	0.0	6.9	52	747	99	377	10939	9	49	1.4	15	34
March	12.1	-3.7	3.4	-6.6	-0.5	7.2	69	1396	164	668	20694	16.2	104	1.5	16	88
April	23.9	4.6	5 8.3	9.6-	0.6	12.9	208	2326	420	1545	46361	3.6	14	5.1	64	-50
May	27.4	2.8	15.1	-1.4	5.5	14.0	265	2705	814	2024	62753	5.8	12	6.8	124	-112
June	26.4	6.4	15.2	1.5	9.3	15.6	144	3094	236	1517	45509	26.8	98	4.5	61	25
July	29.1	10.4	17.6	7.1	10.9	14.2	197	2638	669	1723	53404	12	52	4.9	92	-13
August	28.7	7.9	17.5	3.0	10.1	13.1	222	2416	783	1645	50992	4.8	22	5.6	105	-83
September	25.5	6.5	13.9	2.0	8.0	11.4	127	1733	248	984	29525	9.2	41	4.6	22	-16
October	18.8	0.8	9.6	-2.7	5.0	8.5	83	1350	85	536	16611	5.9	21	. 3	31	-10
November	13.2	-8.2	4.1	-12.5	-0.1	7.2	49	712	73	275	8261	11.6	47	1.2	16	31
December	10.3	-6.2	4.1	-10.4	0.8	5.7	31	385	47	152	4712	13.4	69	0.8	10	59
Summary	29.1	-8.3	9.8	1 -12.5	4.2	15.6	1495	3094	36	975	356753	26.8	602	6.8	607	-5

MONTHLY SUMMARY OF WEATHER DATA 1985-1995

Water	Dalance			5	20	1	9	-116	-82	Ę.	-35	-35	-	80	99	-221
ation	ε	nonth's	otal	12	18	35	48	118	118	108	118	64	42	20	13	7131
Evapor	Ē		max. It	11	1.6	3.7	3.7	6.9	~	6.8	7.9	5.1	3.5	1.8	1.2	8.91
itation	E	month's	total	17	47	46	38	2	36	45	83	29	43	28	6/	4921
Precip	U U)		max.	4.7	17.3	11.2	9.2	2	15.5	12.2	27.1	6.6	17.8	5.4	23.6	27.1
		month's	total	7693	13084	26747	33180	71779	65447	50967	49025	31037	19390	11653	5420	385422
radiation	۲)	month's	mean	248	467	863	1106	2315	2182	1644	1581	1035	625	486	175	1056
lobal solar			min.	42	94	222	189	1239	336	895	144	258	127	45	25	25
0			max.	615	772	1764	1984	2872	3046	2831	2239	1837	1342	585	383	3046
duration	210	month's	totaf	61	89	124	111	337	279	193	230	142	121	111	38	1836
Sunshine in hoi			nax.	7.4	8.2	9.6	10.3	15.1	15.6	14.1	13	10.7	10.3	7.1	5.3	15.6
perature	10 1 22	nonth's	nean	-0.1	0.5	1.8	2.4	3.5	6.8	11.1	10.5	8.7	6.1	-1.7	-0.5	4.1
Lowest terr		-	nin. II	-8.5	-5.0	-4.5	-6.1	-4.0	1.0	3.9	3.6	3.4	-3.2	-11.1	-10.4	-11.1
ç,		month's	mean	3.8	4.4	7.6	7.6	14.3	16.3	18.1	17.8	15.5	11.6	3.6	3.3	10.3
7 m heinhf			min.	-5.7	-3.0	-0.9	-2.9	0.8	5.1	8.0	7.0	7.6	0.9	-6.9	-7.8	-7.8
Air ter	3		max.	9.6	14.1	23.3	20.5	27.0	29.4	32.5	32.8	28.0	22.0	15.1	14.2	32.8
1989			_	January	February	March	April	May .	June	VIU	August	September	October	November	December	Summary

Water	balance			F	65	-17	-14	-69	-13	12-	-52	62	-26	54	45	-35
ration	E	month's	total	16	29	37	54	108	19/	96	129	38	46	÷	P	650
Evapo	E S		max.	1.6	2.2	4	4.6	7.3	5	8	10.5	2.6	3.1	0.9	6.0	10.5
itation	Ē	month's	total	17	94	20	6	39	63	25	11	100	20	65	55	615
Precip	5		тах.	6.8	34.3	5.4	~	9.4	22.1	12.7	20.9	16.1	10.5	23.9	12.6	34.3
		month's	total	6753	15027	25279	43783	66553	48089	56954	50895	25537	22707	7146	5566	374289
radiation	(2)	month's	mean	218	537	815	1459	2147	1603	1837	1642	851	732	238	180	1025
lobal solar	mo/r)		min.	29	80	173	417	826	266	636	408	172	251	34	10	10
0			max.	578	1025	1539	2194	2882	2652	2589	2643	1669	1210	491	410	2882
duration	217	month's	total	43	108	128	198	308	145	239	245	97	165	41	45	1759
Sunshine	02 UI		max.	6.4	9.6	10.5	12	14.2	12.1	14	14.5	10.7	9.1	6.1	9	14.5
perature	race (u)	month's	mean	0.6	1.8	2.1	1	3.7	9.3	8	11.3	7.9	5.1	2.5	0.6	4.6
Lowest ten	RI SOII S SUI		min.	-9.2	-0.6	-2.9	-9.7	-1	3.4	2.5	4.5	1.4	-5.8	-5.7	φ	-9.7
(c)		month's	mean	4.2	7.1	8	8.2	14.1	15.8	16.9	19.1	12.4	11.1	5.3	2.1	10.4
mperature (run neigni		min.	-5.8	-0.3	-0.2	-4.9	4.1	7.1	7.3	8.4	5.3	-1.3	-2.1	-4.7	-5.8
Air ter	đ		max.	12.8	16.8	21.1	21.1	26.7	27.6	31.3	35.5	20.3	23.4	13.6	9.3	34.5
1990				January	February	March	April	May	June	July	August	September	October	November	December	Summary

.

F.

H

in hours (J/cm2) in mm in mm in mm in mm balance max. lotal month's month's month's month's month's balance max. lotal max. min. month's month's month's month's month's balance 9.4 85 1267 116 583 16335 2.6 9 1 15 23 9.4 85 1267 116 583 16335 2.6 9 1 15 23 9.4 85 1267 116 583 16335 2.6 9 1 15 23 11.2 1738 247 862 26740 13.6 21 2.8 34 41 46 66 52 11.5 151 2563 347 1597 47944 4.8 14 46 65 26 15.5 294 133.3 97 <	Lowest temperatu
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ĵ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
9.4 85 1267 116 583 16.335 2.6 9 1.5 13 -4 9.9 112 1738 247 862 26740 13.6 21 2.8 34 -13 12.0 2051 457 1696 5454 10.4 8.6 552 14.3 166 2765 547 1597 4791 33.3 97 4.1 65 32 15.5 294 1597 4791 33.3 97 4.1 65 32 15.5 294 1597 4791 33.3 97 4.1 65 32 15.5 294 1597 4791 33.3 97 4.1 65 32 12.6 213 2284 504 1511 46845 13.7 31 72 53 57 54 65 57 56 56 56 56 57 56 56 56 <	
9.9 112 1738 247 862 26740 13.6 21 2.8 34 -13 12.0 2051 457 1693 44494 4.8 14 66 -52 11.3 166 2765 347 1597 47915 33.3 97 4.1 65 37 15.5 294 2920 957 1597 47915 33.3 97 4.1 65 37 15.5 294 2920 957 1597 47915 33.3 97 4.1 65 37 26 37 15.6 213 2284 504 1511 46845 13.7 31 7.2 56 -65 12.6 213 2284 504 1511 46845 13.7 31 7.2 56 -66 11.9 171 1928 279 1132 33935 7.4 25 57 79 -54	
12.0 200 2051 457 1483 44494 4.8 14 4.6 66 -52 14.3 166 2765 582 1696 52544 10.4 37 4 65 -52 11.5 151 2563 347 1597 47911 33.3 97 4.1 65 32 26 15.5 2594 504 1537 47911 33.3 97 4.1 65 33 26 15.5 2942 2920 567 2062 63926 11.1 47 6.1 109 -62 -66 -65 11.9 171 1928 279 1132 33935 7.4 25 57 79 -64 9.2 157 1088 102 726 224399 4.8 30 2.8 -66 -66 -66 -67 -67 -64 63 -64 63 -64 -63 -64	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ž
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7
15.6 294 2920 957 2062 63926 11.1 47 6.1 109 -62 12.6 213 2284 504 1511 46845 13.7 31 7.2 96 -65 11.9 171 1928 279 1132 33936 7.4 25 5.7 79 -54 9.2 157 1068 102 726 4.8 30 54 -54 -54 7.3 64 630 90 307 9199 14.4 72 1.9 15 57 5.8 50 343 29 177 5486 20.3 51 1 12 39	8.
12.6 213 2284 504 1511 46845 13.7 31 7.2 96 -65 11.9 171 1928 279 1132 33935 7.4 25 5.7 79 -54 9.2 157 1028 102 726 2499 4.4 72 36 -54 7.3 64 630 80 307 2369 14.4 72 15 79 -54 7.3 64 630 80 307 299 14.4 72 1.9 15 57 5.8 50 343 29 177 5486 20.3 51 1 12 39	Ņ
11.9 171 1928 279 1132 33935 7.4 25 5.7 79 -54 9.2 157 1068 102 726 22499 4.8 30 2.8 36 -6 7.3 64 630 80 307 9199 14.4 72 1.9 15 57 7.3 54 50 343 29 117 5486 20.3 51 1 12 39 <td>С.</td>	С.
9.2 157 1068 102 726 22499 4.8 30 2.8 36 -6 7.3 64 630 80 307 9199 14.4 72 1.9 15 57 5.8 50 343 29 177 5486 20.3 51 1 17 39	-
7.3 64 630 80 307 9199 14.4 72 1.9 15 57 5.8 50 343 29 177 5486 20.3 51 1 12 39	7
5.8 50 343 29 177 5486 20.3 51 1 12 39	Ŀ
	8.

ler	nce			32	Ŧ	49	0	-95	-91	8 ⁹	е Р	-53	64	63	55	-101
Wal	bala		_													
ration	E	month's	total	8	16	29	55	116	130	125	123	22	23	16	9	712
Evapo	с Э		ax.	0.9	1.8	2.1	3.4	6.8	9.7	9.5	12	4	2.3	1.2	1.2	12
ation	- -	nonth's	otal	40	27	78	55	21	39	45	60	17	87	162	65	611
Precipit	in m		nax. t	18.6	5.4	20.1	10.5	8.3	10.6	7.6	11.5	4.6	12.2	14.1	21.4	21.4
		month's	total	5229	11384	22913	36137	64025	65481	57932	48467	34869	15856	7846	5023	375512
radiation	2)	month's	mean	180	393	739	1205	2065	2183	1869	1563	1162	511	262	162	1026
tobal solar	(J/cm		min.	37	110	188	199	452	766	252	361	318	36	77	30	30
σ			nax.	469	279	1478	1825	2741	2965	2899	2435	1732	1170	740	325	2965
duration	ILS	month's	total I	43	62	102	142	294	270	241	211	174	91	56	47	1731
Sunshine	In hou	-	max. 1	6.5	9.1	9.6	9.6	14.4	15.0	14.3	12.7	11.2	9.5	7.6	5.1	15
perature	face (°C)	nonth's	nean ji	-0.6	0.4	0.6	2.3	5.6	8.9	11.0	12.7	7.3	2.3	2.6	-0.6	4.4
-owest tem	at soil's sur	-	nin. II	-10.6	-8.6	-3.8	-4.7	-3.1	3.2	4.0	6.8	1.9	-7.1	4.9	-9.0	-10.6
<u>-</u> ;;		month's	mean	1.9	4.3	5.6	8.6	15.1	18.6	19.3	19.4	14.0	6.8	6.1	2.2	10.2
nperature (2 m height		nin.	-9.0	-4.9	-1.0	-1.5	1.2	8.6	8.3	-0.2	5.9	-3.0	-1.7	-7.0	6-
Air ten	at		max.	11.0	15.0	15.7	19.9	27.6	31.0	34.4	38.2	25.1	17.0	13.3	13.5	38.2
1992		_		January	February	March	April	May	June	July	August	September	October	November	December	Summary

MONTHLY SUMMARY OF WEATHER DATA 1985-1995

ater	ance			49	14	-23	-51	-35	-26	56	-16	30	4	20	97]	118
3	bal			16	8	34	89	52	87	22	75	36	00	8	0		180
oration	m	month's	total					Ē							Ĺ		22
Evapi	5		nax.	1.2	0.0	2.5	7.3	7.3	5.4	6.4	4.9	2.5	2.4	0.8	0.7		7.3
ation	=	nonth's	otal Ir	65	22	1	88	67	61	128	59	99	ह	28	107		686
Precipit	in mr	5	nax. It	111	9	4	15.8	32.7	15.3	29.6	14.1	15.9	10.1	12.5	12		32.7
		nonth's	otał In	8029	11520	30295	45538	55187	57811	49452	44699	27086	17062	6585	4525		357789
radiation	(Z	nonth's r	nean (t	259	411	677	1518	1780	1927	1595	1442	903	550	220	146		980
obal solar	(J/cm)		nin.	48	112	149	593	546	660	513	343	117	112	29	59		29
Ö			nax. In	674	1030	1686	2286	2788	3038	2935	2325	1941	1256	475	307		3038
duration	LS	nonth's	otał jn	67	61	156	191	230	215	178	196	119	93	36	19		1560
Sunshine	in hou	-	nax. It	7.0	9.3	10.1	12.6	15.4	15.0	15.6	13.4	10.6	9.4	5.7	3.7		15.6
perature	ace (°C)	nonth's	nean in	-0.9	-3.2	-1.6	3.2	6.9	8.8	10.3	9.5	7.8	4.1	-2.3	0.5		3.6
owest tem	tt soil's sur	-	nin.	-17.9	-15.4	-9.0	.4 .6	-2.1	2.6	4.0	2.6	9.0 <u>-</u>	-7.1	-13.9	-12.7		-17.9
<u>-</u> 0		nonth's	nean	2.9	- 1-	4.6	11.1	14.9	15.7	16.1	15.4	12.3	8.5	0.4	3.8		8.8
nperature (2 m height	<u> </u>	nin.	-13.4	-11.1	-5.2	-1.2	1.9	6.0	8.3	6.6	2.6	-3.3	-9.6	-8.2		-13.4
Air ten	at		nax.	13.5	6.7	16.2	25.8	28.0	27.6	28.1	27.4	22.0	20.6	6.6	13.7		28.1
1993			_	January	February	March	April	May	June	July	August	September	October	November	December		Summary

	-	r-		In	le	-	1	6		.	100		٦	[-+	lio.	1	F
Water	balance			ľ			3		ې بې	-134	1			2	3 3		ľ
ation	ε	nonth's	otal	12	14	25	60	69	88	177	110	42	31	17	10		0.00
Evapoi	E		max. It	0.9	1.2	2	4.9	3.9	5.7	10.9	11.4	n	1.7	1.3	-		
itation	E	month's	total	87	22	66	87	60	56	43	126	42	40	41	51		10.75
Precip	п		max.	23.8	5.2	17.8	34.2	15.8	32.9	22.7	21.9	8	10.3	10.7	18.7		
		month's	total .	5677	14180	21780	41805	52615	58878	70426	49638	27972	20833	7886	5887		
radiation	(2)	month's	mean	183	508	703	1394	1697	1863	2272	1601	932	672	263	190		1001
ilobal solar	(J/cm		min.	42	86	128	197	298	539	383	360	248	117	50	56		
5			max.	455	958	1503	2197	2624	3031	2896	2419	1716	1276	702	341		1000
duration	LTS	nonth's	otal	30	83	96	184	203	238	345	233	116	136	54	50		
Sunshine	in họ	-	nax. It	5.3	9.0	8.2	11.5	13.9	15.3	15.1	13.7	10.2	9.4	7.8	4.9		
perature	face (°C)	nonth's	nean	0.0	-5.4	2.2	2.2	6.6	9.5	12.1	11.7	8.6	2.3	4.2	0.9		
-owest tem	at soil's sur	_	nin.	-6.4	-18.8	-5.6	-3.9	-1.0	1.8	5.8	4.5	0.6	-8.6	-3.9	-9.7		
		month's	nean	4.0	-0.7	6.5	9.3	13.1	15.9	21.9	18.2	13.5	8.0	7.7	4.6		
nperature (2 m height		nin.	-3.1	-13.4	-1.7	0.0	2.6	5.9	6.6	7.9	3.7	-4.7	0. F	-5.1		
AILTER	at		max.	11.9	13.0	17.3	22.1	22.1	29.9	34.6	36.5	23.3	17.4	15.2	13.5	1. X X	
1884	4		-	January	February	March	April	Viay	June	luly	August	September	October	Vovember	Jecember		

,

6	
14 C	
÷.	
i in	
2	
0	
N 40.	
- 6a -	
L. 40	
1	
1127	
	•

1

.

1995	Air tu	amperature	(c.)	Lowest te	mperature	Sunshine	e duration		Global sola	ir radiation		Preci	pitation	Evapi	oration	Water
	ā	t 2 m heigh		at soil's st	urface (°C)	ort ni	nrs		(J/C	n2)		Ë	mm	Ē	Ē	balance
			month's		month's		month's			month's	month's		month's		month's	
	max.	ш'n.	mean	min.	mean	max.	total	max.	min.	mean	total	max.	total	тах.	total	
January	12.1	-11.9	1.1	-15.9	-2.5	6.5	61	460	72	253	7837	11.4	75	1:2	12	63
February	13.2	-2.9	5.5	-6.4	1.8	9.3	75	1010	2	430	12036	14	62	1.5	19	43
March	14.4	-3.1	3.9	-6.5	-1.1	10.6	144	1861	263	885	27449	22.7	69	1.9	26	43
April	22.9	-0.7	8.9	-4.7	3.1	12.7	151	2271	270	1268	38032	10.6	44	4.8	51	2-
May	25.8	1.2	12.7	-4.1	5.0	14.0	227	2903	247	1745	54099	σ	47	6.2	8	-37
June	27.2	6.4	14.8	2.3	8.1	15.7	225	3050	443	1928	57832	14.7	56	5.2	11	-21
July	32.7	8.3	20.4	3.8	12.7	14.3	290	2738	996	2111	65445	15.1	52	6.7	125	-73
August	31.8	7.9	19.1	2.8	10.2	14.1	274	2698	721	1796	55661	17.5	47	8.7	140	-93
September	24.2	4.2	13.5	2.4	8.4	9.6	126	1588	93	953	28592	15.5	85	3.7	47	38
October	25.8	0.8	12.5	-3.5	6.4	9.6	123	1135	154	654	20274	7.5	22	3.3	39	-12
November	12.6	-4.7	3.9	-9.0	-3.3	7.0	53	703	42	265	7952	9.6	42	6.0	12	30
December	10.0	-12.9	-2.1	-17.6	-4.6	5.4	20	371	32	143	4433	8.7	22	0.4	5	17
Summary	32.7	-12.9	9.5	-17.6	3.9	15.7	1767	3050	32	1040	379642	22.7	621	8.7	637	1 -16

INSTITUTO NACIONAL DE TECNOLOGIA AGROPECUARIA, EEA, INTA

1

5988 MANFREDI (BA.) ARGENTINA

Genotype	Probno.	Origin Country	Donor
ATLAS X SUNRISE	223		ARGINTA1
CHIKEN CORN	222		ARGINTAL
EARLY SUNAC	220		ARGINTAL
GUATRACHE	218		ARGINTAL
HONEY	219		ARGINTAL
KANSAS ORANGE	217		ARGINTAL
KANSAS ORANGE	221		ARGINTAL
LEOTI	99		ARGINTAL
REX MINISTERIO	216		ARGINTA1

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION (CSIRO)

CANBERRA AUSTRALIA

Genotype	Probno.	Origin Country	Donor
• • • • • • • • • • • • • • • • • • • •			
EARLY ORANGE	3388	AUS	AUSCSIRO

INSTITUT SUPERIEUR INDUSTRIEL RUE SAINT VICTOR 3 4500 HUY BELGIUM

INSTITUTE OF INTRODUCTION AND PLANT GENETIC RESOURCES

4122 SADOVO, PLOVDIV BULGARIA

Genotype	Probno.	Origin Country	Donor
CV. 133 B REX	306		BGRIIPR
CV. 55-4	305		BGRIIPR
	304		BGRIIPR

9. Annex 2

Origin, donor and index of the evaluated genotypes.

٠.

EMBRAPA, CENTRO NACIONAL DE PESQUISA DE TRIGO

PASO FUNDO BRAZIL

Genotype	Probno.	Origin Country	Donor
027335 BR 501	311	BRA	BRAEMBRAPA
027551 89 503	312	BRA	BRAEMBRAPA
027091 08 303	314	BRA	BRAEMBRAPA
033030 CHEYE 603	319	BRA	BRAENBRAPA
022152 CHSYS 615	315	BRA	BRAENBRAPA
033162 CR3K3 013	313	BRA	BRAENBRAPA
044150 BR 505	317	BRA	BRAENBRAPA
044164 BP 502	320	BRA	BRAEMBRAPA
044172 BD 504	318	BRA	BRAENBRAPA
044172 BR 304 060272 CWEVE 514	316	BRA	BRAENBRAPA
069272 CH5K5 634	321	BRA	BRAENBRAPA
067261 01383 034	322	BRA	BRAENBRAPA
009299 CHEVE 636	322	BRA	BRAENBRAPA
067302 CH5K5 630	324	BRA	BRAENBRAPA
	225	RRA	BRAENBRAPA
060007 CHEVE 629	325	RRA	BRAENBRAPA
	327	RRA	BRAENBRAPA
067343 CR5K5 640	329	8PA	BRAENBRAPA
007333 CH5K5 643	329	RPA	BRAENBRAPA
069361 CH5A5 642	320	RRA	BRAENBRAPA
069370 CR5K5 643	221	RDA	BRAENBRAPA
069388 08585 639	331	DDA DDA	BRAENBRAPA
UD7375 UR5X5 547	332	DDA	BRAEMBRAPA
069400 CR585 643	333	DDA	RRAFNRRAPA
U69418 UN5X5 646	334	DDA	BDAFNBRAPA
069426 UNSXS 647	333	DRA	

ASIAN VEGETABLE RESEARCH AND DEVELOPMENT CENTER P.O. BOX 42 SHANHUA/TAINAN/TAIWAN/74199 CHINA

Genotype	Probno.	Origin Country	Donor
	•		
HYBRID NO II Keller	676 675		CHNAVRDC CHNAVRDC

CHINESE ACADEMY OF AGRICULTURAL AND FORESTRY SCIENCES PEKING

PEKING CHINA

.

Genotype	Probno.	Origin Country	Donor
TIAN DAO SHAD	307		CHNCAAF
TIAN GAN GAO LIANG	308		CHNCAAF

DEUTSCHE SAATVEREDELUNG, LIPPSTADT-BREMEN GNBH ZU LIPPSTADT POSTFACH 1407 59524 LIPPSTADT FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
LIPA	3637	DEU	DEUDSVLP
LISETA	3639	DEU	DEUDSVLP
LISORA	3638	DEU	DEUDSVLP
TESA	3636	DEU	DEUDSVLP

INSTITUT FUER PFLANZENGENETIK UND KULTURPFLANZENFORSCHUNG CORRENSSTR. 3 06466 GATERSLEBEN FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
E 700/83	425		DEUIPK
SOR 01/80	428		DEUIPK
SOR 04/83	430		DEUIPK
SOR 09/78	429		DEUIPK
SOR 1/88	3399		DEUIPK
SOR 10/83	422		DEUIPK
SOR 11/82	120	CHN	DEUIPK
SOR 11/82	424		DEUIPK
SOR 12/83	119	CHN	DEUIPK
SOR 12/83	423		DEUIPK
SOR 20/88	3402		DEUIPK
SOR 21/91	3404		DEUIPK
SOR 23/81	121	GRC	DEUIPK
SOR 23/81	427		DEUIPK
SOR 24/82	116	GRC	DEUIPK
SOR 4/83	118	CHN	DEUIPK
SOR 4/88	3400		DEUIPK
SOR 6/91	3403		DEUIPK
SOR 9/78	117	DEU	DEUIPK
SOR 9/88	3401		DEUIPK
SORGUN'S CALAIS'	426		DEUIPK

INSTITUT FUER PFLANZENBAU UND PFLANZENZUECHTUNG DER JUSTUS-LIEBIG-UNIVERSITAET LUDWIGSTR. 23 35390 GIESSEN FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
SORSA	13		DEUJLUPZGI

•

KLEIHVANZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EINBECK FEDERAL REPUBLIC OF GERMANY

KLEIHWANZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EIHBECK FEDERAL REPUBLIC OF GERHANY

.

Genotype	Probno.	Origin Country	Donor
1043	3361		DEUKWSEIN
1425	3355		DEUKWSEIN
1435	3349		DEUKWSEIN
1436	3350		DEUKWSEIN
1437	3351		DEUKWSEIN
1438	3352		DEUKWSEIN
1439	3353		DEUKWSEIN
1440	3354		DEUKWSEIN
1442	3362		DEUKWSEIN
1448	3364		DEUKWSEIN
1449	3365		DEUKWSEIN
1450	3366		DEUKWSEIN
1453	3367		DEUKWSEIN
1455	3369		DEUKWSEIN
1465	3374		DEUKWSEIN
1472 AF	3377		DEUKWSEIN
1474	3378		DEUKWSEIN
1475	3379		DEUKWSEIN
A 2077	213		DEUKWSEIN
A 48	212		DEUKWSEIN
A1 K AT1	3002		DEUKWSEIN
A1 X AT2	3003		DEUKWSEIN
AL X AT3	3004		DEUKWSEIN
A1 X AT4	3005		DEUKWSEIN
A1 X ATX	3001		DEUKWSEIN
A1 X BT1	3006		DEUKWSEIN
A10 X AT1	3051		DEUKWSEIN
A10 X AT2	3052		DEUKWSEIN
A10 X AT3	3053		DEUKWSEIN
A10 X ATX	3050		DEUKWSEIN
A10 X BT1	3054		DEUKWSEIN
A10 X BT2	3055		DEUKWSEIN
A11 X AT4	3057		DEUKWSEIN
A11 X ATX	3056		DEUKWSEIN
All X BT1	3058		DEURWSEIN
A12 X AT3	3060		DEURWSEIN
A12 X AT4	3061		DEURWSEIN
AL2 X ATX	3059		DEURASEIN
A13 X AT3	3063		DEUNADEIN
A13 X ATX	3062		DEUKAGEIN
A14 X AT1	3037		DEURADEIA
A14 X ATX	3036		DEURAGETN
A14 X BT1	3038		DEURNDEIR
A15 X AT2	3039		DEGREDEIN
A15 X AT3	3040		DEURAJEIN
A15 X AT4	3041		DEURASEIN
A15 X BT1	3042		DEUKASEIN
A15 X BT2	3043		DEURISEIN
A16 X AT2	3045		VEDNADEIN

Genotype	Probno.	Origin Country	Donor
A16 X ATX	3044		DEUKWSETN
A16 X BT2	3046		DEUKWSEIN
A17 X ATX	3064		DEUKYSEIN
A4 X AT1	3013		DEUKWSEIN
A4 X AT2	3014		DEUKWSEIN
A4 X AT3	3015		DEUKWSEIN
A4 X AT4	3016		DEUKWSEIN
A4 X ATX	3012		DEUKWSEIN
A4 X BT1	3017		DEUKWSEIN
A4 X BT2	3018		DEUKWSEIN
A5 X AT1	3020		DEUKWSEIN
AS X AT2	3021		DEUKWSEIN
AS X AT3	3022		DEUKWSEIN
AS X AT4	3023		DEUKWSEIN
AS X ATX	3019		DEUKWSEIN
AS X BT1	3024		DEUKWSEIN
AS X BT2	3025		DEUKWSEIN
AG X AT3	3026		DEUKWSEIN
AG X BT1	3027		DEUKWSEIN
A7 X AT2	3029		DEUKWSEIN
A7 X ATX	3028		DEUKWSEIN
A7 X BT2	3030		DEUKWSEIN
A8 X AT1	3032		DEUKWSEIN
AB X AT4	3033		DEUKWSEIN
AB X ATX	3031		DEUKWSEIN
A8 X BT1	3034		DEUKWSEIN
A8 X BT2	3035		DEUKWSEIN
A9 X AT4	3048		DEUKWSEIN
A9 X ATX	3047		DEUKWSEIN
A9 X BT1	3049		DEUKWSEIN
AGOLENE	54		DEUKWSEIN
AKB	215		DEUKWSEIN
AN 50	211		DEUKWSEIN
ATX 623	214		DEUKWSEIN
B-ORANGE	203		DEUKWSEIN
B-ROX	202		DEUKWSEIN
B11 X AT1	3312		DEUKWSEIN
B11 X AT2	3313		DEUKWSEIN
B11 X AT3	3314		DEUKWSEIN
B11 X AT4	3315		DEUKWSEIN
B11 X BT1	3316		DEUKWSEIN
B11 X BT2	3317		DEUKWSEIN
DALE	59		DEUKWSEIN
E14 X ATX	3065		DEUKWSEIN
E24 X ATX	3066		DEUKWSEIN .
E25 X AT3	3067		DEUKWSEIN
E25 X AT4	3068		DEUKWSEIN
E26 X ATX	3069		DEUKWSEIN
E27 X ATX	3070		DEUKWSEIN

-

.

.

- 6 -

KLEINVANZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EINBECK FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
F28 X ATX	3071		DEUKWSEIN
F29 X ATX	3072		DEUKWSEIN
E31 X ATX	3073		DEUKWSEIN
E39 X AT3	3075		DEUKWSEIN
E39 X ATX	3074		DEUKWSEIN
E40 X ATX	3076		DEUKWSEIN
E43 X ATX	3077		DEUKWSEIN
E44 X ATX	3078		DEUKWSEIN
E46 X ATX	3079		DEUKWSEIN
E48 X AT2	3081		DEUKWSEIN
E48 X ATX	3080		DEUKWSEIN
EX1	3385		DEUKWSEIN
EX3	3387		DEUKWSEIN
F10 X ATX	3090		DEUKWSEIN
F13 X ATX	3091		DEUKWSEIN
F15 X ATX	3092		DEUKWSEIN
F17 X ATX	3093		DEUKWSEIN
F18 X ATX	3094		DEUKWSEIN
F19 X ATX	3095		DEUKWSEIN
F20 X ATX	3096		DEUKWSEIN
F21 X AT2	3098		DEUKWSEIN
F21 X AT3	3099		DEUKWSEIN
F21 X ATX	3097		DEUKWSEIN
F21 X BT2	3100		DEUKWSEIN
F23 X AT3	3102		DEUKWSEIN
F23 X ATX	3101		DEUKWSEIN
F24 X AT3	3104		DEUKWSEIN
F24 X ATX	3103		DEUKWSEIN
F26 X ATX	3105		DEUKWSEIN
F27 X AT3	3107		DEUKWSEIN
F27 X ATX	3106		DEUKWSEIN
F28 X ATX	3108		DEUKWSEIN
F29 X AT3	3110		DEUKWSEIN
F29 X ATX	3109		DEUKWSEIN
F30 X AT3	3112		DEUKWSEIN
F30 X ATX	3111		DEUKWSEIN
F32 X ATX	3113		DEUKWSEIN
F33 X ATX	3114		DEUKWSEIN
F34 X ATX	3115		DEUKASEIN
FG X ATX	3082		DEUKWSEIN
F8 X AT2	3084		DEURASEIN
F8 X AT3	3085		DEUKWSEIN
F8 X AT4	3086		DEURNCEIN DEURNCEIN
FB X ATX	3083		DEURWSEIN
F8 X BT1	3087		DEURWSEIN
F8 X BT2	3088		VEURWSEIN
F9 X ATX	3089		DEDRESELN
G1 X ATX	3161	•	DEURWSEIN
G10 X ATK	3163		DEDVADETU

KLEINWANZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EINBECK FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Denor
G12 X ATX	3164		DEUKWSEIN
G13 X ATX	3165		DEUKWSEIN
G8 X ATX	3162		DEUKWSEIN
I4 X AT2	3117		DEUKWSEIN
I4 X AT3	3118		DEUKWSEIN
I4 X ATX	3116		DEUKWSEIN
IS X AT3	3119		DEUKWSEIN
IS X AT4	3120		DEUKWSEIN
IG X ATX	3121		DEUKWSEIN
17 X AT3	3123		DEUKWSEIN
I7 X AT4	3124		DEUKWSEIN
I7 X ATX	3122		DEUKWSEIN
I7 X BT2	3125		DEUKWSEIN
18 X AT2	3127		DEUKWSEIN
18 X AT3	3128		DEUKWSEIN
I8 X AT4	3129		DEUKWSEIN
IS X ATX	3126		DEUKWSEIN
K3 X AT2	3007		DEUKWSEIN
K3 X AT3	3008		DEUKWSEIN
K3 X AT4	3009		DEUKWSEIN
K3 X BT1	3010		DEUKWSEIN
K3 X BT2	3011		DEUKWSEIN
KESOJ BARNA	204		DEUKWSEIN
KORALL	384	DEU	DEUKWSEIN
KORALL	1003		DEUKWSEIN
N81E	56		DEUKWSEIN
NKB8180-7437	188		DEUKWSEIN
NKB8180-8475	191		DEUKWSEIN
NKB8276-7928	193		DEUKWSEIN
NKB8278-7893	194		DEUKWSEIN
NKB8280-7894	195		DEUKWSEIN
NKB8361-8192	189		DEUKWSEIN
NKB8363-8191	196		DEUKWSEIN
NKB8364-8187	197		DEUKWSEIN
NKB0368-0189	198		DEUKWSEIN
RN5, -04/8-0469	190		DEUKWSEIN
FI A AIA BIO V ATO	3130		DEUKWSEIN
DIO V ATV	3140		DEURWSEIN
	3137		DEURWSEIN
511 A AIA D17 V ATV	3141		DEUKNOLIA
PIG V ATV	3142		DEURADEIN
P14 V 4T2	2143		DEUKWEETU
PIA Y ATA	3145		DEURWEETN
PIA X ATX	3144		DEURACETA DEURACETA
PIG X ATX	3147		DEIKNEETN
P19 X ATX	3148		DEUKWSEIN
P20 X ATX	3149		DEGRADEIR
P21 X ATX	3150		DEUKWSETN

•

.

- 9 -

- 8 -

ł

KLEIHWANZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EINBECK FEDERAL REPUBLIC OF GERMANY

Genotype	Probao.	Origin Country	Donor
P24 X ATX	3151		DEUKWSEIN
P25 X ATX	3152		DEUKWSEIN
P26 X AT3	3154		DEUKWSEIN
P26 X ATX	3153		DEUKWSEIN
P27 X ATX	3155		DEUKWSEIN
P28 X ATX	3156		DEUKWSEIN
P30 X ATX	3157		DEUKWSEIN
P33 X ATX	3158		DEUKWSEIN
P35 X ATX	3159		DEUKWSEIN
P4 X ATX	3131		DEUKWSEIN
P40 X ATX	3160		DEUKWSEIN
PS X ATX	3132		DEUKWSEIN
P6 X ATX	3133		DEUKWSEIN
P7 X ATX	3134		DEUKWSEIN
PA X AT3	3136		DEUKWSEIN
PA X AT4	3137		DEUKWSEIN
PAYATY	3135		DEUKWSEIN
P9 K ATX	3138		DEUKWSEIN
PICKETT #3	201		DEUKWSEIN
RED TOP KANDY	47		DEUKWSEIN
PONA	36		DEUKWSEIN
PTK-FYTRA	48		DEUKWSEIN
SWEFT REF	60		DEUKWSEIN
SY8275 1256	187		DEUKWSEIN
CTADVACT BADNA	199		DEUKWSETN
TUEIC	192		DEUKWSETN
	200		DEUKWSETN
WDAY	AE		DELIKWSETN
WRAL V1417	2282		DEUKWSEIN
A1413 V1414	3303		DEUKWSETN
A1414 V1416	3381		DEUKASETN
V1410	3304		DEUKUSETH
V1411	205		DEUKWSETN
X4001	205		DEUKWSETN
X4021	200		DEUKWSETH
X4025	202		DEUKWSETN
X402J X4041	208		DEUKWSETN
X4041 X4040	209		DEUKWSETN
A4040 V0100 CW	51		DEUKWSETN
X0101 CM Y0101 CM	52		DEUKWSETN
VOTOT DW	32	DEU	DEUKWSETN
2H 101	377	DEU	DEURWSEIN
4R 102 78 103	370	DEU	DELIKUSETN
20 103	3/7	DEU	DEUKNSETN
2n 104	380	DEU	DEUKWSETH
2H 103	301		DENKAGETK
2H 106	382		DEGRAGETH
ZH 107	383		DEGUAGETH
ZH 111	385	DEU	DEURYDEIR
ZH 114	386	UEU	DEGUNADEIN

KLEIHWANZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EINBECK FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
ZH 116	387	DEU	DEUKWSEIN
ZH 120	388	DEU	DEUKWSEIN
ZH 121	389	DEU	DEUKWSEIN
ZH 122	390	DEU	DEUKWSEIN
ZH 123	391	DEU	DEUKWSEIN
ZH 201	999		DEUKWSEIN
ZH 213	1000		DEUKWSEIN
ZH 243	1001		DEUKWSEIN
ZH 2901	3595		DEUKWSEIN
ZH 2902	3596		DEUKWSEIN
ZH 2903	3597		DEUKWSEIN
ZH 2904	3598		DEUKWSEIN
ZH 2905	3599		DEUKWSEIN
ZH 2986	3600		DEUKWSEIN
ZH 2907	3601		DEUKWSEIN
ZH 2908	3602		DEUKWSEIN
ZH 2909	3603		DEUKWSEIN
ZH 2910	3604		DEUKWSEIN
ZH 2911	3605		DEUKWSEIN
ZH 2912	3606		DEUKWSEIN
ZH 2913	3607		DEUKWSEIN
ZH 2914	3608		DEUKWSEIN
ZH 2915	3609		DEUKWSEIN
ZH 2916	3610		DEUKWSEIN
ZH 2917	3611		DEUKWSEIN
ZH 2918	3612		DEUKWSEIN
ZH 2919	3613		DEUKWSETN
ZH 2920	3614		DEUKWSEIN
ZH 2921	3615		DEUKWSETN
ZH 2922	3616		DEUKWSETN
ZH 2923	3617		DEUKWSETN
ZH 2924	3618		DEUKWSETN
ZH 2925	3619		DEUKWSEIN
ZH 2926	3620		DFUKWSETN
ZH 2927	3621		DEUKWSETN
ZH 2928	3622		DELIKWSETN
ZH 2929	3623		DEUKWSETN
ZH 2930	3624		DEUKWSETN
ZH 2931	3625		DEUKWSETN
ZH 2932	3626		DFUKWSETH
78 2933	3627		DFUKWSETW
78 2934	3628		DFIIKWSETN
ZH 2935	3629		DEUKWSETN
ZH 2936	3630		DEUKNSETN
ZH 2937	3631		DEUKWSETN
ZH 2938	3632		DEUKWSETN
ZH 2939	3633		DEUKWSETN
ZH 2940	3634		DEUKWSETN
ZH 2941	3635		DEUKVSETN

.

•

KLEIHVAHZLEBENER SAATZUCHT AG POSTFACH 1463 37552 EINBECK FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
ZH 530	1002		DEUKWSEIN
	336		DEUKWSEIN
	337		DEUKWSEIN
	338		DEUKWSEIN
	339		DEUKWSEIN
	340		DEUKWSEIN
	341		DEUKWSEIN
	342		DEUKWSEIN
	343		DEUKWSEIN
	344		DEUKWSEIN
	345		DEUKWSEIN
	346		DEUKWSEIN
	347		DEUKWSEIN
	348		DEUKWSEIN
	349		DEUKWSEIN
	350		DEUKWSEIN
	351		DEUKWSEIN
	352		DEUKWSEIN
	353		DEUKWSEIN
	354		DEUKWSEIN
	355		DEUKWSEIN
	356		DEUKWSEIN
	357		DEUKWSEIN
	358		DEUKWSEIN
	359		DEUKWSEIN
	360		DEUKWSEIN
	361		DEUKWSEIN
	362		DEUKWSEIN
	363		DEUKWSEIN
	364		DEUKWSEIN
	365		DEUKWSEIN
	366		DEUKWSEIN
	367		DEUKWSEIN
	368		DEUKWSEIN
	369		DEUKWSEIN
	370		DEUKWSEIN
	371		DEUKWSEIN
	372		DEUKWSEIN
	373		DEUKWSEIN
	374		DEUKWSEIN
	375		DEUKWSEIN
	376		DEUKWSEIN

.*

KWS-AUSSENSTELLE SELIGENSTADT B. WUERZBURG 97279 PROSSELSHEIM FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
	57		
RIO	24		DEUKWSWIE
ROX ORANGE INBRED	58		DEUKWSWUE
SUCROSORGE 301	61		DEUKWSWUE
SUCROSORGE 405	49		DEUKWSWUE
T-E-GOLDNAKER	57		DEUKWSWUE

L.C. HUNGESSER GMBH POSTFACH 110846 64223 DARMSTADT FEDERAL REPUBLIC OF GERMANY

Genotype	Probno.	Origin Country	Donor
EXPRESS	44		DEUNUNGESDA
K533	43		DEUNUNGESDA
SIGUX	45		DEUNUNGESDA

.

PLANT GENETIC RESOURCES CENTER OF ETHIOPIA

ADDIS ABABA ETHIOPIA

Genotype	Probno.	Origin Country	Donor
	157	ETH	ETHPGRC/E
28-24	125	ETH	ETHPGRC/E
70373	131	ETH	ETHPGRC/E
71022	132	ETH	ETHPGRC/E
7107/	136	FTH	ETHPGRC/E
72932	137	FTH	ETHPGRC/E
72784	140	FTH	ETHPGRC/E
73430	141	FTH	ETHPGRC/E
73431	147	FTH	ETHPGRC/E
73479	144	ETH	ETHPGRC/E
73304	154	FTH	ETHPGRC/E
/4040	159	ETH	ETHPGRC/E
74832	150	ETH .	ETHPGRC/E
/4866	160	etu etu	ETHPGRC/E
748/6	160	etu etu	ETHPGRC/E
/4884	124	ETH	ETHPGRC/E
ABUULATA	129	FTH	ETHPGRC/E
AFERIE	150	etu etu	ETHPGRC/E
BARBARI GIDBICODU I EQ-1-7	124	FTH	ETHPGRC/E
CAPRILURN 1-37-R-7	149	FTH	ETHPGRC/E
CHIBAL	152	FTH	ETHPGRC/E
DEGALII	128	FTH	ETHPGRC/E
GARBELA 1107	146	FTH	ETHPGRC/E
HAWAL LINKISH	167	FTH	ETHPGRC/E
	155	FTH	ETHPGRC/E
NADRALIA VEL ZENGADA	133	ETH	ETHPGRC/E
REI ZERURDA	130	FTH	ETHPGRC/E
	166	FTH	ETHPGRC/E
MASHILA DEDS	163	FTH	ETHPGRC/E
RISU-II WETCH VETTETO	139	FTH	ETHPGRC/E
REICH RELIEIU	127	FTH	ETHPGRC/E
P 183	155	FTH	ETHPGRC/E
KAKA	122	FTH	ETHPGRC/E
5-37-6-0	125	FTH	ETHPGRC/E
l Inkish Turrell	142	FTH	ETHPGRC/E
TINKISH	147	FTH	ETHPGRC/E
TINKISH	149	FTH	ETHPGRC/E
	157	ETH	ETHPGRC/E
TINKICU GEGERSA	151	ETH	ETHPGRC/E
TINTCU ULVAT	150	FTH	ETHPGRC/E
1188138 88881 HC-1763	165	FTH	ETHPGRC/E
2011/03 7040404	129	FTH	ETHPGRC/E
ZERUAVA	123	L	

.

.*

•

ASGROW-FRANCE S. A. B. P. 80 60304 SENLIS CEDEX FRANCE

Genotype	Probno.	Origin Country	Donor
DASIS ATN 1977	280		FRAASGROW
GRAZFR ATH 1970	279		FRAASGROW

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER, SERVICE DES EDITIONS DE L'ORSTOM 70-74 ROUTE D'AULNAY 93140 BONDY

FRANCE

Genotype	Probno.	Origin Country	Donor
SG. 1731	268	SEN	FRAORSBON
SG. 1924	269	SEN	FRAORSBOM
SG. 2095	253	NER	FRAORSBOM
SG. 2309	254	NER	FRAORSBOM
SG. 2327	255	NER	FRAORSBOK
SG. 2506	256	NER	FRAORSBON
SG. 2511	257	NER	FRAORSBON
SG. 2528	258	NER	FRAORSBOM
56. 2546	259	NER	FRADRSBON
56. 2562	260	NER	FRAORSBOK
56. 2565	261	NER	FRAORSBOK
SG. 2570	262	NER	FRAORSBOM
SG. 3526	270	TGO	FRAORSBOM
56. 3549	271	TGO	FRAORSBOX
56. 3696	272	TGO	FRAORSBON
SG. 3701	273	TGO	FRAORSBOM
SG. 4543	248	MLI	FRAORSBOM
SG. 4545	249	KLI	FRAORSBOM
SG. 4579	250	KLI	FRAORSBON
SG. 4763	251	NLI	FRAORSBON
SG. 4938	252	MLI	FRADRSBON
SG. 6190	263	HVO	FRAORSBOM
SG. 6250	264	HVO	FRAORSBOM
SG. 6284	265	HVO	FRAORSBOM
SG. 6286	266	HVO	FRAORSBOM
SG. 7817	267	HVO	FRAORSBOM

-

PROTOSEN DES SENENCES POUR L'INDUSTRIE, CENTRE DE RECHERCHES DOMAINE DE CARLES 31340 VILLENUR FRANCE

Genotype	Probno.	Origin Country	Donor
Н 029	1011	FRA	FRAPROTOSEN
H 030	1012	FRA	FRAPROTOSEN
H 035	1013	FRA	FRAPROTOSEN
H 040	1014	FRA	FRAPROTOSEN
H 043	3640	FRA	FRAPROTOSEN
H 045	1015	FRA	FRAPROTOSEM
H 128	1016	FRA	FRAPROTOSEN
H 129	3641	FRA	FRAPROTOSEM
H 130	3642	FRA	FRAPROTOSEM
H 132	1017	FRA	FRAPROTOSEK
H 133	1018	FRA	FRAPROTOSEN
H 143	1019	FRA	FRAPROTOSEK
H 173	1020	FRA	FRAPROTOSEM
H 174	1021	FRA	FRAPROTOSEN
H 178	1022	FRA	FRAPROTOSEN
K 200	3643	FRA	FRAPROTOSEN
H 201	3644	FRA	FRAPROTOSEN
H 234	3655	FRA	FRAPROTOSEN
H 252	3645	FRA	FRAPROTOSEM
H 266	3646	FRA	FRAPROTOSEN
K 269	3647	FRA	FRAPROTOSEN
H 341	3649	FRA	FRAPROTOSEK
HP 267	3650	FRA	FRAPROTOSEN
HS 01	3652	FRA	FRAPROTOSEN
HS 02	3651	FRA	FRAPROTOSEN
HS 04	3654	FRA	FRAPROTOSEN
HS 04	3654	FRA	FRAPROTOSEK
HS 09	3653	FRA	FRAPROTOSEN

TOURNEUR FRERES, SA 64, RUE DE GENERAL LECLERC 77120 COULOMMIERS FRANCE

Genotype	Probno.	Origin Country	Donor
SWEET SIOUX	11		FRATI
TESA	10		FRAT1
TRUDEX	12		FRAT1

.

NATIONAL INSTITUTE FOR AGRICULTURAL VARIETY TESTING, RESEARCH CENTRE FOR AGOBOTANY

2766 TAPIOSZELE HUNGARY

.

Genotype	Probno.	Drigin Country	Donor
CANE ANBER	167		HUNRCA
COLNAN	3397		HUNRCA
DINDERRAVEN	173	NGA	HUNRCA
EARLY AMBER	174		HUNRCA
HUAN-LO-SON NR. 1	172	CHL	HUNRCA
KUNSAGI 460	62		HUNRCA
MINNESOTA ANBER	171		HUNRCA
QUERI 8	3396		HUNRCA
TAPIO	63		HUNRCA
TAPIO X HONEY	168		HUNRCA
WACONIA ORANGE CANE	170	USA	HUNRCA
			nunnun

•

•

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

.

HYDERABAD INDIA

Genotype	Probno.	Origín Country	Donor
04-5-120	3407		INDICRISAT
84-5-130-7 84-5-130-7	3405		INDICRISAT
A (ATLAS) + BRANDES	910		INDICRISAT
A (ATLAS) + HEGART	922		INDICRISAT
A (ATLAS) + RTO	917	•	INDICRISAT
A (ATLAS) + SART	911		INDICRISAT
A (ATLAS) + WRAY	920		INDICRISAT
A 1388 + RTO	901		INDICRISAT
A 1388 + THT + 430	927		INDICRISAT
A 155 + E35-1	902		INDICRISAT
A 160 + E35-1	903		INDICRISAT
ATY 673 + BKR 12	900		INDICRISAT
ATY 523 + CHTHASORG	896		INDICRISAT
ATY 623 + GREENI FAF	894		INDICRISAT
ATY 623 + KELLER	923		INDICRISAT
ATY 623 - NN 1500	925		INDICRISAT
105V-91001	3411		INDICRISAT
1051-91001	3406		INDICRISAT
15 00112	449		INDICRISAT
15 00112	450		INDICRISAT
15 00113	451		INDICRISAT
15 00121	600		INDICRISAT
15 00131	601		INDICRISAT
	452		INDICRISAT
15 01030	453		INDICRISAT
15 0134/	602		INDICRISAT
15 02331	603		INDICRISAT
15 02020	454		INDICRISAT
15 020/3	550	TND	INDICRISAT
15 03401	455	2002	INDICRISAT
15 03451	456		INDICRISAT
15 03511	457		INDICRISAT
15 03515	458		INDICRISAT
15 03513	604		INDICRISAT
12 03224	605		INDICRISAT
15 03332	606		INDICRISAT
15 03330	607		INDICRISAT
15 03555	608		INDICRISAT
IS 03572	551	TND	INDICRISAT
13 03013	552	TND	INDICRISAT
15 03701	553	TND	INDICRISAT
15 03/43	554	TND	INDICRISAT
12 03023	459		INDICRISAT
15 03030 TE 04099	555	TND	INDICRISAT
15 04000	556	IND	INDICRISAT
IS 04544	609	-	INDICRISAT
15 04017	610		INDICRISAT
13 04/31	611		INDICRISAT
15 04/33 TC 04961	557	LBN	INDICRISAT
13 04001			

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

HYDERABAD IHDIA

Genotype	Probno.	Origin Country	Donor
IS 04922	558	NGA	INDICRISAT
IS 04938	559	UGA	INDICRISAT
IS 05067	460		INDICRISAT
15 05089	560	NGA	INDICRISAT
IS 05226	561	NER	INDICRISAT
IS 05350	562	NER	INDICRISAT
IS 05356	563	NER	INDICRISAT
IS 05466	564	NER	INDICRISAT
IS 05539	565	KER	INDICRISAT
IS 06102	566	RER	INDICRISAT
IS 06112	567	NER	INDICRISAT
IS 06146	568	CMR	INDICRISAT
IS 06271	569	NLI	INDICRISAT
IS 06335	570	NLI	INDICRISAT
15 06419	571	NLI	INDICRISAT
TS 06612	572	NVI	INDICRISAT
15 06764	573	NWT	INDICRISAT
IS 06936	612		TNDICRISAT
IS 06962	613		INDICRISAT
IS 06962	574	TND	INDICRISAT
15 06973	614	1	INDICRISAT
IS 00073	615		TNDTCPISAT
15 07077	616		TNDTCDICAT
15 07090	617		TNDTCDISAT
13 07060 TC 07305	461		INDICALORI
13 07303 TC 07330	401		INDICATOR
15 07320	402	TWO	INDICATORI
15 07330	373	IRU	INDICATORI
15 07683	403		INDICAISAI
15 07720	404		INDICRISAL
15 08157	618		TRUICRISAL
15 08218	619		INDICKISAL
15 08344	465		INDICRISAT
15 08402	576	NGA	INDICRISAT
15 08534	577	IND	INDICRISAT
IS 08544	466		INDICRISAT
IS 08551	578	IND	INDICRISAT
IS 08596	579	IND	INDICRISAT
IS 08662	467		INDICRISAT
IS 08753	580	BWA	INDICRISAT
IS 08949	581	TGO	INDICRISAT
IS 08953	582	TGO	INDICRISAT
IS 08955	583	TGO	INDICRISAT
IS 08961	584	TGO	INDICRISAT
IS 08963	585	TGO	INDICRISAT
IS 09110	586	IND	INDICRISAT
IS 09116	587	IND	INDICRISAT
IS 09118	588	IND	INDICRISAT
IS 09120	589	IND	INDICRISAT
IS 09259	590	TGO	INDICRISAT

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

HYDERABAD INDIA

Duckes Onicia Couches Deser

Genotype	Propho.	Urigin Country	DONOL
TC 00260	501	TCO	TUDICOTCAT
15 09200	371	100	THDICRICAT
15 07282 TC 09247	372		TRDICRISAT
12 00041	373	CUA	TNOTOPICAT
15 07388	374		INDICALSAI
15 09401	595	GUA	TNDICRISAT
15 03404	507	CUA	INDICALORI
15 07420	500	GUA GUA	TNDICRISAT
12 00456	330	CUA	THDICRIGAT
15 07430	222	UNA	TUDICALDAT
12 03030	620		TNOTODICAT
15 03639	621		TUDICALOAT
15 09645	622		THDICRIDAL
15 09699	623		INDICKISAI
IS 09705	624		THDICKISA
IS 09708	468		INDIGRISAT
IS 09734	625		INDICRISAT
IS 09761	469		INDICRISAT
IS 09767	626		INDICRISAT
IS 09889	627		INDICRISAT
IS 09890	628		INDICRISAT
IS 09901	629		INDICRISAT
IS 09911	630		INDICRISAT
IS 10050	631		INDICRISAT
IS 10690	632		INDICRISAT
IS 10954	633		INDICRISAT
IS 11093	634		INDICRISAT
IS 11167	470		INDICRISAT
IS 11496	635		INDICRISAT
IS 12292	636		INDICRISAT
15 12736	471		INDICRISAT
15 12737	472		INDICRISAT
IS 12739	473		INDICRISAT
IS 12740	474		INDICRISAT
15 12741	475		INDICRISAT
IS 12743	476		INDICRISAT
15 12744	477		INDICRISAT
IG 13435	478		INDICRISAT
IS 13437	479		INDICRISAT
IS 13444	480		INDICRISAT
IS ISAAC	400		INDICRISAT
13 13440 TC 12440	401		THDICRISAT
13 13440	404 637		INDICRISAT
T2 13037	400		INDICRISAT
13 13602	103		INDICATORI
	636		TNDICDICAT
15 14463	633		
15 14529	640		THDICRICAT
15 14548	541		
IS 14594	642	•	INDICALSA
IS 14790	643		TRDICKISA

Probno. Origin Country Donor Genotype ------IS 14904 644 INDICRISAT 645 IS 14942 INDICRISAT IS 14960 646 INDICRISAT IS 15102 647 INDICRISAT IS 15428 648 INDICRISAT IS 15448 649 INDICRISAT IS 15455 650 INDICRISAT IS 16054 651 INDICRISAT 484 IS 17595 INDICRISAT IS 17601 485 INDICRISAT IS 17605 486 INDICRISAT IS 18463 487 INDICRISAT 488 IS 18465 INDICRISAT IS 18467 489 INDICRISAT IS 18484 490 INDICRISAT IS 19107 652 INDICRISAT IS 19130 653 INDICRISAT IS 19214 654 INDICRISAT IS 19261 655 INDICRISAT 656 IS 19273 INDICRISAT 657 IS 19587 INDICRISAT IS 20503 658 INDICRISAT IS 20510 659 INDICRISAT IS 20557 660 INDICRISAT IS 20583 661 INDICRISAT IS 20888 662 INDICRISAT IS 20962 663 INDICRISAT IS 20963 664 INDICRISAT IS 20965 491 INDICRISAT IS 20969 492 INDICRISAT 665 IS 20974 INDICRISAT IS 20984 666 INDICRISAT IS 21005 667 INDICRISAT IS 21023 668 INDICRISAT IS 21100 669 INDICRISAT IS 21229 670 INDICRISAT IS 21235 671 INDICRISAT IS 21260 672 INDICRISAT IS 21436 493 INDICRISAT IS 21479 494 INDICRISAT IS 21991 673 INDICRISAT IS 22064 495 INDICRISAT IS 22070 496 INDICRISAT IS 22236 497 INDICRISAT IS 22270 506 INDICRISAT BWA IS 22291 498 INDICRISAT IS 22299 507 BWA INDICRISAT IS 22307 508 INDICRISAT BWA

509

BWA

INDICRISAT

IS 22308

HYDERABAD

INDIA

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

-

.

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

HYDERABAD INDIA

Genotype	Probno.	Origin Country	Donor
IS 22312	499		INDICRISAT
IS 22314	510	BWA	INDICRISAT
IS 22315	511	BWA	INDICRISAT
IS 22316	512	BWA	INDICRISAT
IS 22353	513	BWA	INDICRISAT
IS 22374	514	SDN	INDICRISAT
IS 22375	515	SDN	INDICRISAT
IS 22380	500		INDICRISAT
IS 22382	516	SDN	INDICRISAT
IS 22399	517	SDN	INDICRISAT
IS 22400	518	SDN	INDICRISAT
IS 22422	519	SDN	INDICRISAT
IS 22426	520	SDN	INDICRISAT
IS 22451	521	SDN	INDICRISAT
IS 22471	522	SDN	INDICRISAT
IS 22472	523	SDN	INDICRISAT
IS 22473	524	SDN	INDICRISAT
IS 22474	525	SDN	INDICRISAT
IS 22475	526	SDN	INDICRISAT
IS 22476	527	SDN	INDICRISAT
IS 22477	528	SDN	INDICRISAT
IS 22478	52 9	SDN	INDICRISAT
IS 22479	530	SDN	INDICRISAT
IS 22481	531	SDN	INDICRISAT
15 22636	674		INDICRISAT
IS 22682	501		INDICRISAT
IS 22795	502		INDICRISAT
IS 23619	503		INDICRISAT
IS 23687	504		INDICRISAT
IS N-32-1	505		INDICRISAT
IS-18456	3410		INDICRISAT
15-22144	3408		INDICRISAT
15-4776	3412		INDICRISAT
MER 79-01	830		INDICRISAT
NER 80-04	834		INDICRISAT
NER 80-06	836		INDICRISAT
RER 80-07	837		INDICRISAT
NER 80-08	838		INDICRISAT
RER 80-09	839		INDICRISAT
NER 80-10	840		INDICRISAT
MER 80-11	841		INDICRISAT
HER BU-13	842		INDICRISAT
MER 81-02	845		INDICRISAT
	887		INDICKISAT
NER BI-UJ	845		INDICKISAT
NER 01-04	847		INDICKISAT
NER BI-UD	648		INDICKISAT
	849		IRDICRISAT
NER 01-00	921		TRATCRIDAL

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

HYDERABAD INDIA

.

Genotype	Probno.	Origin Country	Donor
MER 81-09	852		INDICRISAT
NER 81-10	853		INDICRISAT
NER 81-12	855		INDICRISAT
NER 82-01	856		INDICRISAT
MER 82-05	860		INDICRISAT
MER 82-06	861		INDICRISAT
NER 82-08	863		INDICRISAT
MER 82-10	865		INDICRISAT
NER 82-11	866		INDICRISAT
NER 82-13	868		INDICRISAT
MER 82-14	869		INDICRISAT
MER 82-15	870		INDICRISAT
NER 82-17	872		INDICRISAT
MER 82-19	874		INDICRISAT
NER 82-20	875		INDICRISAT
MER 82-21	876		INDICRISAT
MN 1	778		INDICRISAT
NN 2	779		INDICRISAT
KN 3	780		INDICRISAT
NH 5	781		INDICRISAT
NN 6	782		INDICRISAT
NN 7	783		INDICRISAT
KH 8	784		INDICRISAT
KN 9	785		INDICRISAT
KN 10	786		INDICRISAT
NN 1048	919		INDICRISAT
KN 1056	921		INDICRISAT
MN 11	787		INDICRISAT
NN 12	788		INDICRISAT
KN 13	789		INDICRISAT
WN 14	790		INDICRISAT
NN 1500	890		TNDICRISAT
NN 16	792		INDICRISAT
NN 18	794		THDICRISAT
NN 20	796		INDICRISAT
NN 23	799		TNDTCRISAT
NH 24	800		INDICRISAT
NK 25	801		INDICRISAT
NN 28	804		INDICRISAT
WN 30	806		INDICRISAT
IN 31	807		INDICRISAT
IN 32	ANA		TNDICRISAT
NN 33	809		INDICRISAT
IN 36	812		INDICRISAT
IN 40	815		TNDICRISAT
IN 42	817		THOTOPISAT
SN 46	820		THDICRISAT
IN 48	877		INDICRISAT
(N 49	822		INDICRISAT
	04.0		TURTOUTOUI

.

-

.

INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT)

HYDERABAD INDIA

Genotype	Probao.	Origin Country	Donor
WN 50	824		INDICRISAT
NN SS	828		INDICRISAT
NN 58	829		INDICRISAT
KN 960	914		INDICRISAT
PA-12	532	CMR	INDICRISAT
PA-46	533	CMR	INDICRISAT
PA-46-31	534	CMR	INDICRISAT
PA-56	535	CHR	INDICRISAT
PA-56-25	536	CHR	INDICRISAT
PA-57	537	CNR	INDICRISAT
PA-57-24	538	CKR	INDICRISAT
PA-60-21	539	CMR	INDICRISAT
PA-61-20	540	CMR	INDICRISAT
PA-62-19	541	CMR	INDICRISAT
PA-65	542	CNR	INDICRISAT
PA-69	543	CMR	INDICRISAT
PA-69-12	544	CNR	INDICRISAT
PA-70	545	CMR	INDICRISAT
PA-71-10	546	CMR	INDICRISAT
PA-75-6	547	CMR	INDICRISAT
PA-79	548	CMR	INDICRISAT
PA-79-2	549	CMR	INDICRISAT
RQV 84-26	879		INDICRISAT
RQV 84-34	885		INDICRISAT
RQV 84-82	880		INDICRISAT
SART	907		INDICRISAT
SSV-108	3409		INDICRISAT
SWEET SIOUX IV	886		INDICRISAT

.*

BIOTEC, A., AGRICULTURA BIOTECHNOLOGIE SEDE ANNIHISTRATIVA VIALE G. MATTEDITI 115 47100 FORLI ITALY

Genotype	Probno.	Origin Country	Donor
93183	1009		ITABIOTEC
93187	1010		ITABIOTEC
93325	1012		ITABIOTEC
93337	1013		ITABIOTEC
93437	1011		ITABIOTEC
CC 270	3390		ITABIOTEC
CC 280	3392		ITABIOTEC
CC 489	3393		ITABIOTEC
CC 627	3394		ITABIOTEC
H 29	1024	ITA	ITABIOTEC
IS 10954	1005		ITABIOTEC
IS 14594	1006		ITABIOTEC
IS 14942	1007		ITABIOTEC
IS 15102	1008		ITABIOTEC
IS 9705	1004		ITABIOTEC
NK 506	1023	ITA	ITABIOTEC

ISTITUTO SPERIMENTALE PER LE COLTURE FORAGGERE VIA NAPOLI 52 Foggia

ITALY

Genotype	Probno.	Origin Country	Donor
GEKA	285		ITAI7
ROCE	288		ITAI7
RONAGUOLO	290		ITAI7
SIVOI	289		ITAI7
SOAVE	286		ITAI7
YESPA	287		ITAI7

GERNPLASN INSTITUTE VIA G.AMENDOLA 165 A

70126 BARI Italy

Genotype	Probno.	Origin Country	Donor
90502	3415		ITAIDG
90957	3416		ITAIDG
90966	3417		ITAIDG
90983	3419		ITAIDG
90986	3420		ITAIDG
92942	3423		ITAIDG

.

NATIONAL INSTITUTE OF AGROBIOLOGICAL RESOURCES

YATABE ISUKUBA IBARAKI 305 JAPAH

Genotype	Probno.	Origin Country	Donor
AKA AMAKIBI	412	JPN	JPNNIAR
AKAHO	417	JPN	JPHNIAR
HOUKI	413	JPN	JPNNIAR
KOKUSHOKU ZAIRAISHU	411	JPN	JPNNIAR
KURAVASE	415	JPN	JPHNIAR
MOROKOSHI	416	JPN	JPHNIAR
NAKARZYOO ZAIRAI	420	JPN	JPNNIAR
SEKISHOKU ZAIRAISHU	419	JPN	JPNNIAR
TAKAKIBI	418	JPN	JPHNIAR
ZATRAISHU	414	JPN	JPNNIAR
ZAIRAISHU IWAOKA	421	JPN	JPNNIAR

RESEARCH INSTITUTE FOR CEREALS AND INDUSTRIAL CROPS JUD. CALARASI 8264 FUNDULEA RUMANIA

Genotype		Probno.	Origin Country	Donor
FUNDULEA	107-1/83	71		RUNICOPT
FUNDULEA	215/82	224	ROM	RONICCPT
FUNDULEA	215/83	73		RONICCPT
FUNDULEA	7323/83	72		ROMICCPT

٠

•

THE N.I. VAVILOV ALL-BUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF PLANT GENETIC RESOURCES 44, BOLSHAYA MORSKAYA ST. 19000 ST. PETERSBURG UNION OF SOVIET SOCIALIST REPUBLICS

Genotype	Probno.	Origin Country	Donor
290 SUNAK RANNTT	75	USA	SUNVER
337 JANTAR CHERNY.I	76	FRA	SUNVTR
343 SUNAK	77	USA	SUNVIR
731 ORANZEVOE	80	NEX	SUNVIR
BARBIIDA	296	UGA	SUNVIR
BLACK ANBER	298	ZAF	SUNVIR
CANE BLACK AMBER	291	USA	SUNVIR
ERALI ORANGE SORGHUM	179	N-AMERIK	SUNVIR
ESLAND (FORAGE)	303	ZAF	SUNVIR
I-472787 AD0'CS	228	HUN	SUNVIR
I-472788 BALATONCSICSO'	229	HUN	SUNVIR
I-472795 NYIRESYHA'ZA	230	HUN	SUNVIR
1062 JANTAR RANNIJ	81	รบพ	SUNVIR
1375 CRANZEVOE	83	M-AMERIK	SUNVIR
143 JANTAR CHERNYI	74	USA	SUNWIR
JANTAR KRASNYJ 271/585	300	SUN	SUNVIR
JANTAR SLADKIJ 84/327	299	SUN	SUNWIR
K-9234	225	DDR	SUNVIR
K-9235	226	DDR	SUNWIR
K-9236	227	DDR	SUNWIR
LEOTI RED SORGO	79	USA	SUNVIR
KEDOVOJE	82	SUN	SUNVIR
ORANGE CANE	293	USA	SUNVIR
ORANZEVOJE 160	297	SUN	SUNVIR
PEPPARD'S SOURLESS	292	USA	SUNVIR
RED AMBER	78	USA	SUNVIR
RED TOP	177	USA	SUNVIR
ROOI AMBER	302	ZAF	SUNVIR
SORGO	176	SUN	SUNVIR
SORGO	295	SUN	SUNVIR
SORGO CANDAAZUCAR	184	MEX	SUNVIR
SORGO NEDOVOJE	183	SUN	SUNVIR
SORGO SAHARNOJI	182	USA	SUNVIR
SORGO SUCRE	181	FRA	SUNWIR
SUNAK SORGO	180	USA	SUNWIR
UTAVLI	301	IND	SUNWIR
WACONIA AMBER	294	USA	SUNVIR

KASETSART UNIVERSITY, FACULTY OF AGRICULTURE, DEPT. OF AGRICULTURE, CAMPHAENGSAEN CAMPUS

NAKORNPRATHON THAILAND

Genotype	Probno.	Origin Country	Donor
RAMADA	37		THAKU

-

PLANT GENETIC RESOURCES RESEARCH INSTITUTE P.O. BOX 9 MENEMEN IZMIR 35661 TURKEY

Genotype	Probno.	Origin Country	Donor
(266 X 3871) X 1023	101		TURPGRRI
(635 X 3135) X 858	94		TURPGRRI
(635 X 3135) X 858	113		TURPGRRI
(648 X 3869) X 635	107		TURPGRRI
(648 X 3869) X 635-A	93		TURPGRRI
(688 X 3135) X 858	95		TURPGRRI
(688 X TUB7) X 1023	106		TURPGRRI
1642	110		TURPGRRI
1683	89		TURPGRRI
1742 X 1414	109		TURPGRRI
1742 X 1416	105		TURPGRRI
50 X 846	112		TURPGRRI
635 X 1836	98		TURPGRRI
642	111		TURPGRRI
658 X OP. ST.	103		TURPGRRI
8525	96		TURPGRRI
AKSU-78	114		TURPGRRI
GUEZOE-80	115		TURPGRRI
IS 12329	102		TURPGRRI
IS 12329-A	100		TURPGRRI
NES 227 X 27	91		TURPGRRI
NK SORDON 70	108		TURPGRRI
OP. ST.	90		TURPGRRI
P.721 X 266-A	92		TURPGRRI
TR 37108	407	TUR	TURPGRRI
TR 37514	410	TUR	TURPGRRI
TR 37528	394	TUR	TURPGRRI
TR 37537	393	TUR	TURPGRRI
TR 37560	395	TUR	TURPGRRI
TR 37561	392	TUR	TURPGRRI
TR 37562	406	TUR	TURPGRRI
TR 37563	397	TUR	TURPGRRI
TR 37564	396	TUR	TURPGRRI
TR 37565	399	TUR	TURPGRRI
TR 38266	408	TUR	TURPGRRI
TR 38322	409	TUR	TURPGRRI
TR 39300	398	TUR	TURPGRRI
TR 39301	401	TUR	TURPGRRI
TR 39302	400	TUR	TURPGRRI
TR 39305	404	TUR	TURPGRRI
TR 39306	405	TUR	TURPGRRI
TR 39713	403	TUR	TURPGRRI
TR 39722	402	TUR	TURPGRRI
TUB7 X 846 .*	104		TURPGRRI

GROAGRI SEED COMPANY P.O. BOX 1656 LUBBOCK/TEXAS 79408 UNITED STATE OF AMERICA

Genotype	Probno.	Origin Country	Donor
FS-4	276		USAGSC
FS-5	277		USAGSC
GSA 1586F	274		USAGSC
GSA 1757	275		USAGSC
ST-6+	278		USAGSC

TEXAS A AND M UNIVERSITY, DEPT. OF SOIL AND CROP SCIENCES, COLLEGE STATION, (FRED MILLER)

TEXAS 77843 UNITED STATE OF AMERICA

Genotype	Probno.	Orígin Country	Donor
A ATLAS X BNR-12	238		USATAN2
A ATLAS X P.3	237		USATAN2
A ATLAS X RID	31		USATAN2
A ATLAS X RT X 430	32		USATAK2
A ATLAS X RT X 432	239		USATAN2
AT X 623 X 77C53	246		USATAN2
AT X 623 X BMR-12	242		USATAK2
AT X 623 X CS 3541	29		USATAH2
AT X 623 X GREENLEAF	244		USATAH2
AT X 623 X HEGARI	245		USATAN2
AT X 623 X KELLER	243		USATAK2
AT X 623 X P-3	240		USATAK2
AT X 623 X RIO	28		USATAN2
AT X 623 X RT X 430	30		USATAN2
AT X 623 X RT X 432	241		USATAN2
ATLAS	34		USATAN2
BRANDES	33		USATAN2
BT X 623	35		USATAN2
COWLEY	234		USATAN2
FUNTES 1990	247		USATAN2
HEGARI	235		USATAN2
KELLER	26		USATAN2
NBIE	27		USATAH2
MER 80-10	231		USATAN2
NER 81-2	232		USATAN2
NN 1500	233		USATAH2
TEXAS	70		USATAN2

•

TAYLOR-EVANS SEED CO. P.O. BOX.68 TULIA/TEXAS 79088 UNITED STATE OF AMERICA

Genotype	Probno.	Origin Country	Donor
ROX ORANGE	284		USATES
T-E MILKNAKER-T	282		USATES
T-E SILONAKER	281		USATES
T-E YIELDNAKER	283	•	USATES

REGIONAL PLANT INTRODUCTION STATION, EXPERIMENT / GEORGIA

GEORGIA UNITED STATE OF AMERICA

Genotype	Probno.	Origin Country	Donor

RR 1048	18		USAUS4
MH 14	15		USAUS4
NH 1555	19		USAUS4
NH 2798	20		USAUS4
MN 3808	21		USAUS4
NH 4059	22		USAUS4
MN 4182	23		USAUS4
MN 71-7	16		USAUS4
MN 872	17		USAUS4

GERMPLASH RESOURCES LABORATORY BLD.001, ROOM 322, BARC BELTSVILLE/MARYLAND 20705 UNITED STATE OF AMERICA

Genotype	Probno.	Origin Country	Donor
73-7	126		USAUSDA1
NER 74-8	145		USAUSDA1
MER 75-10	185		USAUSDA1
MER 78-13	186		USAUSDA1

.*

.

DIVISION OF PLANT AND SEED CONTROL, THE PLANT INTRODUCTION OFFICER PRIVATE BAG X293 PRETORIA 0001 REPUBLIC OF SOUTH AFRICA

Genotype	Probno.	Origin Country	Donar
82055	40		ZAFDPSC
82141	41		ZAFDPSC
82142	42		ZAFDPSC
ADVANCE	445		ZAFDPSC
BLACK AMBER	435		ZAFDPSC
CLUBDAY	433		ZAFDPSC
DON SALVADOR	446		ZAFDPSC
GREENLEAF	444		ZAFDPSC
HAAKDORING	122		ZAFDPSC
LA HONA	440		ZAFDPSC
LA HONA	447		ZAFDPSC
LOCAL COLLECTION	448		ZAFDPSC
PIPER	442		ZAFDPSC
RED AMBER	436		ZAFDPSC
SA 01	3435		ZAFDPSC
SA 05	3436		ZAFDPSC
SA 07	3437		ZAFDPSC
SA 076	3471	ZAF	ZAFDPSC
SA 08	3438		ZAFDPSC
SA 081	3473	ZAF	ZAFDPSC
SA 086	3474	ZAF	ZAFDPSC
SA 088	3475	ZAF	ZAFDPSC
SA 09	3439		ZAFDPSC
SA 096	3476	ZAF	ZAFDPSC
SA 10	3440		ZAFDPSC
SA 100	3477	ZAF	ZAFDPSC
SA 109	3478	ZAF	ZAFDPSC
SA 110	3479	ZAF	ZAFDPSC
54 112	3480	ZAF	ZAFDPSC
SA 113	3481	ZAF	ZAFDPSC
SA 114	3482	ZAF	ZAFDPSC
SA 116	3483	ZAF	ZAFDPSC
5A 117	3484	ZAF	ZAFDPSC
SA 119	3485	ZAF	ZAFDPSC
SA 12	3441		ZAFDPSC
5A 120	3486	ZAF	ZAFDPSC
SA 122	3487	ZAF	ZAFDPSC
54 124	3488	7AF	ZAFDPSC
SA 125	3489	ZAF	ZAFDPSC
SA 128	3490	ZAF	ZAFDPSC
SA 131	3491	7AF	ZAFDPSC
SA 136	3493	2AF	ZAFDPSC
SA 137	3494	ZAF	ZAFDPSC
SA 138	3495	7AF	ZAFDPSC
SA 140	3496	7.AF	ZAFDPSC
SA 142	3497	745	ZAFDPSC
SA 144	3498	2AF	ZAFDPSC
SA 145	3499	2.AF	ZAFDPSC
SA 145	3500	24F	ZAFDPSC

_

•

DIVISION OF PLANT AND SEED CONTROL, THE PLANT INTRODUCTION OFFICER PRIVATE BAG X293 PRETORIA 0001 REPUBLIC OF SOUTH AFRICA

Genotype	Probno.	Origin Country	Donor
SA 147	3501	ZAF	ZAFDPSC
5A 148	3502	ZAF	ZAFDPSC
SA 15	3442		ZAFDPSC
SA 151	3503	ZAF	ZAFDPSC
SA 157	3504	ZAF	ZAFDPSC
SA 16	3443		ZAFDPSC
SA 161	3505	ZAF	ZAFDPSC
SA 170	3506	ZAF	ZAFDPSC
SA 176	3507	ZAF	ZAFDPSC
SA 177	3508	ZAF	ZAFDPSC
SA 179	3509	ZAF	ZAFDPSC
SA 18	3444		ZAFDPSC
SA 186	3510	ZAF	ZAFDPSC
SA 19	3445		ZAFDPSC
SA 190	3512	ZAF	ZAFDPSC
SA 20	3446		ZAFDPSC
SA 201	3513	ZAF	ZAFDPSC
SA 204	3514	ZAF	ZAFDPSC
SA 21	3447		ZAFDPSC
SA 210	3515	ZAF	ZAFDPSC
SA 217	3516	ZAF	ZAFDPSC
SA 221	3517	ZAF	ZAFDPSC
SA 227	3518	ZAF	ZAFDPSC
5A 234	3519	ZAF	ZAFDPSC
SA 24	3448		ZAFDPSC
SA 241	3520	ZAF	ZAFDPSC
SA 243	3521	ZAF	ZAFDPSC
SA 247	3522	ZAF	ZAFDPSC
SA 25	3449		ZAFDPSC
5A 267	3523	ZAF	ZAFDPSC
SA 271	3524	ZAF	ZAFDPSC
SA 28	3450		ZAFDPSC
SA 283	3525	ZAF	ZAFDPSC
5A 285	3526	ZAF	ZAFDPSC
SA 287	3527	ZAF	ZAFDPSC
SA 290	3528	ZAF	ZAFDPSC
SA 293	3529	ZAF	ZAFDPSC
SA 295	3530	ZAF	ZAFDPSC
SA 297	3531	ZAF	ZAFDPSC
SA 30	3451		ZAFDPSC
SA 307	3532	ZAF	ZAFDPSC
SA 308	3533	ZAF	ZAFDPSC
SA 31	3452		ZAFDPSC
SA 318	3534	ZAF	ZAFDPSC
SA 32	3453		ZAFDPSC
SA 321	3535	ZAF	ZAFDPSC
SA 326	3536	ZAF	ZAFDPSC
SA 33	3454	•	ZAFDPSC
SA 34	3455		ZAFDPSC

DIVISION OF PLANT AND SEED CONTROL, THE PLANT INTRODUCTION OFFICER PRIVATE BAG X293 PRETORIA 0001 REPUBLIC OF SOUTH AFRICA

Genotype	Probno.	Origin Country	Donor
SA 341	3537	ZAF	ZAFDPSC
SA 349	3538	ZAF	ZAFDPSC
SA 362	3541	ZAF	ZAFDPSC
SA 365	3542	ZAF	ZAFDPSC
SA 37	3456		ZAFDPSC
SA 39	3457		ZAFDPSC
SA 416	3543	ZAF	ZAFDPSC
SA 44	3458		ZAFDPSC
SA 45	3459		ZAFDPSC
SA 458	3544	ZAF	ZAFDPSC
SA 483	3545	ZAF	ZAFDPSC
54 49	3460		ZAFDPSC
54 50	3461		ZAFDPSC
SA 51	3462		ZAFDPSC
5A 520	3546	ZAF	ZAFDPSC
54 53	3463		ZAFDPSC
SA 55	3464		ZAFDPSC
5A 568	3547	ZAF	ZAFDPSC
5A 569	3548	ZAF	ZAFDPSC
54 571	3549	ZAF	ZAFDPSC
A 575	3550	ZAF	ZAFDPSC
A 576	3551	ZAF	ZAFDPSC
A 581	3552	ZAF	ZAFDPSC
SA 587	3553	ZAF	ZAFDPSC
54 589	3554	ZAF	ZAFDPSC
SA 59	3465		ZAFDPSC
SA 590	3555	ZAF	ZAFDPSC
54 590	3555	ZAF	ZAFDPSC
54 61	3466		ZAFDPSC
54 62	3467		ZAFDPSC
54 64	3468		ZAFDPSC
54 57	3469		ZAFDPSC
SOFTRIFT	438		ZAFDPSC
	434		ZAEDPSC
	437		ZAEDPSC
SUGARDETP	431		ZAFDPSC
	439		ZAFDPSC
SWEET 372	441		ZAEDPSC
SWEET SUDAN	472		ZAEDPSC
TOICT	442		ZAFDPSC

•

UNITED STATE OF AMERICA

Probno.	Origin Country	Donor	
310		USAHODPER,	NEBRASKA
- 	•		
		. •	
Probno.	Origin Country	Donor	
309 55		HOEGENEYER	HYBR. INC
ŗ			
- 2			
-			
		-	
.		·	
* 5* • • •			
, •			
	Probno. 310 Probno. 309 55	Probno. Origin Country 310 Probno. Origin Country 309 35	Probno. Origin Country Donor 310 USAHODPER, Probno. Origin Country Donor 309 HOEGENEYER 55

10. Annex 3

Database collection of 10 years of sorghum field trial evaluations (1985 - 1995)

•

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Völkenrode (FAL) Bundesallee 50, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

Ð	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	15	17	18	19
10	TESI	576.0	157.5	5.7	22.9	1.0	0.8	2.9		29.1	740	5		7		7			5	1985
10	TESI	589.0	179.5	5.8	34.3	1.9	1.5	24	23.4	30.5	244	1		6	2	8	5	5	ī	1986
10	TESA	541.2	154.0	6.7	36.4	0.9	0.7	5.1		28.5	251	ī	8	3	1	9	3	3	3	1992
ii	SPEET SLOUX	894.0	204.3	5.0	44.3	1.4	1.0	2.5		22.9	200	7		3		7			1	1985
11	STEET SLOUI	814.0	199.0	8.1	65.9	1.8	1.3	4.9	17.4	24.5	219	5		S	1	7	3	2	1	1985
11	SWEET STOLT	1425.0	306.2	6.4	91.2	2.7	2.2	1.4		21.5	224	7	9	2	1	8	1		1	1987
12	TRIDEI	584.0	159.1	4.5	26.3	1.0	0.8	2.8		27.3	200	7		7		9			1	1985
12	TEDEI	429.0	137.1	6.1	26.1	1.6	1.4	3.1	19.3	32.0	223	1		6	1	9	3	2	1	1986
13	SURSA	404.0	120.2	5.3	21.6	1.9	1.1	24		29.8	220	3		7		1			5	1985
IJ	SURSA	435.0	154.9	6.1	26.7	2.0	1.5	2.7	27.6	35.6	291	1		4	1	7	4	4	1	1986
13	SURSA	445.7	158.7	4.3	19.2	0.9	0.6	2.8		35.6	260	1	8	3	1	9	2	3	3	1992
15	E 14	275.0	50.3	5.5	15.0	2.4	1.4	1.7		18.3	120			9		5			1	1985
16	II 71-7	247.0	55.3							Z2.4	100			5		7			1	1985
17	EX 872	133.0	35.4	7.3	9.7	1.6	0.9	4.8		26.6	90	9		7		5			1	1985
18	EI 1048	378.0	117.6	8.1	30.7	1.4	0.9	5.9		31.1	140			9		9			1	1985
19	EE 1555	400.0	78.6	2.4	9.6	1.3	0.9	0.3		19.7	130			9		5			1	1985
20	EI 2798	382.0	93.6	4.8	18.4	1.5	0.9	24		24.5	120			9		9			1	1985
21	AU 3808	327.0	89.9	8.9	29.1	2.6	1.4	5.0		27.S	110	7		7		9			1	1985
22	EII 4059	317.0	52.2	2.6	8.3	1.7	0.9			16. S	100			7		9			1	1985
23	EII 4182										200	9		3		3			3	1985
24	810	543.0	108.6	5.4	29.3	1.4	0.7	3.3		20.0	160	9		9		5			1	1985
24	RIO	802.0	168.9	8.2	65.8	1.9	1.1	5.2	14.7	21.1	191	9		5	2	5	5	1	1	1986
24	RIO	508.0	101.1	7.4	37.7	2.5	1.5	3.4		19.9	193	9	5	4	2	5	4		1	1987
26	GIR	533.0	110.6	3.3	17.8	1.2	0.9	1.2		20.8	140			9		3			1	1985
26	TELLET?	782.0	157.4	1.8	37.5	2.2	1.3	1.3	15.9	21.4	208			6	1	6	3	2	1	1966
26	GILER	972.0	168.6	3.9	37.8	1.4	1.0	1.5		17.4	144	7		5		7	1		1	1990
26	1011 FF	387.9	99.8	2.7	10.4	1.0	0.8	1.0		25.7	170	0	5	6	1	5	3	1	1	1993
27	181E										120			5		3			3	1985
28	AT I 623 I RID	726.0	147.4	6.2	41.9	1.3	0.9	4.0		20.3	170	9		7		3			1	1985
29	IT I 623 I CS 3541	575.0	127.4	5.8	33.6	1.5	1.1	3.2		22.2	110	7		3		3			1	1985
29	IT I 623 I CS 3541	475.0	100.5	6.1	28.8	23	2.0	1.8	14.1	21.2	155	3		3	5	4	3	1	1	1986
30	AT I 623 I BT I 430	503.0	102.6	3.7	18.4	1.8	1.2	0.7		20.4	90	9		3		7			1	1985
31	A ATLAS X RIO	947.0	170.9	5.0	47.4	1.5	0.9	2.6		18.1	170	9		5		5			1	1985
31	A ATLAS I RIO	720.0	175.3	8.0	57.4	1.9	1.2	4.9	13.3	24.3	198	5		5	5	3	5	5	1	1986
n	A ATLAS I RT I 430	948.0	182.0	4.8	45 .0	1.7	1.1	1.9		19.2	160	9		3		7		_	1	1985
N	A ATLAS I RT I 430	SS1.0	121.8	7.3	40.3	2.5	1.6	3.2	13.2	22.1	159	7		3	2	5	3	3	1	1985
33	BRAIDES										110	_		5		7	_		3	1985
33	BRANDES	569.0	150.7	7.4	42.3	2.7	1.7	3.1	17.7	26.5	133	5	-	6	1	7	3	1	1	1986
33	BRAIDES	499.0	97.7	6.9	34.4	3.1	1.9	1.9		19.6	112	9	5	1	1	7	3		1	1987
34	ATLAS	745.0	131.5	4.1	30.8	1.8	1.2	1.2		17.7	120	9		7		5	_		1	1985
34	ATLAS	842.0	179.9	6.2	52.2	3.6	2.5	0.1	13.6	21.4	186	9		5	1	6	2	1	1	1986
35	ST I 523	315.0	71.7	3.9	12.3	1.1	1.3	2.0		22.7	80	9		7	_	5	_		1	1985
35	ST I 623	379.0	98.3	5.8	21.9	2.9	2.3	0.6	19.0	25.9	116	3		4	7	3	5	1	1	1986
36	ROHA	* 137.0	34.4	5.6	7.7	1.7	0.9	3.1		25.1	80	9		9		5	_	_	1	1985
36	ALSA.	443.0	100.2	7.1	31.2	3.5	2,7	0.9	15.1	22.6	173	5		6	1	6	3	Z	1	1966
••••																				
• <u>I</u> • =	FRESH MATTER TIELD (D	T/84)	• 7• • Si	CCEAROS	E CORTE	Π (Ι)		12	= VIGX	1		_	15	- 1	ill	RIE.)	-		
"Z" =	ORT BATTER TIELD (DT/	EV)	* 8* * 12	W FIBRE	CONTER	[[]]		•13,	= 0000 !	NEUL	18111	11	15	-	Series and a series of the ser		SEAS	1. UI	لكلا	8
-37 =	TUTAL SUGAR CONTENT (L)	• 9• • Di	IT LATTE		n (X)	ΕŪ.			PLANT		-	-1/-	= [alsi.E	111	uul	ц
'4' =	SUGAR TISLE (DT/HA)		-10" = G			5) 		.14.	= 1110)		at Un		10	. = L	11044 11101	uu I Strin		ואנ		
•6• =	FRUCTUSE CONTENT (1)		-11. : 61	MICLE E	<u>nekieli</u>	L THE			10046	LEAP			.13.	- 6	an 12	ວ່ເປ	ALL			

.

- 1 -

Institute of Crop Science Federal Research Centre for Agriculture Brannschweig-Välkenrode (FAL) Bundesallee 50, D-38116 Brannschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 2 -

Ð	Designation	1	2	3	4	5	6	7	8	9	10	11	12	IJ	14	15	15	17	18	19
37	RANADA	247.0	60.3	8.0	19.7	1.9	L.4	4.7		24.4	100	9		9		1			1	1985
40	82055	318.0	74.4	4.1	13.0	1.6	0.9	1.5		23.4	100	9		5		7			1	1985
41	82141	445.0	76.3	3.0	13.6	1.4	1.2	0.5		17.1	110			7		3			1	1985
42	82142	413.0	72.7	3.6	15.0	1.7	1.1	0.8		17.6	90	9		1		7			1	1985
43	E513										160	5		9		9			5	1965
6	E 533	531.0	133.4	6.2	32.8	2.7	2.3	L.2	16.7	25.1	215	1		7	1	9	4	1	1	1986
4	ETPRESS	669.0	152.9	4.8	32.3	L.2	1.1	2.5		22.9	80	5		3		5			i	1985
- 44	EXPRESS	362.0	124.6	5.2	18.9	2.6	2.3	0.3	23.7	34.4	102	3		4	4	4	4	1	1	1986
- 44	EXPRESS	371.6	90.6	3.4	12.6	0.9	0.8	1.7		24.4	103	3	4	3	1	4	1	3	1	1992
45	SIOUX	931.0	199.7	4.2	39.2	1.1	0.8	2.3		21.5	190	7		3		9			1	1985
45	SIOUX	662.0	161.5	8.1	53.6	2.6	2.0	3.5	14.3	24.4	218	3		4	1	6	3	4	i	1966
45	SION	1244.0	271.4	7.4	92.1	2.6	- 2.1	2.7		21.8	202	7	8	1	2	8	3		1	1987
46	VRAT										140			3		3			5	1985
46	VRAT	970.0	160.0	5.5	53.4	2.4	1.5	1.5	11.3	18.6	150			5	1	5	3	1	1	1986
46	VRAY	1185.0	692.9	6.7	79.9	2.6	1.9	2.2		58.5	106	9	7	1	2	5	5		1	1987
46	WRAT	365.2	78.9	4.4	15.9	0.7	1.6	2.1		21.6	91	0	3	3	i	5	5	1	1	1993
47	RED TOP KARDY	898.0	198.0	7.1	63.9	1.8	1.2	4.2		22.1	190	7		5		3			9	1985
47	RED TOP LANDI	883.0	189.9	8.7	76.9	2.3	1.5	5.0	13.4	21.5	225	5		4	4	5	4	1	1	1986
- 47	RED TOP KANDY	963.0	166.1	9.1	87.9	3.7	2.6	2.8		19.3	178	7	7	2	1	4	2		1	1987
48	RTX-EXTRA	868.0	183.2	8.7	75.2	1.3	0.9	6.5		21.1	220	7		5		3			1	1985
46	RTE-EXTRA	692.0	175.0	8.5	59.1	2.6	1.9	4.1	16.4	25.4	206	5		6	4	4	3	2	1	1986
48	RTE-EXTRA	1136.0	245.2	8.1	91.9	28	2.0	3.4		21.6	215	7	7	1	2	5	3		1	1987
49	SUCROSORGE 405	1221.0	266.2	6.2	76.2	1.7	1.2	3.3		21.8	200	9		5		3	_	-	3	1985
49	SUCROSORIE 405	965.0	206.0	7,4	71.7	2.6	1.9	29	14.2	21.4	222	7		6	7	4	5	2	1	1986
49	SUCROSORGE 405	1177.0	226.0	6.1	71.2	1.9	1.6	2.5		19.2	198	9	8	1	5	4	5		1	1987
51	IB160 SV	925.0	196.8	8.1	74.5	1.5	1.2	5.3		21.3	190	7		3	_	3		_	7	1985
51	IB180 SV	890.0	212.6	8.8	78.5	2.0	1.5	5.3	15.0	Z3.9	Z25	3		4	5	5	3	2	I	1966
51	TE1EO SV	962.0	219.9	8.4	81.1	1.8	1.5	5.Z		ZZ.9	213	7	8	3	1	4	4		1	1987
52	IB1B1 SV	1020.0	232.1	7.7	78.1	1.6	1.2	4.9		ZZ.8	150	7		3		3			7	1985
52	18181 SV	896.0	ZI.0	0.3	Z.6	2.7	1.9	5.8	15.4	26.0	27	3		6	5	5	3	1	1	1966
52	IBIBI SY	1119.0	245.7	8.1	91.0	1.8	1.4	5.0		ZZ.0	214	7	7	3	3	5	3		1	1987
23		503.0	88.0	3.5	17.6	1.5	1.1	0.9		17.5	130	9		1		1			1	1985
23		1294.0	281.6	8.0	103.5	2.0	1.4	4.6	11.6	Z1.8	227	9		7	4	6	3	1	1	1966
23		607.0	359.1	6.2	37.7	Z. 1	1.6	25		59.Z	102	9	3	4	1	3	3		1	1987
34			~ ~ ~	• •							160	à.		3	-	3			3	1963
-24 54	AUGLERI,	12/3.0	267.3	6.2	104.4	23	1.7	24	11.2	21.0	133	2		5	3	2	0	1	1	1300
	HIREAS.	708.0	142.0	6.3	43.9	1.9	1.0	3.0	m 1	20.1	173	2	0	4	4	5	•	,	1	1000
- SC - SC	EDIC	/31.0	100. 1	0.0	30.0	2.1	1.3	7.3	20.9	23.0	145	5		3	1	2	4	7	1	1005
- 50 52	Rolf.	657.0	116 4	. 7	20.0	26	15	n c	10.1	17 7	110	2		3	2	2	2	2	1	1000
ŝ	TRIC	607.0	140.4	5.0	50.0	2.0	1.1	20	10.1	16 9	150	٥	£	÷	2	5	2	2	1	1007
57	T-E-CH DEATED	1004.0	105 2	20	50.2	1.6	0.0	24		10.0	150	2	0	5	4	2	3		+	1995
₩. 100	T-F-COLDENTED	654.0	177.4	7.2	57.0	2.0	17	20	12.4	23.3	170	5		5	2	5			í	1966
57	T-S-GTI DEARST	079.0	197.0	6. L	47 2	5 0	1.1	2.0	14.7	21.0	100	9	7	2	2	5	ì	T	i	1987
58	POT ORANGE TERREN	759 0	119 2	45	24.4	2.0	15	0.8		15 7	120	á	'	5	-	5			2	1965
	vanna. Indila/	137.U	113,4 	ر م ر	547 	4 مۇ 	ل مد 	U. D		1.1.1 	ں ہے۔ 									
'1' =	FRESH NATTER TIFTO IT	TT/RA1	7 : 51	1000	क तालक	(T (T)		•17•					•15•	: 1	TLLF	RING				
'2' =	DRY MATTER TIELD INT	(RA) 1	ac ⊧8* : ₽4	V FTRP		(7)		17.	= 0010 5	ISCEPT	IBILII	π	16	= 1	BIN	T DI	SELS	E OF	E	≜ F
' 3' :	TOTAL SUGAR CONTENT O	1	91:52	T HATTS		n in	ÆA	~	TOUT	PLAT		•	•17•	- 0	20UG	et s	USCE	PTIE	Ш	π
'4' :	SIGAR TIELD (DT/RA)		10" = RR			0		14" :	= 1100	TELET	CE UPI	II.	•18•	= 1	COGI	E 1	ELOE	ET		
5 :	GLUCOSE CONTENT (Z)	1	'11" = PA	IICLE E	TERGENCE	TIRE		••	TUE	LEAF			19	- 8	ARVE	ST D	ATE			
6 =	FRUCTOSE CONTENT (1)			•									•••	-						

	Institute of Grop Science Foderal Research Centra for Amimilture Reamsthesig=Tälkoorode (FML)																			
	Federal Research Centre for Agricalture Braunachweig-Volkenrode (FAL)																			
				Bundess	ilee SO	I, D-3	3116 8	raunsc	hveig											
					Federal	Repu	lic o	f Germ	207											
				Tel	. 0531-	5361,	Far.	0531-5	365											
															•	3	-			
0	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	រេ	16	17	18	19
•••••	********************										*****						••••		•••	
58	POT GRANEE INSRED	S34.0	106.1	8.4	41.5	3.9	2.6	1.9	12.3	19.9	190	5		3	1	5	3	1	1	1985
59	DALE										140			7		7			7	1985
39	DALE	756.0	188.5	11.1	84. I	1.1	2.7	5.3	13.5	24.9	172	3		6	1	4	3	1	1	1986
59	DALE	672.0	121.1	5.2	34.9	3.0	1.8	0.4		18.0	131	9	5	4	2	7	5		1	1987
59	DALE	1764.0	233.0	3.3	S8.8	1.7	1.2	0.5		13.2	101			5		7	1		1	1990
59	DALE	162.8	41.9	1.1	1.8	0.6	0.6	0.0		25.8	123	0	3	3	1	7	3	1	1	1993
60	SVEET BEE	1009.0	189.7	7.1	72.0	1.8	1.2	4.1		18.8	170	9		3		3			3	1985
60	STEET BEE	860.0	180.3	8.9	76.6	28	2.0	4.1	11.6	21.0	219	S		5	4	4	3	2	1	1985
60	SVEET BEE	940. O	187.3	6.2	56.2	2.4	1.4	2.4		19.9	203	9	7	1	1	5	2		i	1987
61	SUCROSCIPCE 301	854.0	196.0	7.7	ស.7	1.1	0.8	5.8		23.0	180	7		9		3			5	1985
61	SUCROSORIE 301	656.0	155.8	10.6	69.6	2.7	2.2	5.8	14.1	25.4	206	3		4	2	7	3	2	1	1986
61	SUCROSORIEE 301	1041.0	245.0	7.6	79.4	1.9	1.3	4.4		23.5	212	7	7	1	2	3	3		1	1987
62	DITSIGT 460	798.0	176.8	7.4	58.8	1.8	1.3	4.3		22.2	140	1		5		5			5	1985
62	KURSAGI 460	689.0	161.9	7.7	52.8	2.8	2.2	2.7	15.5	23.5	231	3		4	6	5	4	2	1	1986
62	TURSAGE 460	655.0	150.0	7.3	47.8	2.1	1.4	3.8		22.9	168	7	6	4	2	5	3		1	1987
ស	TAPID	815.0	220,1	6.5	52.7	1.9	1.2	3.4		27.0	180	7		i		S			3	1985
63	TAPID	878.0	233.4	7.5	66.2	2.8	2.2	2.5	17.9	26.6	180	3		4	5	1	4	1	1	1985
	TAPIO	897.0	207.9	6.2	55.9	1.9	1.2	3.1		23.2	197	7	9	2	3	6	5		1	1987
70	TELAS										110			9		3			1	1985
70	TETAS	597.0	133.6	8.5	50.6	3.0	2.6	2.9	13.5	22.4	183	5		7	4	5	3	4	1	1986
70	TETAS	478.0	92.2	6.2	29.4	1.7	1.4	11		19.3	136	9	4	4	1	6	4		1	1987
71	FINDER FA 107-1/83	767.0	173.7	8.2	62.7	1.7	1.1	5.4		22.8	190	9	-	7	-	3			5	1985
71	FIEDER FA 107-1/83	647.0	152.1	10.1	65.5	3.3	2.4	4.4	15.2	21.5	247	3		5	7	3	5	1	1	1986
77	FIGENEERA TTTTART	675.0	771 7	4.6	31.0	1.7	1.0	2.2		32.9	170	7		1		ŝ	-	-	3	1985
77	FUEDIE FA 7773/83	435.0	141.1	6.7	77.1	2.8	2.2	1.3	23.9	22.4	218	3		4	1	7	5	1	1	1986
'n	STUDIE FA 715/87	485.0	96.0	67	77 7	2.6	1.6	2.5		19.A	160	9		9	•	3	•	-	i	1985
<i>"</i>	STRING SL 215/83	249.0	199.9	6.6	74.5	7 8	2.8	22	14.1	71.6	201	5		5	3	6	4	1	i	1986
74	TAT TARTAD PERDENT	747 0	51.9	5 6	14.7	2.5	1.6	1 6		21.5	150	7		9	•	7	•	•	i	1985
75	THE FRAME COLLARIE	112.0	J1. 7	4	\$ 3+ 6	20					110	•		é		7			ì	1985
75	270 JUNEA RAARIJ	775.0	167.0	77	.	2 0		12		21 6	160	7		2		ŝ			ž	1995
10	JJ/ JANIAA GAGARIJ	502.0	107.0	5.0	J7-1 70 1	2.0	1.1	01		20.3	120	'		7		q			1	1945
- 11	JAC SUGAL	512.0	1/0 0	J.0 9.4	51 5	3.3	2.7	2.0	17.5	20.3	101	2		2	2	ś	4	4	1	1996
11	JE: JUEAR	757 0	190.5	4.0	76.5	3.3	1.1	11	14.0	17.0	100	3		5	•	7	1	7	î	1005
/0	REL ADDLE THE JOZ	/35.0	151.0	9.0 0 C	30.3	4.9	7.0	17	14.2	22.0	100	5		ć	5	ć	5	1	1	1025
/8	AREA VIA JOZ	077.0	(1)	0.3 C n	J3.2	2.0	17	1.5	12.3	10 7	100	5		1	3	2	3	1	;	1005
19	LEDIT SED SUSDA VIX	.990.0	64.2	3.8	13.7	2.5	1.1	1.1		10.3	130	3		1		2			1	1309
-		<i>.</i>	101.2	£ 7	77 0	25	27	0.0	17.6	75 1	207	5		5	2	2	2	2	,	1000
79	TERLI AFR 20800 AIK	403.0	101.3	3.7	22.9	2.0	2.1	U. 8	11.0	2.1	201	J		2	4	3	4	4	1	1200
	668											•		•						1005
80	731 (RAIZEVUE	301.0	53.1	4.2	12.5	1./	1.0	1.5		1/./	110	3		ž		2			1	1983
81	1062 JANTAR RARNIJ	170.0	37.0	4.9	7.2	1.8	0.7	1.7		21.6	100	3		3		1			3	1960
	VIR 1062											•		-		_				
82	KEDOVOJE VIR 1064	107.0	19.5	5.1	5.5	2.4	1.1	1.6		18.3	140	9		9		7			3	1985
63	1375 CRANZEVUE										100	9		9		7			1	1985
69	1683	316.0	65.4	5.5	17.4	1.0	0.6	3.9		20.7	110	-		7		7			1	1985
90	GP. 57.	779.0	165.9	5.8	45.0	1.5	1.1	3.2		21.3	140	7		5		5			7	1965
								******			•••••									
'l' =	FRESH MATTER TIELD (I	л/на)	• 7• = 5	ACCRAROS		п (X)		*12*	= VIEOU	8		_	*15 [*]	= 1	ш	EIR) 			
121 -	DET MATTER VIELD (DT.	TLA)	* 8* = R	AV FIBRE	CONTENT	E (X)		•13•	= COLD :	SISCEPT	IBILI	T	*16*	=	RUUR	IT DI	SEAS	EŒ	LE	۱F
•3• =	TOTAL SUGAR CONTENT	(1)	• 9• = D	RI MATTE		n (I)	5EA		TOUES	7111		_	•17	-	xUU	ыЛ S	USU	111	щ	11
'4' :	SUGLE TIELD (DT/EL)	•	*10* = E	RONTE BE	GET (C2	8		•14•	= VIID (INFLIE	ite (P	UNI.	*18'	= [1061	16 1	EDDE	1.1		
•5• =	GLUCOSE COMTENT (2)		*11* = P.	UTICLE E		TIRE			TOUEG	LEAF			-19		ARVE	57 [ATE			
6 :	FRUCTUSE CONTENT (1)																			

and a shirt with the

Institute of Grop Science Federal Research Gentre for Agriculture Braunschweig-Fölkenrode (FAL) Bundesallee SD, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 4 -

Ø	Designation	1	2	3	4	5	6	7	8	9	10	11	Ľ	2 13	14	15	16	17	18	19
91	NES 227 I 27	804. D	154.0	5.6	65.0	1.5	1.1	3.1		19 2	160	7	****	7	****	7			 ,	1065
91	ES 227 I 27	732.0	168.7	7.3	51.2	3.4	2.9	LI	14.5	21.1	175	3		Ś	5	5	3	2	3	1000
92	P.721 X 255-4										140	9		5		1	•		i	1985
92	P. 721 I 266-4	679.0	165.5	7.8	53.0	2.6	2.2	3.1	14.9	24.4	176	ś		5	5	3	3	1	i	1966
93	(64E I 3869) I 635-A	755.0	174.8	6.1	45.4	2.0	L3	2.9		23.2	150	9		3	č	Š	ŭ	•	3	1985
																-			-	
93	(648 I 3869) I 635-A	758.0	131.1	7.6	57.3	3.4	2.7	1.5	15.2	17.3	203	5		6	2	6	2	1	1	1966
94	(535 I 3135) I 858	756.0	159. i	4.8	36.1	1.4	1.0	23		21.1	130	9		3		5			3	1985
94	(635 X 3135) X 858	689.0	142.1	6.8	47.1	3.1	2.4	L3	13.5	20.6	187	5		3	7	3	3	5	ī	1986
95	(588 I 3135) I 858	802.0	152.0	5.6	44.8	1.5	1.0	3.0		20.2	170	7		5		3		-	5	1985
95	(668 I 3135) I 858	614.0	128.6	8.0	48.9	3.3	2.5	2.2	15.6	21.0	181	3		7	5	3	5	5	1	1985
%	8525	491. 0	103.4	4.8	21.7	1.5	1.1	2.3		21.1	130			5		3			1	1985
92	635 I 1836	517.0	113.7	7.8	40.1	1.0	0.6	6.1		ZZ. O	140	7		7		3			5	1985
98	635 I 1836	\$30.0	143.6	9.0	47.5	3.1	2.6	3.3	17.9	27.1	177	3		5	3	7	5	5	1	1986
99	LEOTI	422.0	%.2	6.2	26.3	2.0	0.9	3.3		22.8	140	7		7		5			3	1985
99	LEDTI	632.0	161.1	9.0	56.6	3.9	3.2	1.8	16.9	25.5	192	3		4	2	4	2	1	1	1986
100	15 12329-4										100	9		9		5			3	1985
100	IS 12329-A	584.0	129.2	8.5	49.5	2.7	1.9	4.3	13.5	22.1	166	5		8	3	4	5	6	1	1986
101	(266 I 3871) I 1023										150	9		3		5			5	1985
101	(265 I 3671) I 1022	549.0	127.3	6.9	37.8	1.9	1.3	3.7	14.8	23.2	164	3		7	2	6	3	2	1	1986
102	15 12229										110	9		9		5			5	1985
102	15 12229	930.0	180.2							19.4	217	9	9	1	5	5	5		1	1987
103	658 I UP. ST.	501.0	107.5	4.8	24.0	0.9	0.5	3.3		21.5	160	7		7		5			1	1985
101	ESS I UP. Si.	3.6.0	129.4	8.3	41.7	1.8	1.3	5.3	15.4	24.1	198	3		5	5	3	3	5	1	1986
104	105/ 1 645										90	-		3	_	1			1	1985
105	105/ 1 645	411.0	114.9	7.2	29.5	1.9	1.4	3.9	16.5	28.0	189	3		5	5	3	3	3	1	1986
105	1742 X 1415	7/2 0	3 00 0								130	_		3	_	3			3	1985
105	1742 4 1910	345.0	19.3	3.2	11.9	1.9	1.5	1.7	15.0	77.9	164	5		5	3	5	3	3	1	1986
105	1/34 A 1310	333.0	202.2		20.0					21.2	204	7	8	2	2	5	3		1	1987
107	1000 X 100/1 X 1023	103.0	103.3	9.J 7.1	20.9	1.2	0.9	22		21.8	140	9		9		7			3	1985
107	1640 Y 20021 X 033	120 0	134.3	7.1	10.0	0 ش مد	1.3	1.8		23.4	140	1		5		9	_		3	1985
108	ET GN2001 70	1.30.0	111.7	1.1	30.5	2.5	1.9	3.2	12.9	<u></u>	162	3		7	1	6	3	4	1	1986
108	IT STRATT 70	672.0	147.0	1.C C C	41.0	1.2	1.5	23	17.0	21.9	130	ž		5		3			1	1985
108	EX SDRDOM 70	1079.0	776.9	0.0	11.3	44	1. 1	47	11.1	20.2	103	3	•	3	1		3 7	د	÷	1565
109	1742 T 1414	10220 0								ا منه	20	'	1	1	1	2	2		:	170/
110	1642	696.0	170 7	5 3	26.5	0.9	0.5	28		24 5	1/0	۵		7		3				1363
111	642	517.0	118.9	5 2	27 0	1.0	0.0	22		210	120	7		7		J 7			1	1005
111	642	464.0	120.1	61	78 1	1 9	14	29	16.6	25.9	177	2		7	•	2 7	2		3.	1363
112	50 I 846	751.0	197.5	6.0	44 A	1.2	10	17	10.0	26.1	220	7		,	2	, ç	3	Ţ.	1	1200
113	(635 I 3135) I 858				T1. V	1				404 J	180	1		ś		4			2	1005
114	ALSU-78	619.0	154.7	5.2	72.4	1.0	6.9	2.2		% .6	200	;		s S		a J			2	1005
114	AKEU-78	533.0	152.0	6.6	36.1	1.4	1.0	4.4	20.7	28.5	229	, 1		7	1	7	2	,	1	1925
115	GUEZDE-80	663.0	190.6	6.2	41.2	1.3	1.1	3.9		28.8	200	5		5	•	9		•	3	985
1 =	FRESE MATTER VIELD (DT	/EA)	7° = 5M	TRAPOS	CONTEN	T (I)		•12" =	VIGOUR				15"	: T]	LE	 ING				
	DET MATTER TIELD (DT/E	<u>()</u>	8" = RA1	I FIBRE	CONTENT	(1)		' 13' =	colo s	ISCEPT	BILIT	r '	15'	= <u>II</u>	0.III	DIS	EAȘE	0I	LEA	•
1.1	IUIAL SUGAR CONTENT (1	3 •	9" = DR1	LATTE	CONTEN	T (I)	ΕM		TOUTEG	PLAT		•	17"	= 09	ÛUGI	t su	SCEP	TIBI	LM	!
	SUGAR TIELD (DT/EA)		10° = 🖽	WTH HEI)		*14* =	VIID I	FUEL	e upor	1	18"	٠u	DGIR	G TE	10 2.1	Л		
'6' =	FRUCTOSE CONTENT (I)	•	11" = PAD	IICLE E	ENGERCE	THE			TOLOG	LEAF			19*	: #A	RVES	T DA'	TE			

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Völkenrode (FAL) Bundesailee 50, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 5 -

"6" = FRUCTOSE CONTENT (2)

Ð	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	15	17	18	19
116	508 24/82	424.0	143.3	4.6	19.5	0.9	0.5	3.2	*****	33.8	160	9		5		5			1	1985
117	SCR 9/78	472.0	115.6	3.3	15.6	1.5	0.9	0.9		24.5	110	5		9		5			1	1985
118	502 4/83	406.0	116.9	5.6	22.7	1.8	1.5	2.3		28.8	160	9		5		3			9	1985
119	SOR 12/83	344.0	131.8	8.0	27.4	1.4	1.1	5.5		38.3	120	5		7		5			7	1985
120	SOR: 11/82	252.0	74.8	7.8	19.8	1.9	1.4	4.6		29.7	150	9		7		3			5	1985
121	SDE 23/81	448.0	141.6	5.5	24.7	1.4	1.0	3.1		31.6	170	5		5		3			3	1985
122	HAARDORING										120			7		5			3	1985
123	S-59-8-6 70418	1042.0	160.0	2.8	29.5	1.4	0.9	0.5		15.4	140			7		5			3	1985
124	CAPEICERS 1-59-4-7	659.0	118.0	3.4	22.3	1.3	0.9	1.2		17.9	120			9		3			1	1985
125	70573	678 0	109.2	17	11 7	00	07	0.2		16.1	100			7		5			•	1005
126	70,73	495.0	00.2	1.1	11.7	15	0.7	0.2		10-1	100			á		0			2	1005
120	13-7 0 107 71170	729 0	165 5	3.0	73.0	1.1	0.5	0.7		21 0	150			5		2			5	1005
127	F 103 /11/0	770.0	107-1	2.0	21.0	1.5	1.0	0.0		21.0	110			7		3			J	1201
120	THEIRI 71500	2/0.0	105.2	3.2	10.7	1.5	1.0	0.7		14.7	130			5		3			1	1002
127	ALKONUA /1000	040.0	103.3	3.0	15.2	1.0	1.3	• •		10.2	120	•		2		3			i E	1005
130	10A0A1 /1550	615.0	13610	3.3	20.3	1.0	1.9	1.0		10.3	120	7		5		2			3	1005
131	71622	534.0	142.0	1.0	29.0	2.3	1.3	1.0		<u>44.</u>	140			2		3			1	1202
132	1103/	310.0	157 3	5.2	1/./	49	4.9	0.5		23.0	140	3		3		2			1	1960
153	SE: LEADADA /24/U	773.0	135.2	3.5	28.1	27	1.3	0.3		20.2	130			2		2			2	1703
134	ABOULAIA /2000	623.0	53.0	1.0	11.3	0.5	0.5	••		10.1	140			1		3			3	1303
150	1188155 /2001	6/0.0	149.0	3.5	31.3	2.0	1.5	0.1		1/.2	100			2		3			1	1983
1.00	72552	036.0	128.0	3.5	4.5	1.3	1.2	0.5		13.0	130			5		5			1	1322
13/	/2354	/39.0	130.5	0.9	6.3	0.5	0.4	0.1		1/-2	160			1		2			3	1985
1.38	AFERIE 73151	/25.0	115.4	4.0	23.3	1.4	0.8	1.9		10.9	160			7		3			3	1985
1.5:	SETUE SETTEIN /3309	804.0	143.1	1.4	21.1	1.3	0.8	1.4		17.8	150			2		2			1	1985
140	73430	850.0	140.7	3.8	32.1	1.5	0.8	1.5		16.5	130			7		2			1	1985
141	73431	773.0	150.0	4.0	30.7	1.4	0.8	1.7		19.4	150			5		5			1	1985
142	TINISE 73437	559.0	98.1	3.9	21.5	1.5	0.9	1.5		17.5	160			5		5			3	1985
143	73479	667.0	127.4	4.8	32.3	1.6	1.0	2.3		19.1	140			5		5			1	1985
144	73504	587.0	107.4	2.9	17.3	1.6	1.0	0.4		18.3	130			7		5			1	1985
145	EEE 74-8	433.0	92.7	4.1	17.5	1.6	1.0	1.5		21.4	120			7		5			1	1985
146	HAWAI TINKISE 73701	649.0	116.2	4.1	26.5	1.9	1.1	1.1		17.9	140			7		5			1	1985
147	TIEKISE 73738	754.0	133.8	5.1	38.6	2.3	1.4	1.4		17.8	140			7		3			5	1985
148	CHIBAL 73910	520.0	135.8	4.5	26.8	1.6	1.1	2.0		21.9	140			5		5			1	1985
149	TIREISE 74109	682.0	131.6	4.8	33.0	2.2	1.3	1.3		19.3	150			7		3			3	1985
150	TINKISH HAVAI 74167	821.0	156.8	4.3	34.9	1.9	1.1	1.3		19.1	140			5		3			3	1985
151	TINKISE SEGERSA	587.0	91.6	3.4	19.8	1.5	1.2	0.4		15.6	160			9		1			1	1925
	74195																			
152	TINEISE 74208	715.0	123.0	3.7	26.3	2.0	1.3	0.4		17.2	150			7		3			1	1985
153	DEGALIT 74209	715.0	125.8	4.0	28. ?	2.0	1.5	0.5		17.6	160			5		3			3	1985
154	74648	817.0	147.9	4.7	38.3	2.1	1.3	1.2		18.1	150			5		5			3	1985
155	KASHEITA 74656	413.0	67.9	0.5	1.9	0.2	0.2			16.5	100			9		7			1	1985
156	RARA 74699	470.0	101.1	1.8	8.3	1.1	0.7			21.5	80			9		5			1	1985
157	2B-24 74813	453. C	52. S	2.9	13.1	1.5	1.1	0.1		19.6	80			5		5			1	1985
158	74632	,* 649.0	107.1	3.5	22.8	1.2	1.1	1.1		16.5	130			5		3			3	1985
*** -		17.841	1 71 . 0	10001000				*178 -	TICH	 D				- *	1115	of WE				
171 -	NEW WATTER VIEL INT.	/#####################################	ער - יקי וסייקי	N FT2DT		14 (4) [77]		12 -	- 10001 ·	n GIGTERT	ד ז ז ז ד		161	- 1. = A	A CARACTER STATE	1140 7 111	310	r nr	: 51	r
* *	TITA' SIEAR CONTENT	(<u>x</u>)	• 9• : ht	77 31.712		 	NC 18		TOTAL	PLAT	أ غما ذلك و	•	•17•	: 11	RINIA	π 9	БС.			•
· · ·	SIEAR TIELD (DT/RA)		עיין. הויינוי			0		·)4· =	. Alau .	, 1951 1951 (1971	er ipo		•18*	= 11	וזאמו		408	107	awā i	•
1 CT -	RUCIST CONTENT (1)		•11• = P/		1463 - 166 859(576/5	1180			TITLE	1 FAF		Ξ,	•19•	: 8	184E	57 DI	ITE			
·K* :	FRICTISE (DRITERT (I)		1		ة ب السنيانييين				10020	and all i				- 44						

Institute of Crop Science Federal Research Centre for Agriculture Braunachweig-Völkenrode (FAL) Bundesallee SO, D-38116 Braunschreig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 6 -

D	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
159	74866	506.0) 84LO	2.6	13.4	1.1	1.0	0.5		16.6	100			7		2	****		 ج	1005
160	74875	360.0	80.2	2.9	11.0	1.4	1.2	0.4		21.1	100			ġ		š			1	1985
161	74884	521.0	91.2	2.8	14.5	1.1	1.0	0.7		17.5	110			7		3			3	1985
162	JELDE 74907	662.0	114.5	27	18.1	1.1	1.0	0.7		17.3	120			7		5			ĩ	1985
163	EISC-11 74929	499.0	89.8	3.0	14.9	1.1	1.0	0.9		18.0	110			5		5			3	1985
164	BARBARI 75236	311.0	65.3	4.2	12.9	1.3	L1	1.8		21.0	110			5		5			1	1985
165	VS-1763 200144	695.0	116.1	2.4	16.3	0.9	0.8	0.6		16.7	80			5		ĩ			i	1985
155	EASEILA GEBS 200292	680.0	109.5	2.6	17.6	1.0	0.9	0.7		16.1	90			7		5			ī	1985
167	CARE ARBER	223.0	60.7	6.4	14.2	21	1.3	3.0		27.2	140	5		9		7			3	1985
167	CARE ARBER	489.0	142.6	8.8	42.8	3.0	2.3	3.4	17.4	29.2	210	1		6	4	6	3	i	2	1986
167	CANE ASBER	359.0	87.0	6.7	23.9	3.1	1.5	2.0		24.2	164	Ś	4	1	į.	5	5	•	1	1987
158	TAPIO I HOMET	869.0	169.9	5.1	43.9	L7	1.3	2.0		19.5	140	7		3		5	-		3	1985
168	TAPIO I EDIET	609.0	139.6	8.6	52.5	3.3	2.3	3.0	13.7	22.9	215	7		5	1	Ĩ	3	1	ĩ	1986
168	TAPIO X HOMEY	985.0	182.7	5.7	56.0	3.3	2.0	0.4		18.6	190	7	7	1	1	5	5	•	i	1997
170	VACONIA ORANDE CARE	562.0	120.8	9.2	51.8	2.6	1.6	5.1		21.5	160	9		5	-	5	•		i	1985
170	VACONTA GRANEE CARE	813.0	194.8	10.3	82.8	3.4	2.3	4.6	12.9	24.0	191	5		4	2	7	3	2	î	1986
170	VACONIA ORANGE CANE	589.0	130.1	9.2	54.1	4.8	3.3	1.1		22.1	156	9	S	2	2	6	3	•	1	1987
171	KINESUTA AREER	230.0	50.1	8.2	18.9	2.3	1.4	4.5		21.8	130	7	-	7	-	3	•		î	1985
171	NINESUTA ANGER	875.0	189.9	9.0	79.0	3.5	2.5	3.0	16.3	21.7	219	3		6	4	ŝ	3	2	î	1986
171	KINNESOTA AMPER	717.0	135.8	7.0	50.0	4.2	2.3	0.5		19.4	188	7	6	ī	3	5	3	-	ī	1997
172	EUAN-LO-SON IR. 1	138.0	43.8	4.7	6.5	2.0	1.5	1.4		31.7	150	7	-	9	-	1	•		7	1985
172	EUAE-LO-SCE KE. 1	352.0	122.0	6.3	ZZ.3	2.2	2.0	2.1	25.9	34.7	256	3		6	2	3	3	4	i	1966
172	EUAR-LO-SUE IR. 1	202.3	90.5	5.3	12.3	1.0	1.0	3.2		38.9	183	1	4	3	5	3	5	3	2	1997
175	DINDEPRAVES										120	5		7	-	3	•	•	1	1985
173	DINDERRAVER	810.0									141	3		Ś	3	5	5	1	ī	1966
175	DINDERAVE	461.0	122.7	7.3	35.C	3.3	2.3	1.6		25.5	131	7	5	2	2	5	5	•	ĩ	1987
174	EAGLY AFEER	158.0	40.3	6.4	10.1	2.5	1.7	2.3		25.5	100	7	-	9	•	7	•		3	1985
174	EASTLY ANSER	551.0	156.4	9.8	53.9	3.2	2.5	4.2	17.5	28.4	209	3		6	3	6	4	1	1	1985
174	EARLY ANDER	612.0	145.2	7.5	45.0	4.0	2.7	0.8		21.7	170	5	5	2	1	5	3	•	i	1987
176	SORED VIR 1062	368.0	¥.1	6.5	24.2	2.5	1.3	2.7		26.1	150	9	•	9	•	3	•		î	1995
177	RED TOP WIR 343	653.0	138.8	7.1	46.2	2.7	1.5	2.8		21.3	110	ģ		ŝ		3			i	1985
179	ERALI ORANGE SORGHUM VIR 1375	461.0	92.2	4.7	21.7	2.6	1.4	0.7		20.0	120	9		9		S			3	1985
160	SUMAK SURGO VIR 290	360.0	71.6	5.1	18.3	1.9	1.7	1.5		19.9	110	2		7		5			1	1995
181	SDEGO SUCRE VIR 337	763.0	174.7	7.6	57.8	1.5	1.1	5.1		72.9	150	7		í		2			7	1905
182	SURGO SARARTOJI VIR	412.0	95.0	6.9	28.5	2.3	1.5	3.7		23.1	170	7		;		2			ś	1985
	143													'					.	
183	SURGO REDOVALE VIR	628.0	122.5	7.:	44.3	2.5	1.2	3.4		19.5	160	7		5		3			7	1925
	1064							••••				•		•		5			' · ·	1.00
183	SURSO MEDOVOJE VIR	992. 0	202.3	8.6	85.0	2.8	1.7	4.1	11.7	20.4	238	5		7	1	5	4	1	1 1	1986
104	1001				••••							_		_						
104	JUSDU LIRUAALULAN	608.0	115.2	5.2	31.4	2.0	1.3	1.9		19.0	160	9		5		5			3 1	1985
124					-	• •						_		_		_	_			
101	SURGU LARYAAZULAR	828.0	195.6	7.0	58.0	2.8	1.8	2.4	14.2	Z3.6	196	5		5	3	5	5	1	1 1	1986
	WIR /JI																			
		••••••••			·····	•••• • ,		******			*****			••••	••••					
121 =	BRY NATED VIELD IN	1/28) De:	· /· = 54	ULHAND		: (%)		•12• =	V15005				15"	• 11	LER	116	.	-		
131 -	JULY, SIEND CONTINUE IN	14.) 7 1	· 6* = 84	·		(2)	-	-13" =	000 5	uster Ti	SILIT		16	: 15	UUNT	DIS	EASE	U	LEI)	•
4 :	SUGIR TIET D (DT/DI)	57	¥U = '7 ۳۳ - ۱۸۱۴	1 221123		1 (11)	12.44	**** -	JUUED	FLAXII Tel Inter			1/*	= D12	uueii	150	26	119[ЦП	I
5 =	ENCISE CONTENT (7)		10 - 05			, 7185		14	AUROSC 1	R: LUIRL I FAT	z urtu		101	- 104 - 104	nortig	21 0 יית ד	9021 75	1		
				أسآر منصدها عرجه	سآما المقال انتحدت	ڪنان ۽			40020	تكنفيه			12	- 11	شتاه	ı Uh	11			

•

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Völkenrode (FAL) Bundesallee SD, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 7 -

Ð	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	LA	19
185	NTR 75-10	S65.0	120.9	6.7	37.8	1.7	0.8	4.1		21.4	110	9		7		5			1	1985
185	EER 78-13	495.0	88.6							17.9	110	-		9		3			1	1985
186	SEP 76-13	1350.0	308.0	9.0	22.0	LS	1.3	6.6		22.7	134			S		S	1		3	1990
187	518275 1.256	1014.0	169.1	4.8	49.1	1.4	1.0	2.4		18.7	140	e		3		3			3	1985
167	515275 1256	961.0	211.3	7.7	74.3	2.8	2.1	2.8	12.9	22.0	230	7		5	7	5	4	2	1	1986
187	516275 1256	1375.0	237.7	4.5	62.0	24	1.7	0.5		17.3	233	9	9	1	3	5	5		1	1987
188	EEE8180-7437	1017.0	233.4	7.4	75.3	1.0	0.8	5.6		23.0	200	7		3		3			7	1985
188	EKS8180-7437	923. G	239.7						16.6	26.0	239	3		6	4	5	3	4	1	1986
182	EE98180-7437	907.0	201.5	7.9	71.4	2.8	2.0	3.0		22.2	215	7	9	3	2	5	3		1	1987
189	NEE8361-8192	1393.0	241.7	3.9	53.9	1.3	0.9	1.7		17.4	190			3		3			1	1985
125	EE8351-8192	1106.0	218.0	5.2	58.0	2.0	1.3	L9	12.4	19.7	205			6	7	3	5	1	1	1986
189	EEE8361-9192	1259.0	280.9	3.8	47.7	2.0	1.4	0.4		ZZ. 3	187	9	8	2	3	4	5		1	1987
190	IXE8472-8459	928.0	203.7	5.1	4£.9	1.6	1.3	2.2		22.0	160	9		3		5			1	1985
190	EE8478-8459	1036. Q	211.5	6.8	70.1	1.7	1.1	4.0	12.3	20.4	197	7		5	1	3	3	1	1	1985
191	EE8478-8469	994.0	14£.8	6.C	52. I	2.7	1.9	1.4		14.9	169	9	6	3	3	5	2		1	1987
19:	EK3818C-8475	818.0	204.1	8.0	65.5	1.2	0.8	6.0		25.C	160	9		5		5			5	1985
101	ME8189-8475	547.0	147.E	9.8	53.6	1.9	1.3	6.6	15.8	27.0	228	3		5	4	3	4	2	1	1966
19!	EE8180-8475	913.C	202.1	7.3	66.8	2.7	1.9	2.7		22.1	208	7	7	4	2	4	3		i	1987
192	THEIS	712.0	145.1	5.S	39.1	2.2	1.3	2.0		20.4	160			5		3			3	1985
197	THEIS	882.0	191.6	7.8	68.6	3.3	2.1	2.4	12.2	21.7	219			6	3	5	3	1	1	1986
102	THETE	693.0	125.8	5.5	37.9	3.2	2:	0.2		19.6	176	9	6	1	1	6	3		1	1987
197	SXE8276-7928	515.0	149.7	£.9	£.8	1.3	0.9	4.8		24.3	150	9		7		5			1	1985
192	EE6275-7926	773.0	196.6	7.7	59.8	2.8	2.2	2.8	1£.5	25.4	217	5		3	7	7	5	1	1	1986
191	EE6278-7852	634.0	171.5	8.1	51.5	1.0	0.8	6.3		27.:	150	5		7		5			1	1985
194	DE8278-7893	44 0.0	129.9	9.2	40.6	1.7	1.3	5.2	18.4	29.5	191	1		5	3	3	3	1	1	1985
195	IXE8260-7894	752.0	195.5	8.2	62.4	1.2	0.8	6.2		25.7	150	7		7		5			1	1985
195	EKB8280-7894	660.0	177.4	8.1	53.6	25	2.1	3.4	16.0	26.9	212	3		5	3	5	3	1	1	1966
195	EKE8362-8191	700.0	176.1	7.0	49.2	1.0	0.7	5.3		25.2	150	7		7		5			3	1985
195	EEE8363-8191	937.C	221.4	7.9	74.0	1.5	1.1	5.3	13.8	23.6	207	5		5	7	5	3	1	1	1986
197	EKE8364-8187	762.0	165.0	5.6	42.4	1.2	9.0	3.6		21.7	150	7		5		3			1	1985
197	EKE8364-8187	:261.0	269.0	8.6	108.5	1.5	1.2	5.8	11.3	21.3	228	3		6	5	6	4	1	1	1986
198	EE8368-9189	877.0	183.3	5.7	50.3	1.1	0.7	4.0		20.9	130			7		3			3	1985
199	SEE8368-8189										197	7		5	3	4	3	1	1	1986
199	SZARVASI BARRA	270.0	50.8	3.5	9.4	1.1	0.9	1.5		18.8	130			ę		5			1	1985
100	SZARTASI BARRA	760.0	172.7	6.2	46. 9	2.6	21	1.4	14.2	22.7	215	5		7	6	4	5	1	1	1986
200	VETTE COLLIER	472.0	112.3	5.3	25.C	1.5	1.5	2.9		23.8	100			9		5			1	1985
200	VEITE CULLIER	635.0	159.8	8.6	54.4	2.8	Z. 0	3.7	17.2	25.2	145	5		7	5	£	5	1	1	1986
200	VEITE COLLIER	612.0	137.9	7.5	45.7	2.2	1.4	4.0		22.5	142	7	5	1	4	5	4		1	1987
201	PICEETT #2	124.0	36.5	6.5	8.1	2.2	2.0	23		29.5	80	9		9		3			1	1985
201	PICKET: 12	362.0	93.7	5.7	20.E	2.8	21	G. 8	18.3	25.9	98	3		4	4	1	4	4	1	1986
201	PICKETT #3	1084.0	220.6							20.4	206	7	7	2	2	5	3		1	1987
202	8-201	238.0	41.7	2.8	9.0	2.0	1.6			18.8	60			9		5			1	1985
202	5-201	515.0	141.3	6.6	34.G	3.2	2.2	1.2	21.6	27.4	178	5		7	2	6	3	1	1	1985
203	8-ORANGE	325.0	62.7							19.3	110	-		9	-	5			1	1985
203	B-ORANGE	•									179	S		5	2	5	3	1	1	1986
				•••••	••••••					******				••••	••••	••••			••••	
'! ' :	FRESE MATTER TIELD (T/EA1	• 7• = SA	CELLEDS	E COSTEM	T (I)		"12" =	VIGOUR				"15"	÷ T.	ILLE	RINC				
2 :	DET BATTER YIELD (DT/	EA!	" 8" = RA	V FIBRE	CONTENT	(X)		*13* =	COLD S	USCEP:	IBILIT	Y	*16*	- 1	9) (H	T DE	EAS	e ox	Ľ	F
3. :	TUTAL SUGAR CONTENT (11	• • • • DR	Y MATTE	e conten	(I) T	<u>BEAR</u>		YOURS	PLAET			•17•	= D3	006	at s	SCE	PTIB	ILΠ	Π
{' :	SUELE TIELD (OT/EA)		*10* = 🕀	ovte ee		D		*14* =	VIID I	FUE	CE (IPO	ä	•15•	: U	DGI	E T	3.1) 3	LŢ		
51 :	GLECOSE CONTENT (1)		"11" = PA	NICLE E	ASRIERCE	TIME			YOUNG	LEAF			•19•	- 8	EVE	57 D	ITE			
£• :	FRUCTOSE CONTENT (1)																			

Institute of Crop Science Federal Research Centre for Agriculture Braunschreig-Völkenrode (FIL) Bundesallee SD, D-38116 Braunschreig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 8 -

	Designation	1	2	3	4	5	6	7	8	9	10	11	12	រេ	14	15	16	17	18	19
204	ESOJ BAREA	252.0	53.3	5.4	13.5	2.3	2.3	0.8		21.2	120	9		9		5			1	1985
204	ESCI BARKA	779.0	201.6	9.6	75.1	2.8	2.2	4.7	15.0	25.9	217	5		6	3	5	3	1	i	1986
204	EESOJ BAREA	685.0	150.0	7.7	52.5	2.3	2.0	3.4		21.9	186	7	6	3	1	3	4	-	ī	1987
205	14001	831.0	169.1	5.0	41.9	2.1	1.7	1.2		20.4	130	9		7	-	5	-		3	1985
205	I400i	982.0	226.8	8.0	78.2	2.8	2.1	3.1	15.0	23.1	220	5		7	1	5	1	3	1	1986
205	I4021	1095.0	229.3	3.3	36.2	0.9	0.9	0.1		21.9	140	9		5		5			3	1985
206	14021										203	7		5	5	5	3	1	1	1986
207	14024	671.0	140.2	5.0	33.6	1.9	1.9	1.8		20.9	140	9		5		3			1	1985
208	14025	706.0	165.9	8.3	58.7	1.5	1.5	5.0		21.5	150	9		5		3			1	1985
209	1404:	671.0	164.1	6.8	45. 7	1.8	1.8	3.6		24.5	160	9		7		5			1	1985
210	14045	784.0	204.2	6.4	50.2	1.9	1.9	2.0		25.1	170	7		5		3			3	1985
211	AE 50	584.9	109. Z	5.0	29.1	2.7	2.7	0.5		18.7	110	ġ		7		5			3	1985
212	142	473.0	101. Z	3.7	17.6	2.2	2.2	0.2		Zi.4	60	9		7		5			1	1985
213	1 2077	115.0	2.8	1.9	2.2	1.0	1.0			ZZ.4	60			ç		÷			3	1985
214	ATT 6Z2	258.0	64.8	6.0	15.4	2.0	2.0	23		25. i	90	9		ç		3			1	1985
215	TE .	509.0	124.5	7.4	37.5	2.3	2.3	29		24.5	130	9		7						1985
216	KLT BIAISTERIU	••••	-		• • •	. .								ç						1985
217	AASAS USASUL	314.0	70.3	7.9	24.8	3.1	3.1	3.0		22.4	120			7		5			1	1985
200	UUA: KALEL	263.0	5/.8	5.1	16.1	2.7	2.7	1.2		21.8	100			5		3			1	1985
213	EGAL!	164.0	31.0	4.0	5.5	2.3	2.3			18.9	80			9		3			3	1985
ریت مہر	TANLI SUSAL	1040	19.9	20	21	0.5	0.5			19.5	110			9		2			÷	1985
	CHIEFE CODE	64.0	10.9	29	- 24	1.3	1.3			16.5	110			9		5			1	1985
222	ATT AC Y COMPTEE	202.0	18.0	2.9	3.2	1.6	1.6			16.4	110			9		5			1	1985
201	AILAS I SUBRISC	200.0	10.0	- <u>4</u> 9	1.7	1.1	1.4			22.4	110			-		7			1	1985
271	FUELSEE 215/62	200-0 SS2 n	170.7	6.1	2/.0	3.0	3.0	0.3	17 6	20.7 75.1	110	3		3	•	2			1	1985
275	TORDULEA ZIJICE T.0704	333.0	1.30.7	5.2	54.6	2.2	41	1.1	17.5	Δ.1	123	1		2	2	6	4	4	1	1986
7%	E-307	205.0	179 0	3.0	11 0						100	-		3						1985
200	1.977C	571.0	120.0	0.0	11.7	1.1	1.2			34.9	100	1		2		3				1985
778	1-477787 100175	947.0	272.9	2.6	2.5	1.0	1 0	9.0		25.0	1.50	1		-		-			3	1985
273	1 472707 200 00	510 /	170.2	2.5	12.0	1.0	1.0			23.0	130	-		1		3			1	1382
	RAI ATTRECTICED'	0	*****			41.4	***			49.7	140	i		3		3			1	1282
230	1-477795	645.0	162.5	^ a	12 1	: 1	• •			75.7	200			£		2			-	IDAE
	TTTPESTRA'71	013.0	100- 0	••••	10.1					ت دقمک	200	7		J		3			1	1780
231	EEE 80-10	451.0	105.4	5 8	26.3	22	22	15		77 6	120	٥		•		•			•	2001
322	MER 81-7	477.0	110.5		31.5	2 2	77	7 1		77 4	120	7		2		5			1 .	1092
233	EX 1500	470.0	99.4	5.1	23.7	2.3	2.3	1.0		21.7	130	'		á		5			;	1005
233	58 1500	1183.0	184.1	3.9	45.9	1.6	1.1	1.7		15.6	175	5		ź		ξ	7		5	1990
234	CONLEY	433.0	103.5	7.5	32.3	2.6	2.6	3.7		23.9	110	9		ů,		5				1985
235	HESAR!	294.0	75.9	8.2	24.2	1.8	1.8	5.2		25.8	90	i		á.		5			î	1985
235	HEIGAR :	367.0	96.7	8.1	29.8	3.2	2.2	2.7	17.1	26.4	130	3		5	4	6	4	t	i	1986
237	A ATLAS X P.3	721.0	181.3	5.2	49.1	2.2	2.2	2.4		25.2	160	9		5	•	3	•	•	i	1945
237	A ATLAS X P.3	904.0	217.5	7.0	63.6	2.9	2.1	2.0	16.5	24.1	217	3		3	5	5	3	1	i	1986
238	A ATLAS X BER-12	743.0	174.5	6.2	45.8	2.7	2.7	1.2		23.5	160	9		5	•	3	•	•	1	1985
238	A ATLAS X BER-12	602.0	143.6	8.3	49.9	3.1	2.0	3.2	16.0	23.9	219	5		5	5	5	3	3	ī	1986
				••••••																
•1• =	FRESE MATTER TIELD ID	T/HA)	• 7• = 51	ICCHAROST	CONTER	T (I)		*12* =	VIGOUE			•	15°	= TI	ЦE	185				
"Z" :	DET MATTER TIELD (DT/	EA)	" E" = R	W FIRE	CONTENT	(2)		•13• =	COLD S	USCEP!1	DILIT		16"	: LE	0017	DIS	E15	80	LEAD	•
	TUTAL SUSAE CONTENT (I)	• 9• = Di	I. WILL		T (Z)	BE A R		TOL 135	PLAT		•	17°	= DR	0162	T SL	SCE	TIB	LIT	1
14" = 151	SUGAR YIELD (DT/HA)	1	'10 ' = 🖽	INTE EE	687 (CS	}		"!4" =	AIND I	FLUEIC	e upo	•	18"	- 10	D611	5 11	3 10 20	17		
·[•	BUCKE SHIEIT (1)	1	'12" = PI	WICLE E	ERGENCE	TIRE			TOUES	LEAF		•	19"	= <u>HA</u>	9VE5	T D	TE			
	FROUTUDE CUATEST (I)																			

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Volkenrode (FAL) Bundesailee S0, D-38116 Braunschreig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365 - 9 -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ED Designation 1 1985 21.1 130 7 5 5 808.0 186.7 5.8 45.5 2.1 2.1 1.8 239 A ATLAS I BT I 432 3 1 1985 3 5 4 3 792.0 195.1 8.5 67.6 2.8 2.1 3.7 15.9 24.6 200 5 229 A ATLAS I RT I 432 1 1985 5 3 26.4 120 9 551.0 147.8 5.3 29.5 1.5 1.5 0.9 240 AT I 623 I ?-3 1 1 1986 18.5 28.0 157 3 28.2 3.1 2.5 2.5 5 5 3 5 97.4 8.1 348.0 240 AT I 523 I P-3 27.2 80 9 3 1 1985 241 AT 1 523 X BT 1 432 294.0 79.8 5.9 17.3 2.4 2.4 1.3 7 1 1 1986 22.0 120 3735 24.8 2.3 2.0 0.6 14.7 3 510.0 112.3 4.9 241 AT X 622 X RT X 432 1 1985 5 42.7 2.5 2.5 2.8 26.4 130 7 7 559.0 147.3 7.6 242 AT I 623 I BER-12 15.8 23.8 205 3 3 7 5 5 1 1 1986 48.7 3.5 1.2 0.7 517.0 145.7 7.9 242 AT 1 623 I BER-12 22.3 170 7 5 1 1985 28.7 1.5 1.6 2.0 529.0 117.7 5.4 243 AT I 623 I HELE 7 5 5 3 1 1 1986 13.5 3.0 2.2 1.8 17.5 26.1 236 5 243 AT I 623 I TELLER 197.0 51.3 6.9 1 1985 27.1 190 7 S 7 244 17 X 623 X GREENLEAF 743.0 201.4 5.5 40.8 1.5 1.5 2.0 244 AT X 523 X GPTERIEAF 594.0 160.8 9.4 55.8 2.9 2.2 4.3 15.7 27.1 238 1 7 1 7 3 1 1 1986 1 1985 523.0 127.9 5.8 30.2 1.7 1.7 1.8 24.5 160 7 7 3 245 AT I 523 I EEGARI 898.0 193.9 6.5 57.9 2.9 2.4 1.1 13.5 21.6 206 3 3 7 5 5 1 1 1986 245 AT I 623 I REGARI 5 3 1 1985 629.0 152.0 4.8 30.1 2.3 2.3 0.5 24.2 100 24E AT I 523 I 77053 1 1985 3 3 962.0 202.5 4.2 40.1 2.3 2.3 21.1 120 247 FERTES 1990 1 1985 18.1 90 3 7 450.9 81.5 3.8 17.2 2.2 2.2 248 55. 4543 21.2 70 3 7 1 1985 6.5 1.0 1.0 309.0 65.5 2.1 249 SE 4545 1 1985 7 16.8 70 5 54.7 3.4 10.0 1.9 1.9 250 55. 4579 291.0 1 1985 18.7 70 5 7 5.9 1.1 1.1 300.9 56.1 2.0 II SG. 4763 1 1985 17.1 80 5 7 336.0 57.5 2.4 8.1 1.4 1.4 257 SE. 4538 19.5 60 7 1 1985 7 190.0 27.1 1.3 2.5 0.6 0.6 0.1 252 55. 2095 1 1985 21.9 100 9 7 238.0 52.1 6.4 15.2 3.0 3.0 1.2 254 56. 2309 1 1985 9 50 9 255 56. 2327 19.5 140 9 9 7 5 1985 48.2 3.7 9.2 1.9 1.9 0.4 256 \$6, 2565 247.0 3 1985 21.0 110 Q 9 353.0 81.2 E.E 21.2 2.9 2.9 1.4 257 96. 2511 1 1995 21.8 60 7 3 150.0 32.7 3.7 5.6 2.2 2.2 258 SE. 2528 3 1985 19.2 119 7 7 392.6 75.5 4.7 18.6 2.4 2.4 0.7 259 55. 2546 3 1985 21.9 50 9 5 88.0 19.3 2.2 2.0 1.3 1.3 250 55. 2562 1 1985 5 22.4 100 7 £9,6 5.2 11.0 2.6 2.6 0.7 261 55. 2565 212.0 1 1985 5 23.9 90 7 9.5 2.8 2.8 0.7 42.3 5.4 262 55. 2570 177.0 26.1 120 9 5 1 1985 234.0 61.1 6.0 12.9 2.9 2.9 1.1 263 55. 5590 1 1985 7 17.8 130 5 901.0 160.4 2.7 24.2 1.5 1.5 254 55. 6250 3 1985 5 18.6 110 1 9.6 1.6 1.6 336.0 62.5 2.9 265 55. 6284 3 1985 25.6 140 7 5 5.5 22.8 3.1 3.1 0.2 415.0 106.2 266 55. 6286 7 2 1 1985 15.8 90 43.3 1.2 2.2 1.5 1.5 2.4 2E7 SG. 7817 274.C 1 1985 20.0 80 3 7 91.4 1.0 4.4 0.3 0.3 3.1 262 SE. 1731 459.0 1 1985 19.2 60 5 5 371.0 71.2 0.8 2.0 0.5 2.4 269 55, 1924 21.1 80 5 1 1985 9 344.0 72.6 270 55. 2525 1 1985 7 20.0 40 9 318.0 53.5 271 55. 3549 1 1985 23.4 50 5 5 300.0 70.2 272 55. 36% 1 1985 17.7 50 5 5 31A. D 56.3 273 95, 3701 3 1925 19.2 130 7 5 657.0 124.9 4.6 31.1 1.3 1.3 2.5 774 551 1586 *15* = TILLERING "I" = FREER MATTER TIELD (DT/EA) " 7" = SACCHARDSE CURTERT (I) "12" = VIGUE "16" = ANDUNT DISEASE ON LEAF "12" = COLD SUSCEPTIBILITY * 8" = RAY FIBHE CONTENT (Z) *2* = PET MATTER TIELD (DT/HA) "17" = DROIGHT SIELEPTIBILITY TELES PLANT *?* = TUTAL SUGAP CONTENT (I) " Q" = DRY MATTER CONTENT (1) HEAN "14" = VIND INFLUENCE UPON "18" = LODGING TENDENLY "10" = GROWTH HELGHT (CH) "4" = SUGAR TIELD (OT/EA) . "19" = HARVEST DATE YOUNG LEAF "11" = PARTICLE EXERGENCE TIME "5" = ELECOSE CONTENT (1) *E* = FRUCTOSE CONTENT (1)

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Völkenrode (FAL) Bundesallee SD, D-30116 Braunschweig Federal Republic of Germany

Tel. 0531-5961, Fax. 0531-596 365

- 10 -

D	Designation	1	2	3	- 4	5	6	7	8	9	10	11	12	13	14	រេ	16	17	18	19
771		0 P09	151 0	F F	44 3	1 6	. 7												••••	
2/19		1075 0	101.0	7.3	11.J	20	- 1.7	1.1	13.1	18.8	1/4	3		3	1	6	5	2	1	1986
2/1	USA LUCOP	1117.0	10/.0	1.7	17.7	20	1.3	11		18.3	14/	3	1	3	T	5	4		1	1987
2/3	COA 1/3/	111/.U	164 5	3.8	15 1	24	1.2	70		24-1	160	1		3		2	•		1	1983
213	034 1757 CCL 1757	010-0	101-1	5.7	24.2	20	1.1	20	10.3	29.9 20 E	101	່ 7	-	5	+	0	3	4	1	1200
213	USA 1/J/	700.0	157 4	2.0	31.3	2.0	1.3	10		20.3	121	<i>'</i>	1	4	ł	2	3		1	126/
210	ran. Fili	70.0	100.1	74	10.0 571	2.1	21	47	19 9	41.3	190	5		1		3	•	,	1	1303
276	ru-1	1020 0	212 0	1.7	57.5	3.3	د ت ۱۹	1.0	14.7	21.7	100	J	7	3	1	2	3	4	1	1766
215	13 1 15-5	727 0	167.6	6.0	15 0	17	1.0	41		20.7	1/2	2	1	5	1	7	2		4	1201
777	13 3 SC-5	790.0	100.0	7.0	54.6	76	1.0	21	:4 0	21 7	129	٥		5		5		,	1	1763
777	ra-a RC-S	070.0	710 0	5.0	51.0	20	1.3	20	14.3	21.7	163	7	e	3	1	3	•	2	1	1200
2770	13-J 67-S	575-C 662 A	210.0	6.1	57.6	⊍يتي ال	11	4.2		20.3	200	7	0	3 E	4	3	3		L E	190/
270	31-0- CT_C.	203.V	145 5	4.0	20.0		1.1	2.4	10.1	20.0	200	/ e		3		2	-		3	1983
216		1220.0	260.0	1.3	37.3	- 4.3	1.0	0.0	10. 4	21.7	291 774	3	•	•	1	8	3	4	÷	1300
2/6	3170* 091753 178 1970	1.03.0	207.0	7 5	67.7	4.1	1.1	3. <u>2</u> E E		21.0	170	4	3	3	1	2	1		-	1987
2/7	988272 A18 1770	1/U.U 075.0	200.2	7.3	21.8	1.2	1.1	3.3	16 7	25.0	1/0	4		3		3	-	,	3	1983
273	NAALTA AIR 1770	1020.0	203.2	1.3	75 1	2.3	1.1	9.U 7.C	13.7	23.1	215	3		1	1	8	3	1	1	1560
212	DICTE ITE 1077	1000.0	153.0	0.0	03-2	41	1-3	2.3		21.1	204	-	8	4	Ŧ	3	э		1 7	120/
250	UASIS AIR 17//	701.0	157 5	6.2	m e	1 2	17		~ .	22.0	160	3		3		9		-	!	1983
200	UASLS AIR 1777	321.1	150.0	5.0	32.3	4.2	1.1 1 E	242	29.9	30.1	230		-	3	1	2	4	5	1	1500
200	UALLA ANA 13//	3/2.1	130.0	3.7	24.0	1.0	1.3	20	~ ~	40.1	240	ì	1	3	1	3	1	3	1	1992
201	T-P CTLOWARE	1140 531 S	170.0	1.2	55.0	47	2.0	43	30./	25.3	145	3		1	6	5	1	3	1	1966
201	T-C NTI FRAFER-T	52% J 747 0	103 5	6.1	30.0	1.0	1.0	0 .1	15.4	28.3	100	1	3	4	1 7	2	1	3	1	1337
782	T T NTY PROPERTY	19/.0	103.3		60 0	• •	• •		13.4	29.E	133	3		3	-	5	3	2	1	1966
262	T_C VICINEAPET	C30.0	201.0	1.2	33.7	1.0	1.0	2.1	17.7	22.3	1/3	(e	0	4	ປ ເ	5	3		Ţ	1967
203	T-E VIELDEANER	111.0	206.3	5.5	00.3	4.1	1.1	1.4	11.2	33.0	108	2	r	3	2	3	3	4	1	1955
263	DOX ODANCE	504.0	111 1	0.0	40.1	1.0	1.1	47	10.0	22.3	103	1	6	4	3	2	4		1	1987
201	EUX ORASISE	704.0	111.1	0.1	4C.J	3.3	4.1	4.5	10.0	10.7	103	3	e	3	1	2	3	Ţ	1	1955
201	EUA CIABLE	500.0	110.3	2.0	20.9 40.0	27	1.1	1.4		10.2	103	2	3	4	4	5	3		1	1987
755	CET I	.uc20.u	102.0	6.0 5 C	145-7 10-1	3.1	4.0	41	11.9	1.0	198	3	F	1	3	-	3	:	ł	1200
700	CTLUE C	0/3.0	175 0	3.7	CC C	j 17	1.7	4.7 (n	11 7	10.2	100	2	3	2	1	6	1		1	126/
200		0%6.U	1/0-0	5.1	96.7	2.4	4.5	1.0	11.7	44.3	190	3		:	2	5	5	T	1	1966
200	JUATE	570.0	76.2	3.5	31.9	3.2	1.5	0.7	12.0	16.0	1.12	3	4	4	2	5	2		1	198/
267	VECUA	3/2.C	123.3	1./ re	30.2	- i. j - 1 - 1	1 5	J.1 1 D	14.3	20.0	192	3	c	i.	4	3	6	1	1	1262
207 700	2011	715.0	1/0 0	5.7	50.7	50	1.0	1.7		13.1	196	3	3	1	1	2	2	-	1	198/
799	DOLL	500.0	115.7	6 7 9	36.2	7.2		1.9	ت مشاه	20.0	100	3		5	1	5 7	3	2	1	1200
200	CIENT	500.0	177.0	0.0	50.0	3.3	- 11 - 75	1.3	16.7	2/15	121	2	4	i r	i	с с	1		1	136/
799	CIMI	711.0	175 7	0.0	J1-1 45 1	3.7	23	6 G 0 G	10-3	3 مئن 10 1	102	3	e	2	3	7	3	•	:	1205
203	STATION CONTRACTOR	711-0	130.7	5.3	90-i 20-1	3.3 9 E	24	4.5		13.1	103	3	3	4	4	1	5	-	I.	138/
290	POWACEPU C	501 p	120.1	3.3	12.0	2.3	10		19. 7	22.8	163	3	e	1	3	3	ل د	2	ŗ	1765
20:	CANE DI LET ANDED MID	600 G	10/ 5	1.2	12V 707	3.1	1.7	1 -1 n	11 7	24.9	132	2	3	4	4	2	2		1	126/
431	TALL DUALS ABOUT VIE	633. C	199.2	6.9	13.1		43	48	11.7	21.0	231	3		1	5	3	1	1	I	1586
292	101 DEDIDULC CUIDI DCC			10.1	E 2	20	• •	E 0.	10.2	25.0	111	2		-	•	-	•			1005
232	NID 20711	333.0	192.3	10.1	JO. J	3.0	<u> </u>	3.0	10.2	2J. D	211	3		1	3	4	3	1	1	1300
	11 20278																			
				-																
*** -	EDECS BITTED VIEW IN	•••••								•••••••			****			100				
÷.	THE REPORT OF THE PARTY OF THE	1/2A. *		U TIBR	- 003122 	12 161 1 191		112" =	110005			v	*12* *12*	- 11	التيت درورو	1280 • 574	-	, m	127	-
	THE SHEET THE UP	84) . ¥∖ 9	10 - 10 17 - 10	N 11327 N 11327	CONSTRACT CONSTRACT	: 141 17 141	AL'IA	-13- =	د للنثانا : wnywer	1135271. Di 1977	المطنقة	1	46.44 70,	- A1	NUUX:	מנע ייש ש	ندید: میران	. עש ימדדי	الكن 177	; 7
ų.,	SHAR TIP'D (DT/D)	4 <i>1</i>	102 - כ דם - יחוי	11 26.123 NYTO DEI		11 147 }	, i.i.	11/1 -	100250	TLARI VELINEN	T 1000	2	1/" •101	- 12	NUUUD INCTR	. 36 77 77	್ರಿ ಕ್ರಾಂಗ್		ة للبدً.	1
5 :	BUILDER CONTENT (7)	•	119 - 02	10115 EE	1123 114 112 112 114			13 -	AURIAC AURIAC T	.ar 1024) 1 F1F	با /ب ـ	-	10	- 11	104CC 104CC	ы : 2 л в4				
			aa - 14			مقدده م			10093	And and and a state of the			1 .	- 44	تنف 9 الله		-			

"5" - FRUCTOSE DINTERT (1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 16 1 2 3 4 5 6 7 8 9 10 11 1000 101.7 16.8 16.2 2.7 2.1 6.0 12.2 2.5 5 1 1 156 6 7 8 9 10 11 1000 101.5 4.6 2.2 2.5 1
1 1
12 24 1
VIII 169.0 02.1 10.8 18.2.2 2 2 1
III III III III III III IIII IIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
470.0 115.6 4.6 20.2 2.1 1.5 2.0 2.5.1 1.6 1.7 1.3 5.1 1.1 1.956 07.0 10.0 10.3 9.0 1.5 1.5 1.7 2.7 0.6 1.5 0.7 1.5 1.7 1.7 1.0 1.1 1.956 11 11 1.5 1.7 2.7 1.5 1.7 2.7 1.5 1.7 2.7 1.5 1.7 1.7 1.0 1.956 12 14.7 1.0 2.7 1.0 2.7 1.0 2.7 1.0 1.0 1.0 1.0 1.0 1.1 1.0
0 TTA 9.0 TTA
$ \begin{array}{c} 11 \ 100^{-5} \ 50.0 \ 10.0 \ 50.0 \ 51.9 \ 2.4 \ 2.2 \ 2.4 \ 16.4 \ 2.4 \ 16.1 \ 3 \ 3 \ 5 \ 7 \ 3 \ 5 \ 7 \ 3 \ 7 \ 1 \ 7 \ 4 \ 1 \ 1 \ 1966 \ 120 \ 64.0 \ 16.2 \ 5 \ 7 \ 64.0 \ 16.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4 \ 1.4 \ 1.2 \ 1.4$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
79 945.0 161.2 5.7 54.2 2.0 1.4 2.1 1.2 1.7 2.6 7 7 3 5 1 1.966 B 364 101 5 7 3 5 5 1 1.966 1196
79 945.0 15.7 5.7 <th< td=""></th<>
32 54 32 54 3.2 2.0 4.0 121 12.1 13.5 5 3 5 1 1366 1302
End 12 Set 0 121/2 Set 0 121/2 <t< td=""></t<>
877.0 166.0 6.2 5.4 1.1 1986 31 05388 CSTS 544 610. 100. 5.2 5.6 5.7 1.7 1.0 11.6 1.0 1.7 1.0 11.6 1.0 1.7 1.0 11.6 1.0 1.7 1.0 11.6 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.6 1.5 1.6
$ \begin{array}{c} 7.7, \ 16.5, \ 6.4, \ 2.7, \ 1.9, \ 2.0, \ 1.5, \ $
blue
761.0 162.5 6.4 64.2 2.5 1.5 7 2 4 1 1986 312 68376 182.5 851.6 144.2 3.4 23.8 1.6 16.5 16.5 16.5 16.6 11.9 32 14.6 23.1 17.7 2 1 1997 32 08376 125.1 2.9 1.6 11.6
612.0 115.3 5.2 2.1 0.4 18.7 13.4 9 6 3 1 7 2 1 1997 11 13.4 14.6 12.4 15.2 14.6 12.4 16.2 11.7 2 2 1 1997 11 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.6 12.7 14.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
455.0 92.6 6.5 92.4 1.4 1.9 1.3 19.9 108 9 5 2 1 7 3 1 1997 27 577.0 125.2 7.2 55.1 2.6 2.5 1.1 12.2 18.0 182.9 7 2 6 2 1 1987 3 1 1987 32 057.0 125.2 7.2 5.5 1.1 12.2 18.0 182.9 7 2 6 2 1 1987 33 1 1987 33 1 1987 33 05412 CESTS 647 125.0 14.4 34.0 1.5 1.5 11.6 11.2 1.8 11.2 1.6 11.2 1.9 1.6 1.2 1.9 1.6 1.5 1.967 335 05412 CESTS 647 125.0 14.4 34.0 1.5 1.5 11.6 11.2 1.9 1.6 1.5 1.7 3 1 1987 335 05412 CESTS 647 125.0 1.6.6 1.2 1.6 1.2 <
57.0 125.3 7.2 5.1 $1.25.1$ 2.5 1.1 12.2 1.6
33 $294.C$ 49.0 3.7 11.0 2.2 1.5 116 9 2 2 1 7 5 1 1967 315 11687 116 9 2 2 1 1 1967 335 059425 $CSS15$ 34.2 1.2 1.4 1.4 124 126 11 1967 335 059425 $CSS15$ 647 1080.0 192.4 3.2 34.2 1.2 1.6 1.2 1.26 92.2 1.7 1.5 1.1 1967 335 059425 $CSS15$ 647 1080.0 192.4 3.2 34.2 1.6 1.6 1.2 1.2 2.6 1.2 2.5 2.1 1.9977 312.0 2.2 4.4 2.5 97 2 1.1 1967 333 306 107.6 1081.0 102.0 12.2 10.2 1.0 2.2 10.2 1.0 2.2 10.2 1.0 2.2 1.6 1.10
x_5 1276.0 $34.1.1$ 5.4 82.2 2.5 1.6 2.7 134 5 2 5 2 1 1 1265 334 5 2 5 2 1 1 110 25.7 2 1 1 110 25.7 2 1 1 1066 1 1987 336 505.9 145.6 6.5 22.6 1.6 $1.94.7$ 34.5 97 2 1 1987 337 312.0 82.9 4.2 10.6 6.1 194.4 35.6 97 2 1 1987 338 285.0 80.2 5.4 18.3 1.0 23.1 0.2 24.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 2.6 1.6 1.18 2.0 2.2 1.6 2.2 1.6 2.2 1.6 2.1
55 95.0 15.4 3.1 29.4 2.0 1.6 17.3 97 9 9 1 1 6 1 1.807 312.0 22.9 4.2 13.2 2.0 1.6 0.6 19.4 25.6 97 2 5 55.27 775.0 150.5 6.1 47.0 3.1 1.6 1.2 1.4 19.4 16.4 9 4 2 6 6 1 1587 338 285.0 80.2 5.4 18.3 3.0 2.3 1.0 22.0 2.4 0 21.2 10.6 1.2 1.4 0.4 2.5 97 2 338 285.0 80.2 5.4 18.3 3.0 2.3 1.0 22.0 2.4 0 21.2 106 338 308 508.0 107.8 6.1 31.0 0.9 1.2 4.0 21.2 106 338 508.0 107.8 6.1 51.7 2.1 1.5 0.7 16.5 21.2 106 1 1997 34.9 34.9 1
5 622 775.0 150.5 6.1 47.6 3.1 1.6 1.2 14.4 19.4
5 523 55.6 87.6 3.3 17.6 1.9 1.4
5 615 701.0 143.4 5.5 329 368.9 85.2 4.5 15.7 21.5 0.7 16.5 22.2 94 3 6 615 767.0 458.1 6.9 52.0 3.1 2.7 21.5 0.7 16.5 22.2 94 3 6 615 767.0 458.1 6.9 52.0 3.1 2.7 2.1 2.4 59.7 16.8 9 7 3 4 5 1 1997 340 530.0 140.1 50.6 1.1 1997 340 530.0 140.1 50.7 16.5 2.1 12.6 2.1 1.6 0.7 19.9 21.7 7 19.9 21.7 7 19.9 21.7 7 10.9 21.7 7 14.1 2 5 1 1997 340 540.0 1230.0 245.0 4.1 50.7 16.8 1.2 2.1 12.9 21.2 7 1.1 19.9 21.7 7 1.1 19.9 21.7 1.1 1996 341 101.5 1
5615 767.0 452.1 6.6 52.0 2.1 2.3 2.5 3.4 5 2 1 1986 340 630.0 149.8 8.4 52.7 2.5 1.6 4.2 12.6 21.8 21.6 21.8 1.6 0.7 19.9 213 7 9 5 5 1 1986 340 630.0 149.8 8.4 52.7 2.5 1.6 4.2 12.6 21.8 1.6 0.7 19.9 213 7 9 5 514 289.0 70.0 7.9 21.5 3.1 2.7 2.5 1.6 4.2 12.6 21.8 1.6 0.7 19.9 213 7 9 5 5 1 1987 341 660.0 132.5 7.3 46.3 1.8 1.2 4.3 12.3 21.2 201 9 0 5 5 1 1986 341 1015.0 160.4 4.6 4.3 1.2 4.3 12.3 21.2 201 9 0 5 5 1<
5614 941.0 52.4 5.4 5.5 1 1997 346 1230.0 245.0 4.1 50.2 1.6 0.7 19.9 213 7 4 1 2 5 5 1 1997 346 1230.0 245.0 4.1 50.2 1.6 0.7 19.9 213 7 4 1 2 5 5 1 1997 341 660.0 125.5 7.3 45.3 1.8 1.2 4.3 12.3 21.2 201 9 00 530.0 183.1 7.5 5.5 2.5 1.5 3.4 1.9 9 5 5 4 5 1 1996 341 1015.0 160.4 4.6 4.3 1.2 4.3 12.3 21.2 201 9 00 530.0 17.2 6.4 2 5 4 1 1987 341 1015.0 160.4 4.6 4.7 1.9 1.7 1.2 17.6 14.4 9 6 2.2 5 4 1 <
5544 267.0 70.0 7.5 22.1 1.2 1.1
00.1 100.1 100.1 100.1 100.1 100.1 101.5 100.4 4.6 42.7 1.9 1.7 1.2 17.6 144 9 00 520.0 127.6 6.8 43.0 1.9 1.7 1.2 17.6 144 9 00 520.0 107.1 5.4 32.7 3.0 2.2 0.1 1.4 5.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.2 1.7 <t< td=""></t<>
C4 C52.0 107.1 5.4 32.7 3.0 2.2 0.2 11.7 12.0 195 5 3 5 1 1966 342 579.0 125.2 9.1 5.4 5.7 14.7 24.0 200 3 C4 629.0 107.1 5.4 32.7 3.0 2.2 1.2 1.4 5.7 14.7 24.0 200 3 C4 629.0 107.1 5.4 3.7 1.0 195 5 3 5 1 1986 342 632.0 194.7 6.7 4.1.4 5.7 14.4 5.7 14.7 24.0 200 3 C4 758.0 141.8 3.2 2.2 1.2 11.3 19.5 1 1987 343 649.0 128.7 7.1 45.8 3.2 2.2 1.6 11.8 19.5 180 5 13.7 14.7 14.1 15.7 14.7 14.1 15.7
Col Col <thcol< th=""> <thcol< th=""> <thcol< th=""></thcol<></thcol<></thcol<>
569 550 157.1 9.2 58.5 3.3 2.6 3.2 14.8 24.7 178 5 6 4 5 4 1 1 1996 3 41 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

344

345

345

346

347

"2" = DET MATTER VIELD (DT/HA!

"3" = TUTAL SUGAR CONTENT (Z)

"4" = SUEAR TIELD (DT/HA)

"" = GLUCCEE CURTERT (T"

"6" - FESCIPSE CONTENT (1)

40 28.9 24 1.5

6.4

* 8" = RAV FIEPE CONTENT (I)

"10" = GROWTH HEIGHT (CE)

THE PARICLE ENERGERCE THE

" 9" = DET SATTER CONTENT. (2) BEAK

144.3

75.9 4.1 16.1 1.9

83.0 5.2

64.2 4.8

683.0

398.0

681.0 163.9

430.0

279.0

496.0 123.7

14.1

0.4

13.5 2.4 1.6 0.9 12.3 23.0 77

"12" = YIGOUR

12" = CELS SISCEPTIBILITY

"14" : WIRD INFLUENCE UPON

TOLES PLAT

THE LEAF

E.C. 39.6 3.8 3.0 1.1 15.3 24.9 130 3

1.5 0.7

43.2 2.4 1.6 2.4

22.3 2.4 1.9 0.9

90

9 5 2 6 - 2

19.3 107 9 4 3 2 3 4

1 7 3

"15" = TILLERING

4 5 5 5 2 1 1986

4 3 6 4 1 1 1986

6 6 6 4 1 1 1986

"16" = ANDART DISEASE OF LEAF

"17" = DROUGHT SUSCEPTIBILITY

"18" = LODGING TENDERLY

"19" = BARTEST DATE

21.1

19.1 78 9 4 2

13.9 24.1 123 5

E Designation

.....

293 TRADE CALL I 1 794 VICTELLA ANERS 669. 295 SIRSE VIE 822 297 DRANZEVOLE 16 1642 298 BLACK ANBER 293 JATTLE SLADE 327 WIR 1782 300 JANTAR KRASH 585 VIR 1783 301 UTAVLI VIR 1 302 ROOT AMOUNT OF 302 ESLUE (FEEL 4011 306 CT. 132 B 223 300 614 F 309 614 F 310 612 F 310 612 7 311 00005 28 5 311 027235 EP 5 312 027651 EE 5 312 077651 88 5 313 044120 BE 5 313 044130 EE 5 314 033090 0257 314 033630 0332 315 023162 CEST 315 033162 (251 316 069272 0852 31£ 069272 0851 044155 22 3 317 044156 22 3 317 044172 E 312 044172 52 316 319 03138 05 24.3 131 7 5 1 2 5 5 1 1987 23.1 3.2 2.4 2.4 69.2 8.1 319 033138 CESTS 503 285.0 6263 2 1 1965 40.1 3.7 2.4 2.8 16.9 27.7 177 5 479.0 122.4 8.4 220 044164 22 502 1 1987 7 5 2 3 6 3 32.2 2.0 1.6 2.5 23.4 147 499.0 116.8 5.1 320 044164 EP 502 1 1986 17.5 154 5 2 4 3 1 32.7 2.2 1.7 1.3 12.2 651.0 112.7 5.2 069281 CESIS 634 321 9521 1 1997 17.4 100 - 5 32.1 1.5 1.4 0.5 - 2 159.0 2.5 321 069281 CESTS 534 913.0 5 1 5 4 1 1 1986 12.0 16.9 181 37.9 2.1 1.5 1.2 795.0 134.7 4.2 \underline{m} 069299 CESTS 635 1 1987 17.5 77 9 5 1 2 6 5 22.3 1.5 1.3 0.3 707.0 122.7 3.2 322 069299 03515 635 -----"15" = TILLERING "I" - FREER MATTER THEID (CT/RA" . " ?" - SACCHAROSE CONTENT (I) *12" = VIGOUR "16" = AKOUNT DISEASE OF LEAF "13" = COLD SUSCEPTIBILITY * 2" = RAV FIBRE CUSTERT (1) "" - DRY BATTER YIELD (DT/EA) *17* = DRILEHT SUSCEPTIBILITY TOUES PLAT. * ?* = DET MATTER CONTENT (1) HEAR *** : TUTH SHAP CHIES. (2) "18" = LODGIEG TENDERCY *14* = VIED INFLUENCE UPOR "IC" = GROVTH EXIGHT (CH) "" = SEGAR TIELD (DT/EA) "19" = HARVEST DATE YOUNG LEAF "IT - PARITIE EVERSENCE TIME *5* : ENTRE CATER! (I) *6* = FRACTUSE CUNTERT (I)

1966

1987

1986

1987

1986

1987

1986

1987

1985

1987

1996

1987

1986

1987

1985

1987

1986

1987

1986

1986

1987

1986

1986

1985

1992

1985

1986

1987

1986

1986

1987

1 1987

	Feder	al lessa	urch Ceat Bundess Tei	Instit tre for allee S Federal 1. 0531	ute of Agricu), D-38 L Repub -5961,	Crop Iture 116 Br Lic of Fax. C	Scient Brauns raunsch E Germa 1531-55	x schreig ureig 127 36 365	-Völken:	ode I	(FAL)			-	13	-							Fede	ral Rese	arch Ce Bunde Ti	Insti atre for allee S Federa al. 0531	tute o: Agrica), D-3 L Repui -5961,	[Crop alture 3116 B blic o Fax. (Scien Brauss raunsci f Germ 0531-5	ce achreig hreig my 36 365	-421
tion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		Ø	Designation	1	2	3	4	5	6	1	8	9
••••		1/6 0	 a c		 7 L	·····	 7 7	11 9	77.3	187	5		7	3	5	4	2	1	1955		378	ZE 102	895.0	206.4	3.3	29.1	1.4	L1	0.8		21.
	634.0	193.0	0.3	.0.1	20	20	10		20 5	158	ā	5	2	,	5	ŝ		1	987		379	ZH 100	857.9	202.3	8.S	72.9	3.1	2.1	3.4	13.6	23.
	63.0	130.9	1.1	97.1	3.0	2.0	2.1	20.0	24 5	204	-	•	5	Ē	ī	5	2	1	1995		375	ZE 103	1132.0	240.1	6.7	75.5	2.5	L.6	2.6		21.
	738.0	150.8	8.3	60.9	1.1 7 7	2.1	41	20.0	201	107	7	5	2	2	ì	2	•	;	1997		380	ZH 104	758.0	205.9	10.9	86.8	24	1.4	7.1	15.3	25.
	784.0	150.1	2.9	46.2	41	44	1.0	16.6	20.1	177	, 1	2	7	7	ì	ĭ	,	ĩ	1925		362	ZE 104	687.0	144.6	8.4	57.8	3.5	2.2	2.8		21.
	510.0	129.4	7.7	39.4	27	41	3:10	13.0	44.1	113			4	ć	7	5	ĩ	î.	1000	4	321	ZE 105	837.0	192.9	9.7	81.1	3.2	2.2	43	12.4	23.
	428.0	125.9	0.3	34.4	2.4	1.5	4.2	19.2	21.4	166	1		2	2	1	3	-	+	1000		38!	ZH 105	1125.0	240.6	6.8	76.4	2.8	2.0	2.0		21.
	463.0	122.3	7.3	33.7	2.4	1.8	3.1	16.4	25.4	1.38	1		3	1	r	2	•		1000	1.1	381	ZE 105	903.0	152.9	4.4	39.8	1.1	1.1	2.2		15.
	564.0	181.5	7.1	40.0	Z.4	1.9	2.8	<u>72</u> .0	32.2	<u>مع</u>	3		:	3	0 E	3	÷	÷	1007		382	75 106	807.0	179.5	8.7	69.5	2.5	1.7	4.5	17.9	27.
	205.0	SE. 4	5.9	12.2	2.7	2.2	1.1		71.5	154	1	4	1	4	3	2			1201	- 2	287	75 106	1018.0	201 0	6.7	67 7	29	7 7	n q		10
	614.0	191.4	7.4	45.3	2.7	2.4	23	15.3	31.2	207	3		1	ź	4	3	4	1	1706	- à	787	78 107	736 0	167.0	74	54.5	21	12	41	17.6	22
	312.0	84.2	6.5	20.5	29	2.7	1.0		27.0	184	5	4	1	3	4	4	_	1	1997	Ĩ.	200	75 107	1120.0	225.1	5.4	50.0	25	1 0	1.0	1.1.0	10
	497.0	151.7	9.0	41 .9	21	1.4	5.6	19.2	30.5	217	3		7	1	2	3	6	2	1500		304	EE 107	1154.0	201.1	10 0	177.7	2.5	1.5	7.0	17 1	13.
	378.0	90.2	6.4	24.0	2.7	2.:	1.6		27.9	183	7	3	1	2	2	4		1	1987		301	TODALL 2E 100	074.0	310.0	10.0	<u></u>	10	1.3	1.0	11.4	<u>а</u> . т
	430.0	132.4	8.3.	35.9	1.9	1.5	5.0	21.0	30.8	219	3		7	1	2	3	2	2	1985	4	105	AURALL IE 106	224_0	202.0	0.3	0	1.8	44	3.3		4
									31 3	210	•		-	2	2	2	1	1	1986		-24	MUKALI CH IUR	487.8	121.4	146	ti.b	لايذ	1.4	7.4		31.

Evaluation Data of Sorghum bicolor from 1985-1995

Evaluation Data of Sorghus bicolor from 1985-1995

licearade (FAL)

- 14 -

10 Designation	1	2	3	4	5	6	7	8	9 10	0 1	1 12	13 14	រេ រ	16 17	18	3 19		80	Designation	1	2	3	4	5	6	1	8	9	10 1	11 12	IJ	14 15	16	17 18	19
		·····			 2 r		 7 7	11 0 1	22 12	87 5		7 7	5	. ,	1	1985		378	ZE 102	895.0	206.4	3.3	29.1	1.4	L1	0.8		21.1	176 5	5	3	5	5	1	1990
348	634.0	143.8	8.3	33.0	20	29	19		n s 19	52 9	6	3 2	5 3	5	1	1987		379	ZE 100	857.9	202.3	8.5	72.9	3.1	2.1	3.4	13.6	23.5	20 5	5	4	46	4	€ 1	1986
348	5.5.0	100.0	1.1	17.1 L0 9	3.0	77	2.1	n.o :	4.5 2	04 3		56	4	53	1	1985		375	ZE 103	1132.0	240.1	6.7	75.5	2.5	L.6	2.6		21.2	204 7	78	1	15	2	1	1987
349	736.0	100.0	50	46.2	7.7	2.2	1.0		0.4 19	97 7	5	23	4 :	3	1	1987		380	ZH 104	758.0	205.9	10.9	86.8	2.4	L.4	7.1	15.3	25.8	22 5	5	6 (64	4	1 1	1986
317 .	510.0	129.4	7.7	39.4	2.7	2.1	3.0	15.6	5.4 1	73 3	· ۱	7	4	42	1	1986		360	ZE 104	687.0	144.6	8.4	57.8	3.5	2.2	2.8		21.1 2	202 7	77	2 4	4 4	3	1	1987
350	428.0	125.9	6.9	34.4	2.4	1.5	4.2	19.2	9.4 18	86 1	. '	L S	7	54	1	1986		321	ZE 105	837.0	192.9	9.7	81.1	3.2	2.2	43	13.4	23.1 7	21 5	5	7 4	4 4	4 -	1	1986
357	463.0	122.3	7.3	33.7	2.4	1.8	3.1	16.4	5.4 1	38 1	. !	54	4	4 1	1	1986		381	ZH 105	1125.0	240.6	5.8	75.4	Z.8	2.0	2.0		21.4 2	112 7	17	1 :	35	3	1	1957
367	564.0	181.5	7.1	40.0	2.4	1.9	2.8	22.0 3	12.2 Z	53 3	} '	73	6	51	2	1986		361	2h 105	903.0	122.9	1.1	23.8	1.1	1.1	42	12.0	16.9	53 7		1		1	1	1990
353	205.0	SE. 4	5.9	12.2	2.7	2.2	1.1	:	a.s 1	SH 7	4	12	5	5	1	1987		302	22 100 75 100	1010.0	1/5.3	6./ c 1	67.0	2.3	11	1.J	12.9	10 7 1	SU/ 3		3 4	2 2	3 3	21	1995
354	614.0	191.4	7.4	45.3	2.7	2.4	23	15.3	11.2 2	07 3	3	7 2	2	32	1	1986		302	72 107	226.0	167.0	74	54 5	2.7	13	4.1	17.6	12./ 1	00 C		4		3		1987
354	312.0	84.2	6.5	20.5	29	2.7	1.0		27.0 1	84 5	54	1 3	4	4	1	1987	Ĭ	203	75 107	1120 0	7711	54	50.0 50.7	25	1 9	1.0	177-0	107 1	.00 J 107 G	, , ,	2 1	4 9 5	2 '	• •	1007
255	497.0	151.7	9.0	H. 9	2.1	1.4	5.6	19.2	30.5 Z	17	3	7 1	2	36		1995		784	TOPAT' TE LOA	1154.0	70,4 0	10.6	177 7	71	15	7 0	17 4	267 2	75 1	, , ,	7 0	5 7	а с 1		1001
355	378.0	90.2	6.4	24.9	2.7	2.1	1.6		Z.9 U	£3 7	3	1 2	2	1 	1	198/		384	KORAL! TE LOA	994.0	218.0	6.3	67.1	1.8	1.7	3.3	111.1	27. 7 7		, ,	1	2 5	1	• •	1027
356	430.0	132.4	8.3.	3.9	1.9	1.5	5.0	21.0	30.8 2	19 3		/ 1	2	3 <u>2</u> 7 1	4	1000		384	KORAL! ZH 104	487.9	151.4	12.6	61.6	1.9	1.4	9.4		31.0 2	04 1	6	2 1		3 :	i î	1007
357	494.0	154.3	7.4	36.4	1.8	1.5	4.1	21.i	31.2 2	19 3		<i>i</i> 3 7 7	ປ ເ	3 I 1 1	1	1000		384	TOPAL' ZH 108	53:2	142.7	6.7	25.5	1.3	2.0	3.4		26.9 2	02 5	6	7 1	15	3 1	1	1993
356	253.0	83.4	7.8	20.6	3.0	2.2	2.6	17.5	31.1 Z	28 3	5 I	; 3 7 7	3	1 1 2 1	1	1985		385	ZH 111	629.0	154.2	9.5	59.6	Z.1	1.4	5.0	15.0	24.5 2	12 3		6	4	4 2	2 1	1986
359	451.0	159.6	7.0	32.5	23	20	21	19.7	51.0 D	100 2 101 1	5	1 <u>2</u> 5 7	i	4 1	i	1986		385	ZE 111	942.0	213.0	7.3	68.4	1.9	1.3	4.0		22.6 2	15 7	7	3 3	3	3	1	1987
360	511.0	127.1	8.0	40.9	3.2	<u> </u>	43	15-0	24.5 2 24.1 t	71	, , ,	7 1	6	÷.	i	1987	1	385	ZE 114	611.0	119.8	8. :	49.6	2.2	1.3	£.6	12.5	19.6 1	88 7	1	5 4	1 4	3 3	1	1986
350	235.0	11.1	6.J	10.7	243	17	2.4	78 7	21.97	70		6 1	2	3 2	1	1986		386	ZE 114	1035.C	207.5	5.6	57.6	1.9	1.3	2.3		20.1 1	82 9	5	2 1	5	3	1	1987
22	500 0	165.7	77	24.2	1.7	2.6	2.0	20.9	32.6 2	228	3	71	1	4 2	1	1986		367	ZE 116	930.0	186.8	5.1	56.7	2.1	1.5	2.5	13.8	20.1 2	32 7		4 7	16	5 1	1	1986
3C.	363.0	175 7	p 1	29.1	2.4	1.9	3.8	24.9	34.8 2	m	3	75	2	3 4	1	1966	434°C	387	至 115	1436.0	259.1	4.2	62.0	1.8	1.4	1.2		18.0 2	15 9	8	1 3	1	5	1	1987
302 321	657.0	200.4	8.7	56.4	2.2	1.6	4.8	19.2	30.7 2	24	5	E S	5	4 2	:	1986		387	ZE 116	807.0	149.2	3.3	Z.4	1.0	0.9	1.4		18.5 1	83 7		3	5	3	1	1990
307. 751	479.0	112.8	7.0	21.6	2.8	2.3	2.0		22.5 1	184 '	7 4	1 3	4	5	:	1987	1	385	74 120	761.0	177.5	8.2	6Z.1	1.8	11	5.2	13.9	Z1.3 Z	25 3	_	5 5	1	3 1		1985
24	593.0	170.7	8.1	48.2	3.0	2.5	1.4	18.7	28.8 2	73 3	3	E 4	3	4 1	1	1985	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	388	2 120 TT 121	9/6.0	212.9	7.0	66.3	23	1.8	3.0		21.9 1	977	7	3 2	2.5	3	1	1987
35	459.0	149.3	7.4	34.0	2.5	2.2	2.7	23.5	32.5 2	220	3	E 5	3	52	1	1985		307	28 121 78 171	5/3.0	190.2	2.2	52.0	1.9	1.2	5.1	18.3	26.2 2	04 J 60 E		5 2		3 1	1	1966
367	350.0	120.2	7.3	25.7	2.9	2.3	2.2	17.1	34.3 2	211 -	3	62	3	3 3		1956	1999	365 790	75 177	733.0	1/3.1	0.0	35.1	3.0	10	3.0	15 1	2101	ເບັ່ງ ຕ່ຳ		2 1		•	1	120/
366	381.0	138.7	8.0	30.3	24	2.0	3.E	24.4	35.4 2	Z21 :	3	7 1	2	4 3		1986		200	75 122	561 0	145 9	7.0	50.7	7 5	1.0	75	Liel	77 9 1	27 7			1 3	2 2	. <u>1</u>	1700
369	1054.0	320.2	8.8	92.5	29	2.3	3.0	21.3	30.4 7	727	5	74	2	3 1	. 1	1966		39!	78 123	755.0	159.7	5.9	44. F	1 5	n e	3.4	15.0	21.0 1	90, 7				5 1		1022
369	228.0	57.3	7.2	15.4	2.5	2.1	2.5		25.1 1	193	54	1 3	2	5		1 126/		30:	ZH 122	629.0	162.7	5.9	48.6	2.3	1.6	2.0	2010	19.6 1	65 Q	6	3 7	5	7	· î	1987
370	414.0	102.2	5.8	21.9	2.6	2.2	1.0	16.6	24.7	9 <u>4</u>	3	5 5	2	3 1		1 1700	25	392	TR 37561	267.0	78.8	7.5	19.9	2.5	1.9	3.1	19.2	29.5 1	48 3		3 5	5	2 1	i	1985
371	509.0	157.4	9. 7	49.4	2.3	1.5	2.8	16. E	30.9 /	229		3 1	1	1		1 1987	1	395	TE 27564	237.0	77.3	7.:	1E. 8	2.6	2.0	2.6	22.4	32.6 1	60 3		7 7	2	5 1	ī	1986
37:	363.0	82.7	5.3	19.3		1.5	1.0	15 7	د ۵ شک ۲۰۰۰ ۲۰	201 205		7 4	5	1 1		1 1985	2.2	£C.	TE 39722	421.0	111.4	5.7	24.0	2.3	1.9	1.5	19.1	26.5 2	02 3		7 3	7	3 1	1	1985
372		· ~ ·	t.4	10 E	3.0	2.2	10	79!	29.7	205	2	5 1	7	4 3		1 1985		403	TE 39713	375.0	114.9	8.5	32.0	2.9	2.3	3.3	23.2	30.5 2	06 3		7 1	3	5 3	1	1986
373	54/.U	1/0.5	5.5	1.5	20	20	2.2	10.0	30.2	220	3	7 2	3	3 3		1 1986		40E	TE 37562	570.0	210.3	£.2	41.3	2.5	21	1.7	19.6	31.4 1	51 3		5 7	3	3 1	. :	1966
2/4	557.0	154.4	5.1	7.6	7.2	7.1	1.2		27.5	178	75	1 2	1	4		1 1997		102	TE 38266	308.0	100.E	5.4	15.5	2.3	1.2	1.3	24.9	32.7 Z	72 3		7 5	3	51	. 1	1986
2/2	426.0	155.4	0.0	29.1	2.6	1.9	4.4	22.4	36.5	184	3	6 5	4	6 1	L :	1 1986		415	TE 3837	389.0	114.2	19	19.1	2.2	2.3	0.7	20.8	29.4 Z	35 5		7 5	5	5 3	1	1986
3	294.0	80.6	5.6	15.3	2.5	1.9	1.2		27.4	145	52	1 2	3	5		1 1987		411	MANSHUEL ZAIRAISHI	\$11.0	141.1	7.4	37.6	3.Z	2.8	1.4	19. I	Z7.6 2	JS 3		72	7	3 1	1	1986
175	683.0	212.0	9.3	52.6	1.8	1.3	6.2	22.E	31.2	236	3	4 2	2	4 3	2	1 1986		1.7	U/UUU3	771.0		• •	<i>.</i>	• •											
775	440.0	121.4	5.7	25.3	2.3	2.0	1.5		27.6	202	77	1 3	1	5		1 1987		112	ALA ADALISI USUMI	/21.0	105	0.1	60.7	3.5	2.8	2.0	12.1	41.1 1	11 J		2 1	2	3 4	1	1366
377 ZH 101	758.0	200.5	9.9	75.1	1.7	1.0	7.1	16.5	26.5	219	3	5 4	5	4 1	1	1 1986		111	711011500 000012	435.0	103-1	3.2	22.0	2.0	1./	1.3	20.1	10 0 7	50 3		1 1	- J	5 1	1	1000
377 ZH 101	681.C	:54.7	5.8	39.4	20	1.6	2.2		22.7	214	7 E	3 2	4	4		1 1987		416	FIRMENSE DECCO	1426.0	200.2	0.0	23. 3	3.6	2.2	1.2	12.9	13.0 2.	ມ J ຄ		1 3	5	2 1	1	1000
378 ZE 102	, 795.0	160.2	7.3	57.6	2.0	L.3	4.0	14.7	22.7	m	5	4 7	6	4	1	1 1986		417	ARIAN OLOGIO	36.0	177 A	70	75.1	22	19	78	% 1	28.2.2	10 10 7		7 5		5 1	1	1996
378 ZH 102	1296.0	772.8	4.8	62.1	2.0	1.3	13		59.6	211	3 9	2 3	5	5		1 1987						····			•• <i>•</i>									•	1,00
"1" : FEESE MATTI "2" : DET MATTE "2" : TUTAL SJEM "4" : SJEME VIEL	E TIELD (DT/EA) TIELE (DT/EA) E CORTERT (2) D (DT/EA)	• 7• = ; • 8• = ; • 9• = ; •10• = ;	SACCHAR RAV FIB DRY MAT GROWTE	ESE CONT RE CONT TER CONT RELIGET (11 (1 11 (1) 11 (1) 11 (1) 11 (1))) eeat	•13. •13.	VIEDUR COLD S TOMES VIED I	USCEPTI PLAIT RFLUERE	IOILIT IE OPO	*15' T *16' *17' E *18'	= TII = 450 = DR = LO	ESTRE LUTT DI LUTT SI LUTT S DGING 1	SEASE NSCEP	OI TIBI CY	L <u>EA</u> F ILITY		11 = 1 121 = 1 131 = 1 141 = 1 151 = 1	FRESH BATTER YIELD () DET BATTER YIELD ()T TUTAL SUGAR CONTENT SUGAE YIELD ()T/FA: SUCCESE CONTENT ():	DT/EA) /EA) (I)	" 7" = SA " 8" = RA " 9" = DR "10" = ER "11" = PA	CCHAPOSI V FIBE V LATTEI DVTH EEI HICLE EI	E CONTEN CONTEN R CONTEN R CONTEN GERET (CR	IT (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<u>teat</u>	"12" = "13" = "14" =	VIGOUR COLD SI VILLE I VILLE I VILLE I	ISCEPTIB PLANT IFLUENCE LEAF	LITT UPOR	*15* *16* *17* *18* *19*	= TIL = AED = DED = LOD = EAE	LERING UNT DI UGET S GING T VEST D	SEASE I USCEPT ELDERC ATE	ON LEA Ibilit Y	F
·:· :	12A: (2)	*!!* *	PARICLE	10,000	ELE TIE	Ξ		TUNE	FAF		•Iġ	: EA	धका ।	ATE				יבי יבי	FRUCTORE CONTENT (1)		14										- 440				

Š.

"5" = FRUCTOSE CORTENT (I)

.

. .

		Feder	al Resear	ch Cent Bundesa Tel	Institu re for 1 llee SC, Federal . 0531-	ste of Igricu , D-38 Repub 5961,	Crop : Iture 116 Br Lic of Far. O	Scienc Brauns aunsch Gerna 531-59	e chweig- weig ny 6 365	Tõ liken:	rode (FAL)				15	-			
æ	Designation	1	2	3	4	5	6	7	8	9	10	11	12	រេ	14	15	16 21	17	18	19
		 910 0		< 1	16.2	 7 7	1.9	1.0	19.7	77.6	180	3		7	3	5	5	1	1	1985
418	TANALISI U/UUS	313.0	121 7	51	77.9	21	2.4	0.7	14.5	22.0	203	5		6	4	6	5	4	1	1986
41?	STALSEURI ZALEALGER	3.71.0	144.1		30.7							-								
120	BITICTION TATEST	534.0	119.7	6.0	31.9	2.5	2.0	1.4	15.0	22.4	171	3		5	3	5	5	1	1	1986
7.0	040059			••••																
421	ZAIRAISEU IVAORA	1058.0	211.2	6.7	71.0	2.7	2.1	1.9	11.5	20.0	181	9		7	3	5	3	1	1	1986
121		750.0	141.5	4.9	37.0	1.7	1.1	2.1	11.1	18.6	189	9	6	7	4	4	Э	4	1	1986
101	STRIPORTP SI (029	803.0	144.7	4.4	25.6	2.9	1.5	1.0		18.0	165	9	5	4	3	5	5		1	1997
12.	STEET STILL SL BOOD	366.0	B1.4	4.5	17.8	1.5	1.1	2.3	16.3	22.3	110	3	5	6	7	5	4	1	1	1986
177	STEET SEDAR SA 0030	417.9	86.5	4.3	17.8	1.8	1.3	1.2		20.8	94	7	5	3	4	6	4		1	1987
173	CLURDAY SA 0163	247.0	57.7	2.9	7.2	1.3	0.9	0.7	16.4	23.3	70		5	6	1	7	3	1	1	1986
120	CURDAT SA DIGS	158.0	94.9	4.4	6.9	1.7	1.2	1.5		60.1	43	9	3	2	2	7	4		1	1987
เบ	STORER SA DIGA	843.0	221.3	9.0	76.2	1.5	1.0	6.5	16.7	26.3	191	3	6	6	4	5	3	1	1	1966
434	STOTER SA 0164	566.0	114.8	6.3	35.9	2.3	1.4	2.7		20.3	156	7	5	4	1	5	2		1	1987
425	ELACE AMERS SA 0171	725.0	172.4	8.8	63.7	2.4	1.4	5.0	15.1	23.8	211	1	6	7	1	7	3	4	1	1986
435	ELACK AMEER SA 0171	509.0	105.8	5.7	29.1	2.7	1.2	1.8		20.8	150	5	3	1	1	6	5		1	1987
436	EED ARBEP SA 0173	577.0	119.0	e. 1	45.9	2.8	1.7	3.6	11.8	20.6	223	9	6	6	5	5	3	2	2	1986
435	200 ANBER SA 0173	745.0	139.4	6.5	49.2	2.5	1.5	2.6		18.7	186	9	6	5	1	5	4		1	1987
437	SUBARCAKE SA 0253	491.0	111.4	3.5	17.0	1.4	1.0	1.1	16.9	22.7	174		6	4	7	6	5	2	1	1566
427	SUBARCANE SA 0252	492.0	105.7	4.2	20.4	1.7	1.6	0.9		21.5	119	9	5	1	4	5	5		1	1987
422	STETETET 51 0278	530. G	172.0	7.2	57.7	2.5	1.5	3.3	10.7	18.5	207	7	5	5	3	1	3	2	1	1986
432	SCETELET SA 0278	896.0	160.4	5.0	H .5	2.5	1.7	0.8		17.9	186	9	6	1	1	2	2		1	198/
439	SUET 1 54 0307	629.0	164.9	5.9	43.1	2.4	1.7	2.7	17.5	26.2	222	1	7	6	1	9	2	2	-	1500
440	LA BORA SA 0202	591.0	158.5	6.4	37.9	1.1	0.B	4.5	26.5	Z6.8	217	1	5	7	1	3	4	1		1222
441	SIGET 372 SL 0309	457. C	127.0	6.5	29.8	1.4	1.0	4.2	21.0	27.8	209	1	7	1	1	8	2	4	-	1300
40	PIPER SA 0310	335.0	102.7	5.2	17.4	1.3	0.9	3.0	23.4	30.7	Z25	1	8	5	1	3	2	1	1	1000
443	TRIFT 51 0311	414.0	109.9	6.1	Z. 3	1.5	1.0	3.5	32.4	25.5	218	1	1	0	-		1	;	- 1	1000
- 444	EREAL FAR SA COLO	36:.0	98.7	6.3	22.6	2.9	1.4	2.9	19.6	27.4	156	1	1	7	1	7	,	5	1	1000
- 445	ADVANCE SA 0315									… .	238	3	4	1	1	3	3	3	-	1025
446	DOB SALVADOR SA 0317	703.0	234.9	5.1	35.1	1.2	0.9	3.1	26.0	JJ. 1	260	L E	-	3	1	0	3	•	;	1007
446	DOS SALVADOS SA 0317	681.0	191.8	5.0	34.3	2.0	1.6	1.3	~ ~	20.2	220		,	2	-	а а	ŝ	2	•	1985
447	LA EDRA SA CG19	474.9	128.2	4.5	21.4	1.3			29.3	22.0	200	0	2	5	1	ŝ	Ĩ	,	÷	1986
448	LOCAL COLLECTION SI	709.0	161.1	6.9	<u></u>	<i>4</i> 0	•••	<i>4.1</i>	14.3	24.1	200			Ů	3		•	-	•	
	1325		172 1		<u>~</u> .	· ·	10	ء ٥		20.1	170	9	6	3	1	5	4		j	1987
449	LICH COLLECTION SA	6/6.0	1.35.1	4. :	نگ	÷.•	1.0	948		20.1	1/0	1	÷		•	-	•			
	132	771 A	/e =	5 2	14.7	72	15	25	18.9	28.5	29	3		5	?	7	5	3	1	1986
103	15 01347	570.0	53./ 1/2 1	5.1 0 7	10 E	1 5	1 1	6.5	19.0	28. 1	185	5		3	1	5	3	3	1	1986
45/	15 03013	117 0	195.1	7.2 B.4	20.5	1 5	1.1	5.8	20.7	30.3	159	5		5	1	7	3	3	1	1986
100	15 03313	245 0	100.0	71	37.3	2.2	1.2	4.1	22.5	30.9	212	9		7	5	3	5	5	1	1986
46.	12 00311	310.0	3,001	7.1	20.7	21	1.7	3.4	18.6	27.6	105	3		3	7	5	5	3	1	1985
40.	12 00002	305.0	BA 7	6 9	71.0	LA	1.3	3.8	19.4	27.8	123	3		7	7	5	5	1	1	1985
100	15 1772	105.C	120.0	4 R	71.0	2.7	1.7	0.8	17.6	24.3	201	9		7	3	3	5	7	1	1985
1/2	15 12/35	329.0	177.7	4.7	15.5	1.6	1.4	1.7	28.1	37.3	232	3		7	5	5	5	1	1	1986
\$/4	. 15 12/9/		<i>، معد</i> 									•••••								
	· FREER MATTER VIELD (MT/RA)	• 7• : 5	ACCHARD	SE (1967)	er. (2	1	'12'	= VIGO	æ			1	5* =	TL	FRI	55			
• • • •	+ DEY HATTED VIELD (DI	/BA:	• 8• • B	AV FIER	E COSTE	T (I)		' 13'	= COLD	SUSCE	TIBIL	Ш	•1	5" =	AHCK	137 1) SF	52	H 1	EAF
•7•	- TUTAL SISAP CONTEN!	(2)	191:0	BT HATT		ENT 12) HEAD		TOUT	5 PLAN	1		' 1	?" =	DRCE	JGET	515	EPT.	IBIL	III
	- TIEAR TIE & (DT/EA)		*10* = E	EONTE E	E165. ((1		' 14'	= VIRD	IFLE	ICE U	PCH	•1	e* =	LODE	SING	TEE	DESC	I	
121	- THEOSE CONTENT (I)	-	"]]" = P	ASICLE	-	CE TIM	2		TOUS	5 LEAF			•1	9° -	ET EL	167	DAT	Ε		
- 151	- FENCTORE CONTENT (1))																		

deficiency of the second

velter avere stald we wanted and

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Võlkeurode (FAL) Bundesallee SD, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 16 -

1	Designation	1	2	3	4	5	6	7	8	9	10	11	12	เว	14	15	15	17	18	19
475	IS 12741	455.0	135.5	7.1	32.5	1.4	1.0	4.8	20.7	29.8	262	5		7	7	5	S	3	3	1986
47 E	15 12742	480.0	159.5	7.6	36.5	1.5	L1	5.1	24.2	33.2	259	3		7	1	3	3	7	1	1986
477	IS 12744	489.0	138.1	6.5	31.6	1.7	1.Z	3.6	20.5	28.3	244			7	1	3	3	7	1	1956
479	IS 13437	340.0	92.6	4.9	16.5	1.2	0.9	2.8	19.8	27.2	89	5		3	3	7	5	1	1	1966
480	15 13444	742.0	176.4	5.4	40.1	1.6	1.0	2.8	15.1	23.7	83	3		5	3	7	3	3	1	1966
48!	IS 13446	367.0	91.3	4.8	17.7	1.6	0.9	2.3	17.5	25.7	86	9		5	3	5	5	1	1	1986
482	IS 13448	384.0	104.3	5.6	21.5	1.7	1.3	2.7	18.5	27.2	102	S		5	7	5	5	1	1	1986
482	15 13802	413.0	94.Z	5.8	22.9	1.7	1.3	2.8	14.8	22.8	133	5		3	7	3	3	1	1	1986
492	15 20959	485.0	119.9	6.3	30.5	1.7	1.1	3.5	16.6	24.7	150			3	5	5	3	1	1	1985
494	15 214/9	3/6.0	29.8	3.4	20.5	1.2	0.8	3.4	18.8	2.5	169	9		7	3	1	3	1	1	1956
4%	15 Z20/0	36%.0	105.8	2.8	21.4	21	1.8	1.9	18.9	22.7	64	3		3	3	3	3	2	1	1966
199	15 22312	392.0	106.0	3.4	32.2	2.8	1.3	1.2	11.0	17.9	202	9		2	1	3	2	3	1	1306
501		130.U 577.0	103.5	3.3	15.0	1.5	1.1	0.3	13.3	17.5	112			3	1	4	3	÷	1	1966
3.4	12 1905/ TE 20000	337.0	33.1	43	20.0	1.2	U./	0.5	14.5	1/.3	123	•		3	-	1	3	1	1	1366
3U/ 500	15 -2277	3/9.0	119.2	1.1	23.0	1.3	1.0	3.2	21.1	31.4	138	2		2	1 7	1	5	5	÷	1260
500	15 22207	310.0	177.0	2.0	20.7	1.5	1.2	1.1	15.1	- <u>2</u> 2.7	131	3		1	:		5	3	-	1000
510	15 22306	574 6	13/13	7.2	34.0	15	1.0	1 2	12.7	21.0	120			7	-	1	č	-	1	1700
511	15 22314	475.0	179 3	5.7	21.9	1.3	1.0	4.0	11 7	21.2	710	q		ś	5	5	5	2	1	1000
516	15 77400	70,0	77 2	7 *	21 1	1 0	14	20	18.0	26.1	213	ś		5	,	7	2	č	1	1000
577	ידאר זו	480.0	117.7	7 6	26.7	1 7	1 7	4 6	14 7	714	14	7		٩ ٩	ì	7	-	1	î	1985
55	15 22474	344.0	91.9	7.2	24.7	2.2	1.6	12	17.4	26.7	114	5		5	1	ŝ	5	â	î	1955
526	15 22475	500.0	106.6	5.6	27.6	2.3	1.8	1.5	13.5	2:.3	162	3		3	5	Ē	5	Ξ.	ī	1995
576	15 22477	515.0	115.5	5.7	39.3	1.8	1.3	2.6	15.0	2.4	138	9		5	5	Ξ	3	1	ī	1065
539	IE 22479	378.0	94.5	6.0	22.8	29	2.2	0.9	15.9	25.0	141	5		5	3	5	3	ī	ī	1985
541	PA-62-19	461.0	104.5	5.E	25.9	2.1	1.7	1.8	11.4	22.7	119	•		7	5	5	5	3	ī	1986
545	PA-70	601.0	102.4	3.0	18.0	1.6	1.1	0.3	11.2	17.0	158			7	3	5	5	3	1	1986
550	15 03295										IEE			9	1	9	5	1	7	1986
55!	IS 03615										173			9	ī	5	4	2	7	1985
552	IS 03701										160			9	1	9	5	1	7	1986
553	IS 07743										165			9	1	9	5	2	7	1986
554	IE 03829										139			9	1	9	5	2	7	1986
555	IS 04088										146			9	1	9	3	4	6	1986
255	15 04322										192			8	1	8	4	1	7	1986
5£3	15 05355										164			9	1	9	5	1	?	1986
554	IS 05468										120			9	1	9	5	2	7	1986
555	15 05525										149			ģ	1	9	5	1	7	1955
200	15 05102										213	5		9	1	S	4	4	6	1966
365	15 0627										174			7	1	9	5	2	7	1986
3/0	15 05335										140			9	1	9	5	1	7	1986
3/3	15 07330										114			9	1	9	2	2	7	1986
3/6	15 08331										168			8	1	9	1	1	7	1565
500	13 00335										1/8	3		3	1	2	1	4	-	1300
- 30.) 582	13 00353										203	5		ð n	1	2	5	1	-	1000
	13 00301										132	3		3	T	3	1	3	1	1300
· · · ·		0T/041 1	74 - C1			T (7)		*177 -	ALCHU				150	. *						
· · ·	DRY HATTER VIETO INT	//////////////////////////////////////	γ - 363 1 β* - 911	A PLEDE	CONTENT CONTENT	5 567 1971		*171 -	0010	NITER T	ייז וואז	,	۱۳	- 1.	त्रातः सरमा	עות ד דון ד		F (177	121	F
•?• :	TUTAL SIEAR CONTENT	(T) '	1 - <u>1</u> 1	T BATTE		T (Z)	EFAK		THEFT	PLANT		•	17"	- 44 = 114	21152	11 8	19.5	PTIR		
4 =	SEAR THE OT (BA)		10" = 621	NTS SE)		141 :		<u>AFLIP</u> R	e upo	E •	18-	= 11	DGT	IG T	X (I) 2	117		•
5 =	ELCOSE CUSTERT (I)		11. : 51		PROPERTY	THE		••	TOUE	LEAF		•	19	: 5	EVE	57 D	ITE			
6 =	FRUCTOSE CONTENT (1)																			

					Icstif	ute a	E Crap	Scien	2											
		Feder	al leser	rch Cen	tre for	Igric	ilture	Brauns	schreig	Volkes	rode	(FIL)							
				Bundes	allee 3	J, 1)−38 ⊡01		Faunsci 6 Conne	ireig											
				7.	10021	. Kepu		1 195112	ndà Traine ann											
				le	- 1111	3201,	rat.	mot_1:	10 101						-	17				
D	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	lß	19
•••••				•••••	•••••														••••	
587	IS 09116										208	S		9	1	9	5	2	7	1986
582	IS 09118										181	5		9	1	9	Ş.	3	7	1985
591	IS 09258										196	3		8	1	9	6	3	7	1986
555	IS 09401										192	3		8	1	3	Ş	2	7	1965
3%	15 09494							•			173	3		7	1	2	5	1	4	1000
357	15 09425										100	5		2	1	a	0 C	•	-	1000
235	15 09400	200.0	60.0	, ,	71 0	2.0		3 1	10 2	70 7	200 97	2		5	5	7	5	1	í	1000
600	15 00131	570.0	67.U	1.5	45.0	20	17	21	12.0	23.1	163	3		5	1	ś	2	i	i	1980
531	15 002/1	J/0.0	110.0	1.5	20.0	2.0	1.0	10	11 6	21.3	205			2	1	5	2	;	÷	1000
002	15 02331	351.0	117.0 CD 7	0.1	17 4	20	17	1.5	14 4	20.0	210			2	÷	š	Š	;	i	1985
003	15 (LAL)	236.0	37.7	1.7 7 r	14-1	2.0	1 7	25	10.0	20.3	210	5		5	2	7	š	ì	•	1996
603	15 00002	700 0	11/./	1.0	20.0	21	• 0	1.5	13.0	30.3	210	ŝ		2	2	é	ç	1	•	1000
505	15 6535	400.0	8/	с. т,	21.1	20		2.0	10.0	21.0	105	÷		5	3 5	J C	2	1	1	1000
601	15 0.565	3/1.0	101.6	1.1.	Δ.J	نا.ت م د	ن م ا	22	10.0	- 22-18 	100			3	3	3	3	1	1	1000
505	12 0.512 TE 0.017	263.0	112.9	1.1 	40.1	4.5	1.0	ن.ن ۲ د	10 7	24-5	100			7	3	5	2	+	1	1000
605	15 94617	760.0	160.2	0. L	40./	21	1.3	1.3	10.7	21.1	1/3	-		7	3	3	3		1	1000
619	EE 54751	550.9	1/1.0	6.t	49.7	2.5	44	5 سان م د	16.3	23.3	1//	5		4	i e	j c	2	4	4	1000
£11	IE 94755	589.C	142.1	1.4	¶J. /	41	1.6	29	10.2	24.1	10.5	3		1	3	3	3	1	1	1200
t	15 06936	406.0	156.1	• •						39.4	100	3		3	3	3	J e			1766
613	15 06%2	4 <u>77</u> .C	128.8	9.6	£1.5	4.0	11	44	18.0	JU.3	182	3		2	3	3	2		1	1000
615	15 97072	381.1	103.7	0.8	30.4	3.E	23	1.9	16.6	21.2	1/2	•		-	1	1	3	-	د •	1000
515	IS CTUT	567.5	157.7	5.9	38.8		- 24	1.2	د عن	2.1	444	3		3	3	2	5	1	1	1300
617	15 07060	409.0	104.9	6.2	25.3	11	23	0.8	15.5	2.6	120			-	1	1	3	-	1	1300
616	IS 08157	385.C	94.6	5.9	2 .7	2.2	21	0.4	14.5	24.6	119	-		1	5	2	3	1	1	1966
619	15 08218	442.0	120.9	7.5	II.8	3.3	24	1.7	15.8	27.5	192	9		2	5	1	3	1	1	1986
£2C	IE 09538	559.C	146	5.7	31.7	2.7	2.1	0.9	15.6	Z.4	157	-		2	5	5	3	1	1	1566
621	IE 09639	541.0	156.1	6.8	X. 5	2.9	2.1	1.7	16.9	28.9	170	5		2	2	2	5	1	1	1966
522	IS 99645	792.0	<u>263.</u> 3	5.3	£1.9	2.3	1.5	1.5	13.5	33.2	128			7	-	5	5	1	1	1986
622	IS 09699	917. C	204. E	7.1	65.4	29	2.0	2.2	11.7	22.3	129			5	3	5	5	1	1	1986
625	IS 09734	597.C	151.3	6.3	37.7	27	1.9	1.7	16.4	27.0	225	3		5	5	5	5	1	1	1985
627	IS 09889	592.0	:49.4	9.7	57.4	3.C	2.3	4.4	13.6	25.2	185	3		5	5	3	5	1	1	1985
628	IS C9890	445 .0	124.4	8. !	3£.:	3.2	24	2.6	14.3	28.0	162	5		5	7	5	3	1	3	1986
629	15 (990)	435.0	198.1	£.3	27.2	3.3	2.2	C.7	15.2	24.9	118			?	I	7	3	1	1	1986
63C	IS 09911	374.0	95.9	5.7	21.4	3.4	1.8	2.6	16.6	25.6	195			S	i	S	3	1	1	1986
631	IE 10050	522.0	105.6	5.1	<u>2.</u> 4	3.1	2.0		11.4	20.2	190			5	3	5	3	1	1	1986
622	IE 10690	482.3	100.3	3.9	18.7	2.2	1.E		13.9	20.8	179			5	1	7	5	1	1	1985
6 22	15 10954	529.0	111.3	4.7	25. 0	24	1.2	6.5	14.0	21.0	193			5	1	5	3	1	1	1966
634	IS 11093	427.0	115.3	5.8	24.7	29	1.9	1.0	16.E	27.0	185			5	7	5	7	1	1	1986
636	15 12292	462.0	123.8	7.1	32. S	3.3	2.5	1.3	15.7	26.8	121	5		5	5	5	3	1	1	1986
637	IS 136??	487.0	97.E	3.4	16.6	2.0	1.4		13.2	20.0	242			5	3	5	3	•	1	1985
629	IS 14463	174.0	51. :	7.1	12.3	3.3	2.4	1.4	14.8	29.4	176	3		?	3	5	5	I	1	1985
640	IS 14529										143									1985
641	IS 14548										204									1986
642	IS 14594	S24. C	113.0	4.7	24.4	29	1.8		12.8	21.6	203			5	5	3	3	1	1	1986
642	IS 14790	\$16.0	95.9	2.0	10.4	1.1	0.7	0.2	13.7	18.6	223			5	5	5	5	1	3	1966
•••••						••••••	••••				•••••						•	••••		
	THESE MATTER TIELS	101754	- /* = SI	LLEASUS		1: (%) - /•·		12	- 1150U				-12,	: =] =	בבבון ו העוצה		3 1051	5 M		15
	SAL PALICE LINE (21/28) 5 (9)	· 6* • 10	W 11525		1 (Z) 87 /8-1	****	-13-	: للبالدي - مورينين	313625°	ينلقه ا		10	÷ • •	100'ee	at Ul Sur e	لىرى. مەرب	נע שנ הדרת	1 LE. 271 F	8. TV
	TUTAL SUBAR CUBICA		· · · · · 01			8: (%) 8:	52.45			TREESE		nu -	*15			ati 1 Net 1			<u>المنباد</u>	"
	SUDAR ISTIC (SI/HA)	7	eire * 21 .T∩. ± (32		uusi lü Maacare	6) 2 7362			- 1110 100000	ינגור בער דער בער	گا خىد	UNI.	4101 10	• • • <u>-</u> •	:102) :		I LAUS			
	FRETOSE CONTENT (1	D	• M	هادنت لا	OF RUP S.				10031	كالنشية			13	• 1) خيتا <u>ي</u> ر					
		-																		

HINE HINE

Iostitute of Grop Science Federal Research Centre for Agriculture Braunschweig-Fölkenrode (FML) Bundesallee SD, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

															•	16	•	•		
E	Designation	1	2	3	4	5	5	7	8	9	10	u	12	IJ	14	15	16	17	18	19
645	IS 14942	434.0	121.7	6.9	30.1	2.9	1.9	21	21.5	28.1	188			7	1	S	3	1	1	1985
648	15 15428	403.0	123.0	6.6	% .5	2.8	1.8	2.1	21.3	30.5	185	5		7	1	5	S	3	1	1986
649	IS 15448	384.0	98.7	7.5	28.7	3.3	2.3	1.9	16.6	25.7	155			7	1	5	5	1	1	1985
650	IS 15455	556.0	139.1	7.2	40.1	1.3	2.2	L8	15.0	25.0	162			7	1	7	3	1	1	1986
631	15 16034	40.0	120.9	8.3	35.9	10	3.1	LI	19.0	27.8	228	7		5	5	3	S	1	1	1986
6.2	10120	4//.0	77.3	3.5	2.5	2.5	1.1	1.3	14.8	20.9	209	-		7	5	3	S	3	1	1986
- 654	IS 19130	100.0	74 9	5.7	30.3	2.5	2.0	41	12.3	25.1	165	3		3	3	5	2	1	1	1985
656	15 19773	367.0	89.6	7 8	29.5	3.0	20	0.0	15.0	24.3	154	e		3	3	1	2	1	1	1900
657	IS 19587	254.0	71.9	8.4	22.3	2.7	2.0	1.7	17 5	77 3	105	5		7	2	5	2	÷	1	1000
658	IS 20503	120.0	35.5	3.7	4.4	1.8	1.4	0.4	24.2	29.5	85	3		÷	3	5	3	i	1	1900
នះ	15 20510	364.0	101.1	8.0	29.1	4.1	3.2	0.7	19.6	27.8	140	3		7	ĩ	3	3	i	i	1986
660	IS 20557	274.0	85.6	3.5	9.5	1.7	1.8	0.0	21.7	31.2	65	5		7	1	5	3	ī	i	1986
56 1	IS 20583	230.0	61.8	6.1	14.1	2.9	2.6	0.7	18.2	26.9	97	5		7	5	5	3	ī	ī	1986
552	IS 20888	848.0	175.3	3.7	31.6	1.8	L3	0.7	15.8	20.7	203			5	1	7	5	ĩ	1	1985
662	IS 20962	1014.0	277.7	6.4	64.8	2.9	1.9	1.6	18.3	27.4	175			5	3	7	3	1	1	1986
664	IS 20963	579.0	164.0	6.9	39.8	3.4	2.8	0.7	20.6	28.3	178			5	5	5	5	1	1	1986
665	15 20974	526.0	154.8						20.5	29.4	165			5	3	5	3	1	1	1966
555	15 20984	448.0	138.4						21.9	30.9	215			5	5	_	5	1	1	1986
100	15 21003	578.0	167.5	• ,		••			11.7	29.3	155			5	5	5	5	3	1	1986
000 220	TS 21022	3/6.U 770.0	219.1	1.1	42.8	3.5	28	0.8	21.5	27.5	168			5	5	5	5	3	1	1986
670	15 21229	605.0	17A A	G.G g I	49.7	1.0	3.2	0.0	5.J 71 7	22.3	192			7	3	3	2	1	÷	1965
672	15 21260	567.0	158 7	6.7	77.8	12	2.5	0.0	10 7	23.0	100			3	3	4	3	-	1	1305
673	15 21991	547.0	119.4	14	23.9	7.7	1.4	0.7	17.4	21 8	147			Ś	2		5	1	1	1001
674	IS 22536	202.0	33.2	2.8	5.6	1.6	1.2	••••	12.9	16.4	105			3			5	1	1	1986
675	ET! FR	918.O	183.8	5.0	45.8	2.3	1.8	0.9		20.0	182	9	1	4	1	5	4	•	i	1987
676	EVERID ED II	82E. O	180.6	3.4	22. :	1.5	1.3	0.5		21.8	188	7	6	i	3	5	i		1	1987
778	51 1	737.0	159.3	30	29.0	2.2	1.7	0.1		21.5	165	7	5	1	1	5	3		1	1987
779	101 2	584.0	111.0	3.2	18.7	1.9	1.2	0.1		19.0	145	9	5	1	2	5	5		1	1987
760	NE 3	704.0	122.8	3.5	24.6	2.1	1.3	0.1		17.4	129	9	5	2	1	5	2		1	1987
781	511 5	£51.0	121.6	4.7	30.7	2.6	1.8	0.4		19.0	172	9	5	2	1	6	4		1 0	1987
782	NE 6	681.0	131.6	6.0	40.9	2.6	1.7	1.7		19.3	168	9	5	5	I	5	3		1 1	1987
763	<u>54</u> 7	805.0	481.2	6.4	51.1	2.9	2.3	1.2		59.8	167	9	4	6	3	S	3		1 1	1987
701		366.0	112.9	5.8	32.7	21	1.7	2.0		19.9	167	9	6	2	1	6	5		1 1	1987
786	AG ; NG 10	503.0	107.7	2.4 6 6	.H. 5 70 -	20	21	11.5		18.7	97	9	4	4	2	5	5		1 1	1987
787		443.0	77 8	5.0	30.5 73.7	20	12	20		20.1	145	3	2	3	4	3	3		1 1	1987
788	EII 12	428.0	75.5	53	20.3	26	17	10		17 5	1177	7	3 1	2	1	/ 5	5		1 1	1367
789	NE 13	456.0	85.0	5.5	25.2	2.7	1.6	1.3		18.9	131	9	4	ŝ	1	6	4		1 1	1987
790	EE 14	685.0	110.5	5.3	36.0	2.5	1.6	1.2		16.1	139	9	5	3	i	5	i		1 1	1987
792	EE 16	839. C	159.1	5.1	42.7	2.5	1.2	1.4		19.0	123	9	5	1	ī	s	s		1 1	1987
794	III 18	780.0	464.3	5.3	41.7	3.1	1.7	0.6		59.5	176	9	6	1	1	6	5		1 1	987
7%	EI 20	588.0	114.7	6.1	35.7	24	1.5	2.2		19.5	198	9	5	3	2	5	5		1 1	987
799	11 23	694. 0	119.7	4.4	30.4	1.6	0.9	1.8		17.2	121	9	5	2	2	5	5		1 1	987
		••••••		••••••				•••••		•••••	*****					••••		••••	- •	
•79	TALSA DATTER TIELD	(U(/ <u>HL</u>) '	7" = SA	CCHARLISE		[(1) /*)		"IZ" =	TICOUR				15"	: 1	UFR	IIG				
-j.	TITAL GETS LIFTS	ULIAN 17171 - 1	0" - 10 0" - 10	U PICKA V KATTER		121 1 (41 1	1	·μ· •	WELP SE	iduli'il Nutr	EILIN		12.	= #	HUHT	210	LASE	. UH.		,
4.	SUGAR TIELD (DT/RA	i taj - t	ע - יע 101 : הס			1 147 1 1	ILAR	•14• -	ו מצעטיי ארארא דו		T 11001		121	- 11	ollinti Incia	: 50	3652 1912	1121 • •	Lil	
5 =	GUOISE CONTENT (1		11" = PA		FRIFICE	TIME		11 .	TILLIE	EAF		•	191	- 11 - 11	RALL	5 15 T 154	auca TE			
6 :	FRUCTOSE CONTENT (L)								_										

.

		Feder	al Resea	rch Ceat Buodesa	Institu re for l liee 50,	ute of Igricul , D-381	Crop Lture L16 Br	Scieco Brauns aunsch	e chreig-' reig	Tälken	rode (FAL)								
				Tei	Federal . 0531-3	Repub. 5961, 1	lic of Fax. O	Gersa 531-59	ny 6 365											
															•	13	•			
	Designation	1	2	3	4	5	6	7	8	9	10	11	12 	13	14	15	15	17	18	19
600	EI 24	671.0	123.1	5.1	34.4	2.5	1.5	LO		18.4	171	1	6	1	2	5	5		1	1987
801	EE 25	61 2.0	117.8	4.4	28.3	2.3	1.1	1.0		15.4	97 71	9	4	3	2	3	4		1	1987
504	35 28	459.0	79.0	3.8	17.5	1.5	9.0 0 P	1.4		15 1	101	9	1	2	1	;	4		i	1987
805	ES 30	/ <u>/</u> ,U	115.3	52	24.1	29	1.9	0.5		17.1	139	ģ	5	5	2	5	4		1	1987
BU?	18 JL 85 77	641.0	101.0	4.3	27.3	24	1.2	0.6		15.8	91	9	5	3	1	6	4		1	1987
803	KH 2G	611.0	367.0	6.7	40.9	2.2	1.3	3.2		60.1	188	5	6	1	1	5	5		1	1987
812	11 36	618.0	125.3	7.4	45.6	2.2	1.5	3.7		20.3	187	5	S	1	1	6	4		1	1987
815	EE 40	579.0	106.8	4.2	24.3	2.4	1.5	0.3		18.4	121	5	5	2	1	6	4		1	196/
817	E 42	821.0	147.1	8.1	66.1	2.9	2.0	3.2		17.9	181	3	5	1 5	3	3	1		1	1997
223	55 46	756.0	136.2	5.4	8.3	Z.9	1.5	1.0		17.0	155	2	5	2	2	5	ŝ		1	1937
<u> </u>	948	797.0	10.8	6.1 7 G	10.7	1.2	<u>2</u> 0	0.3		16.4	177	ģ	5	-	1	7	5		i	1987
<u> </u>	<u> </u>	6/8.0	100.	25	10.3	25	1.5	0.2		17.0	96	9	ĭ	i	2	7	6		ī	1987
824	9 30 17 55	163.U	70.1	213 . 27	77 7	20	1.7	11		21.9	125	ŝ	4	3	1	5	4		1	1987
642 870	11 55	502.0	101.8	5.3	X.6	1.8	1.4	2.1		20.3	129	9	4	2	2	3	5		1	1987
630	ALL 10-11	759.0	152.6	6.1	45.9	2.4	1.9	1.8		20.1	158	7	5	1	2	4	4		1	1987
EH	MEE 82-64	518.0	101.7	7.4	32.4	1.7	1.4	4.4		19.6	196	7	6	1	3	5	4		1	1987
83E	ET 80-06	610.0	162.2	5.8	46.7	1.4	1.Z	3.2		20.0	180	9	7	1	2	5	3		1	1987
E 27	100 EC-07	561.0	122.4	5.1	28.8	0.9	1.0	3.3		21.8	125	9	5	1	2	6	3		1	198/
538	EE 60-08	553.0	107.9	6-0	X.3	1.2	1.9	2.9		19.5	142	9	2	1	1	2	5		4	1007
<u>57</u>	EEE 80-09	516.0	110.5							21.3	157	7	2	-	5	5	5		i.	1987
342	SEE 80-10	473.0	101.2	6 7	× 0	лc	n ¢	26		10.5	177	0	5	ž	2	5	3		i	1987
51	100 80-11 100 10	205.0	177.6	5.3	20.5	1.0	2.0	24		18.9	170	9	6	1	3	4	3		i	1987
015		100.0	103.0	4.4		1.4				24.6	147	5	4	1	2	3	5		1	1987
111	100 B1-02	364.0	72.5	6.3	22.9	1.1	1.2	4.0		19.9	115	9	3	1	1	7	5		1	1987
M?	NET 81-04	527.0	118.2	6.7	35.3	1.3	1.4	4.0		22.4	155	Ģ	5	1	1	7	4		1	1987
94E	EE 61-05	707.0	136.6	4.7	X.1	1.5	1.3	1.9		19.3	140	ġ	5	3	I	7	3		1	1987
949	MER 81-06	562.0	94.9	4.7	26.5	1.6	1.3	1.9		16.9	125	9	5	2	1	7	5		1	1987
851	EEE 81-36	492.0	97.5	5.5	Z .2	1.1	1.1	3.4		19.8	14	5	4	3	1	2	2		-	198/
852	ER 81-09	565.0	108.0	4.B	27.1	1.5	1.0	2.4		19.3	130	3	2	4	1 7	2	3		1	1997
25:	81-10	822.0	150.9	5.1	41.5		1.1	1.0		21.7	174	2	,	7	- 1	5	4		i	1987
255	111 81-12 111 01 01	227.0	110.2	5.2	79.5	243		0.4		20.3	155	7	4	2	ī	5	į		3	1967
850	ELE 31-UL MET 63-05	549.0	110.3	57	78 E	7.0	21	0.2		21.3	191	7	Ś	4	1	6	4		1	1987
201	100 60-00	589.0	108.9	4.6	26.5	2.2	1.7	0.9		18.5	148	9	4	2	1	5	3		1	1987
- 00	N22 62 00	436.0	88.1	5.5	24.0	3.1	2.3	0.2		20.2	167	?	4	3	3	5	6		1	1987
865	EE E-10	544.0	102.7	5.8	31.4	2.2	1.7	1.9		1e.9	136	9	5	3	1	7	4		1	1987
866	NE 82-11	795.0	478.6	4.8	38.1	2.5	1.9	C. 2		60.2	121	Ş	3	2	1	5	4		1	1987
55 E	ETE 82-12	547.C	329. C	6.2	32.9	2.8	2.3	. .2		60.Z	155	7	5	3	1	4	4		-	1987
869	NER 82-14	622.0	113.1	4.4	27.4	21	1.4	0.9		18.2	134	ġ	5	1	1	5	- 1 - c		1	1997
870	AER 82-15	268.0	39.5	6.7	18.0	2.3	1.6	2.5		14.7	127	9	- 1 - c	4	4	1	3			1987
872	SEP 82-17	519.0	315.3	5.7	34.7	21	1.7	23		5.Ug	: 13/ : 151	7	2	1	- 1	1	- J - 5		1	1987
874	HF 82-19	* 448.0	Z/1.6	1.8	0.د.	24	: <i>ب</i> ک	ۍ .د. 		00.0	کلیک :		ن 	ة 	1	ن 	J 			
	-	h7/811	• 7• - 0	1000100	G (MET	AT 171			- 100	Æ			•1	j• :	TIL	FRI	5			
***	- NOT MITTER TIELD INT	754) 754)	* e* = 1	AV FIST		E (Z)		·[]·	- 000	SISCEP	TIBIL	ш	•1	• =	AEO		0ISE	ISE (I L	EAF
* 11	TITAL STAR CHIEFT	(1)	• g• : [TTAL TE		EAT (X)	IE II		TOUR	S PLAT	•		•17	!" =	020	GH.	55	EPTI	BIL	III :
-10-	- STEAR TIELS (DT/EA)		*10* = 6	ROVTE E	ETTER (3)		"14"	: VID		ICE U	POI	•1	! =	100	GING	TER	EXCI	,	
•5•	· ELODE CATELY (I)		*11* = E	ALICE	3.12.63.1	te tie			TELE	S LEAF			"!		EVE	151	DAT	E		ŝ
161	· FEUCTOSE CONTENT (I)																			i t

Evaluation Data of Sorghum bicolor from 1985-1995

Institute of Grop Science Federal Research Centre for Agriculture Braunschweig-Tölkenrode (FAL) Bundesallee 50, 0-38116 Braunschweig Federal Republic of Germany Tel. 0531-3361, Fax. 0531-536 365

- 20 -

Ð	Designation	I	2	3	4	5	6	7	8	9	10	1	ı Ľ	2 13	14	រេ	15	17	18	19
875	NER 82-20	516.0	104.9	6.4	37.0	2.3	2.0	2.0		717	159	 9		···· ?	 1	4	 5	••••	••	1007
876	MER 82-21	561.0	114.1	5.5	30.8	2.0	1.7	1.8		20.3	153	7	ì	ī	;	5	ĩ		1	1007
879	ROT 84-25	875.0	149.6	5.1	44.5	2.5	1.8	0.8		17.1	194	ġ	7	ī	3	4	i		÷	1987
850	ROY 84-82	770.0	145.5	6.2	47.4	2.5	2.3	1.4		18.9	175	9	6	2	3	i	i		â	1927
885	ROY 64-34	926.0	153.5	4.5	41.8	1.9	L7	1.0		16.6	182	9	7	3	1	i	2		1	1947
886	SWEET SLOUX IV	790.0	161.5							20.4	194	7	6	3	ī	e	3		Ŧ	1967
887	EEP 81-02	745.0	181.9	6.7	50.1	2.2	2.0	2.5		24.4	138	7	4	1	ī	Ā	5		i	1987
890	HE 1500	418.0	94.6	5.2	21.8	2.1	1.9	1.2		22.6	104	9	s	2	ī	4	2		ī	1987
894	ATT 623 + GREEKLEAF	619.0	130.1	4.0	25.0	1.5	1.3	1.2		21.0	191	Ś	5	3	2	8	S		1	1987
8£	ATZ 523 + CELEASORG	549.0	105.5	5.8	31.9	2.4	2.0	1.4		19.2	164	ġ	Ś	2	2	5	4		÷	1967
900	ATT ET3 · BER 12	586.0	113.7	5.9	34.4	2.2	1.7	2.0		19.4	163	7	5	1	4	3	i		ī	1987
901	A 1388 + RIO	807.0	138.5	5.7	£.8	2.5	1.9	1.3		17.2	188	9	Ē	2	2	Į.	3		ī	1987
902	A 155 + 555-1	490.0	:02.0	5.4	26.3	2.3	2.0	1.1		20.8	147	ġ	5	1	3	3	ī		1	1987
903	A 160 · E35-1	603.0	135.0	5.4	32.6	2.4	1.4	1.5		22.4	166	ġ	Š	÷	3	ī	3		ī	1987
907	SAET	411.C	81.9	5.1	20.9	2.4	2.0	0.7		19.9	151	7	i.	3	1	5	7		ī	1987
910	A (ATLAS) . BRANDES	421.0	74.6	5.1	21.5	2.5	2.0	0.7		17.7	129	ġ	3	i	2	Ē	3		ĩ	1987
911	A (ATLAS) + SART	884.0	158.2	6.8	60.2	2.5	1.9	2.3		17.9	184	9	6	3	Ŧ	5	ī		î	1987
914	EE 960	232.0	48.6	4.5	10.4	2.0	1.6	0.9		21.0	127	7	3	1	1	5	2		ī	1987
917	A (ATLAS) + RID	863.0	1£1.5	5.4	45.5	2.2	1.6	1.6		18.7	174	ġ	7	â	1	6	ĩ		i	1987
919	55 104E	397.C	97.2	4.2	16.6	2.0	1.8	0.4		23.2	146	ģ	5	3	;	£	ż		î	1927
920	A (ATLAS) + VEAT	1227.0	209.3	5.6	68.6	2.8	2.2	0.6		17.1	145	á	Ā	ž	ī	Ĕ	1		î	1997
92:	N 1056	445.0	96.0	6.2	77.4	2.3	1.8	7 :		21.6	114	7	ç	-	:	š	5		•	1027
977	A (ATLAS) + EEGART	556.0	177.5	4.9	77.0	17	14	17		77 0	167	÷,	ç	÷	;	7	5		î	1927
	ATT 577 + KELTE	879.0	161.9	5.8	5: 0	7 0		2.0		19.4	107	ć	č	2	•	1	2		1	1007
975	ATT 577 + 85 1500	917.0	157 7	17	36.7	7.6	16	0.6		18 7	200	á	č	1	÷	5	ç		i	1097
927	A 1284 + THT + 430	509.0	96.6	77	¥.5	27	19	31		19.0	119	á	4	1	-	ŝ	1		1	1007
000	7F 701	591 4	166.6	10.0	67 7	1 8	• 5	7 4		20.2	242	-	;	2	5	2	5	2	1	1007
000	77 201	FAC F	164 9	6.0	79.6	n c	20	21		35 7	101	ę	1	5	4	37	-	3	1	1000
1007	7 7 7 1	757 0	155 6	5 1	40.2	1 1	50	2.2		20.7	101	5	1	5	+	έ.	2	T	1	1773
1001	71: 241	SELE	150 7	77	47.5	1 7	17	6 7		70.1	100	7		5		5	2		1	1000
1002	77 570	777 0	214 2	0.0	10.5	1.0	1 1	2.0		20.1	100	'e		1		3	2		3	1330
1007	75 520	207.6	141.7	67	77 6	1.0	1.1	5.0 r 7		4/+D	123	-	•	3		3	2	~	3	1220
1002	75 520	507.0	170 1	5.7	37.3	1.1	1.4	0.3		20.0	299		0	3	1	2	3	3	4	1332
1000	mpr:	504.0	170.1	0.1	50 C	1.0	1.7	 		30.2	293		Q	-	4	5	4	÷	1	1333
1002	mont:	101.0	102.1	0.1 C r	- J5 	1 1	1.0	5.1		23.1	102	2		-		5	5		ن	1990
1002	EU31.1	510.0	100.0	10.2	5.0	1. 0.0	1.7	20		20.0	10/	3	1		1	3	3	1	1	1333
1005	TC 1005/ C1	SC9 0	130.3	10.2	24.5	1.5	1.0	G. D		36.5	29/ 57	1	ä	1	1	3	4	3	4	1324
1000	15 14504 770	1719.0	112.0	1.0	J1.5	1.5	1.3	້ມປິ		15.7	30			3		2	1		3	1330
1002	10 19671 2/0 03103 Att	004.0	1372.7 1770.5	4.	33	0.7	0.0	0.3		19.7	115			-		2	1		1	1990
1010	73163 412 93167 412	305.0	1/0.3	1.1	41.5	1.7	10	1.2		11.1	132			3		2	3		1	1990
1011	1310/ 115 97/77 /00	113/.0	100.0	3.2	35.3	1.4	1.0	0.3		15.4	114	•		3		3	3		1	1330
1012	7373/ 970 67776 474	/06.9	153.1	1.4	10.4	0.8	U.t	0.0		D.1	240	U	1	3	1	3	3	1	1	1993
1012	F 010		227.2	2.0	15.3	1.0	0.3	0.6		25.0	213	3	8	4	1	2	3	1	1	1993
1014	2 U42; E 040	332.3	142.9	14	8.3	0.9	0.5	0.0		24.1	41	U.	6	3	1	2	3	1	1	1993
1013	E 040	1039-0	230.0	3.8	39.9					20.3	318	9	9	1	2	4	1	1	1	1994
mr4	1 UN	622	127.5							20.5	201	7	6	1	5	3	3	5	7	1995
11 : 12 : 12 :	FERSE MATTER VIELD (D 521 MATTER VIELD (CT/ TOTAL SUBAR CONTENT (SUBAR VIELD (OT/HA))T/BA) (BA) (2)	7" = SA 6" = RA 9" = D9 10" = G9	CCHAROS V FIBRE V MATTE OVTE EE	E CONTEN CONTENT R CONTENT R CONTENT REET (CE	T (I) (I) T (I))	REAR	"12" = "12" = "14" =	VIGOUR COLD S TOURS I VIED D	USCEPTI PLAIT IFLUER	IBILIT TE UPO	T 5	*15* *16* *17* *18*	: T : £ : D : U			SLEI SLEI SLEI	E OH TIB ET	LEA ILIT	 F T
6 -	FRUCTUSE CONTENT (I)	•	11. = b¥	aitte b	<u> </u>	1155			100165	<u>P.A.</u>			-14	= 9	LKA5	oí Di	1£			

.

Institute of Grop Science Federal Research Centre for Agriculture Bransschweig-Tölkenrode (FAL) Bundemallee SD, D-38116 Brannsschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365 - 21 -																					
Ð	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
1015	E 045	531.0	142.3	2.8	14.9	L1	L3	0.5		25.8	211	9	5	3	1	5	3	1	1	1993	
1015	e 045	1189.0	327.0	4.7	55.9	1.0	0.8	29		38.3	359	1	9	1	5	5	3	3	1	1994	
1015	E 045	627.9	130.2							20.7	243	7	5	1	5	3	3	7	3	1995	
1016	E 128	238.4	159.9	26	13.7	0.9	0.9	0.8		20./	263	7	1	3	1	1	2	1	1	1993	Í
1010	E 125 E 129	1063-0	100 0	1.0	41.3	1.2	6.0	44		18 7	33/ 204	7	5	1	2	1	1	5	1	1995	
1010	E 120 E 177	578 0	127 8	24	17 A	64	12	0.8		74.7	217	'n	5	2	1	7	3	1	i	1997	
1012	1112	151.9	213.2	1.2	36.1	0.7	1.6	1.9		25.0	270	ō	7	5	2	ŝ	3	ī	i	1992	1
1018	5 123	1139.0	225.0	3.8	43.7	1.1	0.9	1.8		57.8	353	9	9	1	6	4	3	5	2	1994	
1018	E 133	532.7	94.8					_/-		17.8	231	1	S	3	5	3	1	5	1	1995	
1019	E 143	655.8	213.7	4.2	27.7	0.7	1.3	2.2		32.6	279	7	8	5	3	4	3	1	1	1993	
1020	E 173	781.8	158.3	24	18.6	0.3	1.1	1.0		20.2	208	0	6	3	1	7	3	1	1	1993	
1021	E 174	600.9	142.6	2.6	21.3	0.8	1.4	1.4		23.8	247	9	7	5	1	5	4	1	1	1993	1
1021	E 174	1411.0	362.0	4.9	68.4	1.1	0.9	2.9		40.1	363	9	9	1	1	5	4	4	1	1994	
1021	E 174	643.0	127.C							19.5	249	7	5	3	3	3	1	5	3	1995	
1022	E 176	64C. 3	180.3	11	27.9	0.8	1.6	2.0		28. 2	130	9	7	5	1	5	3	1	1	1993	
1023	EL 506	503.0	118.8	2.7	13.5	0.9	1.4	0.4		23.6	172	9	4	3	1	6	5	1	1	1993	4
1024	E 29	848.6	206.5	4.5	38.3	8.0	1.6	2.1		24.3	222	9	4	7	1	5	5	1	1	1993	2 2
3001	AL X ATX	1:24.0	242.3	6.3	70.9	1.5	1.2	3.6		21.6	224	7	8	3	2	5	3		1	1987	
2002	AL X ATI	1047.0	219.6	4.8	50.2	1.5	1.3	1.9		21.9	202	7	7	3	1	5	2		1	1987	dia.
3023	AL I AT2	778.0	155.4	6.5	9 2.2	1.3	0.8	4.3		20.0	208	1	3	ź	2	4	2		1	1987	
3094		1102.0	2222	6.3	66.2	1.3	0.9	3.8		21.1	107	1	<u>'</u>	j n	2	5	3		1	1007	7
30.2		1115 0	240.3	0.4	51.5 (7 7		1.1	1.0		21.0	170	-	, a	3	4	а с	;		1	1207	194
2007		971.0	120 0	2.2	10.2 70.5	1.5	07	1.0		19.5	195	4	7	1	2	5	5		1	1927	1
2007		1117 0	100.7	22	30.5 20.7	1.0	0.7	0.6		17 5	177	2 Q	+	2	2	ŝ	ŝ		1	1997	
2000		1100 0	196.5	25	20.1	1.2	1 0	1 2		17 7	164	ģ	;	ī	ž	ŝ	i		i	1987	-
2012	TT Y 271	177 0	775 1	17	50.2	: 2	1 1	2.1		17.7	209	9	q	î	3	Š	5		i	1987	
2010	F1 T 2T7	847.5	:67.7	6.1	50 3	1.6	11	1.7		19.3	190	9	,	3	2	5	3		1	1987	1
3012	14 Y 17T	866. C	169.5	5.6	48.2	1.5	1.2	2.9		21.9	195	7	7	2	3	Ā	Ā		1	1987	1
30:3	A4 X AT1	797.0	:72.4	6.2	49.6	1.7	1.3	3.3		21.8	166	9	5	2	2	5	3		ĩ	1987	1
3014	A4 X ATZ	1945.0	231.6	5.7	59.5	1.7	1.2	2.8		22.1	193	7	7	1	2	6	3		ī	1987	
3015	AS I ATS	941.0	204.3	6.2	58.2	1.9	1.3	3.0		21.7	194	9	7	1	1	5	3		1	1987	
3015	44 X 474	802.0	185.5	5.5	44.4	:.7	L.3	2.5		23.0	180	9	6	2	2	5	4		1	1967	and a
30:7	A4 X ET:	923.0	200.6	5.3	49.3	1.8	1.4	21		21.7	192	9	7	1	2	5	4		1	1987	
3018	44 I 8T2	956.0	202.7	5.5	52.9	2.7	21	0.7		21.2	193	9	7	1	3	5	4		i	1987	
3019	AS I ATI	322.0	60.5	4.7	15.7	1.7	:.7	1.3		24.3	140	7	S	1	3	3	4		1	1987	
3020	AS E ATI	459.0	111.0	4.9	23.0	1.6	5	1.8		21.7	142	1	5	3	2	4	3		1	1987	line i
3021	AS I AT	508.0	310.0	4.4	22.6	1.7	1.6	1.1		61.0	128	1	5	2	2	4	3		1	1987	101
3022	A5 I AT3	626.0	140.6	5.0	31.1	1.6	1.6	1.8		72.5	131	1	5	1	3	4	3		1	1987	
30Z2	AD I AT4	524.0	180.5	5.3	43.9	1.5	1.3	2.4		21.9	122	1	6	2	1	4	2		1	1987	
3024	AT 1 STI	985.0	195.7	5.7	56.5	1.8	1.8	2.1		13.8	ДЦ 3 1.5	-	1	4	4	3	4		1	198/	3
sia m	AD & BLC	1023.0	407.2	6.9 C 0	45.0 70 r	1.5	1.3	3.0		1.10	100	4	3	4	1	4	3		1	120/	
3125	AD & ALJ	1025-0	020.J 240.P	6.3 c c	/U.b	1.2	1.7	3.1		- 00./ - 77 T	205	'	4	3	2	3	6		1	1927	2
302/	BO A DIL	F032.0	170.0	7.2	00.5	له ما 	1.4	ں ہو۔ 		ا م <i>کن</i> 	<i>د</i> س	, 	, 	<u> </u>	<u>د</u>		1		<u>د</u>	1.20/	
	FRESH MATTER VIELD (DT/EA1	. 7. : 5	CCHARGES		17 (7)		*12*	. VIGUE	8			115	: 1	TILI 1		5				
"?" : ONT MATTER THEIR (MT/MA) ' & SAUGANCE CONTANT (1) '12' = ONA SUSCEPTIBILITY '16' = ANDAR DISPASE ON LEAF													4								
121 -	TUTAL SUGAR CONTENT	(1)	• 9• = M	I LAT.E	CONTE	T (1)	EEA		TOUTE	PLAT			•17	1	ROL	H.	5150	PTI	m	π	3
·(· :	SIGAR TIELD (FT/EA)	•	'10' : G		GE. (0	n		"14" :	= VIID		ICE UP	CIII	18	: :]	.00GT	E S	EDD	ALT.			
151 :	GUICISE CONTENT (T-		"!!" : ?	MICLE D	P R SP III, P	E TILE			TOUTES	LEF			•19	' = E	IARVI	হা ৷	DATE				- H
6 =	FRUCTOSE CONTENT (1)																				

Institute of Crop Science Federal Research Ceatre for Agriculture Braunschweig-Tölkenrode (FAL) Bundesallee SD, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365

- 22 -

D	Designation	1	2	3	4	5	6	7	8	9	10	11	12	រេ	14	15	15	17	18	19
3028	17 I ATI	977.0	215.3	6.3	61.8	1.5	1.5	2.2	*******	22.0	184	7	6	3	5	5	 ج	••••	1	1097
3029	47 I 4T2	859.0	184.7	4.4	37.5	1.5	1.3	L.6		21.5	172	7	5	ī	3	Š	3		1	1987
3030	A7 X BT2	887.0	537.1	6.4	56.6	1.4	1.2	3.8		60.6	177	7	6	3	5	5	4		1	1987
3031	AB X ATX	820.0	500.7	5.1	41.6	L.2	1.0	2.9		61.1	145	7	7	S	1	5	3		1	1987
3032	AS X ATL	914.0	196.5	4.9	44.5	1.5	1.4	2.0		21.5	203	7	6	4	i	5	2		1	1997
3033	AB I AT4	1032.0	223.0	4.6	47.9	1.2	C. 9	2.5		21.6	188	7	7	2	2	4	3		1	1987
30,54	AE X BIL	832.0	184.7	6.1	50.8	1.5	1.9	2.7		22.2	186	7	7	2	1	5	Ż		1	1987
3033		941.0	199.0	5.9	35.1	0.9	1.5	3.5		21.2	216	7	8	4	2	4	3		1	1987
3035	A14 & A14	912.0	AJ9.0	6.7	62.5	2.9	2.6	1.2		ZZ.2	208	7	7	2	2	5	4		i	1587
2032	AIT & ALL 118 V 071	1011-0	216.1	0.3	63.3	29	2.4	1.2		21.4	207	7	7	3	1	5	3		1	1987
2020	A15 T AT7	2012-0	172.0	6.3	50.4 50 s	29	24	1.0		23.3	199	7	7	1	2	5	3		1	1987
ากบา	115 T 177	655 A	149 4	5.J 2.5	JU.C	- 10 - 10	41	1.5		4.4	104	4	6	2	2	3	2		1	1587
2010	A15 Y ATL	1125.0	724 7	5 G J	12-0 77 c	2.0	1.0	1.3		24.1	100	1	3	1	1	2	3		1	1987
3047	A15 Y RTI	012 N	206.0	6.0	£1.0	21	1.0	20		20.1	133	4	4	4	4	5	3		1	1987
3043	AST TET?	1740 0	761 7	7 8	47 1	10	1.5	<u>41</u>		22.0	120	;	-	2	5	5	4		1	1587
3044	ALE X ATZ	1093.0	250.5	77	x ?	15	1.2	0.1		21.1	211	7	-	4	3	2	3		1	158/
3045	ALE X ATZ	518.0	108.6	4.9	74 7	20	1 5	1 2		21.0	120	0	1	3	3	2	3		1	1007
3046	ALE X BT2	930.0	204.8				6.4	1		77 0	215	1	2	1	2	1	3		1	120/
3047	AS I ATI	978.0	227.7							27.3	173	+	A	2	1	1	1		1	1007
304E	A9 I AT4	919.0	199.5	6.7	51.8	2.3	2.2	2.2		21.7	195	7	7	2	î	3	ì		i	1987
3049	A9 X 871	800.0	182.9	7.4	58.9	2.1	1.9	2.3		22.9	110	7	,	2	2	5	3		1	1997
3050	ALC X ATX	982.0	215.8	6.1	59.8	2.2	2.0	1.9		22.1	248	7	7	2	2	5	ĕ.		ī	1987
3051	AIO I ATI	1041.0	216.0	6.9	71.5	23	1.9	2.7		20.8	156	9	7	2	2	5	i.		1	1937
3052	A10 I AT2	819.0	178.3	6.5	53.0	2.1	22	2.2		21.8	168	7	6	2	1	5	5		1	1987
3053	AIC X ATJ	877.9	193.0	5.7	50.1	1.6	1.4	2.8		20.9	180	9	7	2	1	5	5		1	1987
3054	A10 X 971	879.0	190.8	6.9	60.7	1.7	1.5	3.7		21.7	177	9	5	2	1	4	3		1	1987
3055	ALC X BT2	997. C	215.3	E.4	63.3	1.3	1.1	40		21.6	203	7	7	3	1	5 3	3		1	1987
3256	ALL X ATT	662.0	154.3	5.2	34.1	1.3	1.1	29		22.3	158	7	5	1	4	5 3	3		1	1987
3057	ALL X AT4	681.0	150.2	6.3	42.0	1.4	1.4	3.5		22.1	156	7	5	2	2	5 3	3		1	1957
3058	ALL X ETL	652.0	145. 4	E. 4	£.4	1.9	1.4	3.1		22. 1	15!	7	6	2	3	54	4		1	1987
3059	ALZ I ATI	941.0	204.3	6.E	62.0	2.0	1.5	3.1		21.7	202	7	6	2	2	5 4	•		1	1967
3050	ALZ I ATJ	864.0	180.7	7.4	64.1	1.7	1.5	4.2		20.9	199	7	6	2	3	5 /	£		1 1	1987
300.	ALZ I AI4	1059.0	Z34.8	5.5	59.1	0.6	1.0	4.1		22.2	196	7	7	1	1	6 :	3		1 1	1987
3002.	AL: A A:A A17 ¥ ATT	807.0	167.0	3.E	£.0	0.6	1.2	3.8		Z3.2	190	7	?	1	3	5 3	3		1	987
3062		/11.0	210.0	6.2 e +	£	0.7	1.1	4.6		21.5	174	7	5	1	3	54	[11	1987
3065	514 T 1TT	100/ 0	210.0	J 5 /	93.0 SA 0		0.7	1.1		22.3	1%	1	7	2	4	53	3		!!	1987
3066	574 Y ATY	1001.0	200.7		34.U AC 0		1.1 • •	1.5		21.6	158		É .	3	2	44				.987
3067	25 I AT?	10% 0	ET? 1	5 7	13.0 54 6	0.2	1.1	1.0		51 5	217	-	:	1	י כ י כ	• •	1		11	.98/
3068	25 I AT4	1117.0	250.8	5.1	57 3	W. 1	0.0	J. 7		22.5	201	,	, 0	4 ·	23	34	1 1			,367
3069 1	ZE I ITI	870.0	197.1	4.6	40 1	0.4	1.0	17		277	194	,	۵ ۲	2			1 1		1 1	.397
3070	27 1 411	1075.0	221.5	6.6	71.2	Ui 3	0.9	\$ 7		20.6	180	'	7	1	1 . 5 (, ,	;			.30/
3071 1	ZB I ATI	888.0	540.2	5.9	52.4		1.1	4.E		60.8	192	2	ć.	1	5 1					017
3072 1	29 I ATI	952.0	195.3	6.7	63.7		0.8	5.9		20.5	195	, ,	5	2	5 :	3 6		;	i	987
								•••••					- 					•••••		
"" =]	TESE MATTER TIELD	(CT/EA)	7° = 54	THARIST	CONTEN	(I)		*12* =	TIGGER			•	15'	= TI	LE	IIG				
12:1	RY LATTER TIELD (D	T/EA:	8" = RA	fiber	CURTERT	(7)		*13* =	COLE S	ISLEPTI	BILITI	•	16*	- 10	UET	DISE	æ	01 I	EIF	
7:1	UTAL SUGAR CONTENT	(I) *	97 = DR	MITTEE	CONTENT	(1)	£Μ		TOURS	PLAIT		1	!7 *	= D21	Line (i sus	CEPI	FIBII	Π	
4" : S	UGAE TIELO (DT/EA)	• •	10" = 621	WTH HEI				*14* =	VIID I	FLUERC	e upoi	•	16.	: 101	GIR	TE	D E U	π		
"6" = F	EUCLOSE CURTERT (1) EUCLOSE CORTERT (1	•	11.4 ± 641	HICLE ER	FRANCE	TIEE			TOUEG	EIF		•	19"	= <u>849</u>	1125	DAT	E			

|

 | Federal | l Resear | ch Ceai
Buadess
Tei | Institu
tre for
allee SO
Federal
L OS31- | ute of
Agricu
, D-38
, Repub
5961,
 | Crep S
Iture B
116 Bra
11c of
Far. C | icience
Braunsch
German
531-596 | e
zhveig-
veig
17
5 365 | Tõlken | rode (I | FAL) | | | 23 | - | | | | |
 | | Fed | eral Re | search
Bur | I
Centre
desall
Fe
TeL I | estitu
for 4
es 50,
feral 1
531-5 | te of
gricul
D-381
Republ
1961, 1 | Crop !
Itare
IIS Br
IIC of
Fax. O | Scien
Brans
aunsci
Geru
531-5 | ce
schreig
hreig
any
96 365 | g- V ð1ke | aroće | (FAL) | | - | 24
 | | | |

--
---|--|--|--|---
--|---|--|-------------------------------------|--|--|---|---|----------------|---|--|-----|--|--|--
---|---|--|--|------------------|--------------------------------------|---|---|---|---|---
--|--|---|----------------|---|--|-------|--|-------|
| ID Designation

 | 1 | 2 | 3 | . 4 | 5
 | 6 | 7 | 8 | 9 | 10 | 11 I | 2 13 | 14 | 15 U | 6 17 | 18 | 19 | | E0 | Designation
 | | 1 | 2 | 3 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 Ľ | 3 14 | 15
 | 16 17 | 18 19 | 3
 |
| D Designation 3073 E11 I 3074 E25 I 3075 E31 I 3076 E40 I 3077 E42 I 3076 E40 I 3077 E42 I 3077 E42 I 3078 E44 I 3079 E45 I 3080 E42 I 3081 E41 I 3083 F8 I 3085 F5 I 3090 F10 I 3091 F11 I 3092 F15 I 3095 F1 I 3095 F1 I 3095 F21 I 3005 <t<
td=""><td>1
1248.0
1137.0
900.0
1012.0
1025.0
537.0
1012.0
1025.0
537.0
1025.0
537.0
502.0
574.0
602.0
574.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
772.0
603.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
1002.0
772.0
772.0
772.0
772.0
1002.0
772.0
772.0
772.0
772.0
772.0
772.0
1002.0
772.0
772.0
1002.0
772.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000</td><td>2
254.1
655.1
125.7
2620.8
125.9
2630.6
125.5
125.3
111.1
145.4
125.5
125.2
156.3
125.2
125.5
125.2
125.2
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.</td><td>3
7.8
5.2
5.2
5.2
5.7
5.8
5.7
5.8
5.7
5.8
5.7
5.8
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5</td><td>4
97.0
72.1
72.3
58.8
38.4
47.1
72.3
58.9
19.7
25.8
30.1
30.1
30.5
24.3
36.9
27.5
36.9
40.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.5
24.3
36.2
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.5
36.5
24.5
37.5
57.5
53.6
4.5
27.5
57.5
53.6
4.5
27.5
55.1
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5</td><td>5
1.1
1.5
1.7
2.1
1.8
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.4
1.2
1.8
1.0
1.3
1.1
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7</td><td>6
0.8
0.6
0.3
0.8
1.2
1.5
1.6
1.1
1.2
1.1
1.1
1.2
1.1
1.2
1.0
0.9
1.0
1.2
1.0
1.2
1.5
1.1
1.2
1.5
1.1
1.2
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5</td><td>7
7.0
3.9
5.6
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2</td><td>8
</td><td>9
20.4
51.1
51.9
52.4
52.2
50.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52
.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.</td><td>10
1999
160
1225
219
203
177
277
171
190
133
135
159
227
245
240
240
240
240
240
240
240
240</td><td>11 1
97777997777777777777557775577779575777777</td><td>2 13
3 2 2 3 2 3 3 2 1 2 2 3 4 1 1 1 1 2 2 2 3 2 1 1 1 1 2 2 2 3 2 3 2</td><td></td><td>15 63444555556455544557553443544455455455445455655455
11 3154343434343434334435575534455455455455455655455
11 11 11 11 11 11 11 11 11 11 11 11 11</td><td>6 17
5 17</td><td></td><td>19
587
587
587
587
587
587
587
587</td><td>tiedlikterikkeidustiserisikiitikkie rohidee saavanuutuinistaatiesiaatiesiaatiesiaatiesiaatiesiaatiesi.</td><td>ED 31110 31121 31221 31221 31221 31221 31221 31222 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31241 31421 31421 31421 31421 31421 31421 31421 31421 31421 31421 31421 31421 31421 31421</td><td>Designation
14 X AT3
15 X AT3
15 X AT3
15 X AT4
16 X ATX
17 X AT4
17 X AT7
18 X AT3
18 X AT4
18 X AT4
18 X AT4
18 X AT4
18 X AT4
18 X AT7
18 X AT7
18 X AT7
18 X AT7
18 X AT7
19 X AT7
11 X AT7
11 X AT7
11 X AT7
11 X AT7
11 X AT7
12 X AT7
12</td><td>1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</td><td>1
536.0
873.0
959.0
893.0
1090.0
992.0
643.0
535.0
643.0
870.0
917.0
1226.0
870.0
917.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
920.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
925.0
925.0
925.0
925.0
925.0
925.0
925.0
925.0
925.0
925.</td><td>2
115
193
215
224
225
224
225
224
225
225
225
225
225
226
225
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
227
226
226
226
227
226
226
226
227
226
226
227
226
227
226
227
226
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205.</td><td>ACCUARY FIBE</td><td></td><td>4
TERT ()
ET ()</td><td>5
</td><td>е
•1
•1</td><td>7</td><td>8
YILOOK
COLD
S
TOLET</td><td>9
21.7
22.7
22.4
22.0
21.9
22.4
22.5
23.2
21.8
22.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.3
21.2
21.2
21.2
21.3
21.2
21.2
21.3
21.2
21.2
21.3
21.2
21.2
21.5
21.2
21.2
21.5
21.2
21.5
21.2
21.5
21.2
21.5
21.2
21.5
21.5
21.2
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.</td><td>10
1533
1922
1938
1844
1851
1544
1852
1577
1422
206
1930
2277
173
195
1855
200
1977
1759
190
218
190
2214
190
1931
1831
1217
162
163
164
1932
1657
1657
1799
1799
151
1657
1657
1657
1657
1657
1657
1657</td><td>11 7 11 7</td><td></td><td>3 14
2 3 2 1 2 2 2 2 5 2 3 1 2 4 2 4 3 3 3 3 2 4 3 2 3 3 3 2 2 4 2 2 2 3 3 2 2 5 3 4 2 3 3 3 2 2 4 3 2 3 3 3 2 2 3 2 3</td><td>15 1</td><td></td><td>18 19 1 192 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1</td></t<> <td>1</td> | 1
1248.0
1137.0
900.0
1012.0
1025.0
537.0
1012.0
1025.0
537.0
1025.0
537.0
502.0
574.0
602.0
574.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
603.0
772.0
603.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
772.0
1002.0
772.0
772.0
772.0
772.0
1002.0
772.0
772.0
772.0
772.0
772.0
772.0
1002.0
772.0
772.0
1002.0
772.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1002.0
772.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000 |
2
254.1
655.1
125.7
2620.8
125.9
2630.6
125.5
125.3
111.1
145.4
125.5
125.2
156.3
125.2
125.5
125.2
125.2
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125.5
125. | 3
7.8
5.2
5.2
5.2
5.7
5.8
5.7
5.8
5.7
5.8
5.7
5.8
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | 4
97.0
72.1
72.3
58.8
38.4
47.1
72.3
58.9
19.7
25.8
30.1
30.1
30.5
24.3
36.9
27.5
36.9
40.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.2
24.3
36.5
24.3
36.2
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.3
36.5
24.5
36.5
24.5
37.5
57.5
53.6
4.5
27.5
57.5
53.6
4.5
27.5
55.1
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
4.3
31.4
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5 | 5
1.1
1.5
1.7
2.1
1.8
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.4
1.2
1.8
1.0
1.3
1.1
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7 | 6
0.8
0.6
0.3
0.8
1.2
1.5
1.6
1.1
1.2
1.1
1.1
1.2
1.1
1.2
1.0
0.9
1.0
1.2
1.0
1.2
1.5
1.1
1.2
1.5
1.1
1.2
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | 7
7.0
3.9
5.6
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2 | 8
 | 9
20.4
51.1
51.9
52.4
52.2
50.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52.5
52. | 10
1999
160
1225
219
203
177
277
171
190
133
135
159
227
245
240
240
240
240
240
240
240
240 | 11 1
97777997777777777777557775577779575777777 | 2 13
3 2 2 3 2 3 3 2 1 2 2 3 4 1 1 1 1 2 2 2 3 2 1 1 1 1 2 2 2 3 2 3 2 | | 15 63444555556455544557553443544455455455445455655455
11 3154343434343434334435575534455455455455455655455
11 11 11 11 11 11 11 11 11 11 11 11 11 | 6 17
5 17 | | 19
587
587
587
587
587
587
587
587 | tiedlikterikkeidustiserisikiitikkie rohidee saavanuutuinistaatiesiaatiesiaatiesiaatiesiaatiesiaatiesi. | ED 31110 31121 31221 31221 31221 31221 31221 31222 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31232 31231 31241 31421 31421 31421 31421 31421
 31421 31421 31421 31421 31421 31421 31421 31421 31421 | Designation
14 X AT3
15 X AT3
15 X AT3
15 X AT4
16 X ATX
17 X AT4
17 X AT7
18 X AT3
18 X AT4
18 X AT4
18 X AT4
18 X AT4
18 X AT4
18 X AT7
18 X AT7
18 X AT7
18 X AT7
18 X AT7
19 X AT7
11 X AT7
11 X AT7
11 X AT7
11 X AT7
11 X AT7
12 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 1
536.0
873.0
959.0
893.0
1090.0
992.0
643.0
535.0
643.0
870.0
917.0
1226.0
870.0
917.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
920.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
923.0
925.0
925.0
925.0
925.0
925.0
925.0
925.0
925.0
925.0
925. | 2
115
193
215
224
225
224
225
224
225
225
225
225
225
226
225
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
226
227
226
226
226
227
226
226
226
227
226
226
227
226
227
226
227
226
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205
2205. | ACCUARY FIBE | | 4
TERT ()
ET () | 5
 | е
•1
•1 | 7 | 8
YILOOK
COLD S
TOLET | 9
21.7
22.7
22.4
22.0
21.9
22.4
22.5
23.2
21.8
22.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21.3
21.2
21.2
21.2
21.3
21.2
21.2
21.3
21.2
21.2
21.3
21.2
21.2
21.5
21.2
21.2
21.5
21.2
21.5
21.2
21.5
21.2
21.5
21.2
21.5
21.5
21.2
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21. | 10
1533
1922
1938
1844
1851
1544
1852
1577
1422
206
1930
2277
173
195
1855
200
1977
1759
190
218
190
2214
190
1931
1831
1217
162
163
164
1932
1657
1657
1799
1799
151
1657
1657
1657
1657
1657
1657
1657 | 11 7 11 7 | | 3 14
2 3 2 1 2 2 2 2 5 2 3 1 2 4 2 4 3 3 3 3 2 4 3 2 3 3 3 2 2 4 2 2 2 3 3 2 2 5 3 4 2 3 3 3 2 2 4 3 2 3 3 3 2 2 3 2 3 | 15 1
 1 1 | | 18 19 1 192 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 1937 1 | 1 |
| "3" : TULL' SUCHE CONTENT (
"4" : SUCHE TIELO (DI/H)
"5" : FEUCTOSE CONTENT (
"6" : FEUCTOSE CONTENT (

 | 1: (I)
1:
[]
[] | •10• = | DEL EAS
GRONTE
PARICLE | | (CE)
ECE 71
 | N. ELA | •14• | ' = VII
Tou | D INFL
NG LEA | UEKCE I | POL | *18*
19 | = LOD
= HAR | GING T
Vest i | TERDER | ECT | | and the second second | "4" :
"5" :
"6" : | SUGAR VIELD (DT
GLUCOSE CONTENT
FRUCTOSE CONTEN
 | (784)
(| • | 10° = G
11° = P | ROVTE I
Micle | EIGHT | | NE . | •1 | . 4" = 1
1 | VIIIO I
Toure (| IFLUEIC
LEAF | e opol | 1 *14
*19 | " = L
" = B | DOGIE
ARVES | G TEND
T DATE
 | ERCY | | |

-

Evaluation Data of Sorghum bicolor from 1985-1995

Institute of Grop Science Federal Research Centre for Agriculture Braunschw Bundesallee SD, D-38116 Braunschwei Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 3	reig-7őlkearode (FAL) Ig 365 - 25 -	Lestitute of Crop Science Federal Research Centre for Agriculture Braunschweig-Tölkenrode (FAL) Bundesallee SO, D-38116 Braunschweig Federal Republic of Germany Tel. 0531-5961, Fax. 0531-596 365 - 26 -
10 Designation 1 2 3 4 5 5 7 8	8 9 10 11 12 13 14 15 16 17 18 19 ED D	esignation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19
ID Designation 1 2 3 4 5 7 7 3163 GLO I ATI S85.0 141.0 3164 GLI I ATI 665.0 141.0 3164 GLI I ATI 665.0 147.8 3163 317 3163 317 3163 317 3163 317 3163 3177 317	3 11 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11	Size 221.5 70.1 5.9 12.1 2.5 2.0 1.4 31.4 116 1 4 3 1 3 3 3 3 3 3 1 197 $45:100^{-2}$ 501.9 552.4 9.4 47.0 1.9 1.6 5.9 30.4 221 2 6 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 197 5 1.4 1.1 0.6 1.7 7 3 1 1 3 1 1 1 197 57.7 30.25 1.1 0.5 7 0.20 1.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1111 1111 1397 CELMA 70/5685-11 790.0 196.9 8.6 67.9 1.5 1.0 6.1 1399 SEE 1/88 667.5 223.0 7.0 46.8 1.4 1.3 4.3 3400 SUR 4/88 343.5 123.1 7.0 23.9 1.0 1.0 2.6 3401 SUR 9/88 ~511.0 147.7 5.0 25.6 1.2 1.0 2.8 3402 SUE 20/88 450.5 136.4 7.7 34.7 1.2 1.0 5.5 *1' = FRESH MATTER TIELD (DT/HA) *7" = SACCHARGE CENTERT (Z) *12" *12" *13" *2" = DIT MATTER TIELD (DT/HA) *8" = RAW FIBEE CENTERT (Z) *13" *13" *3" = TUTAL SUSAE CONTERT (Z) *9" = DET MATTER (X) EAN *13" *13"	24.9 264 3 6 3 1 5 3 1 1992 3460 54 33.4 272 7 7 3 1 1 5 3 1 1992 3460 54 33.4 272 7 7 3 1 5 3 1 1992 3461 54 35.8 292 7 7 3 1 5 3 3 1992 3463 54 28.9 161 3 6 3 1 7 5 3 5 1992 3463 54 30.3 162 3 5 3 1 3 3 1992 3464 54 # 105105 # 1 3 1 3 3 1992 3464 54 # 1050105 # 105105 105105 10111 1 *1*<= 102	1 49 442.1 156.5 6.9 30.4 1.3 1.0 4.6 35.3 237 4 7 3 1 9 1 3 1 1972 A 50 365.8 108.1 6.4 22.2 0.5 0.5 5.4 29.6 126 4 4 3 1 7 1 3 1 1972 A 51 329.7 103.4 8.8 22.9 1.5 1.1 6.1 31.4 145 3 3 1 7 1 3 1 1972 A 53 390.5 135.0 6.9 26.8 1.7 0.9 4.2 34.6 187 8 5 3 5 7 3 1 1972 A 53 390.5 114.3 6.2 26.6 0.6 5.0 26.7 118 8 5 3 5 7 3 1 1972 SSB MATTER TIELD (0T/FAL * 7* = SACCHAROSE CONTENT (1) *12* = VIED/R *15* = TILLERIEE *15* = AMONTE DISSASE ON LEAF 13* = COLD SISSEPTIBILITY

•

Evaluation Data of Sorghum bicolor from 1985-1995

1

1

.

Evaluation Data of Sorghum bicolor from 1985-1995

		Fee	éral les	æarch Ce Bunde T	Insti natre for sailee S Federa Tel. 0531	tute a: Agric: 0, 0-3: 1 Repul -5961,	f Crop alture 3116 B blic o Fax. (Scien Braun raunsc f Gera 0531-5	ce schreig- hreig my 36 365	Välken	rode ((FAL))			7	7.	-						Fee
Ø	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	15	17	Ľ	8 19		E	Designatio	a 1
3465	SI 59	537.5	5	3.0	15.2	0.7	0.7	1.6			64		5	3	3	7	3	3	1	1992		3514	SA 204	492.0
3466	S& 61	601.5	5	5.5	33.3	1.G	L.3	2.7			142		7	3	5	7	3	3	1	1992		3515	SA 210	619.0
3467	SA 62	601.3	5 172.6	5 1.6	27.6	0.5	0.6	3.5		28.7	202	7	8	3	5	5	3	3	1	1992		.SIb 2517	SA 21/	712.0
3458	54 64	<u>.</u>	2 145.0	6.3	33.8	1.0	0.5	4.7		Z7.0	193	9	1	3	2	2	3	3	1	1992		3317	SA 221 CL 227	715.0
3465	SA 67	555.4		5 4.6	29.8	0.9	0.8	2.9		21.1	92	•	3	3	3	-	3	3	1	1994	1	7519	51 724	725.0
3471	SL 0/6	383.3	3 3L.8 5 100 7	5 1.8	7.0	0.5	U.C 17	1.7		27.0	123	n	1	Å	1	7	2	1	1	1997		2520	SA 241	713.0
5413	28 UBI	3/3.3	3 100.7 3 68.7	1 J.U 7 A 1	10.7	5 1	19	1 2		27.0	157	q	1	ŝ	÷	2	Ĩ	i	1	1991		3521	54 243	608.0
2175	21 000	779	5 83 8	1 70	67	0.6	0.8	0.6		25.4	166	Ó	i	3	3	7	i	ī	1	1993		3522	SA 247	696.0
2013 2076	54.000	264.5	5 81.7	7 1.2	1.3	0.2	0.4	0.7		30.7	134	Ō	i	7	1	9	5	ī	1	1993		3523	SA 257	4Zi.0
3477	SA 100	245.1	8 64. 8	1.0	2.5	0.3	0.3	0.4		26.4	85	0	4	7	1	5	4	1	1	1993		3524	54 271	717.0
347E	SA 109	228.5	5 71.4	5.2	11.8	1.3	2.2	1.7		31.3	122	3	4	3	1	7	3	1	1	1993	-	325	SA 283	872.0
3479	SA 110	241.4	6 85.1	L 1.9	4.6	0.4	0.6	1.0		35.2	163	7	4	3	1	9	1	1	1	1993	1	3536	SA 285	786.0
3420	SA 112	177.4	0 \$7.7	1 2.2	3.9	1.2	1.0	0.0		32.6	92	9	- 3	6	1	6	3	1	1	1993		3527	SA 287	717.0
3481	SI 113	262.	4 92.5	5 3.0	8.0	1.0	1.3	0.8		35.2	166	7	4	7	1	7	5	1	1	1993		3C28	54 295	617.0
3482	SA 114	427.3	2 110.7	7 23	9.8	0.9	1.3	0.1		23.9	166	0	2	3	4	4	1	1	1	1000		3323	51, 295	C20.0
3453	54 115	212.	1 69.2	(1.3 1 30	11.7	1.3	1.5	0.7		32.5	111	37	2	3	1	7	2	;	1	1991		101	SA 297	607.0
3101	CA 11/	779	1 75.1 C 76.1	1 22	5.0	1.0	00	0.7		20.1	97	7	4	3	1	ŝ	5	i	i	1993		3532	SA 307	557.0
3485	54 176	220.1	8 102.4	1 17	8.3	1.4	1.6	0.6		49.1	98	i	5	4	1	9	2	ī	1	1993		352	SA 305	299.0
3487	SA 122	350.1	0 99.3	3 1.7	6.1	0.5	0.8	0.4		28.4	225	9	5	7	1	5	5	1	1	1993	<u>_</u>	3534	SA 318	444.0
3452	54 124	277.1	8 106.5	5 2.8	10.5	0.9	1.8	1.1		38.5	161	3	4	3	1	9	5	1	1	1993		3535	SA 321	527.3
<u>4</u>	SA 125	99.1	7 36.3	2 0.4	0.4	Q. C	0.2	0.2		36.3	82	0	2	5	1	7	5	1	1	1993		335	SA 325	1036.4
3496	SA 128	255	4 88.7	1 2.7	7.0	0.9	1.2	0.6		34.7	139	5	5	4	1	5	5	1	1	1993	111	- SSI 7576	54 541	994.1
3491	SA 131	476.3	3 128.6	5 2.8	13.4	0.9	1.4	0.5		27.0	166	0	2	4	1	7	3	1	1	1723	N. S.	3330	54 397	1110-6
3493	SA 135	212.	1 66.0	0.9	1.6	0.7	0.1	0.0		31.1	107	9	2	5	1	5	е с	1	1	1997	19	3547	SA 365	1020 2
3151	5A 13/ CL 176	241.1	C 00.3	2 70	5.0	1.3	1.5	15		23. T	109	5	ŝ	7	t	5	5	1	i	1993		350	SA 415	796.8
มน นน	51 120	775	7 109.1	1 23	10.A	0.6	0.8	1.9		31.4	145	8	4	4	1	s	6	1	ī	1993	1.14	3544	SA 458	802.9
3497	SA 142	220.	4 BL.7	7 2.2	5.2	0.6	0.8	C.9		37.1	104	ō	3	3	1	S	Ś	1	1	1993	19	3545	SA 483	731.0
3492	SA 144	205.	1 75.1	1 3.1	6.3	0.6	3.0	1.6		36.6	183	0	4	4	1	6	5	1	1	1993		3546	SA 529	744.0
3499	SA 145	216.	3 68.4	27	5.8	0.6	0.8	1.3		31.6	104	0	4	4	1	6	S	1	1	1993		3547	SA 568	663.0
3500	S& 146	192.	4 79.3	3 1.3	6.6	0.E	C.8	2.0		40.0	163	3	S	3	1	5	4	1	1	1993	14	3548	SA 569	856.3
35C:	SA 147	229.	0 92.6	6 4 .0	9.3	0.9	1.0	2.2		40.9	140	5	5	3	1	5	4	1	1	1993		2045	54 3/1	620.4
3502	SA 148	202.1	5 71.5	9 3.5	7.	0.7	1.1	1.8		20.3	158	9	6	3	1	b	ن د	1	1	1003	1	3551	51 575	155 5
3213	54 151	14/.	4 57.7	/ 2.5	j./	0.5	0.9	1.0		32.1	227	3	3	3	1	ĥ	- 2	1	1	1993		3557	S4 581	402.9
2004	54 13/	23/.	9 /JLL 7 1176	C 71	1.3	0.0	1.1	1.7		31.5	167	9	ì	4	1	6	3	1	i	1993	1	2553	SA 587	855.0
3303 7506	SA 101 SI 170	286.	1 70.4	4 .7	5.0	0.8	0.7	C. 2		24.6	98	7	4	i	1	7	4	ī	1	1993	24 25	3554	SA 589	707.3
3507	SA 175	301.	7 90.6	6 1.7	5.2	0.8	0.8	0.1		30.0	189	3	4	5	1	7	3	1	1	1993	龗	3555	SA 590	581.2
2508	SA 177	261.	8 72.3	3 1.1	29	0.6	C. 5	0.0		27.6	101	7	5	4	1	7	3	1	1	1993		3595	ZE 2901	375.4
2509	SA 179	787.	5 193.7	7 3.2	25.0	C.7	0.9	1.6		24.6	273	9	9	5	2	4	3	1	1	1993		355	ZH 2901	437.6
3510	SA 186	193.	0 63.9	9 0.7	1.4	0.4	0.1	0.2		33.1	135	9	3	5	1	6	3	1	1	1993	- THE	-57% 75%	ZE 2902	392.7
3512	SA 190	. 227.	7 85.0	0 3.0	6.7	0.9	0.9	1.2		37.3	129	4	5	5	1	5	5	1	1	. 1993	Ť.	3370 7597	211 2302 711 3903	415.0
3513	SA 201	310.	0 89.0	0 7.3	22.7	1.2	1.0	5.Z		32.9	119	5	3	1	3	د 	1	4	1	. 1994				
•1• •2• •3• •5• •6•	FRESE NATTER DRY MATTER TOTAL SUGAR SUJAR VIELD GLICOSE CON FRUCTOSE CON	R TIELD (DT/HA) TIELD (DT/HA) CONTERT (1) (DT/HA) TERT (1) HTERT (1)	* 7* = * 8* = * 9* = *10* = *11* =	SACCHARI RAV FIRI DRY MATI GROWTH I PANICLE	DE CONTEN RE CONTEN TER CONTEN RELIGHT (C ENERGERG	IT (I) T (I) IT (I) IT (I) IT (I) IT TIME	REAR	*12* *13* *14*	= VIISTA = COLD ! YOURS = VIED YOURS	R SUSCEP PLANT INFLUE LEAF	TIBILI ICE UP	TT OR	*15 *16 *17 *18 *19	* = * : * :	TILL ANOU DROU LODG EAPT		E ISEA SUSC TEAL DATE	ISE (IEPTI IEICI	ON L IBIL T	EAF		"!" : "2" : "3" : "4" : "5" : "6" :	FRESH MATTER DRY HATTER 1 TUTAL SAGAR SUGAR TIELD GLIGUSE CON FRUCTOSE CON	ITELD (DT/HA) (IELD (DT/HA) CONTERT (I) (DT/HA) <
																					书 编译	E.		

Institute of Crop Science Federal Research Centre for Agriculture Braunschweig-Völkenrode (FAL) Bundesallee SD, D-38115 Braunschweig Federal Republic of Germany Tel. 0531-5561, Fax. 0531-556 365

293.1 93.6 7.7 22.5 1.4 1.3 5.0 31.9 112 6 5 3 2 5 3 3 1 1992 "15" = TILLERINE (HA) * 7* = SACCEARISE CONTENT (7) *12* = VIGNR 41 * 8" = RAV FIBRE CONTENT (Z) *13" = OLD SISCEPTIBILITY *16" = ANDIAT DISEASE OF LEAF "17" = DRIEGHT SUSCEPTIBILITT * ?* = DRY NATTER CONTENT (Z) MEAN TOULG PLANT "10" = GROWTE BEIGHT (CH) "14" = WIRD INFLUENCE UPON "18" = LODGING TENGENCY "11" = PARICLE EMERGENCE TIME "19" = EARVEST DATE TOURG LEAF

32.3 116 5 7 4 1 5 3 1 1 1993

133.9 8.2 33.8 1.0 0.9 6.3

	Feder	al Resea	rch Ceat Bundess Te	Instit tre for allee 5 Federal L. 0531-	tute of Agricu D, D-38 I Repub -9961,	Crop So Iture Bu 116 Brav Lic of U Fax. OS	cience raunsch unschwe Gerwany 31-596	reig-Tõlke ig 365	erode	(FAL)			29	•						Fe	deral B	esearch Bun	Ins Centre f Sesailee Fede Tel. 05	titute or Agri 50, D- ral Reg 31-5961	of Cro icultur 38116 public L, Far.	p Scien e Braunsc Braunsc of Gern 0531-5	ce schreig-Yö hreig any 756 365	lkenrode	(FAL)		-	30	-	
10 April 10	• 1	2	3	4	5	6	7	89	10	11	12 13	14	15 H	5 17	18	19		E 0	Designation	1	2	3	4	5	6	1	8 9	3 10	11	12 1	3 14	15 1	15 17	18 19
to designatio	•	••••••						· · · · · · · · · · · · · · · · · · ·	 7 97	 5	<u>د ج</u>	 1	5 3	1		1993		3621	ZH 2927	\$29.3	1 IG9.	4 9.	49.	7 0.8	1.2	7.4	3	2.0 251	3	8 4	2	7 3	1	1 1993
3597 ZH 2903	389.7 360 A	125.3	7.0	37.0	1.0	1.0	a. c 8. 3	33.	4 123	1	53	ī	5 3	3	i	1992		3622	ZE 2928	488.3	3 146.	4 10.1	i SL	0 2.2	2 1.8	6.4	30).0 Z33	1	63	3	4 3	3	1 1992
3536 22 2304	313.1	104.8	6.5	20.5	0.7	0.8	5.1	33.5	588	7	4 5	1	5 3	1	1	1993		3677	75 7979	672.5	5 1/5. 5 180.	5 9.1	1 12.0 1 60.1	5 L.C 7 1.S	1 1.9	5.2	2	19 201 59 231	37	63	2	1 3	1	1 1997
3599 28-2905	344.7	117.1	7.6	26.]	1.0	0.9	5.8	34.0	0 120	1	53	2	54	3	1	1992	- 1	3623	ZE 2929	556.5	i 133.	8 6.	35.0	0 1.1	1.9	3.3	2	LO 190	9	5 6	1	7 2	1	1 1993
3599 ZH 2905	315.5	105.1	7.4	23.2	0.5	0.7	6.1 5 1	33.	3 1103 2 110	1 1	3 1 5 3	1	54	3	1	1992		3624	ZH 2930	634.4	I 170.	7 7.	49.1	7 2.3	1.8	3.7	2	i.9 220	7	73	3	4 3	3	1 1992
3600 ZE 2906	330.0	106.4	7.7	2.3	1.3	1.1	16	30.	5 97	ŝ	5 5	1	6 3	1	1	1993		3624	ZH 2930	598.0) 147.	3 4.	24.1	1.2	1.7	1.2	2	1.6 227	9	6 4	1	7 :	i 1	1 1993
3500 ZE 2905	2/1.9	119.9	9,9	34.5	0.9	0.9	7.6	32.	7 121	. ī	5 3	1	5 2	2 3	1	1992	- 1	3623	ZH 2931 27 2021	634.0) 150.	3 (.)	23.	7 1.2	1.0	2.5	Z	j.3 ZZ1	9	5 3	3	4 3	3	1 1992
3601 ZE 2507 3601 78 2907	303.6	95.1	5.0	15.3	0.9	1.0	3.2	31.	3 104	4	4 4	1	7 3	1	1	1993		3623	21 2731 71 2972	963.3 (10) S	102.	3 2. 8 91	12.1	5 U.6 3 N.6	1.1	1.1	24	70 T23	7	2 3	1	3 3	1 1	1 1993
3602 ZE 2908	489.5	178.5	10.6	52.7	1.4	1.2	8.2	36.	5 201	1 1	7 3	3	5 3	3	2	1992		3626	ZE 2932	421.9	127.	7 8.1	34.3	3 1.4	1.6	5.1	Ĵ	1.1 164	Ś	5 6	1	6 3		1 1993
36C2 ZE 2908	376.1	110.7	9.7	3£.4	0.8	1.0	7.9	29.	4 166	53	6 6	2	2 1	1 1	2	1997		3627	ZE 2933	588.0	183.	8 9.6	53.1	0.8	0.7	7.6	31	.3 181	2	4 3	1	5 3	3	1 1992
3603 ZE 2909	342.7	121.2	11.5	39.5	1.3	1.4	8.5 7 A		1 217	2 I 2 7	4 7	1	6	2 1	ī	1993	-	3£27	ZE 2933	184. 4	54.	9 6.1	12.5	5 1.7	2.0	3.1	37	i.2 174	3	4 7	2	7 3	1	1 1993
3603 ZH 2909	625.5	195.0	11 0	29.0	U.7 34	1.7	9.3	32	5 224	5 1	9 3	3	5	1 3	1	1992	1	3622	ZH 2934	542.7	151.	4 10.1	51.0	3 0.7	0.7	8.7	27	/.9 193	7	5 3	2	5 2	3	1 1992
3604 ZE 2910	387-0 S45 A	150.0	8.6	47.0	0.6	1.1	6.9	29.	2 23	1 3	7 6	1	6	1 1	1	1993		3528	2H 2H34 7W 2025	206.1	. 60.	4 4.) 5 10 1	9.8	1.3 	1.5	1.9	Z5 ~	1.0 108	9	53	1	5 2		1 1993
3601 25 23.5	674.B	203.5	11.7	78.6	1.8	1.4	8.5	30.	.2 250	02	8 3	3	5	4 3	1	1992	-	3625	711 2925	130.0	107.	7 64	. 00	1 1.0	77	5.2 7 8	20	11 187	3	5 J 5 J	1	7 7	1 3	1 1993
3605 ZH 2911	615.4	175.2	9.1	56 .2	0.9	1.3	7.0	28.	.6 22	85	5 4	1	3	21	-	1993	1	3630	ZH 2936	656.8	199.	1 7.6	51.3	0.8	0.7	6.3	ĩ	1.3 240	3	73	2	5 3	3	1 1992
3606 ZH 2912	581.1	177.5	12.9	74.8	1.8	1.3	5.8	30.	1 22	9 Z 0 S	7 7	1	6	3 1	i	1993	100	3630	ZE 2936	484.5	145.	2 6.2	29.5	1.0	1.7	3.5	30	.0 187	7	5 S	1	6 3	1	1 1993
3606 ZH 2912	559.7	166.4	9.3	51.9	- L.I.	1.3	b./ 87	23.	7 23	37	7 3	ž	5	3 3	i	1992		3631	ZE 2937	542.2	156.	9 5.0	27.3	6.7	0.7	3.7	28	.9 155	7	7 3	1	5 1	3	1 1992
3607 ZE 2913	774.0	229.7	11.2	200-0 10 6	6.9	1.3	5.3	28	.0 21	4 5	6 7	1	6	21	1	1993	ale a	3631	ZH 2937	253.8	<i>T</i> ,	5 4.2	. 11.2	0.7	1.2	2.3	29	1.4 115	9	57	1	5 3	1	1 1993
3607 25 2913	418.6	145.1	10.0	41.9	1.7	1.3	7.0	з	.7 26	77	8 3	4	4	3 3	2	1992	3	3532	24 2336 78 7979	3/U.1 767 7	172	3 6.l a 7.7	34.3	. 1.4	1.1	3.4	30	1.3 151	7	7355	1	5 1	. 3	1 1992
3608 25 2914	567.1	186.1	6.5	36.6	0.5	0.9	5.C	32	.8 24	6 9	8 3	2	5	3 1	1	1993	10.5	3632	ZE 2939	431.9	128.	2 6.8	29.1	0.0	1.0	4.9	×.	1.7 118	2	4 3	1	5 1	3	1 1992
3609 ZE 2915	485.9	161.0	9.1	41.3	1.2	1.2	6.7	33	.1 22	28 7	5 3		2	33	1	1997	100	3633	ZH 2939	306.3	%.	4 3.1	9.4	0.8	0.9	1.4	31	.5 93	s	55	1	6 3	1	1 1993
3605 ZE 2915	341.4	110.4	6.2	21.1	0.7	1.1	4.4	32	L3 18 a 20	W 2 N 1	2 2	2 1	5	3 3	i	1992	1995	3634	ZH 2940	479.0	134.	1 5.7	27.3	0.8	0.7	4.2	22	.0 139	2	4 3	1	53	3	1 1992
3610 ZH 2916	513.8	163.5	10.0	51.4	1 1.3 I 1.9	1.1	7.5	34	.5 21	5 1	5	1 1	5	1 1	1	1993	Diener.	3634	2H 2940	347.3	\$8.	5 2.5	12.2	0.9	1.2	1.4	28	14 84	7	55	1	5 3	1	1 1993
3610 ZH 2916	419-2	144.4	1.1	20.1		1.5	7.6	37	LE 22	2 2	7 :	3 2	5	3 3	1	1992	ગોના	353	ZE 2941	436.8	132.	6 8.9	34.9	0.5	0.7	6.8	30	.4 159	1	63	1	5 3	3	1 1992
3611 2# 2917	519.0	170.5	11.5	55.6	1.3	1.1	9.1	37	.8 20	1 B	7	3 1	4	1 3	1	1992	et et al	3635	25 2541 TESI	323.t	150	ديد 15 م	10.9	1.0	1.3	1.0	23	.5 115	3	53 91	1	3 3	1	1 1993
3612 24 2510	417.3	144.0	10.9	45.7	7 1.6	1.6	7.7	34	1.5 20	B 1	5	3 2	5	3 3	2	1992	i lire	3637	LIPA	190.0	52.	0					37 34	4 107	1	5 1	;	9 1	7	1 1994
3613 ZE 2919	397.6	119.9	δ.1	r.:	2 1.0	1.5	5.7	30	0.2 19	92 5	7	51	7	3 1	. 1	1553	1977	3639	LISETA	236.0	87.	0					47	1.8 94	1	6 Î	î	9 1	6	1 1994
3614 ZE 2920	601.1	198.1	9.6	57.1	6 1.7	1.2	5.7	39	3.0 Z	31 3	6	3 <u>7</u> 7 7	3	2 2	2 3	1 1992	Statike	3640	8.043	1456.0	367.	0 4.6	67.6	0.9	0.7	3.0	រះ	.4 379	9	9 i	5	4 2	1	1 1994
3615 ZE 2921	483.1	5 160.0	12.3	55.5	5 1.5	1.3	2.2 7.3	33	1.1 4 1 7 7	LI 3 45 4	Б А	4 1	;	3 1	Ĺ	1993	and the second s	3640	E 043	587.8	124.	2	_				21	.1 255	7	43	3	33	7	1 1995
3615 ZE 2921	707.	2 199. / 5 150 A	10 1	ດ ເມື		1.0	7.9	ĩ	2.0 1	87 2	6	3 4	4	2 :	3 1	1 1992	1116	3641	E 129	1250.0	351.	0 3.8	47.6	0.5	0.7	2.3	44	.7 358	9	91	6	5 2	1	1 1994
361t 24 2522 3615 78 2977	530.	161.6	9.0	47.	6 1.4	1.6	5.8	3	0.9 2	50 3	7	5 :	6	2		1 1993	Uppel:	3641	E 1.90 F 200	1451.0	340. 140.	U 1.2 N 46	- 2L./	1.2	0.9	26	*0 *2	1 3/6	ינ	a 1 3 1	1	5 3	5	J 1794
3617 7E 2923	407.1	7 131.6	11.1	45.	4 1.6	, 1.3	8.3	J	2.3 Z	24 7	6	3 4	4	3	3 3	3 1992		3642	E 200	763.2	151) 10	00. 2	1.1	U. J	2.0	30 19	LA 232	9	53	5	5 3	7	1 1995
3617 ZH 2923	661.	6 206.1	9.3	61.	2 1.1	1.5	6.7	3	1.2 Z	38 4	5	51	7	3.		1 1997		3544	H 201	1289.0	386.	- D 6.8	88.2	1.5	1.1	4.3	45	.6 363	7	91	6	5 1	Ś	4 1994
3618 ZE 2924	549.	1 183.3	12.:	66.	6 1.5	1 0.9	5.7	د ۲	3.9 Z 0 6 7	11 J nc A	7	31 51	5	2	1 1	1 1993	i live	3644	E 201	515.0	87.	5					17	.0 226	3	63	5	3 1	5	1 1995
3618 ZE 2924	589.	8 175.7	9.7	57. - 10	5 L.		/.9 95	2	4.7 7	20 1 17: 1	7	3 1	4	2	3 3	2 1992	ling.	3645	H 252	1089.0	290.	5.1	55.9	0.9	0.8	3.5	41	.9 333	9	91	3	4 1	1	2 1994
3619 28 292	511.	6 1.0.7 1 151 (, <u>,</u> ,	 	5 0.1	A 1.4	7.2	3	0.5 2	42 3	7	4 2	6	2	1	1 1993	いない	30%	E 266	1117.0	345.0) 4.5	50.5	0.9	1.0	2.6	39	.0 367	5	91	3	5 3	5	2 1994
3619 25 2323	501.	4 153.9	9.3	46.	2 1.	3 1.5	5.9	3	0.7 2	214 3	7	32	4	3	3	1 1992		3648	STREAM	1233.0	، 100 1 197	J 4.: 1 97	20.1	11	0.5	24 71	57 57	6 275	2	7 I 5 I	J 1	9 1	3	1 1994
3620 ZE 2926	. 654.	0 168.1	6.1	39.	8 0.	9 1.7	3.5	2	5.7 2	230 5	7	3 1	1	4	1	2 1007	101	3649	E 341	512.7	111.9)	J U, 2		0.0		21	.8 262	1	6 5	3	1 3	7	1 1995
3621 ZH 2927	473.	7 152.0	0 10.6	50.	4 L	3 0.9	8.4	3	21 2	215 2	6	2 ز	. 1	د 	J 	4 1774	1446			•••••												•••••		
1 = FRESE AL *2* = ORY ALT *2* = TUTAL S *4* = SLGAP T *5* = GLEOISE *6* = FRUCTOS	ITTER TIELD (DT/HA) TER TIELD (DT/HA) EGAE CONTENT (1) EGAE CONTENT (1) CONTENT (1) E CONTENT (1)	• 7• = • 8• = • 9• : •10• = •11• =	SACCEAN PAN FII DRY HA' GROWTE PANICL	NOSE COL ERE COST TTER COL EELIGET EELIGET	ITENT (TENT (ITENT (ITENT (ICE) ENCE TI	1)) 1) EEAN	*12* *13* *14*	= VIGOUE = COLD SUS TOURE PI = VIED IN TOURE LI	CEPTII LAIT Fuidelci Eaf	BILITY E UPOX	*15* *16* *17* *18* *19*	= TIL = ALC = DRC = LOC = HAL	LERIN Kurt D Kurt S Kurt S Kurt S Kurt S Kurt S	SUSCEI Suscei Teidei Date	: OI PTIBI ECT	LEAF ILITY		"1" = "2" = "3" = "4" = "5" = "6" =	FRESE MATTER TIELD (1) ORY MATTER TIELD (1) TOTAL SUGAR CONTENT SUGAS TIELD (0)/HAN GLICOSE CONTENT (2) FRUCTOSE CONTENT (2)	(OT/EA) DT/EA) T (I))) I	* 7* : * 8* : * 9* : *10* : *11* :	SACCEAR RAV FIB DRT MAT GROWTH PARICLE	È COIT E COITE EI CUIT Eligit () Energen	ENT (2) IT (2) ENT (3) CB) CE TIM) HEAR	*12" = *13" = *14" =	VIGUR CULD SUSC YOUNG PLAN VIED INFU YOUNG LEAN	EPTIBILI IT VERCE UF F		15° = 16° = 17° = 18° = 19° =	TILLS ANDUT DROUGH LODGH HARTES	rie T Dise HT Sus HE TER ST DAT	ASE OF Ceptie Deict E	LEAF

.

.

and the state of the second state

hi

Evaluation Data of Sorghum bicolor from 1985-1995

		Federa	al Resca	rch Centi Bundera I Tel	Institu re for 1 llee 50, Federal . 0531-3	ite of Igricul D-38 Repub 5961,	Crop f Iture 1 116 Br 116 of Far. O	Scienc Brauns annach Gerna 531-59	e chreig reig ay 6 365	-Võlkear	ode (FAL)			-	31	-			
Ð	Designation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
 1691		495.0	114.7							23.1	270	5	6	3	3	3	5	7	1	1995
2020	s m	855.9	130.7							15.3	156	9	5	5	3	3	4	4	1	1955
2631	85.02	839.2	164.4							19.8	258	7	7	1	3	3	3	2	1	1955
2697	85 G1	768.2	128.1							16.6	201	9	4	5	3	2	4	Ĵ,	1	1220
257	85.01	749.8	151.2					•		20.0	247	3	5	3	3	1	3	2	3	1993
2671	R5 09	748.2	151.8							20.3	258	7	6	1	3	1	3	1	1	1995
254	85.04	516.0	111.7							21.7	254	7	5	1	3	1	3	3	1	1773
2655	R 234	531.1	92.5							17.6	243	3	5	3	3	1	1	1	-	1003
3661	R 029	768.9	193.1	1.4	10.4	0.8	0.6	0.0		25.1	245	0	1	5	1	2	7	1	1	1773
367	H 030	116.0	286.0	4.6	53.8	1.0	0.9	2.7		25.9	359	9	à	1	3	1	4	1		1005
3667	H 030	537.7	112.9							21.0	255	1	1	1	3	3	2	4	1	1000
3663	E 025	728.7	162.2	1.5	11.1	0.7	0.2	0.6		ZZ.3	Z70	9	1	3	1	2	3	1	1	1004
363	1 035	1133.0	335.0	5.5	61.9	1.1	1.0	3.3		30.5	354	7	9	1	3	3	1	1		1005
3663	E 035	1189.0	250.3							21.9	Z5 0	7	4	3	3	3	د	J	1	1223

1 = FRESE WATTER YIELD (DT/GA) *2* = DRY MATTER YIELD (DT/GA) *3* = TUTAL SUGAR CONTENT (X) *4* = SUGAR YIELD (DT/GA) *5* = EHICOSE CONTENT (X) *4* = SUFATTER (DITTERT (X)	• 7" = SACCHARDSE CONTENT (1) • 8" = RAW FIBER CONTENT (1) • 9" = DRY HATER CONTENT (1) HEAR •10" = GROWTH RELEAT (CA) •11" = PARICLE EXERCISE THE	*12" = VIGOUR *13" = COLD SUSCEPTIBILITT TOUER PLANT *14" = VIED INFLUENCE UPON YOUNG LEAF	*15" = TILLERIE *16" = AROUTI DISEASE ON LEAF *17" = DROUTH SISCEPTIBILITY *18" = LOGGING TENDELT *19" = HARVEST DATE